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A B S T R A C T

Effective behavior monitoring, including internal monitoring/error detection and external monitoring/feedback,
is very pivotal for reinforcement learning. However, less attention has been paid to internal monitoring and the
dynamic learning performance in reinforcement learning, and there is still a heated debate on which kind of
external feedback is relied on in the reinforcement learning. In order to address these questions, an adaption
probabilistic selection task was used to examine the effect of the internal monitoring, external feedback and the
relationship between them for approach learners and avoidance learners during dynamic learning process of
reinforcement learning and behavior adaption. Error-related negativity (ERN), feedback-related negativity
(FRN) and feedback-related P300 are three ERPs components, which can be used as the indexes of internal
monitoring, external feedback and behavior adaption. For our results, the ERN effect of avoidance learners
become large in block 3, which is earlier than approach learners (block 4). This phenomenon suggests that
avoidance learners learned faster than approach learners. In addition, the FRN amplitude of avoidance learners
in block 4 was significantly smaller than the other three blocks. The aforementioned results demonstrated a
tradeoff relationship between the ERN and FRN effects.

1. Introduction

Learning is a fundamental and pivotal cognitive competence that
every person needs to respond the ongoing change of environment with
this ability (Decker et al., 2016; Muller-Gass et al., 2017; Uehara et al.,
2017). As reinforcement learning is one kind of learning style and can
be defined as an improvement in the ability relying on external feed-
back, which is an important and necessary information to adjust be-
havior (Collins and Frank, 2018; Luque et al., 2015; West et al., 2018).
Meanwhile, external feedback is a form of reinforcement learning, in
which learners are usually giving two kinds of feedback: positive
feedback leads to approach repetition in the similar situations, whereas
negative feedback leads to same behavior avoidance in the similar si-
tuations (Shephard et al., 2014; Barch et al., 2017).

During reinforcement learning, more attentions are mainly payed
on external feedback by researchers. As one of the ERPs components,
feedback-related negativity (FRN) is commonly used to record changes
in learning (Luft, 2014). The FRN is a negative deflection on fronto-
central midline that differs in amplitude for negative and positive
feedback between 200 and 400 ms after onset of the feedback stimulus
(Miltner et al., 1997; Ullsperger et al., 2014; Martin, 2012; West et al.,

2018; Yin et al., 2018). Typically, the FRN is larger for negative com-
pared to positive feedback (Sambrook and Goslin, 2015), and the FRN
of unexpectedness is larger than expectedness (Walsh and Anderson,
2012; Zubarev and Parkkonen, 2018). In addition, the feedback-related
P300 (P300) is another indicator, which has been observed during the
external feedback phase (Hämmerer et al., 2010). P300 is a positive
deflection that can be observed across large parts of the head from 300
to 600 ms after feedback (Wang et al., 2017; Gheza et al., 2017). The
P300 has been commonly associated with the updating of working
memory in the learning process (Fischer and Ullsperger, 2013) and
expectedness (Hajcak et al., 2005a; Ernst and Steinhauser, 2012).
Moreover, P300 is a necessary signal to adapt behavior for the forma-
tion of good performance (Hamamé et al., 2011). A dominant Re-
inforcement Learning Theory posits that behavioral adaption is based
on negative feedback (Holroyd and Coles, 2002), and the theory is
supported by many studies (Chase et al., 2010; Ichikawa et al., 2010;
Bartra et al., 2013; Lou et al., 2015; Schiffler et al., 2016). By contrast,
some studies' findings showed that positive feedback could also im-
prove performance (Baker and Holroyd, 2011; Bartra et al., 2013).
However, these researches pay less attention to the dynamic learning
process. And the results consist of grand average feedback amplitudes
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of different learning stages. FRN may not play an important role in the
later learning period. Therefore, the grand average across all the trials
in the experiment task may cause this kind of contradictory results.
Meanwhile, there is still a heated debate on which kind of feedback is
relied on in reinforcement learning. And the best way to solve this
problem is the dynamic learning process analysis. First of all, re-
searchers should discriminate that external feedback plays a pivotal
role in which period. Then, researchers can ensure that behavioral
adaption is relied on which kind of feedback in the important feedback
period.

Behavior monitoring includes internal monitoring and external
monitoring, and both of them are important. While the FRN and P300
are the external monitoring indexes, Error-related negativity (ERN) can
be applied as the index of internal monitoring (Falkenstein et al., 1991;
Potts, 2011). The ERN is a negative deflection after making an error at
the fronto-central midline and peaks within 100 ms (Gehring et al.,
2011). In addition, ERN is typically larger when errors are less frequent
or less expected (Jessup et al., 2010). Furthermore, both of ERN and
FRN are illustrated by the reported Reinforcement Learning Theory
(Holroyd and Coles, 2002). According to the Reinforcement Learning
Theory, the mesencephalic dopamine system relays an error signal to
anterior cingulate cortex (ACC), where it is used to improve perfor-
mance. More specifically, the influence of dopamine signals in the ACC
modulates to the amplitude of ERN (Crowley et al., 2009). Outcomes
worse than expected leads to phasic decreases in dopamine activity and
forms large ERNs, while outcomes better than expected induces phasic
increasing and appears small ERNs. When learning something new,
individuals make errors easily and error detection in knowledge-based
tasks necessitates some kinds of external feedback simultaneously,
which indicates the appropriateness of executed response (Stahl, 2010).
Subsequently, when individuals respond throughout external feedback,
they can gradually recognize the rules, reduce errors and learn to detect
errors (Dambacher and Hübner, 2015). Therefore, the learning process
can be considered as a transition from external feedback to internal
monitoring (Bultena et al., 2017). Although a considerable number of
electrophysiological studies on reinforcement learning have focused on
ultimate changes after learning, less attention has been paid on how
dynamically change between external feedback and internal mon-
itoring, and the relationship between them. Hence, it is necessary to
explore dynamic learning performance throughout the whole re-
inforcement learning process.

In addition, the individual difference is an important influencing
factor for reinforcement learning and some studies have investigated on
age (Van den Bos et al., 2009), cognitive control capacity (Decker et al.,
2016) and so on. Herein, this study focuses on the individual differences
between approach learners and avoidance learners, which are dis-
criminated by a probabilistic selection task (Frank et al., 2005; Schmid
et al., 2018). Recent Reinforcement Learning Computational models
suggest that two systems contribute to approach and avoidance
learning (Frank et al., 2007; Frank and Claus, 2006). Approach system
is related to rapid updating of reward information in working memory.
Avoidance system is related to the slow integration of reward in-
formation and habitual responding (Frank and Claus, 2006). Using this
computational model, approach learners learn relatively slower fol-
lowing positive outcomes and faster following negative outcomes. As
for avoidance learners, they display reverse behavioral predispositions
(Aberg et al., 2016). The current study wants to find learning differ-
ences during the dynamic process of reinforcement learning.

The present study aims to investigate two kinds of learners' dynamic
learning performance change between external feedback and internal
monitoring, and the relationship between them. “Which kind of feed-
back” and “when does the feedback happen” are important for learning.
As we all know, learning is a process. In the initial learning process,
ERN is characterized by a relatively small amplitude resulting from
lacking subjective knowledge. In this stage, external effective feedback
presents great informative value, which is reflected by a relatively large

FRN amplitude. As subjective knowledge increases, learners begin to
rely on their own evaluation of outcomes. An increase ERN amplitude
and a decrease FRN amplitude are gradually observed. EEG researches
show that an inverse/tradeoff relationship between the amplitude of
ERN and FRN can be observed (Gawlowska et al., 2018; Krigolson et al.,
2009). Therefore we hypothesize that FRN and ERN will play a leading
role during the early learning period and the later learning period, re-
spectively. Namely, the ERN amplitude is relatively small and the FRN
amplitude is relatively large in the early learning period. The ERN
amplitude is relatively large and the FRN amplitude is relatively small
in the later learning period. In addition, behavioral adaption is based on
negative feedback in the early period.

2. Methods

2.1. Participants

A total of seventy-eight undergraduate students from Qufu Normal
University, who received either course credit or cash payment, parti-
cipated in the present study. Data of thirteen participants had to be
discarded for the following reasons: Five participants were excluded
from analysis due to excessive electroencephalogram (EEG) artifact;
three participants were excluded from analysis due to accuracy
rate < 80% in the last block; five participants, who could not be
classified as approach learners or avoidance learners, were excluded
from the present study. Hence, the effective sample consisted of 35
approach learners (mean age = 20.4 years, SD= 1.65 years, 26 female,
9 male) and 30 avoidance learners (mean age = 21.19 years,
SD = 2.02 years, 24 female, 6 male). All participants are right-handed,
have normal hearing and normal or corrected-to-normal vision. None of
them has a history of psychiatric, neurological or medical illness.
Informed consent was obtained from all participants. The present study
was approved by the local ethical committee and conducted in line with
the Declaration of Helsinki.

2.2. Stimuli and task

Participants performed a probabilistic selection task, which was
adapted from the previous literature (Frank et al., 2004) and consisted
of learning phase and testing phase. Participants were told that they
would see some pairs of Japanese symbols. They needed to learn which
symbols had higher correct probability than the others in some pairs of
Japanese symbols. They were asked to choose a higher correct prob-
ability symbol in each pair as soon as possible. The more positive
feedback they received, the higher course credit or the more money
they would receive.

During the learning phase, three different types of stimulus pairs
(AB, CD, EF) presented in a randomized order. Symbols were presented
in the same pairs with their placement counterbalanced across trials in
learning phase. This is to say, symbol A and symbol B, symbol C and
symbol D, symbol E and symbol F were always paired together in
learning phase. Each kind of stimulus type included 20 trials in learning
phase. On each trial, a fixation cross was present for a jittered between
600 and 1000 ms, followed by two Japanese symbols presented side-by-
side on the screen. The visual angle is 8.02°. In a forced-choice para-
digm, participants were asked to choose one of these symbols.
Participants responded by selecting either left-hand or right-hand re-
sponse symbols using the “F” or “J” key of a standard keyboard. If
participants did not clear which symbol should be to choose, they could
choose by following their own gut feelings. After making the choice, the
blank screen was presented for 500 ms, then positive or negative
feedback on the response was presented for 1500 ms. Positive feedback
consists of an image of a smiling green cartoon face with the word
“correct” above and negative feedback consists of an image of an angry
red cartoon face the word “wrong” above. If no response was given
within 4 s, a “Too slow” information would appear. Inter-trial intervals
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ranged between 2000 and 3000 ms (see Fig. 1A).
Each symbol had unique feedback probabilities in learning phase.

Every symbol had different positive/negative feedback frequencies in
the learning phase. On AB trials, A could lead to 80% positive feedback
and 20% negative feedback, whereas B could lead to 20% positive
feedback and 80% negative feedback. On CD trials, C could lead to 70%
positive feedback and 30% negative feedback, whereas D could lead to
30% positive feedback and 70% negative feedback. On EF trials, E
could lead to 60% positive feedback and 40% negative feedback,
whereas F could lead to 40% positive feedback and 60% negative
feedback. Three different stimulus types had different passing criteria,
and accuracy standard is 65%, 55% and 50% for AB trials, CD trials and
EF trials, respectively (see Fig. 1B). Participants were aware that there
was no absolute correct answer in this task, but some symbols (e.g., A)
had a higher correct probability than the other. Through trial and error,
participants would know that they could pass learning phase, continue
to complete the testing phase and get more rewards by approaching
higher probability symbols (e.g., A) and avoiding lower probability
symbols (e.g., B). Participants could not proceed testing phase until a
previously set passing criteria were met (Frank et al., 2005).

There were three blocks in the testing phase. Each block included 90
trials, presented in a randomized order. The stimulus types in testing
phase were fifteen possible combinations composed by the six Japanese
symbols from the learning phase (see Fig. 1C). The order of symbols
correct probability is A > C > E > F > D > B. Participants were
asked to choose a higher correct probability symbol in each pair. Thus,
choosing A is correct and choosing C is wrong in AC pair; choosing C is
correct and choosing B is wrong in BC pair. Stimulus arrangement in
testing phase was almost the same as the learning phase, the stimulus
types (AC, AD, AE, AF, BC, BD, BE, BF) were not given effective feed-
back. Participants were classified as approach learners or avoidance
learners according to foregoing stimulus types without feedback at the
testing phase (Schmid et al., 2018). The stimulus types at the testing
phase would be divided into two parts to classify two types of learners.
Stimulus pairs with symbol A (AC, AD, AE, AF) marked as A pairs and
stimulus pairs with symbol B (BC, BD, BE, BF) marked as B pairs. A
pairs and B pairs were only calculated accuracy. If accuracy in A pairs
was higher than accuracy in B pairs across the three testing blocks, the
participant was called an approach learner. If accuracy in B pairs was
higher than accuracy in A pairs across the three testing blocks, the
participant was called an avoidance learner. The remaining stimulus
arrangement was the same as the learning phase.

2.3. Procedure

Participants were provided informed consent when arriving. Then
experimental procedure was explained to participants. Each block in-
cluded 60 trials in learning phase. The number of learning blocks was
based on participant's accuracy. Only reaching or exceeding passing
criteria, participants could continue to complete the testing phase.

There were three blocks in testing phase, each block included 90 trials.
The entire experiment task lasted for approximately 50 min.

2.4. Recording and preprocessing of electrophysiological data

EEG was recorded with a Brain Products Active Two system (Brain
Products GmbH, Munich, Germany) at a 1000 Hz sampling rate from 64
active scalp electrodes placed in an electrode cap according to the
standard international 10-20 system (Jasper, 1958). EEG recordings
were referenced on-line to the left mastoid. The ground was positioned
above the forehead. Impedances were kept below 5 kΩ. FP1 and FP2
were used to record electrooculogram (EOG).

EEG data were processed offline by using Brain Vision Analyzer 2
software. The recorded data were resampled at 250 Hz and re-refer-
enced to an average of the left and right mastoid electrodes. EEG data
were filtered offline with a low cutoff filter of 0.01 Hz and a high cutoff
filter of 30 Hz. Eye blinks artifacts were semi-automatically decom-
posed of the clear data with the Ocular Independent Component
Analysis (ICA) method on the continuous data. For feedback-locked
analyses, epochs were subtracted that ranged from 200 ms before until
800 ms after feedback onset. For response-locked analyses, epochs were
extracted from 200 ms before to 500 ms after the keypress response. A
baseline correction was performed on the 200 ms time window before
feedback-locked and response-locked data. A semi-automatic artifact
correction procedure was applied to screen for artifacts and con-
taminate trials according to the following criteria: Any abrupt voltage
change over 50 μV between adjacent sample points, any difference from
peaks to peaks in a 200 ms interval that exceeded 200 μV, any ampli-
tude that exceeded± 100 μV, any activity that was
consistently< 0.5 μV in a 100 ms interval were considered artifacts.

2.5. Statistical analyses

Accuracy and reaction time were analyzed for each condition: dif-
ferent types of learners (approach learners and avoidance learners) and
different blocks (block 1, block 2, block 3 and block 4) for reaction time
(RT), correct rates, using a mixed two-way repeated measure analysis of
variance (ANOVA) of 2 (Learner type: approach learner, avoidance
learner) × 4 (Period: block 1, block 2, block 3, block 4).

The ERPs, included the ERN, FRN and P300, were systematically
analyzed. The ERN was evaluated as the mean amplitude within the
time window, which is ranging from 50 ms before and 50 ms after the
keypress response. The FRN was measured as mean amplitude within
the time window 220–320 ms following the feedback outcome pre-
sentation. The P300 was measured as mean amplitude within the time
window 320–420 ms after the feedback stimulus onset. The three ERPs
components were calculated across five electrode locations (Fz, FCz, Cz,
CPz, Pz). The results indicated that the effect of the ERN, FRN and P300
were largest at the FCz site, which is consistent with previous studies
(Eppinger et al., 2008; Gheza et al., 2017; Ehlis et al., 2018). Hence,

Fig. 1. (A) A trial sequence in probabilistic selection task. (B) Japanese symbols that participants learned in learning phase. (C) Japanese symbols that participants
learned in testing phase.
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ERN, FRN and P300 analyses were conducted on electrode FCz. The
ERN, FRN and P300 mean amplitudes were separately analyzed by
using a mixed three-way repeated measure ANOVA. The Greenhouse-
Geisser correction was conducted when sphericity violations. To control
for Type-I error, Bonferroni correction was applied to post-hoc tests. In
addition, Pearson correlation analyses were performed on the re-
lationship between magnitude of ERN and FRN effects.

3. Results

3.1. Behavioral results

3.1.1. Response time
The ANOVA revealed a marginally significant main effect of learner

type, F(1,63) = 3.26, p = 0.08, ηp2 = 0.05, showing that approach
learners (M = 1076.57 ms, SD = 41.53 ms) reacted a little faster than
avoidance learners (M = 1186.96 ms, SD = 44.86 ms). The main effect
of period was significant, F(3,189) = 52.30, p < 0.001, ηp2 = 0.45.
Polynomial orthogonal contrasts were used to examine the trends in RT
of period. The results of the trend analysis indicated significant linear, F
(1,63) = 89.58, p < 0.001, ηp

2 = 0.58. There was no significant
quadratic (F(1,63) = 0.64, p = 0.43) and cubic (F(1,63) = 2.60,
p = 0.11). That is, participants reacted faster from block1 to block4
gradually. The interaction of learner type and period did not approach
significance, F(3,189) = 0.97, p = 0.41 (see Table 1).

3.1.2. Accuracy data
The main effect of period was significant, F(3,189) = 376.77,

p < 0.001, ηp2 = 0.86. Polynomial orthogonal contrasts were used to
examine the trends in accuracy of period. The results of the trend
analysis indicated a significant linear effect (F(1,63) = 951.58,
p < 0.001, ηp

2 = 0.94), quadratic effect (F(1,63) = 134.71,
p < 0.001, ηp2 = 0.68) and cubic effect (F(1,63) = 4.07, p = 0.05,
ηp

2 = 0.06). The linear effect, as expected, indicated that accuracy rates
significantly improved after every block. The main effect of learner type
was not significant, F(1, 63) = 0.27, p = 0.61. The period and learner
type interaction did not approach significance, F(3,189) = 1.98,
p = 0.12 (see Table 2).

3.2. ERP results

3.2.1. ERN
The ERN mean amplitudes were analyzed using a mixed three-way

repeated measure ANOVA of 2 (Learner type: approach, avoid-
ance) × 4 (Period: block 1, block 2, block 3, block 4) × 2 (response
type: correct, error) in± 50 ms in time window at the FCz site. The
learner type was a between-subjects factor and the other two were
within-subjects factors. The response type had a highly significant main
effect, F(1,63) = 21.02, p < 0.001, ηp

2 = 0.25, reflecting greater
negativity for error response (M = −2.53 μV, SD = 0.28 μV) than
correct response (M = −1.39 μV, SD = 0.17 μV). The period had not a
significant main effect, F(3,189) = 0.12, p = 0.95. The main effect of
learner type was not significant, F(1,63) = 0.02, p = 0.89.
Interestingly, a two-way interaction between learner type and period
was significant, F(3, 189) = 3.87, p = 0.01, ηp2 = 0.06. Trend analysis
indicated a significant quadratic effect (F(1,63) = 7.03, p = 0.01,
ηp

2 = 0.10) and cubic effect (F(1,63) = 4.36, p = 0.04, ηp2 = 0.07).
This result revealed that amplitudes of avoidance learners were

significantly more negative than approach learners in block 3.
However, amplitudes of approach learners were significantly more
negative than avoidance learners in block 4. The two-way interaction of
response type and period was significant, F(3,189) = 4.32, p = 0.006,
ηp

2 = 0.06. Subsequently, trend analysis indicated a significant linear
effect (F(1,63) = 15.67, p < 0.001, ηp2 = 0.20). This result revealed
that correct response mean amplitudes were smaller than error re-
sponse mean amplitudes in block 2, block 3, and block 4. The two-way
interaction of response type and learner type was not significant, F
(1,63) = 0.05, p = 0.82. In addition, a reliable three-way interaction
between learner type, response type and period was not obtained, F
(3,189) = 1.91, p = 0.13 (see Fig. 2; see also Table S1 in the Supple-
mental material).

3.2.2. FRN
The FRN mean amplitudes were analyzed using a mixed three-way

repeated measure ANOVA of 2 (Learner type: approach, avoid-
ance) × 4 (Period: block 1, block 2, block 3, block 4) × 2 (feedback
valence: positive, negative) in 220–320 ms in time window at the FCz
site. A reliable main effect of period was obtained, F(3,189) = 16.42,
p < 0.001, ηp2 = 0.21. Polynomial orthogonal contrasts were used to
examine the trends in FRN mean amplitudes of period. The results of
the trend analysis indicated a significant linear effect (F(1,63) = 27.89,
p < 0.001, ηp

2 = 0.31) and quadratic effect (F(1,63) = 13.94,
p < 0.001, ηp

2 = 0.18). There was no significant cubic effect, F
(1,63) = 1.32, p = 0.26. The linear effect, as expected, revealed that
FRN mean amplitudes in block 4 were negative than other three blocks
(see Fig. 3; see also Table S2 in the Supplemental material). There was
no main effect of learner type, F(1,63) = 0.61, p = 0.44 and feedback
valence, F(1,63) = 0.01, p= 0.91. Interestingly, there was a significant
two-way interaction effect for feedback valence and period, F
(3,189) = 12.51, p < 0.001, ηp2 = 0.17. Trend analysis indicated a
significant linear effect (F(1,63) = 23.96, p < 0.001, ηp2 = 0.28) and
quadratic effect (F(1,63) = 12.66, p = 0.001, ηp2 = 0.17). This result
revealed that negative feedback mean amplitudes were more negative
than positive feedback in block1. The two-way interaction of learner
type and period was marginally significant, F(3,189) = 2.63,
p = 0.052, ηp2 = 0.04. Trend analysis indicated a significant linear
effect (F(1,63) = 4.97, p = 0.03, ηp2 = 0.07). This result revealed that
the amplitudes of approach learners were more negative than the am-
plitudes of avoidance learners in four blocks. The two-way interaction
effect of feedback valence and learner type was not significant, F
(1,63) = 0.52, p = 0.48. Moreover, a significant three-way interaction
between learner type, feedback valence and period was not obtained, F
(3,189) = 0.96, p = 0.41.

3.2.3. P300
The P300 mean amplitudes were analyzed using a mixed three-way

repeated measure ANOVA of 2 (Learner type: approach, avoid-
ance) × 4 (Period: block 1, block 2, block 3, block 4) × 2 (feedback
valence: positive, negative) in 320–420 ms in time window at the FCz
site. There was a significant main effect of feedback valence, F
(1,63) = 38.63, p < 0.001, ηp2 = 0.38, suggesting more positive for
negative feedback (M = 15.64 μV, SD = 1.39 μV) than positive feed-
back (M = 11.15 μV, SD = 1.10 μV). A reliable main effect of period
was obtained, F(3,189) = 23.10, p < 0.001, ηp2 = 0.27 (see Fig. 3; see
also Table S3 in the Supplemental material). Polynomial orthogonal
contrasts were used to examine the trends in P300 mean amplitudes of

Table 1
Mean and standard deviation of reaction time in four blocks for approach learners and avoidance learners.

Block1 (M ± SD) Block2 (M ± SD) Block3 (M ± SD) Block4 (M ± SD)

Avoidance learners 1387.53 ± 287.31 1282.39 ± 341.00 1084.63 ± 284.98 993.29 ± 246.49
Approach learners 1257.67 ± 333.86 1118.94 ± 320.69 1007.47 ± 275.79 922.19 ± 216.10
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period. The results of the trend analysis indicated a significant linear
effect (F(1,63) = 34.80, p < 0.001, ηp2 = 0.36) and quadratic effect (F
(1,63) = 17.03, p < 0.001, ηp2 = 0.21). There was no significant cubic
effect, F(1,63) = 2.04, p = 0.16. The linear effect, as expected, in-
dicated that P300 mean amplitudes in block 4 is less positive in com-
parison to other three blocks (see Fig. 3). There was no main effect of
learner type, F(1,63) = 1.15, p = 0.29. In addition, there was no sig-
nificant two-way interaction effect for feedback valence and period, F
(3,189) = 1.69, p = 0.17; feedback valence and learner type, F(1,
63) = 0.25, p = 0.62; learner type and period, F(3,189) = 0.10,
p = 0.96. A significant three-way interaction between learner type,
feedback valence and period was not obtained, F(3,189) = 0.11,
p = 0.95.

3.2.4. Relationship between ERN and FRN effect
The mean magnitude values of ERN effect (the difference between

error and correct response) and FRN effect (the difference between
negative and positive feedback) were separately computed for each of
the four-block between approach learners and avoidance learners. The
relationship between ERN and FRN effects averaged across the four
blocks for approach learners and avoidance learners was investigated
by Pearson correlation analyses. The correlation between the ERN and
FRN effects in four blocks were negative for avoidance learners, r
(4) = −0.99, p = 0.01, and approach learners, r(4) = −0.35,
p = 0.65. Generally, the tendency of the ERN effect was gradually

larger from block 1 to block 4 and the FRN effect was gradually smaller
from block 1 to block 4. Namely, the tradeoff relationship was shown
between the ERN and FRN effects during the learning process. The
tradeoff relationship means a negative correlation relationship. The
opposite-direction effects of learning periods on the ERN and the FRN
were illustrated in Fig. 4.

4. Discussion

The dynamic learning performance of approach learners and
avoidance learners was examined via an adapted probabilistic selection
task. This experiment, including internal monitoring and external
feedback, investigates that “which monitoring mechanism plays an
important role in learning at different periods” and “which kind of
feedback is the foundation of behavior modification”.

The response time results indicated that approach learners reacted a
little faster than avoidance learners in the whole task. Moreover, ac-
curacy rates of two kinds of learners significantly improved after every
block. The ERPs results demonstrated that external feedback only
played a role in early learning period and negative feedback influenced
individuals' behavior adaption in the early learning period. In the later
period, internal monitoring took part in learning. In line with our hy-
potheses, the underlying ERN and FRN processes are functionally linked
by a tradeoff relationship during reinforcement learning. For both ne-
gative feedback and positive feedback in four blocks, the P300 was

Table 2
Mean and standard deviation of accuracy rate in four blocks for approach learners and avoidance learners.

Block1 (M ± SD) Block2 (M ± SD) Block3 (M ± SD) Block4 (M ± SD)

Avoidance learners 0.60 ± 0.05 0.80 ± 0.10 0.92 ± 0.06 0.93 ± 0.05
Approach learners 0.60 ± 0.06 0.81 ± 0.10 0.88 ± 0.07 0.92 ± 0.07

Fig. 2. Grand-averaged response-locked ERP waveforms at FCz in four blocks for approach learners and avoidance learners.
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more positive for avoidance learners than approach learners.
Meanwhile, it was more positive for negative feedback than positive
feedback in four blocks and gradually positive from block1 to block4.
Moreover, the amplitudes of FRN and P300 in block 4 were significantly
smaller than the other three blocks.

In the following, we will discuss the individual differences, the
tradeoff relationship between ERN and FRN, successful learning, and
learning based on negative feedback in the early period.

4.1. Individual differences

One goal of the present study was to examine individual differences
in reinforcement learning process. The response time showed that both
approach learners and avoidance learners reacted gradually fast from
block1 to block 4 (see Table 1) and gradually improved accuracy rate
from block1 to block 4 (see Table 2). Compared to approach learners,
avoidance learners speeded more time in choosing every block and had

Fig. 3. Grand-averaged feedback-locked ERP waveforms at FCz in four blocks for approach learners and avoidance learners.

Fig. 4. Relationship between ERN and FRN effects for avoidance learners and approach learners in four blocks (ERN effect = error response amplitude − correct
response amplitude; FRN effect = negative feedback amplitude − positive feedback amplitude). Larger values mean larger effects.
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a higher accuracy rate in block 3 and block 4. And approach learners
only showed a higher accuracy rate in block 4 (see Tables 1, 2).

For avoidance learners, the difference between correct response and
error response amplitudes (ERN effect) was small in block 1 and block
2. This can be ascribed to that they did not recognize the rules and
detect errors with the external feedback. However, avoidance learners
gradually understood the rules and could detect errors instead of ex-
ternal feedback in block 3 and block 4, with large difference between
correct response and error response amplitudes. As for approach lear-
ners, the ERN effect appeared until in block 4, indicating that they
learned slower than avoidance learners (see scalp topographies (Fig.
S1) in the Supplemental material).

On the other hand, the amplitude difference between positive
feedback and negative feedback (FRN effect) was larger in block 1 than
block 2 to block 4. This is consistent with the previous study (Shephard
et al., 2014). The FRN effect was not significant but different between
avoidance learners and approach learners in block 2. That demon-
strated that avoidance learners needed more time to rely on external
feedback, once avoidance learners learned the rules they could apply
learned rules to improve behavior performance and recognize when
making mistakes (i.e., block 3). However, approach learners needed less
time to rely on external feedback, but this kind of learner could not
immediately apply learned rules to improve behavior performance (see
scalp topographies (Fig. S2) in the Supplemental material).

4.2. The tradeoff relationship between ERN and FRN

The central aim in the present study was to investigate “when in-
ternal monitoring and external feedback played an important role
during the process of reinforcement learning respectively” and the re-
lationship between them. The ERPs results showed that both approach
learners and avoidance learners had larger FRN and smaller ERN effects
in the early learning period, whereas both approach learners and
avoidance learners had larger ERN and smaller FRN effects in the later
learning period (see Fig. 4). This result pattern is corresponding with
the increasing ERN amplitudes and decreasing FRN amplitudes from
the first to the second half of experiment (Müller et al., 2005; Stahl,
2010). The foregoing results suggested that participants gradually re-
cognized the rules, reduced errors and learned to detect errors, while
they responded throughout the early learning period. Hence, the ex-
ternal feedback did not work any longer in the later learning period.
Although the ERN effects appear slight earlier for avoidance learners
than approach learners, external feedback leads to the gradually de-
velopment of internal error detection (Wessel, 2012; Ullsperger et al.,
2014; Hoffmann and Beste, 2015). These results support our hypothesis
that the ERN plays an important role in the later learning period and the
FRN plays a central part in the early learning period. Therefore, the
tradeoff relationship was shown between the ERN and FRN effects
during the reinforcement learning process. This inverse relationship
between the amplitude of ERN and FRN reflects a shift between internal
monitoring and external feedback (Hajcak et al., 2005b; Krigolson
et al., 2009). The dynamic characteristic of tradeoff relationship be-
tween external feedback and internal monitoring has also been dis-
played in fMRI study (Gawlowska et al., 2018). The tradeoff relation-
ship between the ERN and FRN effects indicates that ERN and FRN are
quietly different two kinds of ERPs components (Cavanagh et al., 2009;
Potts et al., 2011). This result is inconsistent with the Reinforcement
Learning Theory (Holroyd and Coles, 2002). The Reinforcement
Learning Theory postulates that ERN and FRN are reflections of the
same generic level error processing system. Actually, ERN component
appears in the early time window but reflects the later processing me-
chanism. FRN component appears in later time window but reflects the
early processing mechanism.

4.3. Successful learning

The P300 mean amplitude of negative feedback was more positive
than positive feedback in four blocks, and P300 mean amplitude gra-
dually become negative from block1 to block4 for both negative feed-
back and positive feedback. The differences of P300 feedback valence
were apparent in the early three learning periods. The context updating
theory proposes that the P300 indexes the degree to which the in-
dividual's internal representation of the external context (Donchin and
Coles, 1998). When a stimulus exceeding participants' expectations
appears, the updating occurs (Potts, 2011). As negative feedback was a
stimulus that exceeds participants' expectations, P300 was larger after
negative feedback than after positive feedback in four blocks, indicating
that participants wanted to perform well to finish the task. The fewer
errors participants made in the later learning period, the less updating
information participants needed.

The amplitudes of FRN and P300 were significantly smaller in block
4 than other three blocks. And the amplitudes of ERN in the later
learning period were significantly larger than the early learning period.
The aforementioned results suggest that participants gradually re-
cognized the rules, reduced errors and learned to detect errors while
they responded throughout the early learning period. Accuracy rates
significantly improved after every block. Both the approach learners
and avoidance learners had high accuracy rates in the last block. Taken
the high accuracy rates, relatively large ERN amplitude, relatively small
FRN and P300 amplitude together, it may be concluded that partici-
pants successfully mastered the learning rules in the later learning
period (see scalp topographies (Fig. S3) in the Supplemental material).

4.4. Learning based on negative feedback in the early period

As mentioned above, FRN only worked in the early learning period.
Participants needed more time to respond after negative feedback than
after positive feedback. In order to improve performance in the task,
participants had to adjust behavior after negative feedback than after
positive feedback (Cavanagh et al., 2009; Danielmeier and Ullsperger,
2011; Fu et al., 2019). In addition, FRN amplitude was larger after
negative feedback than after positive feedback. At the same time, the
P300 was more positive after negative feedback than after positive
feedback in the early period. The P300 is a necessary signal to adapt
behavior for the formation of good performance (Hamamé et al., 2011).
Therefore negative feedback can be seen as convincing evidence for
feedback-based learning. This finding is in line with several studies
(Philiastides et al., 2010; Asaad and Eskandar, 2011; Schiffler et al.,
2016; Kastner et al., 2017).
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