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• Artificial Intelligence (AI) identified the
interface reinforcement in CFRPs.

• Support Vector Machines performed
well in both testing and validation of
the model.

• Functionalization on CFs was predicted
with F1-score equal to 65% and accuracy
67%.

• Model was validated at different nano-
indentation depth with accuracy 72.7%.

• Feedback from AI could enhance mate-
rials design, decision-making, and qual-
ity control.
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Carbon fiber reinforced polymer manufacturing is emerging, with multiple studies to focus on the design of in-
terfacial reinforcement to ensure the maximum of composite properties, but also respectively to be able to
align with zero defect manufacturing. The controversy on the engineering approach is a data-driven task that
can be efficiently tackled by involving Artificial Intelligence in order to establish unbiased structure-property re-
lations. In the present study, nanoindentationmapping datawere processedwithMachine Learning classification
models to identify the interfacial reinforcement. The data preparation included normalization and sorting out of
highly similar data with k-means clustering, since nanoindentation on epoxymatrix does not enhance insight on
the mechanism of reinforcement. The trainedmodels included neural networks, classification trees, and support
vector machines. Realization of models' performance was evaluated on the test dataset as screening to obtain
best fittedmodels for each algorithm. Transfer learning potential was demonstrated by extrapolating the predic-
tion of best trained models to a validation dataset at different indentation depth with support vector machines
outperforming the othermodels. Overall accuracywas 67% on the test dataset, F1 Scorewas 65% in the prediction
of reinforcement mechanism classes and 72% in case of pristine specimen, while accuracy on validation dataset
was 72.7%. Prediction metrics were comparable to other case studies of real-world classification problems. Com-
putational time-cost for tuning and training was sustainable and equal to 2.3 min.
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1. Introduction

Carbon fiber reinforced polymers (CFRPs) are few steps from com-
mercialization to significantly substitute metal components in aero-
space, automotive, construction fields [1–3]. Since their delamination
and degradationmechanisms are extensively studied, several modifica-
tions of carbon fibers (CFs) surface chemistry have been applied to en-
hance composites' performance, through effective transfer loading for
matrix to fibers [4–8]. Functionalization improves the wetting of
epoxy and CFs interface in order to achieve robust mechanical perfor-
mance and enhance ageing resistance by even improving mechanical
integrity [8]. Industrial-friendly technologies such as plasma oxidation
improve chemical bonding, while deposition of thin polymeric films
has also been involved to improve chemical affinity between matrix
and CFs [9,10]. Another innovative engineering approach is the incorpo-
ration of carbon-basednanomaterials onCFs surface in order to improve
adhesionwithmatrix phase [11,12]. These modifications have provided
improvement in composite performance by integrating a different
mechanism of reinforcement in each case and have the potential to be
employed continuously in larger scale.

However, in order to engineer a CFRP tailored towards a specific ap-
plication, there is the need to understand intrinsic differences between
modifications. Differences are recognized inmolecularweight, chemical
nature of functional groups and of their core, which is organic in case of
polymers and inorganic in case of nanomaterials. Moreover, in case of
nanomaterials properties such as aspect ratio, geometry, and diameter
could significantly alter the interfacial properties of CFRPs [11,12]. Sim-
ilar to recently developed ontology databases [13,14], recognition of re-
inforcement mechanism can assist the development of materials
characterization databases and ontologies (CHADA, case study of Nano-
indentation) [15].These alterations influence changes in mechanical
properties and are highly considered in materials design, since there is
high industrial competitiveness. Artificial Intelligence (AI) andMachine
Learning (ML) are the next step in materials informatics towards
smartization [16] and is expected to be hugely involved in the ongoing
4.0 (fourth) Industrial Revolution [17]. Data analysis till recently was im-
plemented through statistical models for industrial process control [17],
whichmeets a threshold of information feedback, whichML overcomes
by taking advantage of increased computational power and multidi-
mensional patterning. Considering recent proceedings with high speed
nanoindentation and generation of thousands of data at short periods
of time [18,19], ML can contribute to establishment of unbiased
structural-property relations inmaterials science [14–16,20–24], to cor-
relate the chemistry involved during processing to the resultant me-
chanical properties; feedback from ML creates new opportunities in
product or process designwith better decision support [17,25–28]. Clas-
sification in construction and materials industries is both data- and
product-driven [29,30], and is mainly focused in production planning
and quality control [16,17].Moreover,ML tasks can support the identifi-
cation of a composite structure fingerprint, which is theoretically corre-
lated to the nature of reinforcement. These tasks are of great importance
in order to standardize an industrial manufacturing plant and achieve
fast transfer of a laboratory idea into industrial production and applica-
tions [17], to perform real-time characterization [24] for fault/anomaly
detection [16,17,25,30] and components benchmarking [17,30].

Nowadays there is a wide range of ML algorithms available to deal
with real-world classification tasks. These algorithms can be hierarchi-
cal (for instance decision trees [31]), which require less data cleaning
[27] and classification process is more straightforward [32]. Another
category of ML are black box models, such as support vector machines
(SVM) and artificial neural networks (ANN), which can identify unseen
and complex patterns and be highly accurate [26,32,33]. Especially,
ANNs such asmulti-layer perceptron (MLP) do not require special treat-
ment of data, due to their efficiency in classification of both categorical
and numerical data [29]. An ANN introduces adaptive weights to estab-
lish connections between (hidden) layers [33]; however a huge amount
of data should be provided to enhance predictionmetrics [27]. SVMs are
memory efficient [27], but suffer in presence of noisy data [26]. SVMs
accept only numerical input to map high dimensional data by using
the kernel functionality to separate classes with hyperplanes introduc-
tion [17,33]. A prominent and easily deployable classification tree algo-
rithm is C5.0, which has gained industrial appeal since it can be as
efficient as black box methods [32]. Another useful algorithm is Adap-
tive Boosting (AdaBoost), which includesweaker learners and improves
them (boosting process), andfinallyfilters the relevant features that im-
prove themodel predictions by reducing biased errors [31,33]. Extreme
gradient boosting (XGBoost) algorithm performs parallel tree boosting,
and gained reputation after winning several Kaggle competition prob-
lems [30,31].

Since training amodel on acquired data can be subjective to patterns
and observations that are identified on previously generated data, pre-
diction efficiencymay suffer on newdata. Bagging and boosting are ran-
domization methods known as ensemble strategies involved to avoid
overfitting [30,31]. Alternatively, k-fold cross validation (CV) arises as
a necessary process to generalize a model (especially, non-tree algo-
rithms) by separating and testing random partitions (repeated hold-
out), and is commonly part of industrial AI approaches [32]. There is
no panacea in model selection for a specific problem. Consequently, so-
phisticated tuning or model ensembles are often required to improve
prediction metrics, which is a harsh task in real-life cases. As impor-
tantly, the hyperparameter tuning is involved, since hyperparameters
can significantly affect predictive ability; proper tuning is necessary
since there is no global optimum approach in order to deal with
overfitting occasions [26]. For instance, accuracy of ANNs is dependent
on the number of repetitions, the network topology (number of layers
and neurons), learning rate, dropout rate [17,26,33]. Bagging of decision
trees enables the tuning of many hyperparameters, namely size, num-
ber of classifiers, number of trees, maximum instances per leaf, and
maximum depth [17]. These hyperparameters deviate significantly in
case studies of different fields.

Nanoindentation is a technique that can provide experimentally ver-
ified input for modeling in order to simulate mechanical performance
and failure of composite structural elements [2]. Reduced Elastic modu-
lus (Er) has been previously involved in design implementations in con-
struction field [34,35]. Additionally, a wide range of construction
materials and coatings has been studied through nanoindentation,
namely micro- and nano- reinforced composites, metal alloys, coatings,
and concrete, since it combines fast and precise characterization
[18,19,21,22,24,36–40]. High-resolution mapping in case of CFRPs can
be obtained at low indentation depth in order to determine single-
phase mechanical properties of CFs, epoxy matrix (often affected by
fiber constraint), and interface [6,41,42]. Consequently, the motivation
of this study is to use ML on CFRPs nanoindentation raw data to estab-
lish novel relationships between structure (reinforcement mechanism)
and properties (nanomechanical performance). Neural Networks, clas-
sification trees, and SVM were involved in order to evaluate which
model has a better fitting ability to recognize the mechanism of rein-
forcement in the specific problem. Three modification classes were
identified to categorize nanoindentation data. The classes are men-
tioned as pristine, with oxygen functionalities “oxygen_species”, cov-
ered with polymer sizing “CF_pmaa”, and modified by the growth of
carbon nanotubes (CNTs) “CNTs_CFs”. Since, classification of reinforce-
ment mechanism in CFRPs using AI is a novel task in composites field,
a number of techniques were selected to choose an optimum descrip-
tive model based on prediction metrics.

2. Materials, methods and workflow

2.1. Composite manufacturing and carbon fiber functionalization

Carbon fiber reinforced polymer specimens received were charac-
terized through nanoindentation. The specimens tested varied in



Fig. 1. Nanoindentation grid for CFRPs characterization.
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order to represent an ontology of surface modification of CFs each,
accordingly:

a) CFRPs with unfunctionalized CFs (5 Pristine specimens)
b) CFRPs fabricated using CFs with surface functionalization with oxy-

gen groups, such as Plasma functionalization (3 oxygen_spieces
specimens) – the reinforcement mechanism is identified in incre-
ment of chemical affinity of CFs surface and epoxy matrix

c) CFRPs reinforced with CFs functionalized with monomer grafting (3
electropolymerized with PMAA specimens) – the reinforcement
mechanism is a combination of increased surface roughness, due
to the brush-like structure of monomer grafting on CFs, and incre-
ment of chemical affinity, which both enhance wettability with
epoxy matrix

d) CFRPswith interfacial reinforcement using the direct growth of CNTs
on CFs surface (2 growth_CNTs specimens) – the reinforcement
mechanism is attributed due to increased CFs rigidity

Synthesis and chemical modification are available in previous works
[9–11]. Composites were fabricated with the vacuum infusion method
for the impregnation with epoxy resin.

2.2. Grid nanoindentation

Nanoindentation testing was conducted with a Hysitron (Minneap-
olis, MN, USA) TriboLab® Nanomechanical Test Instrument equipped
with a Berkovich diamond tip (average radius 100 nm). Load and dis-
placement are continuously recorded with high resolution of 1 nN and
0.04 nm, respectively. Further information about both instrument and
experimental setup have been presented elsewhere [36]. The nanoin-
dentation protocol included a fixed maximum indentation depth at
200 nm in accordance to rule of thumb (d/10 ≪ hmax ≪ D/10, d and D
stand for the characteristic sizes of the largest heterogeneity) [43], and
the pristine specimenwas also tested at 400 nmdepth for the validation
ofMLmodels. Prior to indentation, the area functionwas calibratedwith
a standard material of fused silica. Nanoindentation was performed in a
clean area environment with 45% humidity and 23 °C ambient temper-
ature with displacement feedback control closed loop. A pattern (Fig. 1)
with minimum spacing of 5 μm was used in order to avoid any
indentation-to-indentation interaction [21]. Load-unload curves were
fitted with Oliver-Pharr model using the elastic response within the re-
gion of maximum load of unload curves to extract nanomechanical
properties [44].

In order tomeetflat surface requirements for nanoindentation, spec-
imens were wet polished using SiC grinding papers. The applied grind-
ing and polishing protocol contained the treatment with consecutive
use of 400,1000, 1200, 2000 and 4000 grit papers for a duration of
10min each by using Struers LaboPol-2 grinding, lapping and polishing
machine. The specimens were treated with ultrasonication for 3 min to
detach the Al2O3 particles that were used in ethanol dispersion during
the polishing step.

2.3. R language

R Studio is an open-source software and provides a coherent,flexible
system for data analysis. R language was used to implement every algo-
rithm involved in clustering and classification tasks. All computations
were performed using 64-bit Windows 10 Home (Intel ® Core™ i5-
8250U CPU @ 1.60 GHz, 1801Mhz 4 Cores, 8 Logical Processors and
8.00 GB RAM).

2.4. Statistical metrics

In order to evaluate the prediction efficiency of the trained models,
statistical metrics are involved. Accuracy, Precision, Recall, F1 were
exported in each case [20,31,45,46], after tuning. These metrics are
maximized when the model does not generate false positive or false
negative predictions as can be observed below [33]:

Accuracy ¼ TP þ TN
TP þ TN þ FP þ FN

ð1Þ

Recall ¼ TP
TP þ FN

ð2Þ

Precision ¼ TP
TP þ FP

ð3Þ

F1 Score ¼ 2� Precision� Recall
Precisionþ Recall

ð4Þ

True positives (TP) denote the success in identification of the correct
reinforcement class (positive sample), true negatives (TN) denote suc-
cessful classification of negative samples, false positives (FP) stand for
the incorrect classifications of negative samples into positive samples,
and false negatives (FN) denote the positive samples that were incor-
rectly predicted as negative samples [33]. Accuracy accounts for overall
model accuracy. Recall is the percentage of positive samples which are
correctly classified. Precision is the percentage of positive samples out
of the sum of positive observations. F1 Score is a metric to evaluate
the model ability to classify (best value:1). These metrics are more ap-
propriate metrics than Accuracy [33]. MicroAvgPrecision,
MicroAvgRecall, MicroAvgF1 aremetrics derived by the sumof the indi-
vidual true positives, false positives, and false negatives of the system
for different sets. Micro-metrics are expected to obtain the same value
because there is only one class associated with each instance [46].
MacroAvgPrecision, MacroAvgRecall, MacroAvgF1 are mean values for
overall model metrics.



4 G. Konstantopoulos et al. / Materials and Design 192 (2020) 108705
3. Case study: recognition of reinforcement mechanism in CFRPs

3.1. Data preprocessing

Nanoindentation rawdatawere obtained from several nanoindenta-
tion mapping tests (a total of 2461 indentation events and 400 in num-
ber for the validation dataset). The column names were set identical
with R language for each .txt file generated in order to avoid creation
of N/A (not available) values. Numeric cellswere prepared for clustering
and classification using Standardization (or z-score normalization) in
order to avoid bias due to parameters' different scale of magnitude.
The correlation matrix was created for all 9 nanoindentation variables
to figure and sort out parameters of high correlation, which are con-
nected to models overfitting issue [26,31]. The recorded variables are
summarized in Appendix (Table A.1). Variables with very strong corre-
lation exceeding the value of ±0.90 were not included for analysis
(Fig. 2) [31,47].

3.2. Preparation of data for Machine Learning

Due to the high similarity ofmatrix nanomechanical properties in all
CFRPs, inclusion of their data in classification models may harm Accu-
racy, Recall, Precision, and F1 Score due to the generation of many
false positive and false negative values. Since the reinforcement is iden-
tified in the interfacial and CFs properties and not in the matrix, it was
reasonable to remove these data. The number of clusters was selected
with pure probabilistic basis [48]. In this direction, k-means algorithm
was involved to categorize data into 5 clusters according to elbow rule
as presented in Fig. 3. This is further supported by the Humbert index,
which is a correlation coefficient of indicator variables connected to
intra-cluster distance (indices) such as mean value, standard deviation,
etc. It is a graphical method for determining the number of clusters
(Fig. 3b), where the observation of a significant peak corresponds to re-
spective increase in the value of the measure. In this case, amongst all
indices, 5 indices proposed 4 as the best number of clusters, while 15
proposed 5 as the best number, and only 3 proposed 8. According to
themajority rule, the best number of clusters is 5. Then the two clusters
with the higher values of hardness were selected, since it is a measure
which is a straightforward outcome of nanoindentation testing. Thus,
intrinsic properties of interface can be identified. Then data were
treated by randomizing the sequence of rows to ensure that there is
no chance to introduce bias duringmodel training. A sample of random-
ized data is available in Appendix (Fig. A.1). Splitting in this casewas set
to 72% for train (composed from CF_pmaa: 190, growth_CNTs: 176,
oxygen_species: 228, pristine: 286), 7% for test (composed from
CF_pmaa: 18, growth_CNTs:18, oxygen_species: 27, pristine: 25)
datasets. For validation of models, a pristine CFRP was tested at higher
indentation depth of 400 nm in order to demonstrate the model
Fig. 2. Correlation matrix of nanoindentation data prior (a) and
functionality even at different (low-) depth nanoindentation. Validation
dataset was consisted of 256 nanoindentation events (21% sample of all
available data after filtering and sorting out with k-means clustering).

3.3. Artificial neural networks (ANN)

ANN were involved in the effort to establish correlations of nanoin-
dentation data in CFRPs case. The main drive is that ANNs perform as a
black box method and can learn very complex patterns of data
[26,32,33] as in the case of reinforcement mechanism identification
task. A first effort was performed using the Stuttgart Neural Network
Simulator (SNNS) algorithm. Themain feature is the low-level interface,
while it also contains the default high-level interface of ANNs. The train
control of this model contained a 10-fold randomized cross validation,
repeated for 10 times using the default summary function. The tune
length was set to 20 and the optimization metric used in this case was
accuracy. In order to improve prediction, MLP ANNs with three layers
were chosen. The default parameterization of SNNS algorithm was ini-
tially used. The same algorithm was also tuned by introducing weight
decay parameter using non- and repeated CV and keeping constant
the tune length (20). When training ANNs, it is preferable to useweight
decay regularization method [17,49], where after each update, the
weights are multiplied by a factor slightly less than 1. This prevents
theweights from growing too large, and can be seen as gradient descent
on a quadratic regularization term. In this case, decay was tuned using
values of 0, 0.00001, 0.0001, 0.001, 0.01, 0.1 amongst the three neural
network layers. To continue with the pursue of a higher F1 Score in
this multiclass classification problem, and thus minimization of false
positives and false negatives, an Averaged Neural Network (avNNet)
model was used. Again, train control was kept the same, and grid search
of optimum hyperparameters contained decay values asmentioned be-
fore, and size hyperparameter varied between 5, 10, and 20. For each re-
peat, bagging was enabled by using this model. The confusion matrix of
the aforementioned trained and tuned ANNsmodels is presented in Ap-
pendix (Table A.2) and statistic metrics are summarized in Table 1 (full
table of metrics is available in Appendix - Table A.3).

In Table 1 it can be observed that decay addition in model parame-
terization improved overall prediction accuracy. The best neural net-
work performance (MLP with decay) demonstrated a better
recognition ability for CFRPs reinforced in the interface using monomer
grafting as sizing, and also CNTs growth. This demonstrates that the best
tuned neural network is sensitive in the correct detection of the rein-
forcement mechanism based on increment of CFs surface roughness,
based on modifications which decorate the surface of CFs. This is an in-
dication that weight amongst classes is a critical parameter during pat-
terning with neural networks, since avNNet algorithm lead to a 62.5%
prediction accuracy, which is comparable to the maximum 63.6%
achieved with weight decay introduction. By comparing models
after (b) sorting out parameters of very strong correlation.



Fig. 3. Determination of optimum number of clusters (noted for a,b) with (a) the elbow method, (b) Humbert criterion, and (c) H vs Er clusters plot.
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micro- and macro- metrics, MLPs with decay demonstrated the higher
values of micro-metrics, whereas MLPs with weight decay and non-
repeated CV lead to the highest macro-metrics (Table A.3). Moreover,
this model was chosen as preferable for reinforcement detection, since
two out of the three Precision and Recall metrics exceeded in perfor-
mance the other models and thus a higher F1 Score was achieved in
the prediction of different interfacial reinforcement. It is worth to men-
tion that the number of false positive classifications are also reduced
when the reinforcement is performed with PMAA and CNTs deposition
(Table A.2), which both differ to oxygen functionalization in both chem-
istry, dimensionality, and stereochemical structure.
Table 1
Prediction metrics of 4 ANNs algorithms on test data. The best scores are reported in bold.

SNNS MLP

CF_pmaa Growth_CNTs Oxygen_species Pristi

Accuracy 0.580
Precision 0.611 0.556 0.593 0.560
Recall 0.500 0.625 0.615 0.583
F1 0.550 0.588 0.604 0.571

MLP with decay (repeated CV)

CF_pmaa Growth_CNTs Oxygen_species Pristi

Accuracy 0.636
Precision 0.611 0.556 0.593 0.760
Recall 0.611 0.667 0.615 0.655
F1 0.611 0.606 0.604 0.704
3.4. Classification trees

Initially, Random Forrest (RF) algorithm was employed as the sim-
plest approach to implement classification trees. mtry hyperparameter
was set as 2 as implied by the empirical rule for the classification prob-
lem (the integer square root of number of variables - 6 in total - equal to
2 or 3, and ntrees was set as 70). An acceptable Precision metric was
achieved for theprediction of polymer sizing andCNTs functionalization
reinforcement mechanism; however, prediction of pristine and oxygen
functionalization classes was below par. Except for pristine class, high
Precision lead to low Recall, and the opposite. F1 Score was in all cases
MLP with decay (default CV)
Time elapsed: 114 min

ne CF_pmaa Growth_CNTs Oxygen_species Pristine

0.636
0.778 0.667 0.556 0.600
0.560 0.800 0.652 0.600
0.651 0.727 0.600 0.600

avNNet

ne CF_pmaa Growth_CNTs Oxygen_species Pristine

0.625
0.722 0.556 0.593 0.640
0.542 0.714 0.640 0.640
0.619 0.625 0.615 0.640
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above 50% (0.5 out of 1), but only two classes were predicted with F1
equal or higher 0.6. In order to improve results, tuning of the algorithm
was performed with optimization metric “Kappa” in one case, and “Ac-
curacy” in the other case. The control function was coded to perform of
10-fold CV repeated for 10 times. When changing optimization metric
to Accuracy, the results did not alter since the hyperparameters that
maximized Kappa, also lead to a maximum Accuracy. Also, both tuned
models deteriorated significantly the sensitivity in identification of
CNTs reinforcement, in favor of enhancing prediction of pristine class,
as both Precision and Recall were increased. Another algorithm, rFerns
classification tree was trained with 10-fold CV repeated for 10 times,
and tune length was set equal to 20 for optimization of accuracy. Still,
accuracy did not exceed the performance of the plain RF algorithm;
even though F1 Scores were more balanced, leading to a 57.1% score
in theworst predicted class. It is interesting to note that statistic metrics
are the same for polymer sizing and the pristine specimen for tuned RFs
and rFerns models, while prediction of the other classes was improved
(Tables A.4, A.5).

Considering the large variety of known classification trees, it was
regarded worth to test more models to improve prediction in the pres-
ent case classification problem. Thus, Ranger algorithm was imple-
mented since additional features can be tuned. Tune length and train
control were kept the same as before, butmtry parameterized between
1, 2, 3, and 4 to identify the value that lead to best accuracy, while node
size was tuned between 1, 5, 10, and 15. The number of trees was set at
500, optimummtryparameterwas set at 4, andminimumnode sizewas
15. The same approach was examined by changing the summary func-
tion. This time the optimummtrywas equal to 3. In both cases, accuracy
was reduced compared to previousmodels. Prediction favored the iden-
tification of polymer sized and pristine CFRPs, but this was not enough
to cover the needs of the present study. Rpart algorithm was applied
with the 10-fold CV protocol. The algorithm was implemented with
tuning maxdepth parameter in the range from 2 to 20, in order to
achieve higher accuracy. Rpart did not lead to higher accuracy, but it
was possible to exceed the threshold of 0.6 in three out of four cases.
In this model, the performance was improved in regards to Recall, and
F1 Scores () which were 63.2% for polymer sizing, 66.7% for the case of
grown CNTs, 56.5% in case of oxygen functionalization, and 64.2% for
pristine class; ideally, F1 Score should be further increased.

As a following step, bagging of classification trees was applied by
only setting hyperparameter nbag to 25 and to 5000 for differentiation.
Another tree bagging approach did not include setting nbag parameter,
however it was possible to perform 10-fold CV repeated for 10 times.
Compared to Rpart, prediction was not improved, and got even worse
for oxygen_species class with F1 Score below 0.5 when nbag value was
low Even at higher nbag the prediction metrics were not sufficiently
high. Crossvalidation on trees model with bagging resulted below par
prediction in growth_CNTs class.

The famous C5.0 algorithm was involved to deal with the weak-
nesses in identification of reinforcement mechanism that were encoun-
tered with the applied classification trees models, since it is proved to
function well with real-life problems at industrial level [32]. Classifica-
tionwas performed by boosting the tree algorithmusing 10 trials. By in-
creasing the number of trials to 25, results are slightly altered. No
significant changes occurred after performing 75 trials. In case of 25 tri-
als, themodel lead to a higher F1 Score than 0.60 in all classes except for
oxygen_species. Boosting was performed by using an additional feature
of a cost matrix in order to introduce a penalty for false negative values
that appear for the oxygen_species class. Also, crossvalidation (10-fold,
10 repeats) was performed in a grid of hyperparameters. In detail, clas-
sification was performed using a “tree” or classification “rules”, andwin-
now was set either TRUE or FALSE. Boosting trials varied from 10 to 90
with a step of 10. Neither these efforts were efficient to resolve the
weakness in F1 Score value of oxygen_species without sacrificing the
prediction of the rest classes. AdaBoost, short for Adaptive Boosting, is
a meta-algorithm. The output of the other learning algorithms (‘weak
learners’) is combined into a weighted sum that represents the final
output of the boosted classifier. Adaboost was used without any prior
tuning, and themajority of predictionmetrics did not exceed the perfor-
mance of Rpart algorithm, but for oxygen_species class F1 Score, which
was improved by 2.3% (58.8% in total) (Table 2).

Furthermore, Stochastic Gradient Boosting algorithm was used for
classification.Multiple hyperparameterswere tuned using a grid search.
Interaction depth was selected equal to 1, 5, and 9, number of trees “n.
trees” was tuned from 50 to 1500 with a step of 50. Shrinkage was set
constant at 0.1 and minimum number of nodes “n.minobsinnode” was
set at 20. This resulted in good prediction of pristine (highest Precision
amongst all tree models) and polymer functionalized classes (higher
Recall amongst all tree models, macro- andmicro- metrics are available
in Table A.5). However, the other two reinforcement mechanisms could
not be sufficiently predicted, since F1 Score slightly exceeded 0.50. Also,
xtremegradient boosting treeswere used. Hyperparameters grid tuning
values varied between 0.05, 0.3, 0.075 for eta, 50, 75, 100 for nrounds, 4, 5,
6, 7 for max_depth, 2.0 and 2.25 for min_child_weight. colsample_bytree
was set in between 0.3, 0.4, 0.5, and subsample value was set to 1.
Train control was performed using a 10-fold repeated crossvalidation
for 10 times. This was not very effective, since overall accuracy was
55.7%. In order to improve results, in another trial eta value was set at
0.01, max_depth to 5, gamma hyperparameter was involved to deal
with values that deteriorate model accuracy and was set to 3. Addition-
ally, subsample was set to 0.75, colsample_bytree was set to 1, and
mlogloss was used as an evaluation metric. The model was established
after performing a total of 10,000 training repetitions. For comparison,
a decrement in eta value at 0.001, and increment in max_depth to 15
for a total of 100,000 roundswas performed to train themodel at higher
accuracy. In both occasions the highest accuracy achieved was 63.6%,
with the main difference the highest computational cost of performing
90,000 additional training repetitions. However, the minimum F1
Scorewas 60%, whichwas influenced by the reduction of false negatives
(full Tables are available in the Appendix - Table A.4), while the other
three classes were predicted with a score of almost 65% and thus this
model was selected for deployment in the validation dataset. Also,
micro- and macro- metrics were the highest achieved within classifica-
tion trees (full Tables are available in the Appendix - Table A.5).

The optimization of classification treeswere realized only after using
boosted trees,which function in the background as a voting system in to
make one classification. This approach lead to higher accuracy by opti-
mizing the Precision metric in oxygen_spiecies class, compared to the
rest of classification trees involved. This fact indicates that models abil-
ity in correct prediction of oxygen_spiecies was increased; however,
this approach demonstrated a balanced framework for recognition of
the engineering procedure, which falls behind the interface
reinforcement.
3.5. Support vector machines – SVM

Radial kernel function was chosen initially to describe the nanoin-
dentation data. The SVM model was tuned using a grid for determina-
tion of optimum cost (1, 10, 50, 100, 400, 1000, 4000) and gamma
(0.01, 0.1, 0.5, 2, 4) values, whichwere 400 and 0.1, respectively. In addi-
tion, a polynomial kernel was used in order to investigate if prediction
metric could be further improved. Tuning process was more complex,
since 4 hyperparameters were investigated. These are degree (3, 4, 5),
coef0 (0.1, 0.5, 1, 4, 8, 12), gamma (0.1, 1, 4), and cost (1, 10, 50, 100,
400, 1000, 4000). Consequently, parameters with highest accuracy
were identified (degree=5, gamma=0.1, coef0=12, cost=1). Gauss-
ian kernel function was used with manual tuning, since automation of
tuning process is challenging. Sigma hyperparameter was set as 5 and
cost varied amongst 1, 40, 100, 400, and 1000. CV was repeated 10
times and sigma parameter was set at 3. Increment in sigma value to 4
did not improve predictions (Table 3).



Table 2
Prediction metrics of selected classification tree algorithms on test data. Full Tables are available in the Appendix A. The best scores are reported in bold.

RF RF tuning (Kappa)

CF_pmaa Growth_CNTs Oxygen_species Pristine CF_pmaa Growth_CNTs Oxygen_species Pristine

Accuracy 0.625 0.602
Precision 0.833 0.778 0.444 0.556 0.778 0.444 0.556 0.640
Recall 0.577 0.519 0.667 0.577 0.519 0.667 0.577 0.696
F1 0.682 0.622 0.533 0.566 0.622 0.533 0.566 0.667

RF tuning (accuracy) rFerns (tuned)

CF_pmaa Growth_CNTs Oxygen_species Pristine CF_pmaa Growth_CNTs Oxygen_species Pristine

Accuracy 0.602 0.614
Precision 0.778 0.444 0.556 0.640 0.778 0.667 0.519 0.560
Recall 0.519 0.667 0.577 0.696 0.519 0.500 0.700 0.824
F1 0.622 0.533 0.566 0.667 0.622 0.571 0.596 0.667

Trees with bagging (nbag = 5000) C5.0 boosting (25 trials)

CF_pmaa Growth_CNTs Oxygen_species Pristine CF_pmaa Growth_CNTs Oxygen_species Pristine

Accuracy 0.614 0.614
Precision 0.833 0.556 0.481 0.640 0.778 0.667 0.444 0.640
Recall 0.577 0.588 0.650 0.640 0.560 0.632 0.750 0.571
F1 0.682 0.571 0.553 0.640 0.651 0.649 0.558 0.604

XGBoost (with gamma, 10,000 rounds) XGBoost (with gamma, 100,000 rounds)
Elapsed time: 84 min

CF_pmaa Growth_CNTs Oxygen_species Pristine CF_pmaa Growth_CNTs Oxygen_species Pristine

Accuracy 0.636 0.636
Precision 0.722 0.667 0.556 0.640 0.722 0.667 0.556 0.640
Recall 0.591 0.632 0.682 0.640 0.591 0.632 0.652 0.667
F1 0.650 0.649 0.612 0.640 0.650 0.649 0.600 0.653
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The radial-shaped kernel provided the optimum predictions with
accuracy of 67% amongst other kernels. Radial kernel established a
higher accuracy by patterning the normality of standard reinforcement.
Especially, if the recognition of the reinforcement mechanism was to
answer whether the CFs have been modified in the surface, the task
would be tackled with great success. Still, the identification of correct
chemistry to mechanical interlocking effect is high as demonstrated
by the F1-scores. In opposite, polynomial kernel was biased to predict
efficiently with 74.4% polymer sizing reinforcement and with 73.5%
pristine CFRPs, but Precision was not sufficient for the other two classes
compared to radial kernel as demonstrated in (more details in
Tables A.6 and A.7). By using Gaussian kernel, the Recall is reduced by
almost 10% for prediction of oxygen_species and Pristine classes, while
it is significantly enhanced in case of growth_CNTs, but reduction in Pre-
cision negatively affected F1 Score. Thus, Radial SVM model was
adopted for predictions in validation dataset, since the F1 Score was al-
most 65% in all occasions of reinforcement, and 72% for the pristine class.
Table 3
Prediction metrics of 4 SVM algorithms on test data. The best scores are reported in bold.

Radial kernel
Elapsed time: 2.3 min

CF_pmaa Growth_CNTs Oxygen_species Pristi

Accuracy 0.670
Precision 0.722 0.667 0.593 0.720
Recall 0.591 0.632 0.727 0.720
F1 0.650 0.649 0.653 0.720

Gaussian kernel (Sigma = 3)

CF_pmaa Growth_CNTs Oxygen_species Pristi

Accuracy 0.648
Precision 0.722 0.500 0.630 0.720
Recall 0.591 0.818 0.654 0.621
F1 0.650 0.621 0.642 0.667
3.6. Summary of the results

The implementation of ML algorithms demonstrated that it is possi-
ble to recognize the surface modification of CFs by nanoindentation
testing. The properties of the reinforced composites are dependent in
the nature of functionalization technique applied on CFs, and mechani-
cal interlocking can bematched to the engineering of CFs. The three dif-
ferentmodification treatments studied differed in surface chemistry, i.e.
plasma modification increased the chemical affinity of epoxy matrix
and CFs, carbon nanomaterials functionalization increased rigidity of
CFs surface, while PMAA electropolymerization can provide both kinds
of reinforcement; by enhancing chemical affinity and surface roughness
in a brush-like decoration of CFs. The classification of the true class of re-
inforcement and the correct dismission of an indentation point that
does not belong to the real reinforcement is a great challenge, since it
is not straightforward. This was not possible by the original nanoinden-
tation data, and this is the reason why clustering was involved in data
Polynomial kernel

ne CF_pmaa Growth_CNTs Oxygen_species Pristine

0.659
0.889 0.556 0.519 0.720
0.640 0.556 0.667 0.750
0.744 0.556 0.583 0.735

Gaussian kernel (Sigma = 4)

ne CF_pmaa Growth_CNTs Oxygen_species Pristine

0.648
0.722 0.500 0.593 0.760
0.591 0.750 0.640 0.655
0.650 0.600 0.615 0.704
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preprocessing. Epoxymatrix properties do not depend on interfacial re-
inforcement and were identified by k-means clustering. This strategy
enabled the recognition of the reinforcementmechanism. The actual re-
inforcement is obtained in interface and CFs properties and by usingML
it is possible to use nanoindentation data not only to perform mapping
of nanomechanical properties, but also reveal the chemistry of CFs and
the mechanism that is realized behind mechanical reinforcement. The
best tuned ANN algorithm facilitated the detection of functionalizations
that enhance mechanical interlocking through the increased surface
roughness of CFs surface as a mechanism for enhanced wettability
with the epoxy matrix during impregnation. In case of boosted classifi-
cation trees, a better balance between correct classification of reinforce-
ment classes, as demonstrated by the F1-score. Especially, XGBoost
(boosted) trees demonstrated better classification performance com-
pared to other classification trees, due to the enhanced functionality of
the voting system to correlate nanomechanical properties to the chem-
ical footprint of the modified CFs surface. The best performance accord-
ing to F1-score was achieved with SVM classification using a radial
kernel, which patterned the normality of the standard CFRPs, in order
to correctly identify the intrinsic difference of each modification and
predict accordingly the reinforcement mechanism, using nanomechan-
ical properties as input. Also, SVM required the least time of 2.3 min to
deal with the recognition of reinforcement mechanism.

The priority when using ML in material science tasks is identified in
achieving the best accuracy possible. Transparency and interpretability
of the used models is not always relevant; accuracy of prediction is
more important than the understanding of the algorithms functionality
in themultidimensional field to find the required descriptors and estab-
lish structure-property relations that are not foreseen with conven-
tional analysis [50]. This is originated by the strength of an accurate
model that can have in decision making, design, and optimization
through theprediction of the properties of an application-oriented com-
posite fabrication. State-of-the-art research commonly deals with
Fig. 4. Comparison of average predictive ability of the best performing algorithms as presente
challenges in decision-making to satisfy the needs for composites de-
sign that combine multifunctionality and smart properties with perfor-
mance. As a result, it was necessary to test multiple ML algorithms
amongst the plethora of them available, and find the candidates that
could predict the mechanism of reinforcement. Accuracy is an impor-
tant prediction metric; however, models can achieve similar accuracy,
and thus choice of the appropriate algorithms fall within precision, re-
call, and their combination in the F1-score metric. Maximization of F1-
score indicates the minimization of misclassification error, which is es-
sential when the number of classes is high, as presented in the present
case.

As demonstrated in Fig. 4, accuracy of radial SVM kernel exceeds the
performance of ANN MLP and XGBoost algorithm by 3.4%, which may
not be considered as an actual improvement in functionality. Further in-
sights are derived by the prediction metrics. Boosted classification trees
(XGBoost) were outperformed by the other two selected models, as
demonstrated by the F1-score (combination of Precision and Recall).
ANN MLP algorithm demonstrated higher Precision in the PMAA
electropolymerized class, but Recall was deteriorated due to the in-
crease in false negative predictions (Table A.2). Thus, F1 score is equal
for all the models involved. Also, ANN MLP provided the highest Recall
in growth_CNTs class, which lead in 7.8% higher prediction efficiency
in this class; however, the F1-score for the prediction of oxygen_species
and Pristine classeswas the lowest (60%). On the other hand, radial SVM
kernel combined higher efficiency in prediction of more classes, while a
minimum of 65% F1-score was achieved, which was a challenging task
in the identification of reinforcement mechanism. A balance in the pre-
diction of each class is expected to improve transferability of the trained
models in new data produced by nanoindentation testing using the
same protocol.

Another motivation to choose the best performing algorithm from
each classification “family” of models is the different functionality dur-
ing the patterning of data. This severely affects the transfer learning to
d in 3.3, 3.4, and 3.5. A schematic of classification procedure is presented in the left side.



Fig. 5.Workflow of Identification of Reinforcement Mechanism in CFRPs using AI.

Table A.8
Confusion matrix of testing the validation dataset on optimum models based on predic-
tions of the test dataset.
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new data, i.e. CFRPs tested under different nanoindentation depth. As
there is no general rule for choosing a specific algorithm that “performs
well” in every problem, the identification of the three more suitable al-
gorithms, with different functionality each, is an achievement for the
impact of the developed models for this ML task, due to the ability of
the different descriptors in handling new data. This also provides flexi-
bility when the models are deployed for actual evaluation of produced
data.

3.7. General discussion of the results

In the preparational steps of ML models training, nanoindentation
data variables were associated by two using a correlation matrix. Pa-
rameters with very strong correlation were sorted out in order to pre-
vent overfitting. K-means clustering was involved in all occasions for
filtering epoxy matrix indentation data before splitting and testing
Fig. 6. Prediction performance on validation dataset using the optimum trained ML
models.
the trained models with the testing and the validation datasets.
Since the data were prepared, three categories of ML algorithms
were used in this study, artificial neural networks, classification
trees, and SVM to investigate their suitability for the specific problem.
Ιdentification of interface reinforcement as implemented using AI is
summarized in Fig. 5. Tuning parameterization often lead to improve-
ment of either Precision or Recall, but not both, unless the overall ac-
curacy was improved [25]. Radial SVM kernel was a better selection to
predict the oxygen_species reinforcement, while also exceeding in pre-
diction performance the pristine class compared to XGBoost model.
Also, radial SVM model proved memory efficient and the fastest to
train and tune, as expected [27], with elapsed time of 2.3 min. For
CF_pmaa Growth_CNTs Oxygen_species Pristine

ANN MLP (decay, CV)
VALIDATION pristine 400 nm
Elapsed time for training and tuning: 114 min
CF_pmaa 0 0 0 45
Growth_CNTs 0 0 0 4
Oxygen_species 0 0 0 133
Pristine 0 0 0 74
Validation accuracy 0.289

XGBoost
VALIDATION pristine 400 nm
Elapsed time for training and tuning: 84 min
CF_pmaa 0 0 0 67
Growth_CNTs 0 0 0 1
Oxygen_species 0 0 0 154
Pristine 0 0 0 34
Validation Accuracy 0.133

Radial SVM
VALIDATION pristine 400 nm
Elapsed time for training and tuning: 2.3 min
CF_pmaa 0 0 0 33
Growth_CNTs 0 0 0 36
Oxygen_species 0 0 0 1
Pristine 0 0 0 186
Validation accuracy 0.727



Fig. 7. Summary of problem-solving procedure of CFRPs reinforcement characterization with Machine Learning.
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comparison, the best tuned ANN and XGBoost models required 114
and 84 min, respectively.

A very common example reported in regard to AI ethics, is a real-
world problem for the prediction of mortality within 5 years by using
healthcare generated data. In that case a neural network was used
with 69% accuracy rate in this binary classification problem, and the
need of enhanced accessibility of data was highlighted in order to im-
prove predictions [26]. In the present study, 63.6% accuracy was
achieved by ANN and XGBoost models, whereas 67% accuracy was
achieved by the radial SVMmodel for the four-class classification prob-
lem. The requirement for accurate prediction of four classes increases
Fig. A.1. Sample of th
the difficulty level of classification and highlights the present achieve-
ment; minimum average predictive efficiency of 65% was realized for
each class. This proceeding can be further supported considering the
random guess probabilities in a binary- and in a four- class classification
task; in the first occasion random guess has 50% for successful classifica-
tion, while four-class classification has 25% chance for correct random
prediction. Consequently, in the present study for classification of
CFRPs reinforcement, performance exceeded 40% the performance of a
random guess, which is a challenge in real-world ML tasks.

In another real-world problem of traffic prediction, a deep neural
network was used with three hidden layers [33]. In this case overall
e refined dataset.
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accuracy was almost 71%. The averaged macro- metrics of this model
were 0.686 in case of Precision compared to the best radial SVM
model of the present study, which reached 0.675 in this macro-metric
(Table A.7). Recall on averagewas equal to 0.710 for the traffic problem,
while in the case of reinforcement mechanism prediction it was 0.667.
F1 Score was equal to 0.700 for the traffic classification, compared to
0.668 in the present case. In a lithology eight-class real-world classifica-
tion problem, RF, AdaBoost, and XGBoost were involved to identify the
best candidate [31]. In the first case, Precision varied between 0.50
(lower metric) and 0.84 (higher metric), Recall from 0.69 to 1.00, and
F1 Score from 0.59 to 0.84. In case of AdaBoost weaknesses were identi-
fied, since the variance for Precision was from 0.00 to 0.79, Recall from
0.00 to 0.86, and F1 Score from 0.00 to 0.83. Finally, XGBoost algorithm
outperformed all other models in regard to Precision from 0.70 to 0.92,
Recall from 0.74 to 1.00, and F1 Score from 0.74 to 0.96. However, no
validation dataset was tested in this case to support deployment of
the trained models.

3.8. Transfer learning potential: from 200 nm to 400 nm depth

In order to investigate universality of the trained models, a valida-
tion dataset was generated by mapping nanomechanical properties of
a pristine CFRP at higher indentation depth of 400 nm. Considering
the fact that there is currently no standardized method to perform
nanomechanical mapping of CFRPs, it is purposeful to propose a
model with prediction efficiency in different indentation depth. This
test with the validation dataset at 400 nm constant indentation depth
demonstrates the transfer learning potential in the present study. The
importance of transfer learning is often demonstrated in training of
ML models that are used to perform extrapolation and step beyond
training data, in order to predict an unknown situation/behavior
[17,32,51].

In case of both ANN and XGBoost models accuracy was unsatisfac-
tory in the validation dataset with obtained accuracy values of 28.9%,
and 13.3% (Fig. 6, Table A.8), respectively. This can be attributed to
overfitting issue that is often confronted when using decision trees,
and also in lack in accessible data in case of ANNs [27]. Unsurprisingly,
in case of Radial SVM kernel, prediction accuracy of validation dataset
was 72.7% and exceeded the overall model accuracy by 5.7%. This result
may be attributed to the reported suitability of SVM models in predic-
tion of small datasets [26].

4. Conclusions

Themain conclusions drawn from this work (presented as summary
of problem-solving procedure of CFRPs reinforcement characterization
with Machine Learning, Fig. 7) are summarized below:

1. k-means clustering was used to preprocess data by filtering out the
epoxy matrix, due to the algorithm's efficiency to deconvolute the
spatial information of the phase level properties.

2. Weight decay of ANNs was proved as the most efficient neural net-
work to achieve higher prediction accuracy,while XGBoost algorithm
outperformed other classification trees and reached the optimum re-
sults after 100,000 rounds of training. SVM radial kernel classification
was identified as the most suitable model to describe the reinforce-
ment mechanism of CFRPs fabricated with surface treated CFs.

3. The intrinsic changes of CFRPs interface were proven to be effec-
tively patterned through ML models, with the best fit being per-
formed by using SVM with a radial kernel. Model accuracy
reached 67% with a lower F1 Score by class of 65% and a highest
of 72%. Macro- averaged metrics were compared to real-world
problems (either binary or multiclass) and these values in case of
Precision, Recall, and F1 Score (0.675, 0.667, 0.668) were slightly
below those values.

4. Computational time of radial SVM kernel complies with modern
time-efficiency requirements. Classification was performed within
2.3 min using a standard computer.

5. Validation of nanoindentation models was performed using a map-
ping indentation protocol in different indentation depth with dis-
placement control in order to investigate the transfer learning
potential. The performance for deployment to a validation dataset
lead to higher accuracy achievement for SVM radial kernel model,
which reached the value of 72.7%.

The need for more data is expected to resolve the overfitting of
trained models as evidenced in case of classification trees and artificial
neural networks, which did not perform well for the validation
dataset. Artificial Intelligence dealt with interface reinforcement prob-
lem efficiently, and can be proficiently involved in materials design;
structure was correlated to nanomechanical properties in order to de-
scribe the effect of different chemical structure of the surface to the
composite mechanical interlocking mechanism (Fig. 7). Thus, it can
provide feedback in a process by the development of AI applications
for real-time quality control. Finally, it is expected to enhance
decision-making for product manufacturing and provide the ability
to approach composites manufacturing through reverse engineering
approaches with involving the developed models in relevant code
modules. In this direction, the importance of AI combination with in-
novation in testing, such as high-speed nanoindentation testing (also
coupled with other techniques), is expected to accelerate insights in
materials design.
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Appendix A
Table A.1

Parameters variance before and after normalization.
Raw data
M
1
M
M
3
M

M
1
M
M
3

SN
C
G
O
P

M
C
G
O
P

M
C
G
O
P

av
C
G
O

A
P
R
F1
M
M
M
M

H (GPa)
 A
 hc (nm)
 hf (nm)
 Pmax (μN)
 M
 S (μN/nm)
 Er (GPa)
 A (nm^2)
in.
 2.37E−03
 0.00E+00
 7.02E+01
 0.00E+00
 1.46E+00
 1.00E+00
 2.59E−02
 3.31E−02
 1.68E+05

st Qu.
 4.34E−01
 7.80E−02
 1.40E+02
 7.10E+01
 2.67E+02
 1.41E+00
 6.67E+00
 7.57E+00
 4.44E+05

edian
 1.62E+00
 8.47E−01
 1.65E+02
 1.00E+02
 9.56E+02
 1.60E+00
 1.59E+01
 2.27E+01
 5.82E+05

ean
 3.04E+00
 1.73E+00
 1.57E+02
 1.03E+02
 1.39E+03
 1.81E+00
 2.15E+01
 2.69E+01
 5.49E+05

rd Qu.
 5.34E+00
 2.54E+00
 1.74E+02
 1.40E+02
 2.36E+03
 1.99E+00
 3.69E+01
 4.60E+01
 6.47E+05

ax.
 1.02E+01
 4.35E+01
 1.98E+02
 1.98E+02
 4.13E+03
 5.00E+00
 5.94E+01
 6.91E+01
 8.14E+05
z-Normalized data
 H (GPa)
 A
 hc (nm)
 hf (nm)
 M
 Er (GPa)
in.
 −3.13E+00
 −1.32E+00
 −4.95E+00
 −3.10E+00
 (Removed)
 −1.69E+00
 (Removed)
 −2.41E+00
 (Removed)

st Qu.
 −7.17E−01
 −8.60E−01
 −1.13E+00
 −7.13E−01
 −5.43E−01
 −1.12E+00

edian
 −2.52E−02
 −2.26E−01
 3.03E−01
 8.90E−02
 −2.72E−01
 3.45E−01

ean
 0.00E+00
 0.00E+00
 0.00E+00
 0.00E+00
 0.00E+00
 0.00E+00

rd Qu.
 9.46E−01
 9.16E−01
 5.56E−01
 6.88E−01
 4.34E−01
 8.86E−01

ax.
 2.02E+00
 3.57E+00
 2.70E+00
 2.84E+00
 5.19E+00
 1.44E+00
M
hc (nm) is the contact depth.

Pmax (μN) is the peak load during a single nanoindentation event.
S (μN/nm) is a continuous variable and represents the stiffness of a material.
A (nm^2) is the contact area.
Er (GPa) is the reduced elastic modulus after fitting the Oliver-Pharr model.
H (GPa) is the hardness after fitting the Oliver-Pharr model.
A, hf (nm), m are the power law coefficients.
Table A.2

Confusion Matrix of test data by the implementation of 4 ANNs algorithms.
CF_pmaa
 Growth_CNTs
 Oxygen_species
 Pristine
NS MLP algorithm

F_pmaa
 11
 2
 2
 7

rowth_CNTs
 1
 10
 4
 1

xygen_species
 2
 5
 16
 3

ristine
 4
 1
 5
 14
LP with decay (default CV)

F_pmaa
 14
 3
 2
 6

rowth_CNTs
 0
 12
 3
 0

xygen_species
 1
 3
 15
 4

ristine
 3
 0
 7
 15
LP with decay (repeated CV)

F_pmaa
 11
 3
 2
 2

rowth_CNTs
 1
 10
 4
 0

xygen_species
 1
 5
 16
 4

ristine
 5
 0
 5
 19
NNet

F_pmaa
 13
 3
 2
 6

rowth_CNTs
 0
 10
 3
 1

xygen_species
 2
 5
 16
 2

ristine
 3
 0
 6
 16
P
Table A.3

Prediction metrics of 4 ANNs algorithms on test data.
SNNS MLP
 MLP with decay (default CV)
Time elapsed: 114 min
CF_pmaa
 Growth_CNTs
 Oxygen_species
 Pristine
 CF_ pmaa
 Growth_CNTs
 Oxygen_species
 Pristine
ccuracy
 0.580
 0.636

recision
 0.611
 0.556
 0.593
 0.560
 0.778
 0.667
 0.556
 0.600

ecall
 0.500
 0.625
 0.615
 0.583
 0.560
 0.800
 0.652
 0.600
0.550
 0.588
 0.604
 0.571
 0.651
 0.727
 0.600
 0.600

acroAvgPrecision
 0.580
 0.650

acroAvgRecall
 0.581
 0.653

acroAvgF1
 0.578
 0.645

icroAvgPrecision
 0.580
 0.636
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able A.3 (continued)
M
M

A
P
R
F1
M
M
M
M
M

R
C
G
O
P

R
C
G
O
P

R
C
G
O
P

rF
C
G
O
P

R
C
G
O
P

R
C
G
O
P

R
C
G
O
P

T
C
G
O
P

T
C
G

SNNS MLP
 MLP with decay (default CV)
Time elapsed: 114 min
CF_pmaa
 Growth_CNTs
 Oxygen_species
 Pristine
 CF_ pmaa
 Growth_CNTs
 Oxygen_species
 Pristine
icroAvgRecall
 0.580
 0.636

icroAvgF1
 0.580
 0.636
MLP with decay (repeated CV)
 avNNet
CF_ pmaa
 Growth_CNTs
 Oxygen_species
 Pristine
 CF_pmaa
 Growth_CNTs
 Oxygen_species
 Pristine
ccuracy
 0.636
 0.625

recision
 0.611
 0.556
 0.593
 0.760
 0.722
 0.556
 0.593
 0.640

ecall
 0.611
 0.667
 0.615
 0.655
 0.542
 0.714
 0.640
 0.640
0.611
 0.606
 0.604
 0.704
 0.619
 0.625
 0.615
 0.640

acroAvgPrecision
 0.630
 0.628

acroAvgRecall
 0.637
 0.634

acroAvgF1
 0.631
 0.625

icroAvgPrecision
 0.636
 0.625

icroAvgRecall
 0.636
 0.625

icroAvgF1
 0.636
 0.625
M
Table A.4

Confusion Matrix of test data by the implementation of classification tree algorithms.
CF_pmaa
 Growth_CNTs
 Oxygen_species
 Pristine
F

F_pmaa
 15
 3
 3
 5

rowth_CNTs
 0
 10
 5
 0

xygen_species
 2
 5
 13
 3

ristine
 1
 0
 6
 17
F tuning (Kappa)

F_pmaa
 14
 4
 3
 6

rowth_CNTs
 0
 8
 4
 0

xygen_species
 2
 6
 15
 3

ristine
 2
 0
 5
 16
F tuning (accuracy)

F_pmaa
 14
 4
 3
 6

rowth_CNTs
 0
 8
 4
 0

xygen_species
 2
 6
 15
 3

ristine
 2
 0
 5
 16
erns (tuned)

F_pmaa
 14
 4
 2
 7

rowth_CNTs
 1
 12
 9
 2

xygen_species
 2
 2
 14
 2

ristine
 1
 0
 2
 14
anger tuned (mtry = 4)

F_pmaa
 14
 4
 2
 4

rowth_CNTs
 0
 9
 6
 0

xygen_species
 2
 5
 14
 4

ristine
 2
 0
 5
 17
anger tuned (mtry = 3)

F_pmaa
 13
 3
 2
 4

rowth_CNTs
 0
 9
 6
 0

xygen_species
 2
 6
 14
 4

ristine
 3
 0
 5
 17
part tuned maxdepth

F_pmaa
 12
 1
 3
 4

rowth_CNTs
 0
 13
 7
 1

xygen_species
 1
 2
 13
 3

ristine
 5
 2
 4
 17
rees with bagging (nbag = 25)

F_pmaa
 13
 2
 2
 6

rowth_CNTs
 0
 12
 6
 0

xygen_species
 2
 3
 11
 2

ristine
 3
 1
 8
 17
rees with bagging (nbag = 5000)

F_pmaa
 15
 2
 2
 7

rowth_CNTs
 0
 10
 6
 1
(continued on next page)
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able A.4 (continued)
O
P

T
C
G
O
P

C
C
G
O
P

C
C
G
O
p

C
C
G
O
P

C
C
G
O
P

C
C
G
O
P

A
C
G
O
P

S
C
G
O
P

X
C
G
O
P

X
C
G
O
P

X
C
G
O

CF_pmaa
 Growth_CNTs
 Oxygen_species
 Pristine
xygen_species
 1
 5
 13
 1

ristine
 2
 1
 6
 16
rees with bagging (repeated CV)

F_pmaa
 14
 2
 2
 6

rowth_CNTs
 0
 8
 7
 1

xygen_species
 1
 7
 14
 1

ristine
 3
 1
 4
 17
5.0 boosting (10 trials)

F_pmaa
 13
 3
 2
 7

rowth_CNTs
 1
 12
 6
 1

xygen_species
 2
 3
 13
 2

ristine
 2
 0
 6
 15
5.0 boosting (25 trials)

F_pmaa
 14
 2
 2
 7

rowth_CNTs
 0
 12
 6
 1

xygen_species
 2
 1
 12
 1

ristine
 2
 3
 7
 16
5.0 boosting (75 trials)

F_pmaa
 14
 2
 2
 7

rowth_CNTs
 0
 11
 6
 2

xygen_species
 2
 2
 13
 1

ristine
 2
 3
 6
 15
5.0 boosting (25 trials) – cost penalized

F_pmaa
 12
 2
 2
 6

rowth_CNTs
 0
 11
 7
 1

xygen_species
 2
 3
 13
 2

ristine
 4
 2
 5
 16
5.0 boosting (tuned, CV)

F_pmaa
 14
 2
 2
 7

rowth_CNTs
 0
 11
 6
 2

xygen_species
 2
 2
 13
 1

ristine
 2
 3
 6
 15
daBoost

F_pmaa
 13
 3
 2
 6

rowth_CNTs
 0
 10
 7
 0

xygen_species
 1
 4
 15
 4

ristine
 4
 1
 3
 15
tochastic Gradient Boosting

F_pmaa
 13
 3
 2
 3

rowth_CNTs
 0
 9
 6
 0

xygen_species
 2
 5
 14
 4

ristine
 3
 1
 5
 18
GBoost

F_pmaa
 11
 3
 2
 7

rowth_CNTs
 0
 11
 6
 1

xygen_species
 3
 4
 13
 3

ristine
 4
 0
 6
 14
GBoost (with gamma, 10,000 rounds)

F_pmaa
 13
 2
 2
 5

rowth_CNTs
 0
 12
 5
 2

xygen_species
 2
 3
 15
 2

ristine
 3
 1
 5
 16
GBoost (with gamma, 100,000 rounds)

F_pmaa
 13
 2
 2
 5

rowth_CNTs
 0
 12
 5
 2

xygen_species
 2
 4
 15
 2

ristine
 3
 0
 5
 16
P
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Table A.5

Prediction metrics of classification tree algorithms on test data.
A
P
R
F1
M
M
M
M
M
M

A
P
R
F1
M
M
M
M
M
M

A
P
R
F1
M
M
M
M
M
M

A
P
R
F1
M
M
M
M
M
M

A
P
R
F1
M
M
M
M
M
M

RF
 RF tuning (Kappa)
CF_pmaa
 Growth_CNTs
 Oxygen_species
 Pristine
 CF_pmaa
 Growth_CNTs
 Oxygen_species
 Pristine
ccuracy
 0.625
 0.602

recision
 0.833
 0.778
 0.444
 0.556
 0.778
 0.444
 0.556
 0.640

ecall
 0.577
 0.519
 0.667
 0.577
 0.519
 0.667
 0.577
 0.696
0.682
 0.622
 0.533
 0.566
 0.622
 0.533
 0.566
 0.667

acroAvgPrecision
 0.638
 0.604

acroAvgRecall
 0.629
 0.614

acroAvgF1
 0.625
 0.597

icroAvgPrecision
 0.625
 0.602

icroAvgRecall
 0.625
 0.602

icroAvgF1
 0.625
 0.602
RF tuning (accuracy)
 rFerns (tuned)
CF_pmaa
 Growth_CNTs
 Oxygen_species
 Pristine
 CF_pmaa
 Growth_CNTs
 Oxygen_species
 Pristine
ccuracy
 0.602
 0.614

recision
 0.778
 0.444
 0.556
 0.640
 0.778
 0.667
 0.519
 0.560

ecall
 0.519
 0.667
 0.577
 0.696
 0.519
 0.500
 0.700
 0.824
0.622
 0.533
 0.566
 0.667
 0.622
 0.571
 0.596
 0.667

acroAvgPrecision
 0.604
 0.631

acroAvgRecall
 0.614
 0.636

acroAvgF1
 0.597
 0.614

icroAvgPrecision
 0.602
 0.614

icroAvgRecall
 0.602
 0.614

icroAvgF1
 0.602
 0.614
Ranger tuned (mtry = 4)
 Ranger tuned (mtry = 3)
CF_pmaa
 Growth_CNTs
 Oxygen_species
 Pristine
 CF_pmaa
 Growth_CNTs
 Oxygen_species
 Pristine
ccuracy
 0.614
 0.602

recision
 0.778
 0.500
 0.519
 0.680
 0.722
 0.500
 0.519
 0.680

ecall
 0.583
 0.600
 0.560
 0.708
 0.591
 0.600
 0.538
 0.680
0.667
 0.545
 0.538
 0.694
 0.650
 0.545
 0.528
 0.680

acroAvgPrecision
 0.619
 0.605

acroAvgRecall
 0.613
 0.602

acroAvgF1
 0.611
 0.601

icroAvgPrecision
 0.614
 0.602

icroAvgRecall
 0.614
 0.602

icroAvgF1
 0.614
 0.602
Rpart tuned maxdepth
 Trees with bagging (nbag = 25)
CF_pmaa
 Growth_CNTs
 Oxygen_species
 Pristine
 CF_pmaa
 Growth_CNTs
 Oxygen_species
 Pristine
ccuracy
 0.625
 0.602

recision
 0.667
 0.722
 0.481
 0.680
 0.722
 0.667
 0.407
 0.680

ecall
 0.600
 0.619
 0.684
 0.607
 0.565
 0.667
 0.611
 0.586
0.632
 0.667
 0.565
 0.642
 0.634
 0.667
 0.489
 0.630

acroAvgPrecision
 0.638
 0.619

acroAvgRecall
 0.628
 0.607

acroAvgF1
 0.626
 0.605

icroAvgPrecision
 0.625
 0.602

icroAvgRecall
 0.625
 0.602

icroAvgF1
 0.625
 0.602
Trees with bagging (nbag = 5000)
 Trees with bagging (repeated CV)
CF_pmaa
 Growth_CNTs
 Oxygen_species
 Pristine
 CF_ pmaa
 Growth_CNTs
 Oxygen_species
 Pristine
ccuracy
 0.614
 0.602

recision
 0.833
 0.556
 0.481
 0.640
 0.778
 0.444
 0.519
 0.680

ecall
 0.577
 0.588
 0.650
 0.640
 0.583
 0.500
 0.609
 0.680
0.682
 0.571
 0.553
 0.640
 0.667
 0.471
 0.560
 0.680

acroAvgPrecision
 0.628
 0.605

acroAvgRecall
 0.614
 0.593

acroAvgF1
 0.612
 0.594

icroAvgPrecision
 0.614
 0.602

icroAvgRecall
 0.614
 0.602

icroAvgF1
 0.614
 0.602
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A
P
R
F1
M
M
M
M
M
M

A
P
R
F1
M
M
M
M
M
M

A
P
R
F1
M
M
M
M
M
M

A
P
R
F1
M
M
M
M
M
M

A
P
R
F1
M
M
M
M
M

C5.0 boosting (10 trials)
 C5.0 boosting (25 trials)
CF_ pmaa
 Growth_CNTs
 Oxygen_species
 Pristine
 CF_pmaa
 Growth_CNTs
 Oxygen_species
 Pristine
ccuracy
 0.602
 0.614

recision
 0.722
 0.667
 0.481
 0.600
 0.778
 0.667
 0.444
 0.640

ecall
 0.520
 0.600
 0.650
 0.652
 0.560
 0.632
 0.750
 0.571
0.605
 0.632
 0.553
 0.625
 0.651
 0.649
 0.558
 0.604

acroAvgPrecision
 0.618
 0.632

acroAvgRecall
 0.606
 0.628

acroAvgF1
 0.604
 0.615

icroAvgPrecision
 0.602
 0.614

icroAvgRecall
 0.602
 0.614

icroAvgF1
 0.602
 0.614
C5.0 boosting (75 trials)
 C5.0 boosting (25 trials) – cost penalized
CF_pmaa
 Growth_CNTs
 Oxygen_species
 Pristine
 CF_pmaa
 Growth_CNTs
 Oxygen_species
 Pristine
ccuracy
 0.602
 0.591

recision
 0.778
 0.611
 0.481
 0.600
 0.667
 0.611
 0.481
 0.640

ecall
 0.560
 0.579
 0.722
 0.577
 0.545
 0.579
 0.650
 0.593
0.651
 0.595
 0.578
 0.588
 0.600
 0.595
 0.553
 0.615

acroAvgPrecision
 0.618
 0.600

acroAvgRecall
 0.610
 0.592

acroAvgF1
 0.603
 0.591

icroAvgPrecision
 0.602
 0.591

icroAvgRecall
 0.602
 0.591

icroAvgF1
 0.602
 0.591
C5.0 boosting (tuned, CV)
 AdaBoost
CF_pmaa
 Growth_CNTs
 Oxygen_species
 Pristine
 CF_pmaa
 Growth_CNTs
 Oxygen_species
 Pristine
ccuracy
 0.602
 0.602

recision
 0.778
 0.611
 0.481
 0.600
 0.722
 0.556
 0.556
 0.600

ecall
 0.560
 0.579
 0.722
 0.577
 0.542
 0.588
 0.625
 0.652
0.651
 0.595
 0.578
 0.588
 0.619
 0.571
 0.588
 0.625

acroAvgPrecision
 0.618
 0.608

acroAvgRecall
 0.610
 0.602

acroAvgF1
 0.603
 0.601

icroAvgPrecision
 0.602
 0.602

icroAvgRecall
 0.602
 0.602

icroAvgF1
 0.602
 0.602
Stochastic Gradient Boosting
 XGBoost
CF_pmaa
 Growth_CNTs
 Oxygen_species
 Pristine
 CF_pmaa
 Growth_CNTs
 Oxygen_species
 Pristine
ccuracy
 0.614
 0.557

recision
 0.722
 0.500
 0.519
 0.720
 0.611
 0.611
 0.481
 0.560

ecall
 0.619
 0.600
 0.560
 0.667
 0.478
 0.611
 0.565
 0.583
0.667
 0.545
 0.538
 0.692
 0.537
 0.611
 0.520
 0.571

acroAvgPrecision
 0.615
 0.566

acroAvgRecall
 0.611
 0.559

acroAvgF1
 0.611
 0.560

icroAvgPrecision
 0.614
 0.557

icroAvgRecall
 0.614
 0.557

icroAvgF1
 0.614
 0.557
XGBoost (with gamma, 10,000 rounds)
 XGBoost (with gamma, 100,000 rounds) elapsed time: 84 min
CF_pmaa
 Growth_CNTs
 Oxygen_species
 Pristine
 CF_pmaa
 Growth_CNTs
 Oxygen_species
 Pristine
ccuracy
 0.636
 0.636

recision
 0.722
 0.667
 0.556
 0.640
 0.722
 0.667
 0.556
 0.640

ecall
 0.591
 0.632
 0.682
 0.640
 0.591
 0.632
 0.652
 0.667
0.650
 0.649
 0.612
 0.640
 0.650
 0.649
 0.600
 0.653

acroAvgPrecision
 0.646
 0.646

acroAvgRecall
 0.636
 0.635

acroAvgF1
 0.638
 0.638

icroAvgPrecision
 0.636
 0.636

icroAvgRecall
 0.636
 0.636

icroAvgF1
 0.636
 0.636
M
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Table A.6

Confusion Matrix of test data by the implementation of 4 SVM algorithms.
R
C
G
O
P

P
C
G
O
P

G
C
G
O
P

G
C
G
O

A
P
R
F1
M
M
M
M
M
M

A
P
R
F1
M
M
M
M
M

CF_pmaa
 Growth_CNTs
 Oxygen_species
 Pristine
adial kernel

F_pmaa
 13
 2
 2
 5

rowth_CNTs
 0
 12
 6
 1

xygen_species
 1
 4
 16
 1

ristine
 4
 0
 3
 18
olynomial kernel

F_pmaa
 16
 1
 3
 5

rowth_CNTs
 0
 10
 7
 1

xygen_species
 0
 6
 14
 1

ristine
 2
 1
 3
 18
aussian kernel (Sigma = 3)

F_pmaa
 13
 3
 2
 4

rowth_CNTs
 0
 9
 2
 0

xygen_species
 2
 4
 17
 3

ristine
 3
 2
 6
 18
aussian kernel (Sigma = 4)

F_pmaa
 13
 3
 2
 4

rowth_CNTs
 0
 9
 3
 0

xygen_species
 2
 5
 16
 2

ristine
 3
 1
 6
 19
P
Table A.7

Prediction metrics of 4 SVM algorithms on test data.
Radial kernel
Elapsed time: 2.3 min
Polynomial kernel
CF_pmaa
 Growth_CNTs
 Oxygen_species
 Pristine
 CF_pmaa
 Growth_CNTs
 Oxygen_species
 Pristine
ccuracy
 0.670
 0.659

recision
 0.722
 0.667
 0.593
 0.720
 0.889
 0.556
 0.519
 0.720

ecall
 0.591
 0.632
 0.727
 0.720
 0.640
 0.556
 0.667
 0.750
0.650
 0.649
 0.653
 0.720
 0.744
 0.556
 0.583
 0.735

acroAvgPrecision
 0.675
 0.671

acroAvgRecall
 0.667
 0.653

acroAvgF1
 0.668
 0.654

icroAvgPrecision
 0.670
 0.659

icroAvgRecall
 0.670
 0.659

icroAvgF1
 0.670
 0.659
Gaussian kernel (Sigma = 3)
 Gaussian kernel (Sigma = 4)
CF_pmaa
 Growth_CNTs
 Oxygen_species
 Pristine
 CF_pmaa
 Growth_CNTs
 Oxygen_species
 Pristine
ccuracy
 0.648
 0.648

recision
 0.722
 0.500
 0.630
 0.720
 0.722
 0.500
 0.593
 0.760

ecall
 0.591
 0.818
 0.654
 0.621
 0.591
 0.750
 0.640
 0.655
0.650
 0.621
 0.642
 0.667
 0.650
 0.600
 0.615
 0.704

acroAvgPrecision
 0.643
 0.644

acroAvgRecall
 0.671
 0.659

acroAvgF1
 0.645
 0.642

icroAvgPrecision
 0.648
 0.648

icroAvgRecall
 0.648
 0.648

icroAvgF1
 0.648
 0.648
M
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