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a b s t r a c t

In most urban areas, traffic congestion is a vexing, complex and growing issue day by day. Rein-
forcement learning (RL) enables a single decision maker (or an agent) to learn and make optimal
actions in an independent manner, while multi-agent reinforcement learning (MARL) enables multiple
agents to exchange knowledge, learn, and make optimal joint actions in a collaborative manner.
The integration of the newly emerging deep learning and the traditional RL approach has created
an advanced technique called deep Q -network (DQN) that has shown promising results in solving
high-dimensional and complex problems, including traffic congestion. In this paper, DQN is embedded
in traffic signal control to solve traffic congestion issue, which has been plagued with the curse of
dimensionality whereby the representation of the operating environment can be highly dimensional
and complex when the traditional RL approach is used. Most importantly, this paper proposes multi-
agent DQN (MADQN) and investigates its use to further address the curse of dimensionality under
traffic network scenarios with high traffic volume and disturbances. To investigate the effectiveness
of our proposed scheme, a case study based on an urban area, namely Sunway city in Malaysia, is
conducted. We evaluate our scheme via simulation using a traffic network simulator called simulation
of urban mobility (SUMO) and a simulation tool called MATLAB. Simulation results show that our
proposed scheme reduces the total travel time of the vehicles.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

Traffic congestion is a serious and growing problem in most
urban areas. Traffic signal controllers are installed at intersec-
tions to monitor traffic flows and alleviate traffic congestion.
Generally speaking, a traffic signal controller can be characterized
by: (a) signal color (i.e., red indicates ‘‘stop’’, yellow indicates
‘‘slow down’’, and green indicates ‘‘go’’), (b) traffic phase, which
represents a combination of green signals allocated to all lanes of
an intersection simultaneously for safe and non-conflicting traffic
flows (see Fig. 1), and (c) traffic phase split, which represents the
time interval of a traffic phase. Unexpected traffic disturbances,
such as rainfall or bad weather conditions, can increase traffic
congestion. Meanwhile, Poisson process has been widely used
in the literature to model the arrival of vehicles in which the
vehicles’ inter-arrival times are assumed to follow the exponen-
tial distribution [1], but the Poisson process does not incorporate
traffic disturbances. This paper adopts the Burr distribution that
generalizes the Poisson process using non-exponential distribu-
tion to model the inter-arrival time of vehicles under scenarios
with high traffic volume and disturbances.
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Traditional traffic signal controllers select traffic phases and
traffic phase splits using three main approaches. Firstly, both
traffic phases and traffic phase splits are deterministic in na-
ture [2]. Specifically, a series of traffic phases are executed in a
round-robin fashion with certain periods of traffic phase splits.
Secondly, traffic phases are deterministic, however the traffic
phase splits are dynamically adjusted based on short-term in-
formation, particularly the presence or absence of vehicle(s) at
a lane [3]. Thirdly, both traffic phases and traffic phase splits are
dynamic in nature. Similar to the second approach, the difference
is that the traffic phase splits are dynamically adjusted based on
long-term information, such as the waiting time and the queue
length of vehicles at a lane. The third approach has commonly
been accomplished using reinforcement learning (RL), which is
an artificial intelligence approach [4]. RL possesses the capability
to learn the relationships between actions and their effects on
the operating environment (or states), and so it can adapt to the
real-time changes of traffic flows. There are two main approaches
in RL, namely the traditional single-agent approach (called RL
for simplicity) and the multi-agent approach (called multi-agent
reinforcement learning, or MARL). RL enables a single decision
maker (or agent) to learn and make optimal action in an indepen-
dent manner, while MARL enables multiple agents to exchange
knowledge, learn, and make optimal joint action in a collaborative
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Fig. 1. A series of traffic phases of a traffic signal controller at an intersection.

manner [5]. Nevertheless, RL and MARL are marred by the curse
of dimensionality, an issue whereby the number of states (or the
state space) becomes too large, leading to two main shortcom-
ings [6]. Firstly, higher computational cost and longer learning
time are required to explore all state–action pairs in order to
identify the optimal actions. Secondly, larger storage capacity is
required to store knowledge (or Q -values). Traffic disturbances
can worsen the curse of dimensionality because more factors,
such as rainfall and flash flood, must be incorporated into the
state representation.

This paper adopts deep Q -network (DQN) [7], which is based
on RL and deep learning [8], to address the curse of dimen-
sionality. In DQN, the use of artificial neural network (ANN) [9]
in deep learning provides: (a) a continuous representation of
state space, and so there are unlimited number of state–action
pairs, and (b) efficient storage as several layers of neurons are
used to provide abstract representations of high-dimensional and
complex input, which is the state representation, and so the curse
of dimensionality is addressed.

1.1. Our contributions

There are two main contributions in this paper as follows:

• Traffic signal controllers based on multi-agent DQN
(MADQN), which is a novel approach that extends the tra-
ditional single-agent DQN. While the traditional DQN ad-
dresses the curse of dimensionality under scenarios with
high traffic volume and disturbances, MADQN enables the
traffic signal controllers to exchange knowledge, learn, and
make optimal joint actions in a collaborative manner. A
case study based on an urban area, namely Sunway city in
Malaysia, is conducted to investigate the effectiveness of the
proposed scheme.
• Traffic signal controllers that take account of traffic distur-

bances (i.e., irregular inter-arrival time of vehicles at a lane
due to heavy rainfall) using a traffic model based on the Burr
type XII distribution, which has not been investigated in the
literature.

1.2. Organization of the paper

The rest of this paper is organized as follows. Section 2
presents the background of RL, MARL, and DQN. Section 3
presents related work. Section 4 presents our proposed model
for traffic signal controller, and the MADQN algorithm for the
proposed model. Section 5 presents a case study based on Sunway
city. Section 6 presents simulation results and discussion. Finally,
Section 7 presents conclusions and future work.

2. Background

This section presents an overview of RL, MARL, and DQN.

2.1. Reinforcement learning

Traditional RL model enables a decision maker (or an agent)
to explore and exploit different state–action pairs so that it
receives the lowest possible cost (or the highest possible reward)
for system performance enhancement as time goes by t =
1, 2, 3, . . . [10]. Fig. 2 presents an RL agent, and Algorithm 1
presents the RL algorithm. There are three main representations:
(a) state set S represents the decision making factors in the
operating environment, (b) action set A, and (c) delayed reward
(or delayed cost) rt+1(st+1) represents the appropriateness of a
state–action pair (st , at ) that leads to next state st+1. At time
instant t , an agent observes the current state st ∈ S, and selects
an action at ∈ A (see Fig. 2(a)). Subsequently, at time instant
t + 1, the agent receives a delayed reward rt+1(st+1) for the
state–action pair (st , at ) under the next state st+1 ∈ S (see
Fig. 2(b)), and updates Q -value Qt (st , at ) for the state–action pair,
which represents knowledge. The Q -value Qt (st , at ) represents
the appropriateness of taking action at under state st , and it is
updated using Q -function as follows [11]:

Qt+1(st , at )← Qt (st , at )+ αδt (st , at ) (1)

where 0 ≤ α ≤ 1 is the learning rate, and δt (st , at ) is the
temporal difference, which is based on the Bellman equation,
that represents the difference of rewards, in terms of delayed
and discounted rewards, between two successive estimations as
follows [12]:

δt (st , at ) = rt+1(st+1)+ γmax
a∈A

Qt (st+1, a)− Qt (st , at ) (2)

where 0 ≤ γ ≤ 1 represents a discount factor that shows the
preference for the discounted reward, and γ maxa∈A Qt (st+1, a)
represents the discounted reward, which shows the expected
maximum Q -value at time t + 1 and so on. In other words,
the delayed reward rt+1(st+1) represents a short-term reward,
while the discounted reward γ maxa∈A Qt (st+1, a) represents a
long-term reward. As time goes by t = 1, 2, 3, . . ., the agent
explores all the state–action pairs (st , at ), as well as updates and
stores their respective Q -values Qt (st+1, a) in a two-dimensional
Q -table.

Algorithm 1 Traditional RL algorithm embedded at an agent

1: Procedure
2: observe current state st ∈ S
3: select action at ∈ A using Equation (3)
4: receive delayed reward rt+1(st+1)
5: update Q -value Qt+1(st , at ) using Equation (1)
6: End Procedure

Using ε-greedy, the agent performs: (a) exploration whereby,
with a small probability ε, a random action is selected to update



F. Rasheed, K.-L.A. Yau and Y.-C. Low / Future Generation Computer Systems 109 (2020) 431–445 433

Fig. 2. Traditional RL agent at time t and t + 1.

the Q -values of candidate actions at ∈ A so that the best-
known action may be identified, and (b) exploitation whereby,
with probability 1 − ε, the best-known action a∗t , which has the
maximum Q -value, is selected as follows:

a∗t = argmax
a∈A

Qt (st , a) (3)

For simplicity, only exploitation is shown in Algorithm 1.

2.2. Multi-agent reinforcement learning

MARL, which is an extension to RL, enables agents to exchange
information (i.e., delayed rewards and Q -values) with each other
in order to coordinate their actions [13]. The purpose is to op-
timize a network-wide objective function or the global Q -value,
which is the summation of the local Q -values of all agents in a
network, as time goes by t = 1, 2, 3, . . .. Algorithm 2 presents the
MARL algorithm. At time instant t , an agent i observes the current
state sit ∈ S, sends its own Q -value Q i

t (s
i
t , a

i
t ) to neighboring

agents J i, receives the optimal Q -value maxaj∈A Q
j
t (s

j
t , aj) from

each neighboring agent j ∈ J i, and selects an action ait ∈ A.
Subsequently, at time instant t+1, the agent i receives a delayed
reward r it+1(s

i
t+1) for the state–action pair (sit , a

i
t ) under the next

state sit+1 ∈ S, and updates Q -value Q i
t (s

i
t , a

i
t ) for the state–action

pair. Based on Eq. (1), the Q -value Q i
t (s

i
t , a

i
t ) is updated using

Q -function as follows [14]:

Q i
t+1(s

i
t , a

i
t )← Q i

t (s
i
t , a

i
t )+ αδit (s

i
t , a

i
t ) (4)

where the temporal difference δit (s
i
t , a

i
t ) of agent i is as fol-

lows [15]:

δit (s
i
t , a

i
t ) = r it+1(s

i
t+1)+ γ

∑
j∈J i

ni,jmax
aj∈A

Q j
t (s

j
t , a

j) (5)

where ni,j represents the weight (or importance) of neighboring
agent j at agent i, and

∑
j∈J i n

i,j
= 1.

Algorithm 2 MARL algorithm embedded at agent i
1: Procedure
2: observe current state sit ∈ S
3: send Q -value Q i

t (s
i
t , a

i
t ) to neighboring agents J i

4: receive maxaj∈A Q
j
t (s

j
t , aj) from agent j ∈ J i

5: select action ait ∈ A using Equation (3)
6: receive delayed reward r it+1(s

i
t+1)

7: update Q -value Q i
t+1(s

i
t , a

i
t ) using Equation (4)

8: End Procedure

2.3. Deep Q -network

In DQN, the ANN is comprised of three convolutional lay-
ers whereby data is flowed from the input layer to the hidden
layer, and finally the output layer during training as shown in
Fig. 3. The input layer represents the state, and each neuron is
fully-connected with those in the hidden layer. The hidden layer
represents the patterns of the high-dimensional and complex
states generated using nonlinear functions, and each neuron is
fully-connected with those in the input and output layers. The
output layer represents the Q -value Qt (st , at ) of possible actions
at , and each neuron is fully-connected with those in the hidden
layer. Each connecting link is associated with a weight. The output
of a neuron k is as follows [16]:

yk = ϕ

(
m∑
j=0

wkj.xj

)
(6)

where: (a) wkj represents the weight, which is assigned on the
basis of the relative importance of input xj compared to other
inputs, at neuron k, and (b) ϕ(.) represents a sigmoid activation
function used to exhibit a balanced behavior between linear and
non-linear functions at neuron k.

Compared to the traditional RL approach, DQN has two main
features, namely experience replay and target network [17]. Using
experience replay, an agent stores an experience et = (st , at , rt+1,
st+1) in a replay memory Dt = (e1, e2, . . . , et ), and subsequently
trains itself using experiences randomly selected from the replay
memory. Using target network, weight θk is used to approximate
the Q -values Q (s, a; θk) at iteration k.

There are two main activities in DQN. Firstly, during action
selection, the data is flowed from the input layer to the output
layer, whereby the output layer generates the Q-value for each
possible action. Secondly, during training, an agent stores an
experience in a replay memory, and subsequently trains itself
using experiences randomly selected from the replay memory.
The agent also utilizes a duplicate of the main network to gener-
ate target Q-values, which approximate the weights of the main
network. By backpropagation, the target Q-values are used to
compute the loss of a selected action in order to stabilize training.
The weight of the duplicate network is updated with the weight
of the main network every certain number of iterations.

3. Related work

This section presents related works on traffic flow models, and
traffic signal control techniques.
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Fig. 3. DQN for estimating the Q -values of actions of a traffic signal controller under disturbances at an intersection.

3.1. Traffic flow models

The presence of disturbances, particularly rainfall, causes un-
predictable vehicle arrivals and increased queue length of ve-
hicles, so a non-exponential distribution has been proposed to
model vehicle time headway (or headway in short) that repre-
sents the inter-arrival time X between two consecutive vehicles.
In an empirical study [18], the use of the Burr type XII distribution
is compared with several statistical probability distributions in
modeling headway under various rainfall intensities. The Burr
type XII distribution has been shown to give the best fit to data
collected from a main route called J5 in Johor Bahru, Malaysia.
The Burr type XII distribution has a probability density function
given as:

f (x) =
ck( x

β
)c−1

β

(
1+ ( x

β
)c
)k+1 (7)

where β is a scale parameter (i.e., a higher and lower β value
stretches and shrinks the distribution, respectively), as well as
c and k are shape parameters which are reciprocals of the scale
parameter.

Table 1 presents a summary of various statistical probabil-
ity distribution models for different rainfall conditions [18]. In
traffic signal control investigations, while Poisson process has
been widely applied to model headway using exponential dis-
tribution [1], Table 2 presents a summary of various statistical
probability distribution models for different traffic types.

In this study, vehicle time headway at an intersection is mod-
eled using the Burr type XII distribution, which results in a
modified Poisson process, to account for traffic disturbances, par-
ticularly rainfall.

3.2. Traffic signal controllers

There are three main types of traffic signal controllers. Firstly,
pretimed traffic signal controllers use the Webster formula to
determine the traffic phases and traffic phase splits based on
the historical traffic data collected at different times of day [2].
Due to the deterministic nature of the traffic phases and traffic
phase splits, the traffic signal controllers are not responsive to
the dynamicity of the traffic conditions. Secondly, the actuated
traffic signal controllers that determine traffic phases and traf-
fic phase splits based on instantaneous traffic conditions. For
instance, green signals are activated at lanes with vehicles [3],
and traffic phase splits are increased with the queue length of
vehicles at lanes [25]. Thirdly, RL- and MARL-based traffic signal

controllers that determine traffic phases and traffic phase splits
based on longer-term traffic conditions. RL and MARL enables
traffic signal controllers to learn about the relationships between
actions and rewards (i.e., delayed and discounted rewards) in
order to adapt to longer-term traffic conditions that may change
in real time [26], such as the waiting time and the queue length
of vehicles at a lane. Nevertheless, RL and MARL are marred by
the curse of dimensionality.

DQN approaches have been embedded in traffic signal con-
trollers. The traditional DQN approach is adopted in [27–30]. The
stacked auto encoder (SAE) neural network, which is adopted
in [31], enables agents to compress and store inputs in an efficient
manner, and generates outputs that resemble the inputs as much
as possible. The dueling DQN, which is adopted in [32], enables
two separate estimators to predict the states and the priority of
each action, respectively. The value-based DQN, which is adopted
in [33], updates more than a single Q-value at any time.

There are three main representations in the DQN models. The
state represents the decision making factors, such as the presence
and speed of a vehicle at a lane [27–29,33], the queue length
of vehicles at a lane [30,31], and the position of a vehicle at a
lane [32]. Examples of actions are traffic phase splits [27,28,32,33]
and traffic phases [29–31]. The reward represents the appropri-
ateness of a state–action pair, such as: (a) the changes of the
travel delay (i.e., the additional time incurred compared to travel
time without traffic congestion) of vehicles at an intersection
between two successive actions [27–30]; and (b) the travel time
(or travel delay) of vehicles [31–33]. The state is fed via the input
layer, and the output layer provides the Q-values of all the pos-
sible traffic phase splits [27,28,32,33] and traffic phases [29–31].
The proposed scheme has shown to increase throughput (or the
number of vehicles crossing an intersection) [30,33], and reduce
the average travel time (or travel delay) of vehicles [27,28,31,32].

In this research, the traditional DQN approach is applied to
traffic signal controllers to monitor traffic flows and alleviate
traffic congestion at intersections in the presence of disturbances
(i.e., rainfall). In addition, the multi-agent DQN is first investi-
gated and applied to traffic signal controllers so that they can
exchange knowledge, learn, and make optimal joint actions in a
collaborative manner.

4. Proposed model for RL-based and DQN-based traffic signal
control

Consider a set of intersections I in a traffic network. Each
intersection i ∈ I has: (a) a set of incoming lanes K i, and (b) a set
of neighboring intersections J i. The intersection activates traffic
phases in a round-robin fashion, and adjusts the traffic phase
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Table 1
Probability distributions for modeling vehicle headways under different rainfall intensities.
Probability distribution Description Suitable for

Burr type XII Uses flexible parameters, particularly positive random
variables, to achieve a wide range of distribution shapes
in continuous probability function.

Different kinds of weather conditions
(i.e., no, light, medium, and heavy
rainfall).

Frechet (or inverse Weibull or
generalized extreme Type II)

Uses continuous probability distribution to represent
headway data in order to model extreme events.

Different kinds of weather conditions
(i.e., no, light, and medium rainfall).

Pearson type VI Uses flexible parameters in continuous probability
distribution to represent a large data set.

Different kinds of weather conditions
(i.e., no, light, and medium rainfall).

Generalized extreme Uses continuous probability distribution to model the
smallest or the largest values of a large data set
comprised of independent distributed random variables
representing headway.

Heavy rainfall.

Generalized Pareto Uses continuous probability distribution to model the
tails of a distribution.

Heavy rainfall.

Lognormal (or Galton) Uses continuous probability distribution, in which its
logarithm has a normal distribution, to represent
headway data.

Heavy rainfall.

Table 2
Probability distributions for modeling vehicle headways in traffic signal control investigations.
Probability distribution Differences compared to the Poisson process Suitable for

Queuing model [19] This model uses random and non-random arrival
patterns to model independent and dependent vehicle
arrivals, respectively.

Traffic with slow moving vehicles.

Shifted exponential model [20] This model uses exponential and semi-Poisson
distributions to model flow rate and the distance (or
gap) between vehicles, respectively.

Traffic with short and moderate
headway.

Semi-Poisson model [21] This model modifies the traditional Poisson process to
model a large headway data set.

Traffic with long headway.

Modified Poisson model with
gamma (or Erlang) distribution
[22][23]

This model uses a negative binomial distribution to
provide a better fit as compared to the traditional
Poisson process.

Traffic with short headway.

Burr type XII [24] This model uses non-random arrival pattern for
dependent vehicle arrivals as compared to the
traditional Poisson process.

High traffic volume with disturbances
(i.e., rainfall).

splits for the traffic phases using DQN. The rest of this section
presents the representations of our proposed MADQN model, in-
cluding the state space, action space, and delayed reward, applied
to traffic signal controllers. The DQN and MADQN algorithms are
also presented.

Algorithm 4 MADQN algorithm embedded at agent i
1: Procedure
2: for episode = 1 : M do
3: observe current state sit
4: send Q -value Q i

t (s
i
t , a

i
t ) to neighboring agents J i

5: receive maxaj∈A Q
j
t (s

j
t , aj) from agent j ∈ J i

6: for t = 1 : T do
7: perform steps 5 to 13 of Algorithm 3
8: end for
9: update Q -value Q i

t+1(s
i
t , a

i
t ) using Equation (4)

10: end for
11: End Procedure

4.1. State space

At an intersection i, each state sit = (si1,t , s
i
2,k,t , s

i
3,k,t , s

i
4,t , s

i
5,t )

represents a five-tuple information, namely:

• si1,t = {0, 1, 2, 3, . . . , s
i
1,max} represents the current traffic

phase at intersection i. For instance, in Fig. 1, a 0 value
represents the north-east bound traffic phase, 1 represents
east-south, 2 represents west-north, and 3 represents south-
west.

• si2,k,t = {0, 1, 2, 3, . . .}, ∀k ∈ K i represents the queue lengths
of all the incoming lanes K i of intersection i.
• si3,k,t = {0, 1, 2, 3, . . .}, ∀k ∈ K i represents the queue lengths

of all the incoming lanes k ∈ K j at a neighboring intersection
j.
• si4,t = t i,kred,t represents red timing, which is the time elapsed

since the signal of a lane k ∈ K i turned into red, at intersec-
tion i.
• si5,t = {0, 1, 2, 3, . . . , s

i
5,} represents the rainfall intensity

with a zero value being no rain and the maximum value
si5,max being the heaviest rain. In other words, substate si5,t
represents the intensity of disturbance, which can be mea-
sured using sensors.

4.2. Action space

Consider a series of traffic phases executed in a determin-
istic round-robin fashion, such as the traffic phases shown in
Fig. 1. The action space represents a traffic phase split ait =
{0, 1, 2, . . . , amax} that can be selected by a traffic signal con-
troller i, where ait = 0 skips a traffic phase in a fixed predeter-
mined sequence of traffic phases (e.g. lack of waiting vehicles at
a lane).

4.3. Delayed reward

The delayed reward r it (s
i
t ) represents the difference in the total

waiting time of all vehicles at an intersection i at time t and
time t + 1. Hence, the delayed reward captures the increment
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Algorithm 3 The traditional single-agent DQN algorithm

1: Procedure
2: for episode = 1 : M do
3: observe current state sit
4: for t = 1 : T do
5: select action ait using Equation (3)
6: receive delayed reward r it+1(s

i
t+1) and next state sit+1

7: store experience (sit , a
i
t , r

i
t+1(s

i
t+1), s

i
t+1) in replay memory Di

t
8: sample a random minibatch of experiences (sit , a

i
t , r

i
t+1(s

i
t+1), s

i
t+1) from replay memory Di

t
9: for j = 1 : N do

10: set target yij

11: =

{
r ij+1(s

i
j+1), if episode terminates

r ij+1(s
i
j+1)+ γ maxa Q (sij+1, a; θ

i
j ), otherwise

12: perform a gradient descent optimization on (yij − Q (sij, a
i
j; θ

i
j ))

2 with respect to θ i
j

13: end for
14: end for
15: end for
16: End Procedure

Fig. 4. DQN architecture.

and decrement of the total waiting time of all vehicles at the
intersection i between before taking an action and after taking
the action. The delayed reward is as follows:

r it (s
i
t ) = W i

t −W i
t+1 (8)

The agent receives a positive delayed reward when W i
t >

W i
t+1, a negative delayed reward when W i

t < W i
t+1, and a zero

delayed reward when W i
t = W i

t+1.

4.4. DQN and MADQN

This section presents the architecture and algorithm of the tra-
ditional DQN approach, as well as the multi-agent DQN, applied
in this paper.

4.4.1. DQN architecture
Fig. 4 shows the architecture of DQN used in this paper.

DQN is embedded in traffic signal control at intersection i. Three
main types of layers are: (a) the input layer has 5 neurons, each
representing a state; (b) 5 fully connected (FC) hidden layers with
400 neurons each; and (c) the output layer has 5 neurons, each
representing a possible action. Each link is associated with a
weight. Each node has a rectified linear activation function (ReLU)
that performs gradient descent. During training, the 5 substates
of state sit = (si1,t , s

i
2,k,t , s

i
3,k,t , s

i
4,t , s

i
5,t ) are fed into the neurons of

the input layer. Subsequently, information flows forward to the
hidden layers, and finally to the output layer that provides the Q -
values Q i

t (s
i
t , a

i
t ) of its possible actions ai = (0, 1, 2, 3, 4), where

amax = 4 at intersection i.

4.4.2. DQN algorithm
Algorithm 3 shows the algorithm for DQN; for simplicity, only

exploitation is shown in the algorithm. At episode m ∈ M , an
agent i observes the current state sim ∈ S as part of initialization.
At time instant t ∈ T , agent i selects an action ait ∈ A using Eq. (3),
and stores its experience eit = (sit , a

i
t , r

i
t , s

i
t+1, a

i
t+1) in a replay

memory Di
t = (ei1, e

i
2, . . . , e

i
t ). Subsequently, the agent samples a

minibatch of experiences from the replay memory Di
t in a random

manner. At iteration j ∈ J , agent i learns the weight θ i
j and

Q i
j (s

i
j, a

i∗
j , θ i

j ) ≈ Q ∗(sij, a
i
j). In order to train the DQN, the loss

function at iteration j is minimized as follows:

Lij(θ
i
j ) = Esij,a

i
j∼p(.)

[(
yij − Q i

j (s
i
j, a

i
j; θ

i
j )
)2]

(9)

where p(s, a) represents the probability distribution of a state–
action pair (s, a), and yij represents the target given by θ i

j−1 in the
previous iteration j−1. The gradient of the loss function ∇θiL

i
j(θ

i
j )

is given as follows:

∇θiL
i
j(θ

i
j ) =Esij,a

i
j∼p(.);s

i
j+1∼E

[(
yij − Q i

j (s
i
j, a

i
j; θ

i
j )
)

∇θ ij
Q i
j (s

i
j, a

i
j; θ

i
j )
] (10)

4.4.3. MADQN
In this work, the traditional single-agent DQN approach is

extended to MADQN, which has not been investigated in the
literature. MADQN is evaluated under different traffic scenarios
with disturbances.

Similar to MARL, MADQN enables multiple DQN agents to
exchange knowledge, learn, and make optimal joint action in
a collaborative manner. The main challenge of MADQN is to
achieve stability, or to converge to an optimal joint action, in a
moving target and shared environment. Under the moving target
environment, the MADQN agents perform their respective actions
simultaneously, and so an agent’s action affects the operating
environment of neighboring agents. For instance, the action of the
traffic signal controller at an upstream intersection can affect the
operating environment (e.g., the congestion level) at neighbor-
ing and downstream intersections since vehicles traverse from
one intersection to another. Hence, the actions of an agent at
an intersection can affect the actions selected by the agents at
neighboring intersections. Consequently, the dynamicity of the
operating environment increases and affects stability. In order to
address the moving target issue, the agents consider the actions
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Fig. 5. Seven intersections in the Sunway city shown in Fig. 6.

taken by their respective neighboring agents, and coordinate
with each other in a collaborative manner. Nevertheless, the
convergence of a multi-agent system has been shown in [13],
whereby multiple agents exchange knowledge, learn, select their
respective actions, and subsequently converge to an optimal joint
action as time goes by. Specifically, the global Q-value, which
sums up the local Q-value of each agent and represents the global
objective function, converges to an optimal equilibrium. The con-
vergence is attributed to: (a) the availability of the local view of
neighboring agents to an agent; (b) the update of the Q-values of
an agent using neighboring agents’ information (e.g., Q-values);
and (c) the action of an agent being the best response to the
neighboring agents. Figs. 8 and 9 show the convergence of the
delayed reward as the episode increases, and Figs. 10 to 15 show
that MADQN achieves higher stability compared to MARL.

Algorithm 4 presents the MADQN algorithm. At time instant t ,
a DQN agent i observes the state sit = (si1,t , s

i
2,k,t , s

i
3,k,t , s

i
4,t , s

i
5,t ),

sends its own Q -value Q i
t (s

i
t , a

i
t ) to neighboring agents J i, re-

ceives the optimal Q -value maxaj∈A Q
j
t (s

j
t , aj) from each neighbor-

ing agent j ∈ J i, and selects its action using Eq. (3). Subsequently,
at time instant t + 1, the agent i receives a delayed reward
r it+1(s

i
t+1) for the state–action pair (sit , a

i
t ) under the next state

sit+1, and updates Q -value Q i
t (s

i
t , a

i
t ) for the state–action pair.

There are three main advantages of MADQN over MARL.

• MADQN uses ANN that provides a continuous representa-
tion of the state space, and so an unlimited number of
state–action pairs can be represented.
• MADQN provides an efficient storage for complex input in

order to address the curse of dimensionality.
• MADQN uses experience replay and target network that

allows more stable training as compared to MARL.

5. Case study

This paper conducts a case study on a real traffic network in
an urban area called Sunway city in Malaysia. In addition, a grid
traffic network is also investigated.

5.1. Sunway city

Sunway city is a busy residential and commercial area sur-
rounded by higher educational institutions (i.e., Sunway Uni-
versity and Monash University Malaysia campus), high density
residential areas (i.e., Sunway Monash Residence and LaCosta),
theme park (i.e., Sunway Lagoon), hospital (i.e., Sunway Medical
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Fig. 6. Traffic network and the locations of traffic signal controllers in the Sunway city.

Table 3
Traffic phase splits for deterministic traffic signal controllers in Sunway city.
Intersection Traffic phase split

1 2 3 4

1 15 10 40 –
2 25 25 15 –
3 30 10 30 –
4 20 20 20 –
5 30 30 30 –
6 40 25 40 25
7 20 60 20 10

Centre), and so on, as shown in Fig. 6. In Fig. 6, there are seven
intersections, and each intersection has a traffic signal controller.
At each intersection, inductive loop detectors are installed to
gather short-term information (i.e., the presence or absence of
vehicle(s) at a lane), and this enables the traffic signal controllers
to skip traffic phases without waiting vehicles. Malaysia ranks
fifth and third worldwide in rainfall (i.e., approximately 1000 mm
per year [34]) and lightening strikes (i.e., approximately 240
thunderstorm days per year [35]), respectively. Hence, traffic
congestion is a serious problem, particularly during the peak
hours, and the Malaysian weather (i.e., rainfall as the disturbance)
compounds the problem.

5.2. Existing traffic signal controllers

At present, the traffic signal controllers select traffic phases in
a deterministic manner, in which traffic phases are executed in a
deterministic round-robin fashion with certain periods of traffic
phase splits. The traffic phase splits can be dynamically adjusted
based on short-term information, particularly the presence or
absence of vehicle(s) at a lane as detected by inductive loop
detectors. Fig. 5 shows the traffic phases, and Table 3 shows the
traffic phase splits at all intersections in Sunway city (see Fig. 6).

5.3. Grid traffic network

In order to show the effectiveness of MADQN, we have ex-
tended our simulation to a grid traffic network, which has been

Fig. 7. 3× 3 grid traffic network with 9 intersections.

widely used in the literature [28,36–38]. As shown in Fig. 7, the
size of the grid traffic network is 3 × 3, and so there are 9
intersections. Each intersection has 4 legs, and all intersections
are installed with inductive loop detectors as seen in the traffic
network of the Sunway city. These inductive loop detectors gather
short-term information (i.e., the presence or absence of vehicle(s)
at a lane), and this enables the traffic signal controllers to skip
traffic phases without waiting vehicles.

6. Simulation and results discussion

There are four simulated approaches, namely deterministic,
RL, MARL, and MADQN. The deterministic traffic signal controllers
are currently in use at all intersections in the Sunway city. The RL-
based and MARL-based traffic signal controllers have been widely
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Table 4
Performance measures under increased traffic volume.
Performance measure Metric Unit Recurring traffic congestion Non-recurring traffic congestion

Deterministic RL MARL MADQN Deterministic RL MARL MADQN

Queue length

Max

No. of vehicles

12 12 9 9 19 18 16 10
Mean 5.8400 5.9100 4.5300 4.0319 9.7300 9.4900 7.5600 4.0537
Median 6 5 4 3.7203 10 9 7 3.6796
Min 2 2 1 2 2 4 3 2

Waiting time

Max

Seconds

22 35 30 8.6250 30 27 25 9
Mean 9.0900 11.2800 7.9900 2.8284 5.6400 11.5400 7.9200 2.8969
Median 8 9 7 2.1875 4 11 8 2.3348
Min 0 0 0 0 0 0 0 0

Throughput

Max

No: of vehicles

19 38 49 97 22 42 50 96
Mean 6.7800 18.9500 22.2700 78.1900 9.3300 22.0200 25.9600 77.2700
Median 6 18 21 78.5000 9 21 26 79
Min 1 5 10 59 3 4 7 54

investigated in the literature, and so they are chosen as baselines
in this study. The single-agent DQN approach has been widely
investigated in the literature, and has shown to outperform the
deterministic and RL approaches. This work is mainly focused on
the multi-agent system, and so MADQN is proposed. RL, MARL,
and MADQN are unable to be deployed in real-world as this
affects the traffic in a real traffic network. Hence, we have chosen
to investigate these approaches using simulation platform SUMO,
which has been the preferred tool for similar investigation in the
literature [27–30,32,38–40]. The vehicle arrivals are dependent
on the Burr type XII distribution, which is a modification of the
Poisson process. Table 2 presents various probability distribution
models used in the literature, and it shows that the Burr type XII
distribution is suitable to model a traffic network with high traffic
volume with disturbances, which reflect the real traffic network.
The Burr type XII distribution has been shown to reflect a traffic
network with disturbance in Johor Bahru, Malaysia [18]. Table 3
presents the traffic phase split of existing traffic signal controllers
in the Sunway city, which was observed during the evening peak
hours (i.e., 5–7 pm) of a working day. The traffic phase splits were
measured using a stopwatch, and they may differ for different
traffic phases.

This section presents the simulation environment and ex-
perimental results discussion. Simulation results are presented
in two separate sections for recurring and non-recurring traffic
congestion, respectively. The performance measures for the four
kinds of traffic signal controllers (i.e., deterministic, RL, MARL,
and MADQN) under recurring traffic congestion (i.e., caused by
increased traffic volume) and non-recurring traffic congestion
(i.e., caused by disturbances) are summarized in Table 4.

6.1. Simulation setup

Simulation is conducted using traffic simulator SUMO (i.e., ver-
sion 1.1.0) and MATLAB (i.e., version 9.5) that are interconnected
with each other. SUMO, which is an open source traffic simulator,
provides real-time microscopic traffic simulation [41]. MATLAB,
which is a dynamic programming software used to develop al-
gorithms, computes large arrays and matrices, as well as accu-
mulates and records statistics. In order to interconnect SUMO
and MATLAB, the SUMO TraCI (Traffic Control Interface) proto-
col, namely TraCI4Matlab, is used so that the traffic simulation
in SUMO can interact with MATLAB scripts using TCP/IP in a
client–server manner, whereby SUMO acts as the server, and
MATLAB as the client. The XML resource files, which provide
details on the traffic arrival rate and speed limits of vehicles, de-
fines two main types of traffic congestions, namely recurring and
non-recurring traffic congestions. The recurring traffic congestion
represents the congestions caused by an increased traffic volume
(i.e., particularly during peak hours), while the non-recurring traf-
fic congestion represents the congestions caused by disturbance
(i.e., particularly rainfall).

Fig. 8. Cumulative delayed reward under recurring and non-recurring traf-
fic congestion in the Sunway city traffic network increases with episode.
MADQN achieves a higher value compared to MARL. Higher value improves the
performance of traffic network.



440 F. Rasheed, K.-L.A. Yau and Y.-C. Low / Future Generation Computer Systems 109 (2020) 431–445

Table 5
Simulation parameters for the Burr type XII distribution model.
Parameters Disturbance condition

NR LR MR HR

Shape parameter c 4.74 4.75 4.88 5.00
Shape parameter k 0.18 0.21 0.22 0.27
Scale parameter β 0.94 1.03 1.07 1.33

Table 6
Simulation parameters for the DQN agent.
Parameters Values

Replay memory size 50000
Minibatch size 100
Learning rate α 0.00025
Discount factor γ 0.75
Experience sampling 0.5

6.2. Simulation parameters and performance measures

For the Burr type XII distribution model, simulation param-
eters are presented in Table 5. NR, LR, MR, and HR represents
different rainfall intensities, namely no rain, light rain, moderate
rain, and heavy rain scenarios, respectively, and these scenarios
can be detected by weather sensors. The scale parameter β , as
well as the shape parameters c and k, increase with the rainfall
intensity [18]. For the DQN agent, the simulation parameters that
provide the best possible results are presented in Table 6.

There are three performance measures.

• The queue length represents the average number of waiting
vehicles (i.e., with a speed of 0 km/h) at an intersection i at
end of a red timing.
• The waiting time represents the average waiting time of all

the vehicles at an intersection i at the end of a red timing.
• The throughput represents the number of vehicles crossing

an intersection i within a single traffic phase during a green
timing, which is the time elapsed since the signal of a lane
k ∈ K i turned into green, at intersection i.

Our proposed schemes aims to: (a) reduce the queue length
and waiting time of all the vehicles at intersections; and (b)
maximize throughput and delayed reward, which helps to reduce
the queue length of all lanes.

6.3. Simulation results

This section shows the evaluation results of our proposed
MADQN approach by comparing its performance with those ob-
tained from the deterministic, RL, and MARL approaches under re-
curring traffic congestion (i.e., caused by increased traffic volume)
and non-recurring traffic congestion (i.e., caused by disturbances).

6.3.1. Cumulative delayed reward
The accumulated delayed reward for MADQN and MARL under

recurring and non-recurring traffic congestions as the episode
increases is shown in Figs. 8(a), 9(a), and 8(b), 9(b), respectively.
The convergence of the accumulated delayed reward for MADQN
and MARL for the Sunway city traffic network and the grid traffic
network is shown in Figs. 8 and 9, respectively. MADQN achieves
a higher accumulated delayed reward as compared to MARL in
both types of traffic congestions and traffic networks. At the
initial episodes (i.e., less than 20 episodes), the accumulated
delayed reward for both MADQN and MARL is unstable; however,
MADQN is more stable attributed to its main features, namely
experience replay and target network, which have shown to
improve stability [17].

Fig. 9. Cumulative delayed reward under recurring and non-recurring traffic
congestion in the grid traffic network increases with episode. MADQN achieves
a higher value compared to MARL. Higher value improves the performance of
traffic network.

6.3.2. Throughput
The throughput of the four kinds of traffic signal controllers

in the Sunway city traffic network under recurring and non-
recurring traffic congestions as the episode increases is shown
in Figs. 10(a) and 10(b), respectively. MADQN outperforms the
other approaches with its throughput more than 90 vehicles.
For recurring traffic congestion, the throughput varies up to 20
vehicles for deterministic, up to 30 vehicles for RL, and up to
40 vehicles for MARL. For non-recurring traffic congestion, the
throughput of MADQN is more than 90 vehicles, and the through-
put varies up to 20 vehicles for deterministic, up to 40 vehicles
for RL, and up to 50 vehicles for MARL. Similar trend is observed
in the grid traffic network as shown in Fig. 11. For recurring traffic
congestion, the throughput of MADQN is more than 90 vehicles,
and the throughput varies up to 30 vehicles for deterministic, and
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Fig. 10. Average throughput under recurring and non-recurring traffic conges-
tion in the Sunway city traffic network increases with episode. MADQN achieves
the highest value, followed by MARL, RL, and Deterministic. Higher average
throughput improves the performance of traffic network.

up to 40 vehicles for both RL and MARL. For non-recurring traffic
congestion, the throughput of MADQN is more than 90 vehicles,
and the throughput varies up to 30 vehicles for deterministic, and
up to 50 vehicles for both RL and MARL. Hence, MADQN increases
the throughput by up to 70%, and so it can increase throughput
of vehicles at intersections for both recurring and non-recurring
traffic congestion scenarios.

6.3.3. Queue length
The queue length of vehicles of the four kinds of traffic signal

controllers in the Sunway city traffic network under recurring
and non-recurring traffic congestions as the episode increases is
shown in Figs. 12(a) and 12(b), respectively. For recurring traffic
congestion, the queue length varies up to 12 vehicles for both
deterministic and RL approaches, and less than 10 vehicles for
MARL. MADQN has its queue length less than 8 vehicles and
reduces with episode. For non-recurring traffic congestion, the
queue length varies up to 20 vehicles for deterministic, up to
18 vehicles for RL, up to 12 vehicles for MARL. MADQN has its

Fig. 11. Average throughput under recurring and non-recurring traffic con-
gestion in the grid traffic network increases with episode. MADQN achieves
the highest value, followed by MARL, RL, and Deterministic. Higher average
throughput improves the performance of traffic network.

queue length less than 10 vehicles and reduces with episode. It
reduces to less than 3 vehicles after 80 episodes for both types
of traffic congestions. Similar trend is observed in the grid traffic
network as shown in Fig. 13. For recurring traffic congestion, the
queue length varies up to 16 vehicles for deterministic, MARL and
MADQN approaches, and up to 18 vehicles for RL. The determin-
istic and RL approaches reduces their queue length to 8 vehicles,
the MARL and MADQN approaches reduces their queue length to
6 vehicles with episodes. For non-recurring traffic congestion, the
queue length varies up to 13 vehicles for deterministic, up to 11
vehicles for both RL and MARL. MADQN has its queue length less
than 10 vehicles and reduces with episode. It reduces to less than
3 vehicles after 80 episodes for both types of traffic congestions.
It is also more stable attributed to experience replay and target
network [17]. Hence, MADQN reduces queue length by up to 75%,
and so it can reduce queue length of vehicles at intersections.
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Fig. 12. Average queue length under recurring and non-recurring traffic conges-
tion in the Sunway city traffic network increases with episode. MADQN achieves
the lowest value, followed by MARL, RL, and Deterministic. Lower average queue
length improves the performance of traffic network.

6.3.4. Waiting time
The waiting time of vehicles of the four kinds of traffic signal

controllers in the Sunway city traffic network under recurring
and non-recurring traffic congestions as the episode increases is
shown in Figs. 14(a) and 14(b), respectively. For recurring traffic
congestion, the waiting time varies up to 35 s for RL, up to
30 s for MARL, and up to 15 s for deterministic. MADQN has its
waiting time less than 10 s and reduces with episode. For non-
recurring traffic congestion, the waiting time varies up to 15 s
for deterministic, up to 40 s for RL, up to 35 s for MARL. MADQN
has its waiting time varies up to 9 s and reduces with episode.
It reduces to less than 3 s after 50 episodes for both types of
traffic congestions. Similar trend is observed in the grid traffic
network as shown in Fig. 15. For recurring traffic congestion,
the waiting time varies up to 30 s for deterministic, and up to
26 s for both RL and MARL. MADQN has its waiting time varies
up to 10 s and reduces with episode. For non-recurring traffic
congestion, the waiting time varies up to 22 s for deterministic,

Fig. 13. Average queue length under recurring and non-recurring traffic con-
gestion in the grid traffic network increases with episode. MADQN achieves the
lowest value, followed by MARL, RL, and Deterministic. Lower average queue
length improves the performance of traffic network.

RL, and MARL. MADQN has its waiting time varies up to 10 s
and reduces with episode. It reduces to less than 3 s after 50
episodes for both types of traffic congestions. It is also more stable
attributed to experience replay and target network [17]. Hence,
MADQN reduces waiting time by up to 70%, and so it can reduce
waiting time of vehicles at intersections.

7. Conclusion and future work

In this paper, the recurring traffic congestion (i.e. caused by
high traffic volume) and non-recurring traffic congestion (i.e.
caused by disturbances) are addressed using an artificial intelli-
gence approach called deep reinforcement learning, specifically
deep Q -network (DQN), which is a single-agent approach, to
address the curse of dimensionality. This paper extends DQN to
provide multi-agent DQN (MADQN) in order to solve multi-agent
problem by exchanging information (i.e., Q -values) among DQN
agents in order to coordinate their actions. MADQN uses artificial
neural network to represent and store continuous and complex
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Fig. 14. Average waiting time under recurring and non-recurring traffic con-
gestion in the Sunway city traffic network increases with episode. MADQN
achieves the lowest value, followed by MARL, RL, and Deterministic. Lower
average waiting time improves the performance of traffic network.

states, as well as uses experience replay and target network to
provide stable training, in the presence of multiple traffic signal
controllers. A case study based on Sunway city and an investiga-
tion of the traditional grid traffic network show the effectiveness
of our proposed scheme. Simulation of the Sunway city and the
grid traffic network using SUMO and MATLAB demonstrates that
MADQN outperforms other state-of-the-art approaches, including
single agent reinforcement learning (RL), multi-agent reinforce-
ment learning (MARL), and the existing deterministic traffic signal
controllers. Specifically, in the simulation, MADQN outperforms
other state-of-the-art approaches by increasing throughput by up
to 70%, as well as reducing the queue length by up to 75% and the
waiting time by up to 70%.

Future research could be pursued to prioritize the experiences
during experience replay for faster learning, and take account of

Fig. 15. Average waiting time under recurring and non-recurring traffic conges-
tion in the grid traffic network increases with episode. MADQN achieves the
lowest value, followed by MARL, RL, and Deterministic. Lower average waiting
time improves the performance of traffic network.

other kinds of traffic disturbances, such as traffic collisions, that
can increase the queue length of vehicles significantly.
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