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A B S T R A C T

To benefit from the accurate simulation and high-throughput data contributed by advanced digital twin tech-
nologies in modern smart plants, the deep reinforcement learning (DRL) method is an appropriate choice to
generate a self-optimizing scheduling policy. This study employs the deep Q-network (DQN), which is a suc-
cessful DRL method, to solve the dynamic scheduling problem of flexible manufacturing systems (FMSs) in-
volving shared resources, route flexibility, and stochastic arrivals of raw products. To model the system in
consideration of both manufacturing efficiency and deadlock avoidance, we use a class of Petri nets combining
timed-place Petri nets and a system of simple sequential processes with resources (S3PR), which is named as the
timed S3PR. The dynamic scheduling problem of the timed S3PR is defined as a Markov decision process (MDP)
that can be solved by the DQN. For constructing deep neural networks to approximate the DQN action-value
function that maps the timed S3PR states to scheduling rewards, we innovatively employ a graph convolutional
network (GCN) as the timed S3PR state approximator by proposing a novel graph convolution layer called a
Petri-net convolution (PNC) layer. The PNC layer uses the input and output matrices of the timed S3PR to
compute the propagation of features from places to transitions and from transitions to places, thereby reducing
the number of parameters to be trained and ensuring robust convergence of the learning process. Experimental
results verify that the proposed DQN with a PNC network can provide better solutions for dynamic scheduling
problems in terms of manufacturing performance, computational efficiency, and adaptability compared with
heuristic methods and a DQN with basic multilayer perceptrons.

1. Introduction

Scheduling is a classical topic in manufacturing control, which is of
critical importance for improving the resource utilization and manu-
facturing efficiency of flexible manufacturing systems (FMSs) [1–4].
The recent applications of advanced digital twin technologies [5–8] in
modern smart plants improve the simulation accuracy and the config-
uration flexibility of FMSs, which however raise the following questions
regarding to the manufacturing scheduling: (1) How can we use actual
manufacturing information acquired by digital twin technologies to
optimize scheduling policies? (2) How can we realize real-time sche-
duling to address frequent variations in production plans owing to the
customization of modern smart plants? (3) How can we ensure con-
sistency of a scheduling policy between a simulation environment and a
real plant? Answering these questions requires the development of
smart dynamic scheduling methods.

As an important research field of artificial intelligence, reinforce-
ment learning (RL) methods, especially deep reinforcement learning
(DRL) methods, have witnessed significant breakthroughs in recent
research endeavors [9,10], and they have been successfully adopted in
several fields such as gaming, simulation, and cybernetics [11–13]. RL
is applied to solve the problem of learning from interaction to achieve a
goal. Generally, this problem is mathematically formalized by a Markov
decision process (MDP) [14]. In an MDP, the learner (or the decision
maker) is called the agent. The thing that the agent interacts with,
comprising everything outside the agent, is called the environment. The
agent selects actions and observes the rewards and new states presented
by the environment continually. This process has the Markov property
that the conditional probability distribution of future states depends
only upon the present state and the action. RL enables the agent to learn
optimal policy by maximizing an action-value function that estimates
the long-term accumulated reward of each action in each state. As a
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classical research subject in the field of RL, the approximation of the
action-value function is a critical point affecting the performance of RL.
DRL introduces deep neural networks to implement the approximation
and outperforms traditional RL methods when applied in complex
systems.

DRL has appropriate characteristics that match the requirements of
smart scheduling: (1) It can interact with the environment and use
feedback data for policy optimization. (2) As with other machine
learning methods, DRL involves computationally expensive offline
training; nevertheless, it is efficient when executing. (3) The synchro-
nization of the deep neural network's parameters exploits the con-
sistency of the scheduling policy between the simulation environment
and a real plant. DRL can be integrated with digital twin technologies of
the smart plant to achieve a self-learning and self-optimizing system,
which has been discussed by Waschneck et al. [15] as shown in Fig. 1.
The digital twin of a manufacturing system offers a high-fidelity si-
mulation and visualization environment which the DRL scheduling
agent interacts with [16,17]. Therefore, the computationally expensive
training of DRL can be conducted offline without interference on ex-
ecution of the real system. When the training is converged, the agent is
deployed to the real system for online scheduling. As the execution of
deep neural networks is fast, the scheduling is real-time. The DRL
scheduling agent with the self-adaptive capability consists of percep-
tion, cognition, and action modules [18,19]. By taking advantages of
data-accessing and data-processing technologies of cyber-physical sys-
tems in modern smart plants [20–22], the FMS states can be mapped to
the perception of the agent and the agent's actions can also be trans-
formed to manufacturing instructions. Therefore, a closed-loop control
is established. The digital twin records the manufacturing data and uses
them to keep training the agent to remedy deviations between simu-
lation and reality. The cognition of the agent is the deep neural network
of DRL, and therefore the synchronization of the trainable parameters
of the neural network guarantees the consistency of the scheduling
policy between the real system and the digital twin.

Although some studies have used RL and DRL for job shop and FMS
scheduling [15,18,23,24], there remains scope for improving the
scheduling performance from the following two aspects: (1) Early RL
methods did not work well owing to experience correlations caused by
the observation and training mode, until Mnih et al. [9] proposed the
deep Q-network (DQN) with two novel mechanisms, namely experience
replay and double action-value functions, to reduce algorithm in-
stabilities. DQN makes DRL practical and is further improved by other
features such as prioritized experience replay [25] and dueling network

architectures [26]. (2) Previous studies involved basic action-value
function approximators, such as linear functions and multilayer per-
ceptrons (MLP, or fully connected neural networks), which map system
states to scheduling rewards. This is because the states of a manu-
facturing system are usually represented as regular tensors by arranging
the state values of individual products, machines, and other elements;
however, these tensors have no local spatial information which can be
successfully handled by deep convolutional neural networks (CNNs).
Furthermore, the constraint information in the manufacturing process,
such as the sequential order of the operation steps and the usage/re-
lease of limited resources, is lost when constructing these tensors.

Compared to regular tensors, graphs or nets with topological
structures that can model constraints and relationships are more sui-
table for modeling manufacturing processes. A Petri net is a common
process modeling technique that tracks a system's states, dynamics, and
constraints according to places, transitions, tokens, and arcs through a
dual form of a graphical tool and a mathematical object [27–29]. A
special class of Petri nets, namely a system of simple sequential pro-
cesses with resources (S3PR) [30], is used to model FMS processes. S3PR
can identify a deadlock in an FMS process, as its liveness is closely
related to specific structures called siphons. There are well-developed
methods for calculating siphons of S3PR [31,32] and avoiding dead-
locks on the basis of siphons [33,34]. Some researchers have appended
time attributes to Petri nets for representing the manufacturing effi-
ciency of FMSs, namely timed-place Petri nets [35], which are also used
for scheduling [36,37]. Luo et al. [38] performed a hybrid heuristic
search to solve the static scheduling problem of an FMS through a
combination of S3PR and timed-place Petri nets.

The states of Petri nets, i.e., markings distributed in topologically
complicated net structures, are defined on non-Euclidean spaces, which
are significantly different from regular Euclidean data such as images or
videos. Therefore, neural networks designed for regular Euclidean data
are not suitable for Petri net states. In other fields of machine learning,
such as social network embedding [39], geographic information mining
[40], and molecular fingerprint learning [41], researchers have at-
tempted to address complicated graphical data by developing novel
graph convolutional networks (GCNs) based on signal processing of
graphs and graph Fourier transforms [42–44]. In general, GCNs can be
classified into two categories: (1) vertex-domain methods that calculate
feature propagation in graphs via filters defined on the vertex neigh-
borhood [45] and (2) spectrum-domain methods that convert a con-
volution of a feature and a kernel in a graph into the product of their
graph Fourier transforms [46]. Although GCNs have achieved sig-
nificant progress in many applications, it is challenging for existing
GCN methods to handle complex Petri nets that are directed, bipartite,
and heterogeneous.

This study considers the dynamic scheduling problem of an FMS
with shared resources, route flexibility, and stochastic arrivals of raw
products. First, a class of Petri nets, namely timed S3PR, which com-
bines timed-place Petri nets and S3PR, is used to model FMS process in
consideration of both manufacturing efficiency and deadlock avoid-
ance. Then, a novel GCN layer, namely a Petri-net convolution (PNC)
layer, is proposed for the mapping approximation of the timed S3PR
state. A PNC layer contains two sub-layers that use the input and output
matrices of the timed S3PR for feature propagation computation from
places to transitions (P2T) and from transitions to places (T2P), re-
spectively. Finally, by defining the scheduling problem of the timed
S3PR as an MDP, we use a DQN with a PNC network for smart sche-
duling. Experimental results verify the following advantages of the
proposed method: (1) It is more efficient in handling timed S3PR states
compared to basic MLP. (2) Its scheduling performance, learning con-
vergence, and robustness are better than those of DQN with basic MLP,
and it can achieve similar dynamic scheduling performance with much
faster online computation compared to a heuristic search method. (3) It
has better environmental adaptability than heuristic methods.

The remainder of this paper is organized as follows. Section 2

Fig. 1. Setup of DRL scheduling agent in smart plant and its digital twin.
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reviews the definitions and notations associated with Petri nets and
introduces the timed S3PR of an FMS. Section 3 describes the design of
the two PNC sub-layers, namely the P2T layer and T2P layer, on the
basis of a detailed analysis of timed S3PR. Section 4 introduces MDP and
DRL for dynamic scheduling. Section 5 presents and discusses the ex-
perimental results. Finally, Section 6 concludes the paper and briefly
explores directions for future work.

2. Preliminaries

This section reviews the fundamentals of Petri nets and the defini-
tion of a timed S3PR.

Definition 1. Petri Nets [47]
A Petri net (place/transition net) is a 3-tuple = P T F, , , where P

and T are two nonempty finite disjoint sets representing places and
transitions, respectively. × ×F P T T P( ) ( ) is a finite set of arcs.
Thus, a Petri net is a directed bipartite graph. F can be represented by
two incidence matrices ×I O, {0, 1} P T| | | |, called the input matrix and

output matrix of places, respectively, where =I p t
p t F
p t F

[ , ]
1 ( , )
0 ( , ) and

=O p t
t p F
t p F[ , ]

1 ( , )
0 ( , ) . Given a note x P T , =x y P T y x F• { |( , ) } is

the pre-set of x , while =x y P T x y F• { |( , ) } is the post-set of x .
X P T , =X x• •x X and =X x• •x X . = P T F, , is called a

state machine if = =t T t t, |• | | •| 1.

Definition 2. Marking and Firing [47]
Places in a Petri net contain a discrete number of marks called to-

kens. A distribution of tokens over the places represents a state of the
Petri net called a marking m P| |. With regard to a set of places X P,
m X( ) is the restriction of m to X . The pair m, 0 , where is a Petri
net and m0 is an (initial) marking, is called a marked Petri net (or net
system). A transition t is enabled and can be fired if >mp t p• , ( ) 0,
denoted as m t[ . Firing of a transition t gives a new marking

= +m m O It t[·, ] [·, ], denoted as m mt[ . Transitions t and t are
conflicted under m if m mt t[ [ . A marking m is reachable from an-
other marking m iff there exists a firing sequence = …t t t tn1 2 such that

…m m m mt t t[ [ [ n1 1 2 2 . The set of markings reachable from m in is
denoted as m( , ).

Definition 3. P-invariant and Strict Minimal Siphon [31]
Given a P-vector y P: indexed by P , y is a P-invariant if y 0

and =y O I 0·( ) hold. =y yp P p|| || { | ( ) 0} is called the support of
y. A nonempty set S P is a siphon if S S• •. A siphon is minimal if it
contains no siphon as a proper subset. A minimal siphon that does not
contain the support of any P-invariant is called a strict minimal siphon
(SMS).

Definition 4. System of Simple Sequential Processes with Resources
[30,31]

A system of simple sequential processes with resources (S3PR)
= == P P P T F, ,i

q
i A R1 0 is defined as the union of a set of

nets = P p P T F{ } , ,i A R i i0i i i sharing common places, where fol-
lowing statements are true:

1. p0i is called the process idle place of i. The elements of PAi and PRi
are called activity places and resource places, respectively.

2. PAi , PRi , p PA0i i, and =P p P( { })A R0i i i .
3. =p P t p t p t P t P, • , •,• •A R Ri i i and =t P|• | 1Ri .
4. r PRi, =r P r P•• ••A Ai i and =r r• • .
5. = =p P p P•• ••R R0 0i i i i .
6. The subset = P p T F{ }, ,i A i i0i i generated by removing PRi and

related arcs from i is a strongly connected state machine, and
every circuit of i contains place p0i.

7. For r PR, r P•• A is the set of activity places that use r , which are
called holders of r .

8. For p PA, =p P r•• { }R is the unique resource used by p.

The S3PR has a useful behavioral property in that its liveness is
associated with its SMS: the existence of an empty SMS ( =m 0S( ) )
under a reachable marking m m( , )0 indicates a system deadlock.
Classical S3PR control methods append control places to the original
S3PR to prevent the existence of an empty SMS [33].

Here, we adjust some notations of the S3PR so that it can accom-
modate the dynamic scheduling problem. First, p0i in an S3PR is split
into two places pBi and pEi representing the beginning and the end of
the state machine i (or operation sequence), respectively. The sets

…p p p{ , , , }B B Bq1 2 and …p p p{ , , , }E E Eq1 2 are denoted as PB and PE, re-
spectively. Places in the set =P P PO B A are called operation places in
this paper. Second, for representing the manufacturing efficiency of a
system, time attributes are added to the adjusted S3PR to construct
timed S3PR:

Definition 5. Timed S3PR
A marked timed S3PR is denoted as mD*, , 0 , where

1. = P P P T F* , ,O R E is an adjusted S3PR with =P P PO A B in-
troduced above.

2. +D P: {0}O is a mapping that specifies a deterministic token
holding time at an operation place. Thus, if a token is put into
p PO O at time , it can be used to enable the transitions in p •O after
time + D p( )O (hereafter, for simplicity, we say that this token is
enabled after time + D p( )O ).

3. m0 is the initial marking with =m 0P( )O0 , =m 0P( )E0 , and
>mp P p, ( ) 0R 0 indicating the counts of the resources.

Fig. 2 shows a marked timed S3PR derived from a well-known FMS
example involving three robots, four machines, and three product types
[30,38]. In this model, =P p p p{ , , }B 1 2 3 marked in green represents the
arrival of three types of raw products, =P p p p{ , , }E 4 5 6 marked in red
represents the end of the products, =P p p p p p p p{ , , , , , , }R 23 24 25 26 27 28 29
marked in orange are the resources, including the three robots and four
machines, and the remaining black circles constitute PA. The initial
marking of PR is labeled inside the circles and the holding times of PO
are added in parentheses. t3, t13, and t19 are autonomous transitions,
while the others are schedulable ones. The liveness of the timed S3PR
can be evaluated on the basis of the SMSs of the original S3PR (listed in
Table 1), which can be calculated efficiently according to [31,32].

The dynamic scheduling problem in the formulation of the timed
S3PR is explained as follows: When a raw product of type i arrives, a
token is fed into pBi. Then, the scheduling agent fires enabled

Fig. 2. Timed S3PR of a well-known FMS example [30].
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transitions in a suitable order to make the token finally arrive at pEi,
indicating that the processing of this product has been completed.
Because several products are processed concurrently in the system and
new raw products can arrive at any time during the system processing,
the scheduling agent should dynamically make decisions based on the
states of the system to optimize the manufacturing performance. The
purpose of such decision making is to fire a proper transition when
several transitions are conflicted. For example, if t12 in Fig. 2 is enabled
and a new raw product of type 3 arrives, which enables t14, then and t14
are conflicted, and the scheduling agent should decide which one will
use the resource of p26 first.

3. GCN layers for timed S3PR

A timed S3PR is a typical directed bipartite graph, and existing GCN
methods, which are generally designed for homogenous undirected
graphs, cannot handle the timed S3PR. To mine the hidden information
from the state features and structural properties of the timed S3PR, we
construct two special graph convolution layers to compute the feature
propagation from places to transitions and from transitions to places.
Because the timed S3PR is a directed graph, only the influence of the
pre-order place (or transition) is considered for a transition (or a place).

3.1. P2T layer: feature propagation from places to transitions

Generalizing the classical CNN layer from regular Euclidean spaces
to graphs is challenging in two aspects: (1) the number of neighbors of
each node in a graph usually varies, and (2) the correspondence be-
tween the filter and the neighborhood of each node is ambiguous. We
can overcome these challenges by exploring the neighbor structure of
transitions in the timed S3PR as explained below.

From the previous section, we know that there are two types of
transitions in the timed S3PR: schedulable and autonomous. A sche-
dulable transition has two pre-order places, i.e., one operation place
and one resource place, while an autonomous transition has only one
pre-order operation place. Adding a dummy resource place containing a
token that is always enabled before an autonomous transition will make
the pre-order place structure of each transition isomorphic. Then, fol-
lowing the classical CNN, we can construct a trainable filter (Fig. 3)
containing two units to calculate the weighted sum of features of two
pre-order places and treat the result as the transition feature ft :

=
+ +
+ +

w w
w w 1f

f f b t T
f b t Tt

P p R p S

P p R A

O R

O (1)

where fpO
, fpR

, and 1 are d-dimensional features of the pre-order op-
eration place, resource place, and dummy resource place, respectively.
Further, wP and wR are ×d d trainable weight matrices, while b is a
d-dimensional trainable bias. Thus, ft is also d-dimensional and it will
be used in the T2P layer as discussed in Section 3.2.

The convolution in the P2T layer is calculated on the basis of the
timed S3PR input matrix as shown in Fig. 4. First, the input matrix I of
the timed S3PR is transposed and transformed into a new location
matrix × +I {0, 1} T P(2| |) (| | 1), whose odd rows represent the location of a
transition's pre-order operation place and even rows represent the lo-
cation of its pre-order resource place. Thus, each row of I contains only
one non-zero element. Note that I is used as a static parameter of the
P2T layer. Then, the input feature matrix indexed by places

= … ×( )F f f f, ,P p p p
P dT | |

n1 2
is extended by an all-1 row representing

the feature of the dummy resource place, denoted as + ×FP
P d(| | 1) .

The product of I and FP generates a new feature matrix ×FP
T d(2| |) .

Finally, the convolution of FP and a trainable × × ×d d2 1 shared
kernel is calculated as the classical convolution layer1 with a stride of 2.
The convolution generates the expected feature matrix of transitions

×FT
T d| | . FP and FT are passed to the next layer.

3.2. T2P layer: feature propagation from transitions to places

Sandryhaila and Moura [42] proposed a type of linear, shift-in-
variant filters on graphs:

= =
=

F HF A Fhˆ
k

K

k
k

0

where F and F̂ are the original feature and the filtered feature on the
graph, respectively, = =H hk

K
k0 is the filter, A is the adjacency matrix

of a weighted directed graph, hk is the filter coefficient, and K is the
order of the filter. This filter ensures that the filtered feature of a node
in the graph is influenced only by its neighbors with a maximum order
of K (similar to Lemma 5.2 in [48]).

According to this principle, feature propagation in the T2P layer is
defined as

= + +F F OF W Bh hˆ [ ( ˜ )]P P T0 1 (2)

The filter order K is limited to 1; hence, the filtered feature of a place is
related only to its original feature and its pre-order transitions. The
propagation from places to transitions will be included if K 2; how-
ever, this is implemented by the P2T layer in our framework. Because
H is a polynomial of A, arbitrary-order filters can be approximated by
stacking the basic 1-order filter in deep neural networks [49]. Further,
h0 and h1 are the d-dimensional trainable filter coefficients. The op-
eration is the Hadamard product of a vector and a matrix, yielding
another matrix in which each element i, j is the product of the element
j of the original vector and the element i, j of the original matrix.
Through the operation , the filter coefficient of each feature channel
can be learned independently. Õ is the normalized output matrix of the
timed S3PR, i.e., = =O O O˜ /( )k

T
ij ij 1

| |
ik . Õ is ×P T| | | | and features of both

the place and the transition are d-dimensional; hence, the addition in
the parentheses holds. ×W d d is the trainable weight for mapping
features from d channels to d channels, and B is the trainable bias.

3.3. Analysis about PNC layer

Combining the P2T layer with the T2P layer gives a PNC layer as

Table 1
SMSs of the original S3PR [30].

No. SMS

1 p p p p p p p p, , , , , , ,9 17 21 23 25 26 27 28
2 p p p p p p p p p, , , , , , , ,7 9 13 14 22 23 24 28 29
3 p p p p p p p p, , , , , , ,7 9 13 17 20 23 26 27
4 p p p p p p p p p p, , , , , , , , ,9 15 16 22 23 24 25 27 28 29
5 p p p p p p p, , , , , ,7 9 13 16 20 23 27
6 p p p p p p p p p, , , , , , , ,7 9 13 17 21 23 26 27 28
7 p p p p p p p p, , , , , , ,7 9 13 16 21 23 27 28
8 p p p p p p p p p, , , , , , , ,9 14 15 22 23 24 25 28 29
9 p p p p p p p, , , , , ,7 9 13 14 21 23 28
10 p p p p p p p, , , , , ,9 15 16 20 23 25 27
11 p p p p p p p p, , , , , , ,9 15 16 21 23 25 27 28
12 p p p p, , ,17 19 26 27
13 p p p p p p, , , , ,9 14 15 20 23 25
14 p p p p p p p p p p, , , , , , , , ,9 17 22 23 24 25 26 27 28 29
15 p p p p p p p, , , , , ,9 14 15 21 23 25 28
16 p p p p p p p, , , , , ,9 17 20 23 25 26 27
17 p p p p p p p p p p, , , , , , , , ,7 9 13 16 22 23 24 27 28 29
18 p p p p p p p p p p p, , , , , , , , , ,7 9 13 17 22 23 24 26 27 28 29

1 In our experiments, the convolution is implemented by tf.nn.conv2d
(https://www.tensorflow.org/api_docs/python/tf/nn/conv2d).
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shown in Fig. 5. As the purpose of Petri nets, a timed S3PR represents a
state of an FMS process by its net structure and its place state. The net
structure models the sequential order of the process and the usage/
release of resources. The place state identifies the current state of each
manufacturing task and each resource by the token distribution in
places of the timed S3PR. From the definitions of the P2T and T2P
layers, we know that the PNC layer can handle both the two aspects of
the timed S3PR: The net structure is embedded into the PNC layer by
taking the input matrix I and the output matrix O of the timed S3PR as
non-trainable parameters of the layer. The place state is transformed to
the place feature matrix FP as the input of the first PNC layer in a PNC
network. The input of each other PNC layer in the PNC network is the
filtered feature F̂P of its preceding PNC layer. The construction of FP
from the place state will be discussed in Section 4.1.

More analysis about the design motivation for the P2T and T2P
layers from an intuitive perspective is as explained below. For a tran-
sition, its pre-order operation place and resource place are of different
types and their influences should be distinguished; hence, the shared

convolution kernel contains two units, wP and wR. Similarly, for a place,
h0 and h1 distinguish the influences from the place itself and its pre-
order transitions. Further details about OF˜ T in Eq. (2) merit closer at-
tention. For all pO and pE , it is easy to understand that Eq. (2) degen-
erates into = + +W Bf h f h f˜ ( )p p t0 1 , where is the Hadamard pro-
duct of two vectors, because each of them has only one pre-order
transition. However, for all pR, OF˜ T generates mean values of their pre-
order transitions’ features, which is consistent with the assumption that
the transitions’ features of a resource place embed the hidden in-
formation of resource release and they should be uniformly propagated
to the filtered feature of the resource place. Eq. (2) can also be un-
derstood as a spectrum-domain GCN method when considering the
graph Fourier transform based on the Jordan decomposition of the
adjacency matrix [43] and eigenvalue matrix approximations [46].

From the definitions of the P2T and T2P layers, the number of
trainable parameters of a PNC layer is given by:

+ + + × +d d d d d d2 2
h h

2

P2Tkernel P2Tbias and T2Pweight T2Pbias0 1

Clearly, the number of trainable parameters of a PNC layer is related
only to the number of channels of the input and output features and not
to the scale of the timed S3PR. Thus, by using the PNC layer, we can
overcome the explosion problem of trainable parameters when building
deep neural networks.

In addition, we can derive that the time complexity of a PNC layer is
× × + × + × ×O P T d T d P d d(| | | | | | | | )2 . For a given set of channel

numbers and depth of a PNC network, its time complexity is quadratic

Fig. 3. Trainable filter of the P2T layer.

Fig. 4. P2T layer of the timed S3PR.

Fig. 5. PNC layer.
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to the scale of the timed S3PR, as the numbers of places and transitions
in a timed S3PR are similar. However, in practical applications, to
achieve stronger approximation for larger timed S3PR, the PNC network
will be established with deeper layers and more channels. Therefore,
the complexity of the PNC network is polynomial-time. The majority of
computations of a PNC network are matrix manipulations which can be
significantly accelerated by advanced machine learning libraries with
hardware boosting.

4. DRL methods for timed S3PR scheduling

In this section, the dynamic scheduling problem of the timed S3PR is
defined as an MDP and then solved by DRL.

4.1. MDP of timed S3PR scheduling

Using DRL to solve the dynamic scheduling problem requires the
construction of an environment in which a DRL scheduling agent can
take actions and gain rewards. The environment must satisfy the cri-
terion of an MDP, i.e., all relevant information for the action decision is
encoded in the state information.

The MDP framework describes the environment with a 5-tuple
, , , , , where denotes the state space, denotes the action

space, denotes the dynamics of a state transition, denotes the re-
ward, and denotes the discount rate. Now, the specific meanings of
the elements in the 5-tuple are defined in the dynamic scheduling
scenario of the timed S3PR:

• Given a feature dimension d, the state of the MDP is a matrix
×FP

P d| | in which each row is a state feature of a place constructed
as follows:
(a) For an operation place pO, each element of its state feature is the

time feature of a token: =
>

m
m

f i
i p
i p

( )
( ) ( )
1 ( )p

i
e

O

O
O

, where

i d1 , is the current simulation clock, m p( )O is the current
marking, i

e is the enabled time of token i, and is a normal-
ization function that normalizes the time feature into ( 1, 1).
Thus, f i( ) 0pO

implies that the token is waiting for the next
operation, and < <f i1 ( ) 0pO

implies that the token is being
processed. If <m p d( )O , the state feature is padded with 1.
The time features in the state feature are sorted in descending
order.

(b) For a resource place pR, its state feature is defined such that its
first m p( )R elements are 1 and last md p( )R elements are 1,
where m p( )R is the number of available resources. For the
dummy resource place introduced in Section 3.1, its state fea-
ture is defined as an all-1 vector that represents always available
dummy resources.

(c) For a final place pE , its state feature is a d-dimensional all-( 1)
vector that indicates that its state has no influence on the
scheduling of the timed S3PR.

Because the state features of all places encode both the marking of
the timed S3PR and the time features of all tokens, the choice of
conflicted transitions depends only on the state and not on the
previous transition firing sequence, i.e., the evolution of the timed
S3PR fulfills the MDP condition.
• The scheduling of the timed S3PR is an alternative firing problem of
conflicted schedulable transitions. Therefore, firing a specific tran-
sition in TS in a scheduling step corresponds to an action in the ac-
tion spate of the MDP. In addition, the action space also contains an
idle action which means firing no transitions in TS in this step. To
summarize, the action space of the MDP is the set T idleS , with a
size of +T| | 1S . Because the number of enabled transitions is usually
limited during the scheduling of the timed S3PR, we introduce a
mask = t t{ | isavalidactioninthecurrentstate}. This mask can

significantly reduce the trial-and-error operation of a DRL sche-
duling agent during the learning process and improve the learning
efficiency. It is worth noting that the idle action should not always
be valid during scheduling; otherwise, the DRL scheduling agent
may easily be trapped in an eccentric policy, always choosing the
idle action to avoid deadlock. The motivation for the idle action has
two aspects: (1) firing the only enabled schedulable transition will
lead to a deadlock such that nothing can be done until any operation
releases the relevant resource; (2) waiting for a reasonable resource
in use may be more efficient than immediately choosing an
available one in some cases. In summary, the idle action is used
to wait for any operation to be completed. In other words, if
there are tokens being processed, then the idle action is valid,
i.e., if … < <p P i d f i, {1, 2, , }, 1 ( ) 0O O pO

, then = t{
t| is an enabled schedulable transition} {idle action}.

• The dynamics of the MDP are implicitly defined by the discrete
event simulation (DES) of the timed S3PR shown in Algorithm 1.
From Algorithm 1, we can see that a state transition of the MDP (i.e.,
a procedure of the DES) involves performing a selected action, firing
several autonomous transitions, and feeding p PB B with tokens
that represent arrivals of raw products. Therefore, the randomness
of the MDP is introduced by the stochastic arrivals of raw products.
• A reward can be identified flexibly on the basis of the objective of a
scheduling. Here, we give an ordinary reward r to optimize the
makespan of several products with deadlock avoidance:

=
=

+
s m s 0

r
otherwise
exists a SMS , ( )0

where 0 is a relatively large positive number such that a severe
penalty is imposed on the DRL scheduling agent when the timed
S3PR is deadlocked, i.e., when there exists at least one empty SMS
under the current marking. Further, is the average waiting time of
tokens in this clock :

=
m p

Relu( )
( )

e

O

where =Relu(·) max(·,0) ignores the time feature of in-processing
tokens and is a normalization function that restricts within
( 1, 0]. imposes a penalty on the DRL scheduling agent to prevent
situations in which too many products are waiting at the same time.

is the reward for each completed product in the current sche-
duling step:

= + [1 (ms mms)]1 1

where ms is the actual processing time of a completed product, i.e.,
the interval of the token from pB to pE , and mms is the minimal
processing time of this product type. For example, the mms of Type
1, 2, and 3 products in Fig. 2 are 12, 29, and 29, respectively. 1
denotes a reward magnification such that | |; thus, the DRL
scheduling agent receive positive feedback upon product comple-
tion.
• The discount rate determines whether the DRL scheduling agent
focuses on a short-term revenue or a long-term accumulated reward.
It strongly influences the policy learned by the DRL scheduling
agent. A small , e.g., 0.85, results in a low-parallelism policy that
makes all other tokens wait in PB until the manufacturing process of
the current token is completed, because can be obtained in the
minimum number of steps. Therefore, should be close to 1 to
optimize the makespan; however, this makes the convergence of an
action-value approximator problematic and thus requires more
suitable deep neural networks.

4.2. DRL with PNC networks

The MDP derived from the timed S3PR scheduling problem can be
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solved by standard RL methods. In this study, we consider the Q-
learning framework that optimizes the action selection policy of the
DRL scheduling agent such that the expected sum of future rewards is
maximized. An action-value function Q s a( , ) is defined to assess the
performance of taking an action a given a state s under a policy :

= = =+Q s a r s s a a( , ) [ | , ]
k

k
k

where k is the future step and [·] denotes the expected value. The
optimal action-value function Q s a* ( , ) obeys the Bellman equation,
which can be used as an iterative update approximation in RL algo-
rithms:

= +Q s a r Q s a s a* ( , ) [ max *( , )| , ]s a

where s and a are the state and the possible action in the next time
step, respectively. In practice, the action-value function is commonly
estimated by a function approximator, which is often constructed by
deep neural networks owing to their flexibility and robustness.

In this study, we use a DQN [9] with the prioritized experience
replay [25] as the DRL algorithm, and a deep PNC network as the ap-
proximator of the action-value function.

In the dynamic scheduling scenario of the timed S3PR, the role of
the prioritized experience replay involves two aspects. (1) Because a
large penalty is imposed on the DRL scheduling agent when deadlock
occurs, the deadlock states will be replayed with high probability in the
early learning stages. Hence, the agent will quickly learn to avoid
deadlock and focus on improving the manufacturing efficiency in the
later stages. (2) States with 0 will be replayed frequently to im-
prove the agent sensitivity to the processing-time variation of the pro-
ducts.

We further extend DQN using the MDP action mask to avoid trial-
and-error execution of invalid actions and achieve rapid learning con-
vergence. The DRL algorithm is shown in Algorithm 22. Owing to space
limitations, we suggest that readers refer to Algorithm 1 in [9] and
Algorithm 1 in [25] for the details of this algorithm.

A PNC network (Fig. 6) with seven PNC layers and one fully con-
nected layer (FC layer) is built for the timed S3PR as shown in Fig. 2 to
map the MDP states to action values. From the definition of a PNC layer
in Section 3, we know that one PNC layer propagates the hidden feature
from each place p to its neighboring post places p•• in the timed S3PR.
Because the longest route in the timed S3PR in Fig. 2 contains seven
places, the depth of PNC layers in the PNC network is chosen as seven.
Every PNC layer uses a batch normalization regularization [50] and a
LeakyRelu activation [51] to improve the neural network's robustness
and non-linearity. The PNC layers are followed by the FC layer which
maps the hidden place feature to a +T(| | 1)S -dimensional vector in the
action space. This 8-layer PNC network performs well for the timed
S3PR shown in Fig. 2. In addition, for more complicated timed S3PR,
PNC networks with deeper PNC layers and more feature channels are
required. However, owing to the reasonable computation complexity of
a PNC layer, PNC networks are scalable for larger processes.

5. Experiments

Three experiments are designed to verify the effects of the proposed
PNC method on the dynamic scheduling of the timed S3PR. The first one
is a supervised learning experiment to compare the performances of a
PNC network and MLP in handling the timed S3PR state. The second
one is the main experiment that verifies the effectiveness of the pro-
posed method, i.e., the masked DQN with the PNC network, in the
dynamic scheduling of the timed S3PR by comparing it with three other
methods. The third experiment is conducted on the basis of the second

one to compare the environmental adaptabilities of the scheduling
methods.

5.1. Empty SMS recognition

Owing to the strong association between an empty SMS and the
liveness of the timed S3PR, we conduct a basic supervised learning
experiment on empty SMS recognition by neural networks. It is worth
noting that this experiment is conducted not to introduce a new
deadlock recognition method to replace the advanced siphon-based
methods but to compare the efficiency and robustness of the PNC net-
work with those of MLP when handling the timed S3PR states.

A deadlock dataset of the timed S3PR shown in Fig. 2 is
first constructed for training as follows. Randomly generate
10,000 legal timed S3PR states with markings m m( , )0
(m0: p (randompositiveinteger)1 , p (randompositiveinteger)2 , p3
(randompositiveinteger), p (1)23 , p (2)24 , p (2)25 , p (1)26 , p (2)27 , p (2)28 ,
p (1)29 , and other places are all 0) and time features f [ 1, 1]p . Each
of these states is labeled with 1 in the case of an existing empty SMS and
0 in the absence of an empty SMS. The numbers of deadlocked and alive
states are balanced. Then, the 10,000 states are split into two subsets,
i.e., the training set containing 8000 states and the test set containing
the remaining states.

We use TensorFlow [52] and Keras [53] to implement a PNC net-
work, denoted as PNCN here, and two MLPs as baselines, denoted as
MLP1 and MLP2 (Fig. 7). Because this task is relatively simple, all three
neural networks contain only four layers without batch normalization,
dropout, or other regularization strategies. The training settings are as
follows: the binary cross-entropy +ˆ ˆy y y y( log( ) (1 )log(1 )),
where y is the label and ŷ is the prediction, is used as the loss function;
Adam [54] with a learning rate of 0.001 is used as the optimizer; and
the state feature dimension =d 5. For 20 training epochs with a batch
size of 8, the training accuracy, test accuracy, training loss, and test loss
are shown in Fig. 8(a)–(d), respectively.

As shown in Fig. 8(a) and (b), PNCN achieves accuracies of 99.88%
and 99.90% on the training set and test set, respectively, which verifies
that the PNC network can precisely recognize deadlock states of the
timed S3PR. In this experiment, a larger number of hidden nodes in the
MLP leads to better performance. However, MLP2 is less effective than
PNCN, even though the former has 40 times more trainable parameters
than the latter. From Fig. 8, we can see that the accuracy and loss
trajectories of all three networks are smooth for the training set, but
only PNCN achieves smoothness on the test set. This implies that PNCN
is more stable than MLP. In summary, PNCN shows the best perfor-
mance in terms of both accuracy and convergence.

Although latent features generated by hidden layers of a deep neural
network are usually obscure, we attempt to understand how PNCN works
by analyzing the differences in the latent features generated by PNCN
between pairs of similar timed S3PR states. The differences are used for
qualitatively marking the important places when identifying deadlock.
Groups of similar timed S3PR states are selected. Each group consists of one
deadlock state and two alive states with a few variations in the markings.
For pairs of states in each group, the differences in the latent features in the
FC layer of PNCN are calculated and mapped to colors to fill the circles of
the corresponding places as shown in Fig. 9(a). All the selected groups
produce the same result as shown in Fig. 9(b): The most significant dif-
ferences in the latent features between deadlock states and similar alive
states are reflected in some operation places that belong to the relevant
SMS. However, between two similar alive states, the differences in all the
places are not obvious. This result indicates that PNCN can identify dead-
lock by feature propagation in local structures of the timed S3PR.

5.2. Dynamic scheduling

In this experiment, the timed S3PR DES environment (Algorithm 1)
and the DRL scheduling agent (Algorithm 2) are developed on the basis

2 in Algorithm 2 is the mask vector indexed by actions derived from the mask
introduced in Section 4.1: =a( ) 0 if a is a valid action; otherwise, =a( ) .
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of OpenAI Gym [55], OpenAI Baselines [56], and Keras-rl [57].The
performance of the proposed method, i.e., the masked DQN with the 8-
layer PNC network, denoted as PNCQ here, in the dynamic scheduling
of the timed S3PR is compared that of three other methods:

1. FCFS+: FCFS+ is a heuristic rule method that combines the first
come, first served (FCFS) strategy with deadlock-free control. It fires
the transition to handle the token with the longest waiting time in
every step under the constraint of seven extra control places (cal-
culated by [33]) to avoid deadlock.

2. D2WS [38]: D2WS is a reachable tree-based deadlock-free heuristic
search method for static scheduling of the timed S3PR. It uses an

elaborate heuristic function to selectively search the branches of a
timed S3PR's reachable tree for the optimal or nearly optimal
scheduling scheme. It can achieve high manufacturing efficiency;
however, it is computationally expensive. D2WS is invoked several
times in a dynamic scheduling process. In every step, D2WS is exe-
cuted once for rescheduling to update the transition firing sequence
if a new token is put into PB, or sequential transitions are fired in
turn. In this experiment, h3 from [38] is selected as the heuristic
function, and the parameters are accordingly set as

=(high, max _s ize, max _v ertexes, max _t op) (3, 2, 2, 6) to achieve
a trade-off between performance and time consumption.

3. MLPQ: MLPQ is a DRL baseline method that combines the masked

Fig. 6. 8-layer PNC network for the timed S3PR shown in Fig. 2.

Fig. 7. Three neural network structures for deadlock recognition.

Fig. 8. Results of the deadlock recognition experiment.
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DQN with an MLP designed by us to compare the effects of different
neural networks. Using the same DRL scheduling agent as the pro-
posed method, we construct an 8-layer MLP, containing 124, 64, 48,
32, 24, and 12 hidden nodes, as the action-value function approx-
imator. PNCQ and MLPQ contain 18971 and 33644 trainable
parameters, respectively.

The settings of the timed S3PR's MDP and DES are as follows. State
feature dimension =d 5, reward magnifications = 500 and = 101 ,
and normalization function = +x e( ) 2/(1 ) 1x0.05 . Let = 0.99 so
that the DRL scheduling agent can optimize the makespan. Completing
20 products or being trapped in a deadlock is treated as an episode, and
an episode reward is an accumulation of the rewards of every step in
this episode. The arrival intervals of the raw products follow an ex-
ponential distribution with = 3, and the probabilities of the three
product types are equal.

The settings of the masked DQN are as follows. The prioritized ex-
perience replay memory is warmed up by FCFS+ for 10,000 steps. To
achieve a trade-off between exploration and exploitation, linearly falls
from 1.0 to 0.1 during the first 200,000 learning steps and is then
maintained at 0.1. Back-propagation fitting of the neural networks is
conducted in every learning step by the Adam optimizer with a learning
rate of 0.0001.The target neural network is updated every 1000 steps.
After every 10,000 steps, a performance evaluation is performed using
the current neural network to schedule 100 episodes and recording the
average episode reward as well as the deadlock rate. Meanwhile, the
same number of episodes is also scheduled by FCFS+ and D2WS. A
learning process is run over 3,000,000 steps; the experimental results
are shown in Fig. 10.

From results of the episode rewards shown in Fig. 10(a), we can see
that the trajectory of PNCQ is higher overall than that of MLPQ, which
indicates that PNCQ achieves faster convergence and more efficient
scheduling performance than MLPQ. Furthermore, the performance of
PNCQ is close to that of FCFS+ after around 500,000 learning steps,
while MLPQ requires more than 1,300,000 steps to achieve similar
performance. The performance of PNCQ approaches that of D2WS after
around 800,000 steps, and it remains stable after 1,900,000 steps. The
Q value shown in Fig. 10(c) and the loss shown in Fig. 10(d) also in-
dicate that PNCQ achieves faster convergence than MLPQ. Note-
worthily, as illustrated by the trajectories of the losses in Fig. 10(d), the

approximation loss of PNCQ is much lower than that of MLPQ after
convergence, which indicates that, compared to MLPQ, PNCQ achieves
better accuracy when mapping the timed S3PR state to the Q value. The
reward statistics of the last 100 evolution episodes are shown in Fig. 11.
The final average episode reward of PNCQ is around 309.95. Thus,
PNCQ outperforms FCFS+ by approximately 12.3% and MLPQ by ap-
proximately 7.0%; however, it is slightly inferior to D2WS by approxi-
mately 1.3%.

To achieve the best scheduling performance, D2WS, which is a
heuristic search method, needs to traverse numerous timed S3PR states;
consequently, its time consumption is extremely high, which may be
unacceptable in some real-time scenarios. We conduct an additional
experiment to compare the running times of the above-mentioned
methods on a computer with an Intel I5 (3.4 GHz) CPU and 8GB of RAM
(GPU boosting of TensorFlow is disabled for fair comparison). The
running time of each method is tested over 100 episodes; the results are
listed in Table 2. The slight performance superiority of D2WS over
PNCQ is based on the fact that the computational burden of the former
is two orders of magnitude greater than that of latter. Owing to ex-
tremely short computational times of PNCQ, MLPQ, and FCFS+, we
compare them by focusing on their scheduling performances.

The results of the deadlock rates shown in Fig. 10(b) reflect another
advantage of the proposed method in that it can realize deadlock-re-
sistant scheduling without any extrinsic control policy. Following
convergence after 200,000 learning steps, only 9 out of 28,000 sub-
sequent evaluation episodes scheduled by PNCQ are deadlocked (0.03%
probability). By contrast, the trajectory of MLPQ's deadlock rate fluc-
tuates during the entire learning process (655 out of 28,000) owing to
its instability. In real-world applications, PNCQ can be integrated with
SMS control policies [33] to achieve absolute deadlock-free scheduling.

In summary, the proposed method can achieve excellent scheduling
performance comparable to that of the heuristic search method but with
much faster computation. Compared to basic MLP, PNCQ is more robust
and achieves faster convergence.

5.3. Environmental adaptability

In practice, there usually is a gap between the real-world environ-
ment and the assumed simulation environment, e.g., the real arrival
rule of raw products may not exactly follow the distribution assumed in

Fig. 9. Visualization of (a) latent feature differences and (b) a case study of groups of similar states.
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a simulation. A smart scheduling method should be adaptive to bridge
the aforementioned gap. To this end, the equal probabilities (1:1:1) of
the three product types in the second experiment are modified into an
extreme non-uniform distribution (1:10:10) in this experiment, with the
arrival interval distribution remaining unchanged. This adjustment
leads to a more severe shortage of resources p26, p27, p28, and p29, and
the experiment is conducted to verify the adaptability of the scheduling
methods to this adjustment.

After 3,000,000 learning steps of the second experiment, the pro-
posed method continues the training process in the adjusted environ-
ment for another 250,000 steps with = 0.1, and the other settings are
the same as those of the second experiment. Evaluations of PNCQ, FCFS
+, and D2WS are also conducted every 10,000 steps; the results are

shown in Fig. 12.
Owing to the greater resource shortage after the arrival rule change,

the episode rewards obviously decrease (around 196.6 for FCFS+ and
257.5 for D2WS) as shown in Fig. 12(a). PNCQ requires 150,000
learning steps to achieve its optimal performance, i.e., 277.9, which is
41.4% and 7.9% higher than those of FCFS+ and D2WS,
respectively.Fig. 12(b) indicates the convergence of PNCQ.

We analyze the possible reason for the superiority of PNCQ over the
heuristic search method D2WS in this scenario. The heuristic function of
D2WS determines that this method tends to select the operation route
with a shorter processing time, e.g., p p p12 14 16 but not p p p11 13 15 for Type
2 products. However, because few Type 1 products exist in the system
after the arrival rule change, the route p p p11 13 15 reduces resource con-
tention with Type 3. The proposed method can learn this pattern
without supervision; however, the heuristic function in D2WS is not
adaptive to this change. A case study to demonstrate the adaptability of
the proposed method is shown in Fig. 13; we can see that the Q values
of the DRL scheduling agents trained in the second experiment are
clearly different from those in this experiment. After fitting in this ex-
periment, PNCQ tends to choose the route p p p11 13 15.

In summary, the proposed method, i.e., the masked DQN with the
PNC network, can continuously adjust the scheduling policy to bridge
the aforementioned environmental gap.

6. Conclusions and future works

To solve the dynamic scheduling problem of an FMSs involving
shared resources, route flexibility, and stochastic arrivals of raw pro-
ducts, this paper proposed a novel Petri-net-based dynamic scheduling
approach via DQN with GCN.

First, the timed S3PR was used to model an FMS in terms of the op-
eration sequential order, resource utilization constraints, and processing
time. Then, according to specific subnet structures of the timed S3PR, a
PNC layer was designed with two graph convolution sub-layers that im-
plement feature propagation from places to transitions and from transitions
to places, respectively. The advantage of the PNC layer is that the number
of its trainable parameters is related only to the number of filter channels
and not to the scale of the timed S3PR; thus, it is possible to overcome the
parameter explosion problem when building deep neural networks. Finally,

Fig. 10. Results of the dynamic scheduling experiment.

Fig. 11. Episode rewards of the last 100 evaluation episodes.

Table 2
Running time of an episode.

PNCQ FCFS+ D2WS MLPQ

Mean 135ms 82ms 34381ms 48ms
Min 115ms 61ms 13820ms 38ms
Max 171ms 116ms 59335ms 62ms

Fig. 12. Results of the adaptivity experiment.
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a masked DQN with the PNC network was employed for solving the timed
S3PR dynamic scheduling problem defined by the MDP.

Three experiments were designed to verify the advantages of the
proposed method. The first experiment proved that even the simple
PNC network can effectively handle the timed S3PR states with better
stability than an MLP. The second experiment showed that the proposed
masked DQN with the PNC network can achieve similar dynamic
scheduling performance with much faster online computation com-
pared to the heuristic search method. In addition, the scheduling per-
formance, learning convergence, and robustness of the proposed
method were shown to be better than those of the MLP-based method.

The third experiment verified that the proposed method is more
adaptive to environmental changes than heuristic methods.

Finally, we identify three directions for future work: (1) insightful
theoretical explorations about the PNC layer, e.g., the meanings of the
hidden features, to guide the fine-tuning of the PNC network and the
learning process, and further improve the accuracy of the proposed
method; (2) dynamic scheduling problems of a more complex FMS
model with stochastic machine breakdown and stochastic processing
time; (3) smart cooperative multi-agent learning for distributed man-
ufacturing systems.

Fig. 13. Case study of the adaptivity experiment.
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Algorithm 1. DES procedure of the timed S3PR
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Algorithm 2. DQN with mask
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