
Contents lists available at ScienceDirect

Journal of Manufacturing Systems

journal homepage: www.elsevier.com/locate/jmansys

A digital twin to train deep reinforcement learning agent for smart
manufacturing plants: Environment, interfaces and intelligence
Kaishu Xiaa, Christopher Saccoa, Max Kirkpatrickb, Clint Saidya, Lam Nguyena, Anil Kircalialia,
Ramy Harika,*
aMcNAIR Center for Aerospace Innovation and Research, Department of Mechanical Engineering, College of Engineering and Computing, University of South Carolina,
1000 Catawba Street, Columbia, SC, 29201, USA
b Siemens Product Lifecycle Management Software Inc., Charlotte, NC, 28277, USA

A R T I C L E I N F O

Keywords:
Smart manufacturing systems
Robotics
Artificial intelligence
Digital transformation
Virtual commissioning

A B S T R A C T

Filling the gaps between virtual and physical systems will open new doors in Smart Manufacturing. This work
proposes a data-driven approach to utilize digital transformation methods to automate smart manufacturing
systems. This is fundamentally enabled by using a digital twin to represent manufacturing cells, simulate system
behaviors, predict process faults, and adaptively control manipulated variables. First, the manufacturing cell is
accommodated to environments such as computer-aided applications, industrial Product Lifecycle Management
solutions, and control platforms for automation systems. Second, a network of interfaces between the en-
vironments is designed and implemented to enable communication between the digital world and physical
manufacturing plant, so that near-synchronous controls can be achieved. Third, capabilities of some members in
the family of Deep Reinforcement Learning (DRL) are discussed with manufacturing features within the context
of Smart Manufacturing. Trained results for Deep Q Learning algorithms are finally presented in this work as a
case study to incorporate DRL-based artificial intelligence to the industrial control process. As a result, developed
control methodology, named Digital Engine, is expected to acquire process knowledges, schedule manufacturing
tasks, identify optimal actions, and demonstrate control robustness. The authors show that integrating a smart
agent into the industrial platforms further expands the usage of the system-level digital twin, where intelligent
control algorithms are trained and verified upfront before deployed to the physical world for implementation.
Moreover, DRL approach to automated manufacturing control problems under facile optimization environments
will be a novel combination between data science and manufacturing industries.

1. Introduction

The manufacturing sector is currently reinventing itself by embra-
cing the opportunities offered by digital transformation [1–3], in-
dustrial internet [4–6], automation [7–9], and machine learning
[10–13] among other innovations. This development is commonly re-
ferred to as the Fourth Industrial Revolution (Industry 4.0) or Smart
Manufacturing. To some extent, Smart Manufacturing systems can be
seen as the cognitive counterparts of automation of physical processes
[7]. While physical automation (e.g. robotic systems) relieves human
operators of unergonomic, dangerous, repetitive, and heavy workloads,
cognitive automation attempts the aiding or replacement of mental
tasks that are stressful and repetitive by automatically processing large
manufacturing dataflows [8]. Enabling this cognitive automation in
manufacturing systems requires connected device ends such as sensors,

controllers, actuators, networks, and intermediate software or frame-
works, which is termed by the Industrial Internet-of-Things (IIoT).

Overall, Smart Manufacturing centers around data exchange, data
acquisition, data processing/analysis, and utilization through data feeds
into a continuous knowledge pipeline. Four workflow modules of data-
driven smart manufacturing frameworks are identified by Tao et al.
[14] : (1) manufacturing module with different kinds of manufacturing
activities; (2) data driver; (3) real-time monitoring; and (4) problem
processing. It has also been addressed that investigated smart manu-
facturing applications exploit big data analytics on real-world manu-
facturing data to refine manufacturing practices, increase production
efficiencies or enhance product performances. Therefore, the con-
vergence between digital model and physical manufacturing world has
been pursued as an essential goal of data-driven smart manufacturing.
However, smart manufacturing systems has been constrained by the

https://doi.org/10.1016/j.jmsy.2020.06.012
Received 29 October 2019; Received in revised form 16 June 2020; Accepted 24 June 2020

⁎ Corresponding author.
E-mail address: harik@cec.sc.edu (R. Harik).

Journal of Manufacturing Systems xxx (xxxx) xxx–xxx

0278-6125/ © 2020 The Society of Manufacturing Engineers. Published by Elsevier Ltd. All rights reserved.

Please cite this article as: Kaishu Xia, et al., Journal of Manufacturing Systems, https://doi.org/10.1016/j.jmsy.2020.06.012

http://www.sciencedirect.com/science/journal/02786125
https://www.elsevier.com/locate/jmansys
https://doi.org/10.1016/j.jmsy.2020.06.012
https://doi.org/10.1016/j.jmsy.2020.06.012
mailto:harik@cec.sc.edu
https://doi.org/10.1016/j.jmsy.2020.06.012

lack of methods to connect factories to control processes in a more
dynamic and open environment [15]. For example, previous research
on data-driven smart manufacturing mainly focuses on data collected
from the physical systems instead of the virtual model [16]. One most
common concern with modelling physical smart manufacturing systems
or products is that direct process quality measurements are often un-
available [17] or rare [12]. Moreover, there remains gaps in the ap-
plicability of currently available engineering tools towards smart
manufacturing with data-driven controls. Risks such as discrepancy
between virtual and physical manufacturing, or out-of-sync commu-
nications caused by hardware latency, can be significant sources of
model non-convergence, which leads to isolated, fragmented and
stagnant data management [18]. To cope with these challenges, it needs
to be investigated that how to fully adapt current industrial tools as
data drivers to derive predictive models of smart manufacturing
knowledges. These knowledges can be generated both from virtual and
physical spaces to enhance data integration and model convergence.
Such attempt is also expected to demonstrate the easy applicability of
manufacturing intelligence to practitioners without requiring specific
data analytics expertise.

As an example of developed industrial digital transformation
methodologies, Virtual Commissioning intends to verify manufacturing
systems and associated control programs through simulation before the
physical implementation by enabling the connection between a virtual
plant model and a real controller [19]. However, such digital trans-
formation method has been less attractive as it requires combined ex-
pertise and varied engineering skills, such as Computer-Aided En-
gineering, robotics, kinematics, control logistics, Object-oriented
Programming, etc. In addition, the importance of low-level modeling
(e.g. geometrical modeling, functional modeling, and electrical mod-
eling) is further highlighted [20] alongside the basic implementation by
Computer-Aided Engineering simulation tools and object-oriented da-
tabases. The combined expertise required to fill the gap between the
physical systems and their digital counterparts is restricting the in-
dustrial scale applications of manufacturing digitalization.

Furthermore, enterprises, especially in small and medium scales, are
also in need of the capabilities to quickly implement product changes
and to produce highly variable products [21], which addresses the
importance of highly responsive production control systems [22].
Meanwhile, highly autonomous automations driven by control in-
telligence in manufacturing industries are still at their early stages as
safety, trust and efficiency concerns remain unresolved [23]. To pursue
hardware autonomy, the required training process for online smart
control systems will put more constraints on the industrial platforms.
For example, integrating autonomous agents into hard-coded programs
will need intermediate translations to interface mutually [8], hence
introducing more variance in the overall system. Large amount of
communication redundancy with instant feedback signals will need
feasible memory management, as inefficient training approaches will
lead to increased system run time, etc.

Digital twinning has been conceptually proposed as a future direc-
tion towards data-driven smart manufacturing by digitally representing
physical entities and pursuing deep cyber-physical integration [14].
Compared to pure simulations, the idealization of digital twin is gen-
erally looking for dynamic optimization technologies that enable real-
time system reflections, interaction between physical and virtual
spaces, and automatic model evolvement with updated data feed [18].
It should be noted that the connectivity to the physical platform is a key
advantage of digital twin approaches over a purely simulation ap-
proaches. Through live signals, data collected from external sensors, or
knowledge derived from the physical cell can be fed into the digital
twin. Therefore, dynamic connections to factory control processes
should be underlined for digital twin implementations of Smart Man-
ufacturing systems, as the industrial controls components are inevitable
within the systems. In another word, the convergence of physical and
virtual factories control process should be pursued. The digital twin

should be capable of running event-driven simulations or models to
perform control logics and predict system behaviors in responses to
events. Moreover, digital twin of smart manufacturing systems, as an
interactive and data-driven tool, should be developed towards powerful
computer-aided modules, which contribute to generating manu-
facturing strategies, integrating virtual and physical data feeds into
decision-making process, and predictive system monitoring based on
the live signal feedbacks. However, considering the complexities of
building the digital equivalence in virtual spaces [24] and various roles
with inconsistent definitions [25], digital twin applications in recent
years have yet made inadequate progress in production systems.

In this work, a novel approach is proposed to establish continuous
interfaces with a virtual environment accommodated by industrial
computer-aided applications to overcome aforementioned bottlenecks
towards data-driven digital manufacturing systems. The proposed
method to pursue digital twinning based on current virtual commis-
sioning applications is to employ large-scale simulations, prompt
system indicators, and computation technologies to establish a life-like
digital manufacturing platform, where dynamics of live manufacturing
cells can be captured, represented, and predicted. Moreover, this work
attempts to demonstrate that the implementation of virtual commis-
sioning, as one step to system-level digital twinning, will accelerate the
training, testing, and validation of smart control systems. To that end, a
use case of such modular digital twin is presented as surrogate models
for physical manufacturing systems during the primary manufacturing
intelligence development phases. By training a dynamic scheduler, the
additional features provided from external sources can be envisioned to
autonomously convey key information regarding process optimality. As
a result, the conceptual outline towards an AI-driven robotic manu-
facturing cell proposed by our preliminary proof of concept [26] is
further completed by illustrating more detailed implementations and
key technologies along with some preliminary results. The ideation of
such a platform optimization tool as a concept of digital engine coupled
with a true virtual commissioning platform fits directly under the Smart
Manufacturing umbrella and has the potential to develop into a number
of advances in smart systems including improved throughput, safe
human intervention, prompt self-monitoring, and highly autonomous
operational control.

The remainder of this paper is organized as: Section 2 provides a
review of existing research topics on digital twin of production systems.
Section 3 introduces the system environment; construction of the vir-
tual cell and its capability to simulate manufacturing problems. Section
4 presents the interfaces between the systems and demonstrates near
real-time communications using the implemented interfaces. Section 5
proposes an implementation of this Digital Engine using Deep Re-
inforcement Learning algorithms as dynamic scheduling agents. Section
6 presents some primary training results with a specific case study
within the virtual environment, which is generally applicable to certain
manufacturing problems. The last Section 7 concludes the main con-
tributions of this work and proposes future research directions.

2. Literature review

Negri et al. summarized the roles of the Digital Twin (DT), which
are still mostly applied in product predictive maintenance and condi-
tion-based monitoring related research in aeronautics and space fields
[25]. However, it is worth noticing that DT usage is emerging in the
fields of manufacturing and robotics, where the emphasis on Virtual
Commissioning and automation system optimizations become in de-
mand. In 2013, the first work reporting research on DT in advanced
manufacturing sector considered DT to be the virtual counterpart of
production resources, and not only of the product [27]. In addition,
with its core technologies in big data analytics and cloud platforms,
recent Industry 4.0 developments help expand the application of DT to
more data-driven, virtually augmented, and smart integrated manu-
facturing systems.

K. Xia, et al. Journal of Manufacturing Systems xxx (xxxx) xxx–xxx

2

The definition of Digital Twin has been non-uniform and ambiguous
depending on the application areas. Scientific researchers tend to look
for high-fidelity reference models to improve predictive capabilities of
digital twins, where interactive optimization can occur on both physical
and virtual parts. Schleich et al. proposed a concept of utilizing Skin
Model Shape [28], an abstract model of the physical interface between
a workpiece and the environment, as a reference model to predict the
product physical properties [29]. Although the scope of this work fo-
cuses on the digital twinning of product development, the idea of using
digital twin for geometrical variation management serves as the basis of
production system twinning such as industrial process control. Another
work by Knapp et al. proposed to utilize a transient, three-dimensional
mathematical model for Additive Manufacturing process as the blocks
for digital twin [30]. Meanwhile, industrial implementations of Digital
Twins focus more on implanting developed and tested technologies to
manufacturing systems, communicating about gained manufacturing
knowledge, and continuously optimize by data-driven decision-making.
Zhuang et al. concluded five current key technologies: real-time data
acquisition, organization and management, DT construction, big data
prediction, production management and control services [24]. Kon-
stantinov et al. demonstrated uses of Cyber-Physical System enabled
virtual engineering tools within a practical workflow to complement
existing engineering tools and methods [31].

Virtual Commissioning is another well-developed technology for
testing systems through simulations to evaluate the safety and feasi-
bility of scheduling and manufacturing approaches before physical
deployment. An overview by Hoffmann et al. [20] demonstrated the
implementation of Virtual Commissioning necessitates a Computer-
Aided Engineering (CAE) simulation tool environment and object-or-
iented databases containing simulation models of manufacturing
system components, by which several recent attempts [32,33] were
made in realizing Virtual Commissioning with the same philosophy
using different tools to construct virtual plant, hardware/software ar-
chitecture, communication pathways, etc. The employment of virtual
counterparts of manufacturing systems was further validated in
[31,34]. However, several deficits and problems of currently employed
DT technologies were summarized [35] in production systems towards
near real-time optimizations, including manual motion data acquisition
process, insufficient coupling between simulation and optimization
resulting in slow-down in parameter generation, lack of simulative in-
vestigations, high expense to use real-time locating system technology
such as RFID on the tracked objects, and concerns in data security.
Machine vision technology as image recognition is proposed to identify
products at large production machine. Built on the emerging technol-
ogies, complete components of DT in manufacturing are proposed by
Tao et al. to include five parts: physical part, virtual part, connection,
data, and service. They also generalize the characteristics of DT systems
to be real-time reflection, interaction and convergence between virtual
and physical space; along with self-evolution, real-time updates, and
continuous improvement through comparing virtual space with phy-
sical space in parallel [36].

The implementation of Digital Twin is centered around data and
interfacing communications since mass customization and flexible
production emphasize the need for an easier high-level data storage and
model exchange between different systems connected to the DT [37]. In
this work, an object-oriented paradigm (XML/JSON) and IoT middle-
ware are used for an easier exchange of data [37]. The transient data
feed between objects requires more efficient and safer communication
protocols to one of the DT key technologies, such as MQTT [38],
MTConnect [8], and OPC-UA [39] attempt to address this. OPC-UA in
particular has a more general adoption in industy. In the field of system
optimization, a comparison between the conventional process optimi-
zation tool Value Streaming Mapping and Digital Twin was made and
hence the potential near real-time data acquisition and simulation
capabilities of DT were demonstrated [16]. An interesting application
of applying real-time synchronized simulation of the production system

as a part of highly responsive and modular production control system is
proposed, named Synchro-push [22], which continuously updates in-
ventory status and performs adaptive scheduling of production orders
and transfer management in prompt response to the changes in the
production mix. Cyber-Physical Systems (CPS) are further envisioned to
help developing small and medium enterprises manufacturing appli-
cations by dividing the physical system into reusable and reconfigur-
able modules. Derived templates or modules have shown improved
design flexibility and productivity for highly-customized robotic man-
ufacturing systems [21].

Kritzinger et al. attempts to distinguish recent applications by the
level of data integration between digital and physical objects [40].
Digital Model implements bi-directional manual data flow, while Digital
Twin enables bi-directional automatic data flow. Digital Shadow only
feeds one-way automatic data flow from the physical object into the
digital object, while from digital object to physical object manually.
Based on this categorical method, majority of the investigated pub-
lications are classified as Digital Shadow and Digital Model. The case
studies that fit the definition of two-way data streaming Digital Twin
applications are scarce. Another comment provided in this literature
study is that the Digital Model helps to find particular components of a
product faster. In the context of Smart Manufacturing, desired compo-
nents of production systems can also incorporate optimal strategies to
finish manufacturing tasks. The advantages of DT are also highlighted
[16] in continuous data acquisition, automated and repeated derivation
of optimization measures and capturing of motion data, etc. Particu-
larly, communicating with DT system can access augmented data for
optimization process. For example, a use case of DT is described in a
large assembly shop floor, where it serves to predict and prevent po-
tential disturbances, anomalies, and problems to the production pro-
cedures in advance. Three kinds of data are being exchanged: real-time
perception data, production process data and production activity plan
data. These are highlighted and their linkage to resource deployment
and optimization are depicted under an event-driven assembly line
[24]. To that end, three levels of DT components need to be modelled:
element, behavior and rule, which can be interpreted as: system com-
ponents, predictive responses, and control policies.

It is identified that the future research trends on DT-driven design
and manufacturing to be: (1) Intelligent perception and connection
technology, (2) Digital twin data construction and management, (3)
Smart service analysis method based on digital twin data, and (4) More
applications on digital twin-driven PLM [18]. The data-driven approach
to Smart Manufacturing was further outlined with three essential steps:
(1) Establish networks to define problems; (2) Develop platforms for
modelling, sharing, and innovation; (3) Enact smart manufacturing
policies. A structured summary of this literature review is shown in
Fig. 1 to highlight surveyed topics regarding the digital twin concept
when identifying current research gaps.

3. Simulation environment of the digital twin

In this work, the Digital Twin is based on one of the technologies of
digital transformation, Virtual Commissioning. Current implementations
of Virtual Commissioning still require manual construction of the digital
system, definition and tuning of system components. However, the de-
velopment of industrial software solutions to Virtual Commissioning has
greatly improved the accuracy and user-friendliness of off-line pro-
gramming robotic systems and verifying control logic over the traditional
commissioning process. The Virtual Commissioning solution used to
build the virtual cell for this work was Siemens Tecnomatix Process
Simulate. In this section, system conceptual outline proposed in the au-
thor’s previous work is revisited; the construction of the virtual cell and
some useful features, such as robot offline programing, collision detec-
tion and robot reachability, are further discussed to support digital twin
predictive capabilities. Finally, event-based simulations are explored to
resolve signal-based control problems.

K. Xia, et al. Journal of Manufacturing Systems xxx (xxxx) xxx–xxx

3

3.1. System overview

At the level of system integration, this smart data-driven digital twin
implementation workflow unfolds from three aspects. First, a virtual
platform is constructed within industrial software to simulate real-life
manufacturing cell behaviors. Second, towards a real-time, two-way
implantation of digital twin, the control loop digitalization and near-
real-time data communications are furtherly realized. Third, the virtual
and physical system integration is driven by an intelligent scheduler
while training machine learning models for scheduling optimization.
This dynamic scheduler agent, termed the Digital Engine (DE), is de-
veloped as a smart process optimization tool utilizing integrated plat-
form data and applicable machine learning algorithms. To solve real-
life manufacturing problems, the virtual environment need to be con-
structed in high fidelity that able to employ technologies in simulations,
sensors, communication and computation to receive cell states and re-
flect responses to process disturbances, to which extent meet the cri-
teria of a Digital Twin [40].

The proposed system (Fig. 2) consists of: (1) Machine Learning
(ML)-based dynamic scheduling agent Digital Engine (components in
red) linked with both (2) the physical manufacturing cell (components
in orange) including sensors, PLC controllers, middleware control
components and other actuators, and (3) the virtual manufacturing cell
(components in blue) accommodated by selected industrial simulation
software, enabling the testing and commissioning of control logics and
programs to be pushed to the physical plant. The communication of the
proposed system requires information flow between three ends as in
Fig. 2. The detailed implementation of control loops and data com-
munications will be introduced in Section 4.

In the field of process system engineering, Reinforcement Learning
has been applied to better solve some challenging optimal control
problems like the dual adaptive control and more general nonlinear
stochastic optimal control [41]. Therefore, the Digital Engine is

proposed to use Reinforcement Learning with deep neural networks,
namely Deep Reinforcement Learning, to solve stochastic optimal
control problems with uncertainties from either the highly complicated
signals or processes [11]. In these real-world problems, Reinforcement
Learning has been found to outperform current other optimal control
techniques, such as the model predictive control (MPC) [42]. Im-
plementation of the Digital Engine is further described in Section 5 and
Section 6.

At the level of data integration, the proposed digital twin im-
plementation can be characterized by a data-driven approach as it
augments real-world data with virtual data to derive heuristic algo-
rithms for varied analytical use cases. The heuristic algorithms are in-
duced by data samples generated from either simulations or physical
processes and in return drive decision-makings. With the capabilities of
near real-time data monitoring and inference, manufacturing decisions
can be autonomously made by the proposed digital twin to generate
adaptive actions with statistical significances and/or empirical evi-
dences, instead of by conventional hardcoded control logics with de-
terministic conditions.

Compared to real-world manufacturing data, data generated by the
virtual model are repeatable, inexpensive and clean. For some of the
analytical models, virtual data can be utilized to show some initial re-
sults and mine some hidden relationships, as they tend to be abundant
and easier to be inferred with, given some degrees of convergence be-
tween virtual and physical data. Meanwhile, if high-dimensional and
messy real-world manufacturing data is directly used to automatically
feed into the industrial control processes as forms of short and dense
signals, they must be preprocessed and inferred to higher-level manu-
facturing knowledges, namely by semantic communications [8]. To
conclude, this work intends to provide data-driven decision-making
solutions to the current industrial applications with a high-level data
integration from virtual and physical systems.

As shown in Fig. 3, the training process for the dynamic scheduler of

Fig. 1. A structured summary of investigated digital twin literatures.

K. Xia, et al. Journal of Manufacturing Systems xxx (xxxx) xxx–xxx

4

Digital Engine is designed to be augmented by developed virtual en-
vironment and its interfaces. Training Digital Engine is proposed to
perform under three phases: (1) primary training cycles by fast iterative
low-resolution simulations; (2) virtually verification training cycles
with high-resolution simulations; (3) physical verification training cy-
cles with physical platform. Each of these training phases relies on in-
creasing data fidelity, with the primary training cycle taking place
virtually with a coarse time step, the next phase of training with a
higher fidelity simulation, and finally generating networks updated
from the physical cell. The Deep Reinforcement Learning networks are
trained through a gradient descent process, thus requiring finite
learning iterations. The importance of a learning iteration, and thus the
degree to which a resulting training sample is weighted in the networks,
is adjusted depending on the data fidelity of the training loops. In the
field of machine learning, such importance weighted transfer of Re-
inforcement Learning samples is explored and envisioned to be im-
proved by fully exploit possible similarities between different tasks
[43]. The idea of such transfer of learning is to utilize prior trained

models to resolve more specific, unexplored and furtherly complicated
datasets instead of training the large models from scratch, as past ex-
periences can inductively affect learning and performances in a new
situation. The transfer of learning has been addressed as an important
approach in the machine learning community, since this integrated
learning transfer can be facilitated by reusing of trained neural net-
works.

3.2. Construction of virtual cell

In Reinforcement Learning, smart scheduling agents must be given
an environment to interact with and learn from. The clear limitations of
performing these training cycles with a physical platform, simply for
safety reasons alone, necessitates digital simulations and a means to
validate manufacturing strategies ahead of implementation on a phy-
sical platform. The integration of the Digital Twin into the training and
testing process (See Fig. 3) provides a virtual platform where cell states
and actions can be retrieved from, in order to simulate potential

Fig. 2. Data Flow between proposed Virtual-Physical-Scheduler System Ends.

Fig. 3. Digital Engine Development with proposed Virtual-Physical-Scheduler System.

K. Xia, et al. Journal of Manufacturing Systems xxx (xxxx) xxx–xxx

5

physical outcomes and reduce potential risks on a physical counterpart.
Siemens Process Simulate provides these functions such as importing

CAD, kinematics definition and simulation, collision checking, and
teach-type robot programming. Detailed advantages of selecting this
industrial software as potential smart manufacturing system digital
twin platform are listed in Table 1. It is summarized by authors that the
advantages of Siemens Process Simulate fall into four groups of features:
(1) computer aided engineering; (2) task-specific manufacturing pro-
cess simulations; (3) data exchange enclosed in an industrial package,
where PLC and OPC servers work with live signals for process control;
(4) Ergonomics analysis. In this work, the emphasis will be put on the
first three groups of features with an exception of ergonomics analysis.
With a working knowledge of the first three groups, a functioning vir-
tual robotic cell can be easily created and defined; from which, possible
robot configurations can be derived, simulated and translated to robot
programming languages, given accurate robot calibrations and critical
frames work definition such as the Tool Center Point (TCP). These
procedures are normally referred as off-line programming.

In Process Simulate, a functional virtual cell depends on accurate
definitions of system components. While CAD models and definitions of
well-developed products (such as most industrial robot models) can be
directly retrieved from manufacturers with kinematic definitions to
ensure accurate simulation, some cell components still require manual
definition before importing to Process Simulate. For example, the ki-
nematics of an in-house manufactured robot gripper from our stage 1
platform had to be defined as in Fig. 4.

In defining the kinematics of this device, first a CAD model was
created in a CAD software such as Siemens NX, Catia or SolidWorks and
exported with all the components in an assembly folder. Process
Simulate supports importing of CAD files from almost all sources with
valid formats. As in Fig. 4a, the robot gripper was designed using Sie-
mens NX and output as an assembly of kinematic units. Second, the
kinematics of the gripper base, gear rod, connecting rod and gripper
finger were grouped as a crank, which consisted of a fixed link, input
link, output link and coupler link. As in Fig. 4b, the gripper was com-
posed with double crank mechanisms (parallelogram linkages) coupled
with a motor driving gear, which can be easily defined in Process Si-
mulate by designating each unit’s role. Third, the defined components
were grouped and linked, and their relative translations or rotations
were specified. In Fig. 4c, the diagram linking each unit specifies their
kinematic dependencies, as the relative translations and rotations can
be numerically defined by arrowing two units. Finally, the kinematic
definitions were tested by jogging the joints as in Fig. 4d. The gripper
positions and join values were configured as the OPEN, CLOSE, SEMI-
OPEN poses for simulation uses.

Beyond object kinematics definitions, the successful virtual cell

construction also requires accurate calibrations for object placement
and postures, mounting or attachment information about grippers or
any other end effector on robot ends, object collision detection to verify
there are no dynamic intrusions between objects, robot reachability
validation to see if all the path locations are within the possible con-
figured reach, etc. Process Simulate provides a simple user interface by
using the virtual cell, replicated from the physical cell, to simulate
object dimensions to detect collisions (Fig. 5a), robot path validations
with reverse kinematics calculations (Fig. 5b), and design potential
physical cell setups by smart locating objects (Fig. 5c). Benefiting from
aforementioned Process Simulate features, our stage 1 platform setup
were constructed (Fig. 6a) with a high fidelity to the physical cell
(Fig. 6b) ensuring all the robot paths are valid and safe within reachable
and collision-free regions.

3.3. Simulation of robot motions

To ensure the feasibility of proposed system, the path accuracy of
Process Simulate offline programming was investigated. Virtually pro-
grammed paths were tested on Stage 1 platform physical setup (Fig. 6
right), which includes a Human-collaborative robot Yaskawa Motoman
HC-10, the YRC1000 OEM robot controller, and a SIMATIC S7-1516 F
Siemens Programmable Logic Controller (PLC). The program generated
by Process Simulate offline programming was directly transferred to
YRC1000 and successfully interpreted by HC10 with their proprietary
Yaskawa programming language, INFORM III.

Stage 1 platform experiments (Fig. 7) were performed in the fol-
lowing procedures: (1) virtual path planning in Process Simulate; (2)
offline programming, which generates the INFORM III code within
Process Simulate platform; (3) physical experimentations with virtually
generated robot programs. Three different robot tasks were virtually
commissioned and then physically tested: pick and place, water
pouring, capping and assembly. These robot tasks were accomplished
with high precisions given correct calibrations, defined kinematics,
path locations and robot configurations. Moreover, under the option of
1:1 real-time simulation speed, the simulation and real robot programs
are executed near synchronously. However, some tuning of the simu-
lation fidelity must be attempted to reach near zero lag. Depending on
the computing performance of the PC hosting Process Simulate, a slight
latency delay might be generated when Process Simulate attempts to
calculate dynamic inverse kinematics in real-time. This latency can be
effectively mitigated by either upgrading the computing capability of
the host PC or downgrading the simulation resolution to reduce the
amount of kinematic calculations. Simulation resolution in Process Si-
mulate is controlled by simulation update intervals. While smaller si-
mulation intervals lead to computational latency, higher path planning

Table 1
Advantages of Siemens Process Simulate as a digital twin environment for smart manufacturing systems [44].

Advantages Underlined Features

Early detection of product design issues 2D and 3D sections; 3D measurements; resource modeling (3D kinematics)
Physical prototypes reduction by upfront virtual validation
Reduce cost by re-using standard

tools and facilities
Minimize productions risk by simulating

several manufacturing scenarios
Line and workstations design; static and dynamic collision detection; sequencing of operations; discrete and
continuous process simulation such as: projection of welds on parts, Gun search wizard, project arc seam, Torch
alignment, Weld gun validation, Design/modify weld gun and tooling geometry and kinematics, robot reach
test; Robot reach test; Robot smart placement; Robotic simulation editing

Early validation of production commissioning
in a virtual environment

Increase process quality by emulating
realistic processes throughout the
process lifecycle

Early validation of the mechanical and
electrical integrated production processes (PLC and robotics)

Assembly and robotic path planning and offline programming; integrated simulation using actual PLC code and
control hardware via signals exchange over OPC interface; Controller-specific command recognition; Event-
driven simulations with internal resource logicOptimize cycle times through simulation

Ensure ergonomically safe processes Human tasks simulation such as: reach envelopes; vision window; postures; auto grasp wizard; ergonomics
analysis

K. Xia, et al. Journal of Manufacturing Systems xxx (xxxx) xxx–xxx

6

precision can be obtained, and hence potentially increases digital twin
predictive capabilities, e.g. more keen object collision detections. Recall
in Fig. 3, controlled training phases under both low-resolution and
high-resolution simulations need to be performed during Digital Engine
development. The functionality of Process Simulate can easily achieve
controlled simulation resolutions depending on the needs of both
training phases. Properly reducing simulation resolutions will avoid
redundant training time and help to identify some process indications
faster. With the above experiments, it is concluded that Process Simulate
is a powerful tool for the simulation-based virtual commissioning of
robot motions and paths. Given the simulation accuracy, robot manu-
facturing virtual cell proposed in this work is based on Process Simulate
virtual environment and its communication pathways.

3.4. Event-based simulations

Time-based simulation is typically used in digital models when
planning deterministic robot operations during off-line programming.
In a time-based simulation, the sequence of events that occurs in the
cell is fixed and specified before the simulation runs. In contrast, an
event-based simulation does not require manual sequencing of events,
and instead events are determined dynamically at runtime. Event-based
controls are more useful since they are more robust against dis-
turbances, such as change of lead time, altered task, equipment failure,
etc. Zhuang et al. highlighted one of the Digital twin-based production
management and production service to be event-driven real time de-
cision-making subject to rescheduling or plan adjustments due to such
production disturbances [24]. Conventionally, control engineers had to
manually program the logic behaviors in the physical plant, which can
be time consuming processes and difficult to debug with. As controls

Fig. 4. Gripper kinematics definition in Process Simulate.

Fig. 5. Predictive capabilities of proposed digital twin.

K. Xia, et al. Journal of Manufacturing Systems xxx (xxxx) xxx–xxx

7

programs become larger, unexpected bugs such as communication in-
terlock failures occur, which can cause cascading delays or damages to
the physical cell. To reduce the risk of these problems, virtual com-
missioning using event-based simulation, also named as Line Simula-
tion or Cyclic Event Evaluator (CEE) simulation in Process Simulate,
allows control engineers to program, debug and test their signal-based
control logics.

Another advantage of adopting virtual commissioning with signal-
based control is that it simulates the system response of the virtual cell
from physical devices interactions such as PLCs and Human Machine
Interfaces (HMI) by enabling signal exchanges between the physical
devices and virtual cells. For example, operators can easily push com-
mands to the whole virtual platform using the far simpler HMI screens;
simultaneously, the same HMI screens and logics verified in Process
Simulate can be then safely implemented in the physical cell. In addi-
tion, within the virtual cell in Process Simulate, users can easily create
virtual versions of sensors and link with any signals inside physical
PLCs or HMIs using defined control logics. These control logics can be
defined either within the scope of an object, namely resource logic
behaviors, or over the whole cell, namely control modules. One ex-
ample of logic behaviors is that the robot servo signal needs to be on

before setting a master job. This precondition is usually specified by the
robot manufacturer and need to be implemented in the simulation
within the robot itself. Resource logics can then be duplicated and re-
used when another same robot model is added to the virtual cell. The
control modules are where a sequence of programs get scanned and
executed when the simulation starts. They are programed on a higher
level and can be seen as a main entrance of cell events, which resembles
PLC main programs. These completes the digital counterparts of signal-
based control systems (more details in Section 4), which is a crucial
element of automated system-level of digital twin. Beyond our Stage 1
platform, the proposed digital twin implantation is also expanding to
small and medium-sized enterprises robotic manufacturing solutions
(Fig. 8a) to create signals-based control logics inside a virtual cell
(Fig. 8b) that is easier and safer to experiment with than inside a
physical cell.

4. System control loops and communication pathways

Beyond simulation-based virtual cell construction, data commu-
nication between systems is one of the other major topics in creating an
interactive digital twin. Depending on the types of controllers and

Fig. 6. Stage 1 platform setups.

Fig. 7. Stage 1 platform experiments: (1) Virtual path planning; (2) Offline programming with near-synchronous virtual robot motions; (3) Virtual commissioning
tasks: pick and place, capping and assembly, and pouring by continuous movement.

K. Xia, et al. Journal of Manufacturing Systems xxx (xxxx) xxx–xxx

8

interacting environments in the control loop, system commissioning is
categorized as real commissioning, hardware-in-the-loop commis-
sioning, reality-in-the-loop commissioning and constructive commis-
sioning [19]. In particular, Virtual Commissioning control loops, under
the assumption of interacting with virtual environments, are classified
as “hardware-in-the-loop” and “software-in-the-loop” depending on
whether physical components such as PLCs and HMIs or their virtual
counterparts are connected to the simulations.

In this section, our stage 1 implementation of both “hardware-in-
the-loop” and “software-in-the-loop” are introduced in corresponding
to prosed data flow between Process Simulate and either a physical PLC
or a PLC simulator Siemens PLCSIM Advanced. Then, a customized ap-
plication program interface (API) with Process Simulate Tecnomatix.
NET, is designed and utilized to connect Machine Learning (ML) fra-
meworks to the virtual cell for fast offline training process. When the
ML-based scheduler is trained to be sufficiently intelligent, reliable and
robust, the scheduling agent is deployed to communicates with both
virtual cell and physical cell through a shared information hub Open
Platform Communications (OPC) server, through which high resolution
training cycles will be performed on both digital and physical cells. This
completes the proposed system data flow in Fig. 2 and training phases
in Fig. 3, and implies that proposed digital twin of production systems
can be used as an augmentation tool to train decision-making in-
telligence with significantly reduced safety and cost concerns.

In this digital twin, the fusion of data from physical and virtual
sources is proposed to be realized in two manners. First, with the phi-
losophy of Virtual Commissioning being the capability to virtually va-
lidate system engineering, an intuitive data fusion occurs in a sequen-
tial manner, which means the digital twin, as a surrogate system, to
upfront check system data resides in object dimensions, robot dy-
namics, signals, control logics and executed programs before they flow
into the physical system implementations. This approach is described in
this work as an importance-weighted data integration process (see
Fig. 3). Second, beyond the conventional virtual commissioning ap-
proach, our proposed system, which is driven by machine learning
modules, enables a pathway to convert unprocessed, complex and un-
clean real-word data to semantic communications among PLC control
logics. The classification and pattern recognition capabilities of ma-
chine learning algorithms will be further utilized in the industrial de-
cision-making process in a timely manner. To that end, specific data
inference models will need to be developed, trained and validated by
different datasets that can be potentially amplified by virtual data. This
manner of data fusion by hybridizing physical and virtual datasets for
specific manufacturing processes will be further pursued in our sub-
sequent work, which is enabled by the data communication scheme in
this proposed digital twin implementation.

4.1. Physical control loop and its digital counterpart

The main industrial control loop in a physical cell is administrated
via a PLC, which centralizes all the control logic flow between lower
level components. Advancements in control paradigm typically ne-
cessitate reworks in current physical configurations, including redesgin,
rewiring and reprogramming of physical PLCs [22]. To cope with this,
we implement a similar philosophy of cyber-physical system based
modular factory for the goal of easily customizable and reconfigurable
control modules [24]. To evaluate control feasibility and effectiveness,
control scheme simulations as a digital counterpart of the physical
control loop need to be developed. The use case of control digitalization
can be the closed-loop optimizations for shop-floor mangement and
control services [24].

Our physical cell components of stage 1 platform (Fig. 6b) include
sensors, actuators, middleware controllers and a S7-1500 PLC. Mid-
dleware controllers are chosen to control specific acurators, end effec-
tors or lower-level control objects, for example, YRC1000 controller is
the master of the HC10 robot. The communication between S7-1500
and YRC1000 robot controller is achieved through a Siemens CP1616
PROFINET board. Siemens TIA Portal as the automation software plat-
form to program Siemens PLCs, including modules asWinCC and Step7,
can also create HMI screens and allow access to the OPC server from a
PC. The physical control loop over a robot is presented in Fig. 9a.

During the control process, downloaded programs are executed by
PLC cyclically scanning and compiling sequenced rungs, usually as
ladder diagrams. When these programs are directly compiled and tested
on physical setups, their debug process is often difficult and time con-
suming, as the PLC is potentially giving or receiving faulty commands
to the physical system. Hence, Virtual Commissioning provides a
methodology that can interact with the digital twin not only by per-
forming process simulations, but also by virtualizing the control loops.

The control loops of Virtual Commissioning components are de-
scribed in Fig. 9b. By which means, programmers are able to expect the
system responses from the digital twin by downloading untested logics
to either physical PLCs (“hardware-in-the-loop”) or the simulated PLC
(“software-in-the-loop”). The “hardware-in-the-loop” implementation
consists of the following components: physical PLC, OPC server and
OPC clients. OPC server/client pairs are software interface standard
enabling PC to communicate with industrial hardware devices. OPC
server converts the hardware communication protocol used by PLCs to
OPC protocols. OPC server is accommodated in S7-1500 and can be
accessed by OPC clients such as Process Simulate, which connects di-
rectly to digital cell signals. On the other hand, a “software-in-the-loop”
implementation in Fig. 9b presents a software-only control loop that
includes the virtual counterparts of the physical components: simulated
HMI, PLC simulator, OPC server and OPC clients. The difference be-
tween “software-in-the-loop” and “hardware-in-the-loop” lies in

Fig. 8. Collaboration with Nephron Pharmaceuticals on their robotic manufacturing application.

K. Xia, et al. Journal of Manufacturing Systems xxx (xxxx) xxx–xxx

9

whether simulated PLC and HMI are used instead of physical PLC and
HMI. “Software-in-the-loop” excludes the usage of hardware compo-
nents in the loop of two-way communications between physical and
digital counterparts by routing the signals through the OPC server and
the PLC simulator, where the programs can be executed within a soft-
ware environment that matches the behavior of a real PLC. By this
route, control safety and feasibility can be evaluated in the virtual en-
vironment before downloading to physical PLC. Hence, the digital
counterpart of the control loops is achieved by simulating both PLC
functions in PLCSIM Advanced and Human Machine Interfaces inWinCC
Runtime. Therefore, proposed digital twinning is realized not only in
system modelling and simulations, but also in the digital transformation
of control and connection pathways, which completes the definitions of
Digital Twin [40].

4.2. Integrating the digital engine

The interface structure between digital and physical twin has been
discussed thoroughly at this point. Based on this, our work extends the
communications to an AI-driven scheduler Digital Engine, where AI al-
gorithms such as Deep Reinforcement Learning and Machine Vision can
be trained and integrated into both digital and physical twins, so that
the trained dynamic scheduler can be reliably working on both ends.
The language that is being used to develop Digital Engine is selected to
be Python, where there are many AI frameworks built by data scientists
and imported and deployed with limited data science expertise re-
quired. To enable communications between customized programming
ends and digital platform in Process Simulate, a pipeline streaming script
(Table 2) is created using the Process Simulate API named Tecnomatix.
NET, which provides an object-oriented programming interface with
Tecnomatix products backend database. It is developed to interact with
products as Process Simulate by accessing all the defined objects and
operations in virtual cells, creating new objects and operations, con-
trolling playback of simulations, creating customized commands in the
user interface, etc. Particularly, in our application, the ability to re-
trieve online signals and program control modules are essential because
the proposed digital twin of production process communicate through
live signals on OPC server. As will be discussed in Section 5, the system-
embedded manufacturing intelligence needs to be initially derived from
real-time monitoring over the virtual cell, and then later apply the
identical interface to the physical platform. Thus, the online signals are
preferably fed from the Process Simulate Line Simulation Mode, where

event-based simulations can be controlled by signals from PLC/PLCSIM
in a timely manner.

In Table 2, two interfaces from the Process Simulate API to the Digital
Engine are developed, either feeding the status data from Standard
Mode or Line Simulation Mode. In Process Simulate, depending on
whether the simulation is performed under Standard or Line Simulation
Mode, interaction with the digital twin operates differently. Under
Standard Mode, since plant signals are not evaluated, the Digital Engine
can only access plant state indications from object-oriented database
backends. For example, if object collisions are to be detected, one in-
dicator will be the distance between geometric centers of two objects.
Although these plant state indications from the database backend can
easily obtain an omniscient perspective of the digital twin, they are not
directly sensible or accessible from the physical cell without usage of
additional monitoring techniques, which means they are not ideal
system indicators that can convey a convergence between the digital
and physical twins. Hence, training the algorithms under Standard
Mode appears to be less meaningful, as physical counterparts of these
real-time knowledges are at best partially observable and cannot be the
common basis on which decisions are made for both virtual and phy-
sical cells. Moreover, under Standard Simulation Mode, only scheduled
operations can be set on simulation player to predict system responses
(such as object collisions) by playing the preset simulations. Instead of
simulating manually selected operations in a predefined sequence, each
event-driven Line Simulation starts only one infinite time-based simu-
lation and activate operations based on events, such as signal transi-
tions triggered by HMI inputs. This is more closed to the environment of
real-life manufacturing cells. For the above two reason, the authors
choose to focus on developing signal-based smart dynamic scheduler
under Line Simulation Mode.

Line Simulation Mode with cyclic event evaluator accurately re-
plicates how the cell interacts with the PLC by cyclic evaluating a se-
quence of control modules (resemble PLC ladder programs) on a scan
frequency. The scan frequency is a parameter in physical PLCs to de-
termine the time intervals between which the sequence of ladder logics
is repeatedly executed. Equivalently, in Process Simulate Line
Simulations, simulation time interval, or update interval, is configured
to emulate this behavior of physical PLCs, which is adjustable down to
10ms, and up to multiple seconds. Output signals are evaluated by
control modules only once in every time interval, by which means cell
status signals, such as collision indicators, are output with a certain
scan frequency. Scan frequencies determined by the choices of time

Fig. 9. Digitalization of control loops in physical and virtual robot platforms. (a) Robot signals hardware control loop. (b) Virtual cell control loops by Hardware-in-
the-loop (PLC as controller) and Software-in-the-loop (PLCSIM as controller).

K. Xia, et al. Journal of Manufacturing Systems xxx (xxxx) xxx–xxx

10

intervals will potentially affect the simulation results, as the sensible
cell status, in the form of signals, are only calculated and updated once
every scan cycle. Hence, transient rising edge and falling edge in a short
signal transition that lasts within a single scan cycle will not be detected
by the control modules and PLCs. For sufficiently long-time intervals,
this can cause problems with collision detection and motion accuracy.
As an example, if an object moves through a transient collision that lasts
less than a time interval, then the collision detection engine will not
recognize this collision. Sufficiently small time intervals will avoid this
problem, at the expense of computing performance as higher simulation
resolution requires substantially more processing power. This is why we
need to adjust the time intervals for low and high accuracy training
cycles described in Fig. 3. Many low accuracy training cycles can be
performed very quickly by a high time interval, and then higher re-
solution trainings can be performed later, with a lower time interval. In
this interface, a medial scan time interval of 100ms is selected to
perform the event-based simulations under the assumption that dis-
turbances or signal transitions that last within 100ms can be ignored.
The scan time interval can also be specified as needed either manually
in Process Simulate or via the Process Simulate API by coding.

This streaming program aims to create an agile and repetitive
training environment that can easily set/reset simulations between
training episodes and enables a two-way data pull/push mechanism
over a pipeline between C#. NET framework and python script. The C#
pipeline end is pushing plant status from Process Simulate API while
listening on Digital Engine pipeline end for a command based on current
plant status. Meanwhile, the Digital Engine pipeline end is listening on
the pipe until receives current signals and previous simulation results.
Trained AI model is able to choose the optimal operation from the ac-
tion list as the command by calculating each action advantage and store
the previous simulation results in a buffer memory for future training
use. Training AI models will be furtherly discussed in Section 5. As
presented in Table 2 and Fig. 10, under Line Simulation Mode, the
Process Simulate API and its interface with Digital Engine (DE) to select
actions based on feedback signals are cyclically programmed as fol-
lowing:

1) Virtual PLC initial scan
2) Send robot operations and live signals to DE
3) Wait for DE to store simulation results and train ML models
4) Wait for DE to command the best operation at the current status
5) Receive operation scheduler orders from DE
6) Generate virtual PLC programs and play simulation to update virtual

platform
7) If an episode is finished, end the current line simulation to reset to

the initial plant status

4.3. Remote human interface via OPC server

Although adaptive intelligence demonstrated its control capability
for process that follows a sequence of predefined steps in a fairly con-
trollable environment, human still remain superior at adapting un-
foreseen changes in complex environment [23]. Supporting cognitive
“social human-in-the-loop” is identified as a manufacturing control
architecture for future smart factories [45]. Currently at an early stage
of manufacturing intelligence, human interventions must be reliably
enabled for automation systems considering limited prognostic knowl-
edges of unexpected incidents such as equipment failure, or manu-
facturing strategy changes ordered from multiple stakeholders. Besides
the characteristics such as autonomy, fully automation and proactivity,
it was determined by Mittal et al. that context awareness, interoper-
ability and compositionality are more commonly used to classify a
system as a Smart Manufacturing system [46]. The integration of het-
erogeneous and independent systems as a network for a common goal
of robustness, performance or cost is also defined as “System-of-system
engineering” [47]. Supporting technologies such as cyber-physicalTa

bl
e
2

St
re
am

in
g
sc
ri
pt
be
tw
ee
n
Pr
oc
es
sS
im
ul
at
e
A
PI
an
d
D
ig
ita
lE
ng
in
e
in
on
e
tr
ai
ni
ng

ep
is
od
e.
Th
e
Pr
oc
es
sS
im
ul
at
e
pe
rf
or
m
sd
iff
er
en
ts
im
ul
at
io
ns
un
de
rt
w
o
m
od
es
:S
ta
nd
ar
d
M
od
e
w
ith

tim
e-
ba
se
d
si
m
ul
at
io
ns
an
d
Li
ne

Si
m

M
od
e
w
ith

ev
en
t-b
as
ed

si
m
ul
at
io
ns
.H

en
ce
,c
yc
lic

da
ta
ex
ch
an
ge
s
vi
a
A
PI
ar
e
di
ffe
re
nt
ly
im
pl
em

en
te
d.
M
ea
nw

hi
le
,t
he

D
ig
ita
lE
ng
in
e
ha
s
pi
pe
lin
e
en
d
to
ex
ch
an
ge

da
ta
w
ith

A
PI
an
d
A
Im

od
el
to
co
nt
in
uo
us
ly
tr
ai
n
th
e

sc
he
du
le
r.

Pr
oc
es
s
Si
m
ul
at
e
Te
cn
om

at
ix
.N

ET
D
at
a
Fl
ow

Pi
pe
lin
e

Di
gi
ta
lE

ng
in
e

St
an
da
rd

M
od
e

Li
ne

Si
m
M
od
e

Pi
pe
lin
e
En
d

A
Im

od
el

1.
Cr
ea
te
a
sn
ap
sh
ot
of
in
iti
al
st
at
us

1.
Co
nt
ro
lm

od
ul
e
in
iti
al
iz
at
io
n
(r
es
et
en
tr
ie
s
an
d
pe
rf
or
m

in
iti
al
sc
an
)

Li
st
en

on
pi
pe
lin
e

Sa
m
pl
e
bu
ffe
r
m
em

or
ie
s
an
d
tr
ai
n
A
Im

od
el

Lo
op

un
til

ep
is
od
e
fin
is
he
d
si
gn
al

2.
Pu
sh
pl
an
tt
im
e-
ba
se
d
si
m
ul
at
io
n
st
at
us

2.
Pu
sh
pl
an
t
si
gn
al
-b
as
ed

st
at
us

Li
st
en

on
pi
pe
lin
e

3.
Pu
ll
cu
rr
en
t
st
at
us

an
d
pr
ev
io
us

si
m
ul
at
io
n
re
su
lts

fr
om

pi
pe

Fe
ed

cu
rr
en
ts
ta
tu
st
o
A
Im

od
el
.M

em
or
iz
e
la
st

si
m
ul
at
io
n
re
su
lts

4.
Pu
sh
op
tim

al
op
er
at
io
n
to
pi
pe
lin
e

Ev
al
ua
te
al
la
ct
io
n
va
lu
es
fo
r
op
tim

al
op
er
at
io
n

5.
Pu
ll
op
tim

al
op
er
at
io
n
co
m
m
an
d
fr
om

pi
pe

Li
st
en

on
pi
pe
lin
e

Sa
m
pl
e
bu
ffe
r
m
em

or
y
an
d
tr
ai
n
M
L
m
od
el

6.
Se
to
pt
im
al
op
er
at
io
n
re
la
te
d
pr
og
ra
m
;p
la
y
fo
rw
ar
d

si
m
ul
at
io
n
to
up
da
te
pl
an
t
st
at
us

6.
Se
tP
LC

ou
tp
ut
si
gn
al
s
to
ac
tu
at
or
s
an
d
tr
ig
ge
r
pr
og
ra
m

ex
ec
ut
io
n;
an
d
up
da
te
pl
an
t
st
at
us

7.
A
pp
ly
sn
ap
sh
ot
if
ep
is
od
e
fin
is
he
d
si
gn
al
tr
ue

7.
Re
se
tc
on
tr
ol
m
od
ul
es
an
d
si
m
ul
at
io
n
pl
ay
er
if
ep
is
od
e

fin
is
he
d
si
gn
al
tr
ue

Re
pe
at

K. Xia, et al. Journal of Manufacturing Systems xxx (xxxx) xxx–xxx

11

systems and Industrial Internet (IIoT) are emphasized in this context. In
this work, interfaces developed in proposed implementation also con-
cern remote human interventions and monitoring over automated sys-
tems following current industrial practices and protocols.

Typically, in automation systems, safety logics and signals such as
emergency stops designed to immediately terminate machine opera-
tions are not preferably administrated by users. As they are engineered
to effectively prevent system damage, one should not allow their re-
mote access and always remain the same settings by original equipment
manufacturers. As network delay and potential unreliability raise some
potential concerns. For this reason, the remote access applications are
urged to exclude any signals and logics related to safety. Such as, the
emergency stop must always only rely on a local physical HMI machine,
even if it is possible to remotely control e-stop buttons. For a single
robot system, external robot signals that operators should be safely
allowed to interact with are: External Servo on/off, Safety Speed
Enable, Play/Teach Mode Select, Master Job Call, External Start,
External Hold, Job Start, Robot Return Home, etc. Hence, a local

customized virtual HMI is designed (Fig. 11a) using SIMATIC HMI si-
mulator within TIA portal. Each of the robot signals is mapped to a
memory registered inside OPC Server that can be written to and read
from by HMI simulator. To enable a remote-control pathway, OPC
server is directly accessed online by extending a python implementation
of OPC client FreeOpcUA [48]. A PC end GUI is designed as Fig. 11b.
Connecting these signals with an online space can serve as an initiative
IIoT platform application available to different user ends. Further ef-
forts will be made by our subsequent work to provide features such as
smart interactions, enhanced cyber security with hierarchical log in and
management authorities, and online database maintenance. For in-
stance, concerning an application of automation security, the physical
HMI should override changes made by any HMI simulator locally or
remotely. Meanwhile, a local HMI should override any changes made
by remote HMI.

Upon completion, proposed digital twin system will expand to the
integration of autonomous decision-making with secure remote human
interventions. By enabling a local scheduler and web-based access to

Fig. 10. The virtual cell interface with Digital Engine under Line Simulation Mode.

Fig. 11. Human intervention interfaces.

K. Xia, et al. Journal of Manufacturing Systems xxx (xxxx) xxx–xxx

12

the physical cell, stakeholders will be able to design, simulate, program,
and control their own distributed virtual cells, followed by remote in-
tegration of safely commissioned programs in physical cells. At a
manufacturing intelligence level, integrated programs will need to be
controlled and administrated by adaptive scheduling algorithms given
real-time plant predictions.

5. Deep Reinforcement Learning augmented by digital twinning of
smart manufacturing systems

The proposed smart manufacturing systems seek to provide adap-
tive, intelligent strategies to manufacturing practitioners in response to
environmental changes, policy changes, system prognosis, and optimal
solution identification. The success of developing such explorative al-
gorithms highly depends on the trial expenses of applications. Due to
minimum trial expenses, artificial intelligence by Deep Reinforcement
Learning (DRL) initially succeeded in Atari games through a proper
design of reward and deep networks [49]. Efforts are also made in
robot-sensor feedback control systems [50] and became well-known
when well-trained AlphaGo agent defeated the human expert Go Player
[51].However, for large scale manufacturing processes, training such
intelligent scheduler by system commissioning on manufacturing plants
could be costly and dangerous, considering the expensive system data
collection process and the complexity of a manufacturing plant leading
to more demanding designs of the reward-prediction mechanism. This
work and its subsequent efforts aim to develop such a smart agent with
the augmentation of Digital Twin technologies, including simulation,
sensor, industrial control, and real-time communications. Therefore,
the role of proposed digital twin in bringing machine learning algo-
rithms into the industrial manufacturing optimization process is sig-
nificant. Essentially such adaptive learning not only occurs from posi-
tive experiences but also from failed experiences, for which reason, a
digital twin, as a surrogate system, can ensure the affordability from
system-level trials, tunings, and adaptions. More importantly, this di-
gital twin is ready to be deployed into industrial process due to an ideal
compatibility of Siemens software and hardware products. With de-
monstrated fidelity between the digital and physical twins, derived
manufacturing intelligence on the digital twin can be easily reused and
transferred to learn real-word problems.

This section discusses the implementation of a smart scheduler
during manufacturing process, where high-level task scheduling pro-
blems are usually addressed. First, the use cases of dynamic scheduler
are proposed. Then, applicable algorithms are reviewed in the Deep
Reinforcement Learning community. At last, three performance in-
dicators are introduced to interpret the training efficiencies.

5.1. Artificial intelligence driven operation scheduling

Deep Reinforcement Learning control on robots can be either low-
level or high-level. The low-level controls are deployed over small
controllable units such as joint motors, while high-level controls can be
the scheduling of lower-level actions. For example, training robot
movement to accomplish low-level tasks from scratch with sparse re-
wards were explored with Scheduled Auxiliary Control [50], where the
agent has a set of general auxiliary tasks to be trained to perform a task
in the presence of reward signals. However, training robots from
scratch such as opening a door or grabbing an object for manufacturing
applications appears to be unnecessary and time-consuming. The
scheduler developed in this work aims to train robot to accomplish
higher-level manufacturing tasks by autonomously planning a sequence
of lower-level actions, which thanks to Virtual Commissioning, can be
directly programmed inside the constructed virtual cell without inter-
mediate translations of programming languages.

Fig. 12 describes some use cases where this smart scheduler de-
monstrates its applicability during a continuous real-time optimization
process: First, the scheduler is able to accomplish the task by different

strategies. Here, a manufacturing strategy is referred to a path towards
manufacturing task completion. The scheduler is trained to cognize
multiple strategies to achieve the goal. Second, the scheduler shows
robustness due to the abnormalities during the process. Case 1: when
operators decide to change the current operation, scheduler will alter
the subsequent operations accordingly to ensure the successful ac-
complishment of the task. Case 2: when a system abnormality disables
the current operation, scheduler is able to switch to another strategies
to ensure the rest of the task is accomplished as concurrent human
interventions can be made to fix the system abnormality. Case 3: When
an inevitable system failure exists but not causing any cascading effect
on the sequential operations, the scheduler is able to identify and skip
the failure part while still working towards its original sequence.

5.2. Related work

The manufacturing knowledge consists mainly of complex, un-
processed, high-dimensional, and sensory inputs. Although
Reinforcement Learning is not widely applied in manufacturing [52],
the family of DRL has evolved through the past decade to handle non-
static input data. One of the most fundamental DRL algorithms is Deep
Q-Networks (DQN) [53]. It is a value-based method where all the ac-
cumulated future rewards (action values) are estimated by neural net-
works based on input observations. The estimation networks are trained
either instantly after each interaction with the environment (online) or
by buffered experience replay mechanism. A major drawback of natural
DQN is that its difficulty to converge caused by dynamic learning tar-
gets and instability caused by its sensitivity to hyper parameters. The
influence of memory buffer size to approximate convergence of dif-
ferent DQN reward functions was discussed and experimented [54].
While a default value of 10e6 is used in DQN community, the results
show that for tabular function representations, a smaller buffer size
results in a faster convergence rate as each state-action pair is revisited
infinitely many times. Prioritized Experience Replay (PER) [55] is
proposed to prioritize the memories in the buffer based on their tem-
poral difference errors, which means that the more “surprising” the
predictions are, the more likely it is that they will be sampled to train
the networks. PER accelerates DQN convergence at an additional O
(nlogn) memory inquiry cost if an advanced data structure, such as sum
tree, is implemented as the memory buffer. Proper design of reward
function is also critical to the training process. An unbalanced memory
buffer dominated by single data distribution will result in a lack of
exploration and finally trapped at a local minimum under one strategy.
Double DQN [56] is another successful attempt to increase the stability
of training process as it proposed to train evaluate network based on the
decision made by itself. This will overcome the Q value overestimation
caused by the difference between target and evaluate networks. Dueling
networks proposed a method to separately estimate the value of states
and action advantages [57]. This is particularly useful for model-free
Deep Reinforcement Learning where learning across actions can be
generalized at each state. Furthermore, although value-based methods
such as DQN are qualified to handle high-dimensional observation
spaces with discrete action spaces, their capabilities are limited when
the action spaces are high-dimensional or even continuous, which
causes countless combinations of strategies and significant difficulty to
explore efficiently. To use DRL in continuous action domains, Deep
Deterministic Policy Gradient [58] was designed with an Actor-Critic
network system, which is featured as policy gradients.

5.3. Training Deep Reinforcement Learning agents with developed digital
twin system

As a fundamental member of the Deep Reinforcement Learning fa-
mily, the Deep Q-networks (DQN) training process aided by proposed
digital twin is described in Fig. 13. The sections represented in blue
consist of the software system accommodating the digital twin

K. Xia, et al. Journal of Manufacturing Systems xxx (xxxx) xxx–xxx

13

including Process Simulate, the backend database and Process Simulate
API. The DQN based agent in red, namely the Digital Engine, acquires
simulation results from Process Simulate, which consists of an action list
from robot program inventory and plant sensor signals before and after
simulation for the operation chosen by the agent.

Once the descriptive data flow into the Digital Engine system, a
reward r is calculated by user-defined a reward function and con-
catenate with the currently simulated action a, signal state before the
simulation s and after the simulation s_ to form a memory transaction
s a r s(, , , _). If not implementing online training, this transaction is
stored in a memory buffer as a future training sample. Through DQN,
the estimated Q-values of all state-action pair s a(,) can be calculated as
the prediction for cumulative future rewards if the current action a is
taken, by which numerically representing the action advantage of the
action a at the current state s. Target Q-values, as the training label for
the estimated Q-values, are the summation of reward r in current
transaction and the Q-values estimated at the next state s_. While the
estimated Q-values are directly obtained by Q-networks given the
current state s. The backpropagation algorithm trains the network by
minimizing the prediction error between estimated Q-values and target
Q-values. Implementing memory replay mechanism, samples are taken
randomly from the memory buffer to train the networks by back pro-
pagation after the network estimates Q-values and calculates target Q-
values. The DQN training process initiates with randomly generated Q
network values and take completely chaotic actions, which is called

random exploration, to create buffer memory with transactions. As the
training iterations (or episodes) proceed, probability of exploration is
programmed to gradually decrease, and the agent is expected to make
its own decisions as the backpropagation is tasked to minimize the Q-
value prediction errors by tuning the weights and biases between each
neuron layers in the Q-networks. Despite moving training targets
sampled from the constantly updated buffer memories causes some
convergency difficulties, it has been proved that given enough itera-
tions and consistent feedback rewards, DQN eventually converges and
able to stably make optimal decisions drive by the highest Q-values.

5.4. Performance indicators

One difficulty of implementing DRL on multiple applications is that
the prior work is hardly duplicable on environment that are not ex-
perimented on before. The success in one platform remain only limited
empirical values in completely new applications. For example, Natural
DQN as an algorithm with multiple combination of hyper parameters,
researchers will need to find a relative optimal behavior from at least
parameters as reward function, action numbers and dimensions, feature
numbers and dimension, network architectures, learning rates, reward
decay rate, greedy policy behavior, target net update frequency, buffer
memory size, training batch size, etc. If more advanced algorithms were
included to improve data efficiency, the parameter list extends even
longer, where each of the parameters can be sensitive to the training

Fig. 12. Using Reinforcement Learning as dynamic scheduler to promptly respond to manufacturing process abnormalities.

Fig. 13. DQN-based scheduler offline training process.

K. Xia, et al. Journal of Manufacturing Systems xxx (xxxx) xxx–xxx

14

process. This requires expert experiences from data science. Therefore,
it is needed to find general performance indicators that evaluate se-
lected parameters to interpret the training procedures for different
manufacturing applications. For instance, low-level robot tasks [50]
uses the growth of intermediate Performance Indicator such as cumu-
lative rewards to evaluate the learning speed, while the learning pro-
cess of Atari games is directly recorded by each game scores earned
[49]. The following performance indicators are proposed both from
intuitive process evaluations that can be observed by manufacturing
practitioners as well as indicator of algorithm performance that can be
interpreted by data scientists:

Performance Indicator 1: The number of actions taken to
complete the manufacturing task in each episode. Given the fact
that the shortest route to finish a manufacturing task takes n scheduled
robot operations. However, due to constantly introduced interruptions
and random exploration mechanism during training, the agent initially
takes a lot more than n steps to finish a task episode in most of the
training episodes. As the agent trained to be smarter, the model is ex-
pected to predict action values, select the action with highest Q-value at
the current state and generally decrease the number of wrong moves.
Given enough training iterations, steps per task episode converges to
the minimum number needed (n steps) despite the constantly in-
troduced disturbances.

Performance Indicator 2: The total rewards earned during one
task episode. Depending on Performance Indicator 1, Performance
Indicator 2 is upper bounded by the maximum rewards can be earned
when a global optimal strategy is reached with a minimum of n moves
without any disturbance. As training continues, at each step t , the agent
is expected to make an optimal move at

* following the well-trained
optimal policy * to earn maximum rewards +r s a s(, ,)t t t* 1 . The optimal
policy * maps the current state st to the optimal action at

*. Hence,
Performance Indicator 2 will converge to the maximum accumulated
rewards by a discount factor despite all the possible disturbances.
This indicator can be formed by a Bellman optimality problem for es-
timating a max expected rewards accumulation V s()0

*
(namely the value

function) from the max Q-value given an optimal policy * and the
initial state s0 of a Markov decision process:

= =
=

+{ }V Q E r amax |s
a

s a
t

n
t

s a s t s() (,)
*

0
(, ,) ()

*

s
t t t t0

*

0 (0)
* 0 0 * 1

(1)

Where =1 for this performance indicator to directly record the
earned reward summations without the effects from stepwise decaying
of reward accumulation;at s()

*
t as the optimal policy mapping is

followed.
Performance Indicator 3: Q-value prediction error/loss.

Performance Indicator 3 is an intermediate evaluator to indicate how
good the implemented DQN as the optimal policy * is trained and how
accurate the Q-value predictions are. Since the buffer memory keeps
updated with new transactions, sampled target Q-values keep changing
accordingly. Hence Performance Indicator 3 is not constantly de-
creasing since the agent given new state that is never explored before.
In these cases, its prediction error suddenly increases and will take
some time to decrease before the new transaction stored, sampled and
trained by Q-networks. However, sufficiently trained agent should have
explored all the possible states (in many applications this is not even
possible) and Performance Indicator 3 will stably remain as a small
positive value despite all the constant disturbances. Given an inter-
mediate state st , an optimal policy * derived from the optimal Q-value
Q* evaluated by Q-networks, and the reward r earned by scheduling an
optimal action at from the policy *, the prediction error/loss L at any
step t is defined, and then used as an objective function in back-
propagation:

= = ++ + +()L Q Q r Q Q()target prediction s a s s a s a
2

(, ,) (,)
*

(,)
* 2

t t t t t t t1 1 1 (2)

Where + +at s1 ()
*

t 1 , at s()
*

t as the optimal policy mapping is followed

at all the steps requiring decision-makings by Q-value estimations.

6. Case study

In this section, a case study is shown to train robots virtually to
accomplish adaptive stacking tasks sequence collaboratively with si-
mulated proximity sensor signals. The trained scheduler is expected to
drive the virtual PLC to autonomously select robot program sequences
based on virtual signal feedbacks, including proximity sensor signals
and robot signals. First, the virtual cell is constructed and used to
generate alternative robot programs for the scheduler to select from.
Virtual signals connected to the virtual cell are scanned through virtual
PLC control modules under Process Simulate line simulations. Then,
these signals are exported to the Digital Engine as process indicator to
train the scheduler through a properly defined reward function. The
primary training cycles proposed in Fig. 3 use the Process Simulate API
(described in Section 4.2) considering a minimum involvement of the
hardware and OPC server is preferred for the safety and power con-
sumption at the primary training cycles. At last, some preliminary
training results using different algorithms and exploration strategies are
presented. As a result, the Digital Engine primary training cycles are
performed on Digital Twin system constructed by the methodologies
introduced in Section 3 and 4.

6.1. Low-level offline robot programming using the digital twin

The procedures of low-level robot offline programming for a con-
ceptual robot assembly line are presented in Fig. 14. The virtual
counterpart (Fig. 14a) of the physical cell (Fig. 14b) is firstly configured
and calibrated with the methodology described in Section 3.2. Then
robot motions and paths (Fig. 14c) are programmed as described in
Section 3.3. During this step, collision-free robot movements and
complete path reachability can be verified within the virtual environ-
ment.

Then, by creating an event-based simulation, the logics enabling
two robots to collaboratively pass on the manufactured parts are pro-
grammed for this case study. This event-based logics for two robot
collaboration are programmed following these steps: (1) the HC10
(robot in white and blue) is waiting for the GP8 (robot in solid blue) to
finish the robot programs where the part is delivered to the interchange
location AND the gripper of GP8 at the CLOSE pose indicating part
gripped by GP8. (2) Only if both signals are true, HC10 sets its gripper
to CLOSE to grip the part. (3) Then HC10 sends a signal to tell GP8 to
set its gripper to OPEN to let go the part and move out of the way. (4)
When the GP8 moves to its working pose AND HC10 gripper is at
CLOSE pose, HC10 moves forward to its next program to place the
gripped part. This event-based programming can take a lot of trials and
errors in the physical cell, however, by the aid of proposed system-level
digital twin, the programming, validation and debugging processes are
significantly less trivial. These event-based programs are tested in the
physical cell to validate the success of robot collaboration tasks
(Fig. 14d).

Assume the assembly task is to pick up parts from 8 different part
pools and assemble at 8 locations, at least 64 different combinations of
aforementioned event-based robot programs are needed in robot pro-
gram inventory to provide enough assembly strategies for adaptive
system intelligence. System-level of decision-making intelligence also
requires real-time sensory feedbacks before the signal based logical
evaluations in PLCs. In this case study, the proximity sensors (signal
indicated by green or red in Fig. 14e) are set up at each location to
indicate the pick-and-place operation status and provide the feedback
to the Digital Engine. By this setup, descriptive cell states are available
to us in the form of live sensor signals that are consistently accessible
both virtually and physically. With the proximities of parts to the de-
sired locations, a reward function is shaped such that real-time inputs
from readable sensor signals are used to evaluate all the action

K. Xia, et al. Journal of Manufacturing Systems xxx (xxxx) xxx–xxx

15

advantages towards the accomplishment of the assembly task (Fig. 14f).

6.2. Training dynamic scheduler for digital engine

Since our low-level robot actions can be simplified as pick and place
operations, one can correlate the success of an operation with the
transition of the virtual proximity sensor signals. The identical rea-
soning can later be duplicated in physical cells with real proximity
sensors. Specifically, if both proximity sensors at pick and place loca-
tions value changes, it indicates the current action are performed suc-
cessfully without any interruption. If only the sensor at pick location
changes, it is likely because the action started but did not successfully
finish or got interrupted. If neither of these two signals changes, it is
potentially caused by the part not being ready or safety alerts resulting
in operation initiation failures. The safety alerts can be predictively
generated from detected collisions or unreachable robot locations
during the simulation. With the above reasoning, the following reward
function for a state transition, that is from current state s taking an
action a to next state s_, is defined as:

=
+
+r

if action a simulation comple es without interruption
if action a simulation results in interruption or abortion
if action a simulation results in safety alert or bad decision

_
2; t
1;
1;

s a s(, ,)

The goal of Deep Reinforcement Learng algorithms (DRL) is to
outperform human decision-making on different applications by an
autonomous data-driven approach to stochastic process control pro-
blems. In particular, Markov decision processes without explicit state
transition probabilities are usually solved by Reinforcement Learning.
Therefore, during a training process, decision-making performance can

be divided by a probabilistic region of random selection level and a
human control level, which can be modelled by state transition under
partly random and partly under the control of a decision maker in a
Markov Decision Process. Decision intelligence is expected to be
achieved at the convergence state of optimal human control perfor-
mance level. In this application, we are using three Performance
Indicators from Section 4.3 and these two control levels, as differently
shaded in Figs. 15 and 16, to reflect DRL training states.

Two algorithms are implemented in this task, Natural Deep Q-
Learning [53] and Double Deep Q-Learning [56]with a Prioritized Ex-
perience Replay (PER) [55]. The implementation of PER starts learning
later than natural DQN did since it only starts training when memory
buffer is filled up. This is due to the fact that it implements a sum-tree
based prioritized search algorithm. It starts with filling the buffer
memory with random transitions and then constructs a sum tree with
all the temporal difference error of the transitions, which is used to
evaluate transaction training priorities. When memory is full, the agent
samples from it with the principle of the transitions with higher priority
(means more prediction error) get more chances to be sampled and
trained. Meanwhile, double DQN helps to solve the overestimation of Q
values by Natural DQN caused by a greedy policy. Double DQN esti-
mates the Q value of next state as a result of the same action that will be
taken at current state, instead of directly select maximum Q value at the
next state. Double DQN has been proved to accelerate DQN con-
vergency by improving the exploration mechanism while PER improves
the training efficiency by smarter data exploitations.

In this case study of the robot assembly cell, the shortest route to
finish the task, namely Performance Indicator 1, takes 8 robot opera-
tions. The maximum accumulated reward can be earned during one
task episode, namely Performance Indicator 2, is +16 when a global

Fig. 14. Low-level offline robot programming workflow and the physical verifications.

K. Xia, et al. Journal of Manufacturing Systems xxx (xxxx) xxx–xxx

16

optimal policy is reached with 8 operations with each operation valued
a reward of +2. Given adequate training, despite any process dis-
turbances introduced from random exploration, the agent is expected to
identify the shortest route to task accomplishment and make every
optimal move with rewards of +2. Hence in one episode, the
Performance Indicator 1 will converge to a minimum of 8 steps and

Performance Indicator 2 will converge to the maximum of accumulated
rewards (+16 points). This convergence under constant disturbances is
shown in Fig. 15(a–d).

In Fig. 15, comparing (a) with (b), or (c) with (d), PER improved
Double DQN reaches the human control level faster with less variance
through the training curves at the expense of an initial stage where

Fig. 15. Learning Curves by natural DQN (blue) and Improved DQN (orange).

K. Xia, et al. Journal of Manufacturing Systems xxx (xxxx) xxx–xxx

17

randomly selected actions are generated to fill the buffer. Because of
this stage, the actual training for PER gets delayed compared with
natural DQN. Comparing (f) with (e), one can find that once start

training (as the prediction error start to be recorded at the 19960th

training step when the memory buffer gets fulfilled), the prediction
errors for PER improved Double DQN reduce constantly and stabilize at

Fig. 16. Learning Curves by different ε-greedy=0.9 (orange), 0.99 (green), 1 (red).

K. Xia, et al. Journal of Manufacturing Systems xxx (xxxx) xxx–xxx

18

an acceptable range much faster than natural DQN. This is because PER
start training from a fulfilled memory buffer with all kinds of transitions
to be sampled from. Therefore, it can be concluded that with a balanced
dataset, the networks are better trained with a wide range of positive
and negative memories. Hence, it needs to be realized that the dis-
tribution and abundance of data samples fundamentally affect the
training of heuristic algorithms for data-driven decision makers.

6.3. Trade-off between exploration and exploitation in Reinforcement
Learning

Within the community of Deep Reinforcement Learnings, there has
been a specific challenge as the trade-off between data explorations and
exploitation [52]. It underlines the need to control how much one agent
is willing to compromise exploration of new experiences for faster
training convergency. This can also be interpreted as a trade-off be-
tween possibilities of finding a global optimal strategy and stabilizing at
a local optimal strategy. Smaller exploration rate, and hence greedier
approach, helps to find a local optimal fast but are not able to adapt
well when faced with new states as the agent will learn adequately
under current strategy but reluctant to explore for potentially better
ones.

The approach to this trade-off situation is dependent on how com-
plex the learned environment is, that is how hard to stabilize at a local
optimum or explore towards global optima. Besides, it also depends on
the specific task goal we are trying to accomplish. For example, for
different Atari games, if the agent is trying to avoid dangerous situa-
tions and survive as it can, less explorations while put more penalties on
the dangerous memory down the current strategy will be possibly fa-
vorable. However, if the agent is trying to find the best path to finish a
task and earn as much reward as possible, more explorations with
different memories will be preferred to training the agent towards
global optimal solution. During manufacturing process, we penalize
attempted actions that result in strategy faults such as part unavail-
ability at pick up location, placement location unavailability, object
collisions, interruption, or failure during the action. These penalized
actions are more undesired than a strategy that is less optimal. That is
to say, when the learned environment gets too complicated to converge
at a global optimum, the agent can safely settle for a stable local op-
timal strategy instead of keep exploring for better strategies considering
damage control.

In this work, different sets of exploration rates (ε-greedy) were ex-
perimented in the training process as in Fig. 16. ε-greedy stands for the
chances of randomly chosen action out of total actions taken during
training. For example, when ε-greedy=0.9, on average, in every 10
steps, the agent takes 1 random action to explore the better strategy and
the rest 9 actions are taken by the decision made by agent. As shown in
the figure, comparing ε-greedy=0.9, 0.99 and 1, less explorations help
to stabilize the decisions when converge, as less variations are in-
troduced. When ε-greedy= 1, which means the agent does not explore
at all when converge, the agent decisions are deterministic under cur-
rently explored strategies. However, when the agent is faced with new
states that has never been explored, when it will have a hard time re-
cognizing the new states and unable to robustly adapt the changes. This
is demonstrated by the scattered points after convergency in Fig. 16e
and f of the learning curve as well as the divergent prediction errors
(red) in the Fig. 16g. It can be interpreted as an over-fitting problem
caused by unbalanced data sample distribution under inadequate data
exploration mechanism.

7. Conclusion and future work

In this work, a novel approach is proposed to utilize digital twin
simulation and communication technologies to create virtual counter-
parts of robot manufacturing systems, on which the intelligent sche-
duler based on Deep Reinforcement Learning can be safely trained.

Compared to the previous attempt to introduce Reinforcement Learning
into work cell scheduling [59], proposed system-level digital twinning
can be expanded to complex manufacturing systems with deep neural
networks to overcome the challenges due to large state and action
spaces. For specific manufacturing processes, attempts [11,17] has been
made to apply Deep Learning and Reinforcement Learning with the
physical visual inputs. It was proposed [17] that additional work in the
industrial setting is needed to demonstrate a fully integrated framework
for industrial artificial intelligence, which is fundamentally discussed
by this work. To that end, system embedding of artificial intelligence
into commonly used industrial robots, PLC function blocks, and event-
driven controls at run-time [9] is realized by this work. In addition,
successful system integration of the digital twin facilitates a general
architecture of semantic-aware M2M communications [8] by adding
subsystems as Digital Engine and communication layers. Moreover,
proposed intelligent digital twin has the fidelity to solve dynamic
scheduling problems of highly complex flexible manufacturing models
with stochastic events [11].

The contribution of this work is primarily in the following aspects:
(1) High-fidelity Virtual Commissioning platforms created by Siemens
Tecnomatix Process Simulate are used as virtual environments to ac-
commodate the digital twin implementation, where system components
are defined, simulated, and synchronized with live signals. Moreover,
advanced tools for event-based simulation, collision detection, robot
reachability test, and robot configurations by reverse kinematics are
utilized to commission robot programs through this digital twin. After
this offline programming process, generated robot programs can be
directly transferred to physical robot systems without intermediate
translations. (2) After construction of the virtual environment, system
communications are implemented on both virtual and physical path-
ways. “Software-in-the-loop” and “Hardware-in-the-loop” testing
methods are discussed to be the baseline of virtual commissioning
control loops depending on either the virtual cell is controlled by vir-
tual or physical controller. Moreover, intelligent scheduler commu-
nication pathway with virtual cell to rapidly perform repetitive offline
training cycles is implemented by the Process Simulate API. Then, an
application to enable IIoT for remote human intervention via custo-
mized OPC clients is presented. (3) Manufacturing Intelligence algo-
rithm framed by Deep Reinforcement Learning is trained on the con-
structed digital twin. Both natural Deep Q-Learning and its improved
version by Prioritized Experience Replay and Double Q Network are
implemented to improve data efficiency. As a result, a robust dynamic
scheduler fed by live signals from either physical cell or its digital twin
is trained as Deep Reinforcement Networks, which are reusable and
transferable for other specific learning tasks. The method to embed
proposed Digital Engine that supports scheduling in an industrial virtual
commissioning platform greatly augments the power of data analytics
by interfacing with industrial simulation and automation software. For
which reason, this data-driven manufacturing intelligence is also ready
to be deployed to specific industrial applications as a use case of Smart
Manufacturing implementation.

The future work will focus on applying this methodology on more
diverse manufacturing tasks and material flows in Stage 2 platform
(Fig. 17a), including collaborative assembly jobs, visual inspection,
optimized rework, and continuous movement tasks. Dynamic feedback
signals and high-dimensional manufacturing data are automatically fed
into the digital twin to train Digital Engine, such as analog plant signals,
product part CAD feature information, and machine vision inputs.
Sensor signals from force sensors, motor voltages, robot monitors,
thermal cameras, and environmental condition monitoring sensors will
be used to connect to such digital twin systems so that more accurate
real-time plant descriptions can be collected digitally. These manu-
facturing knowledges can also be shared between stakeholders with the
proposed IIoT platform for even smarter decision-makings. Meanwhile,
the authors will expand the research activities to develop a high-fidelity
reference model and improve predictive capabilities of the digital twin.

K. Xia, et al. Journal of Manufacturing Systems xxx (xxxx) xxx–xxx

19

For example, Harik et al. developed an algorithm to automatically ex-
tract and recognize 3D manufacturing features from product CAD
models, named Shape Terra [60]. The authors will base the future work
on the theoretical background of Shape Terra to develop the Digital
Engine for high resolution training cycles, as the reference model in-
terfacing with Process Simulate API (depicted in Section 4.2). Such at-
tempts have the potential to enhance the digital twin approach towards
fully automated smart manufacturing systems, delivering manu-
facturing intelligence driven by data from systems, processes and, even
more important, product designs. Initial implementation is presented in
Fig. 17b.

Declaration of Competing Interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influ-
ence the work reported in this paper.

Acknowledgements

The presented research project is funded by the South Carolina
Research Authority (SCRA), United States, with grant no. 10009353,
10009367. The authors are grateful for the software and hardware
donations received from industrial partners Siemens USA and Yaskawa
Motoman Robotics. The authors are also grateful for the industrial
collaborations with Nephron Pharmaceuticals Corporation and the
support of Lou Kennedy.

References

[1] Alkan B, Harrison R. A virtual engineering based approach to verify structural
complexity of component-based automation systems in early design phase. J Manuf
Syst 2019;53:18–31.

[2] Kucukoglu I, Atici-Ulusu H, Gunduz T, Tokcalar O. Application of the artificial
neural network method to detect defective assembling processes by using a wear-
able technology. J Manuf Syst 2018;49:163–71.

[3] Lai Z-H, Tao W, Leu MC, Yin Z. Smart augmented reality instructional system for
mechanical assembly towards worker-centered intelligent manufacturing. J Manuf
Syst 2020;55:69–81.

[4] Liu C, Vengayil H, Lu Y, Xu X. A cyber-physical machine tools platform using OPC
UA and MTConnect. J Manuf Syst 2019;51:61–74.

[5] Moghaddam M, Cadavid MN, Kenley CR, Deshmukh AV. Reference architectures for
smart manufacturing: a critical review. J Manuf Syst 2018;49:215–25.

[6] Tuptuk N, Hailes S. Security of smart manufacturing systems. J Manuf Syst
2018;47:93–106.

[7] Park H-S, Tran N-H. An autonomous manufacturing system based on swarm of
cognitive agents. J Manuf Syst 2012;31(no. 3):337–48.

[8] Lu Y, Asghar MR. Semantic communications between distributed cyber-physical
systems towards collaborative automation for smart manufacturing. J Manuf Syst
2020;55:348–59.

[9] Adamson G, Wang L, Moore P. Feature-based control and information framework
for adaptive and distributed manufacturing in cyber physical systems. J Manuf Syst
2017;43:305–15.

[10] Ren L, Sun Y, Cui J, Zhang L. Bearing remaining useful life prediction based on deep
autoencoder and deep neural networks. J Manuf Syst 2018;48:71–7.

[11] Hu L, Liu Z, Hu W, Wang Y, Tan J, Wu F. Petri-net-based dynamic scheduling of
flexible manufacturing system via deep reinforcement learning with graph con-
volutional network. J Manuf Syst 2020;55:1–14.

[12] Yun JP, Shin WC, Koo G, Kim MS, Lee C, Lee SJ. Automated defect inspection
system for metal surfaces based on deep learning and data augmentation. J Manuf
Syst 2020;55:317–24.

[13] Chen L, Xu G, Zhang S, Yan W, Wu Q. Health indicator construction of machinery
based on end-to-end trainable convolution recurrent neural networks. J Manuf Syst
2020;54:1–11.

[14] Tao F, Qi Q, Liu A, Kusiak A. Data-driven smart manufacturing. J Manuf Syst
2018;48:157–69.

[15] Kusiak A. Smart manufacturing must embrace big data. Nature 2017;544(no.
7648):23–5.

[16] Uhlemann TH-J, Schock C, Lehmann C, Freiberger S, Steinhilper R. The digital twin:
demonstrating the potential of real time data acquisition in production systems.
Procedia Manuf 2017;9:113–20.

[17] Günther J, Pilarski PM, Helfrich G, Shen H, Diepold K. Intelligent laser welding
through representation, prediction, and control learning: an architecture with deep
neural networks and reinforcement learning. Mechatronics 2016;34:1–11.

[18] Tao F, Cheng J, Qi Q, Zhang M, Zhang H, Sui F. Digital twin-driven product design,
manufacturing and service with big data. Int J Adv Manuf Technol
2018;94:3563–76.

[19] Lee CG, Park SC. Survey on the virtual commissioning of manufacturing systems. J
Comput Des Eng 2014;1(no. 3):213–22.

[20] Hoffmann P, Schumann R, Maksoud TMA, Premier GC. Virtual commissioning of
manufacturing systems a review and new approaches for simplification. 24th
European Conference on Modelling and Simulation 2010.

[21] Zheng C, Qin X, Eynard B, Bai J, Li J, Zhang Y. SME-oriented flexible design ap-
proach for robotic manufacturing systems. J Manuf Syst 2019;53:62–74.

[22] Garetti M, Macchi M, Pozzetti A, Fumagalli L, Negri E. Synchro-push: a new pro-
duction control paradigm. 21st Summer School Francesco Turco 2016 2016:150–5.

[23] Büchel B, D. Floreano and Organisation. Tesla’s problem: overestimating automa-
tion, underestimating human. The conversation. 2019 [Online]. Available: http://
theconversation.com/teslas-problem-overestimating-automation-underestimating-
humans-95388. [Accessed 26 October 2019].

[24] Zhuang C, Liu J, Xiong H. Digital twin-based smart production management and
control framework for the complex product assembly shop-floor. Int J Adv Manuf
Technol 2018;96:1149–63.

[25] Negri E, Fumagalli L, Macchi M. A review of the roles of digital twin in CPS-Based
production systems. Procedia Manuf 2017;11:939–48.

[26] Xia K, Sacco C, Kirkpatrick M, Harik R, Bayoumi A-M. Virtual comissioning of
manufacturing system intelligent control. SAMPE 2019 - Charlotte, NC 2019.

[27] Lee J, Lapira E, Bagheri B, Kao H-a. Recent advances and trends in predictive
manufacturing systems in big data environment. Manuf Lett 2013;1(no. 1):38–41.

[28] Schleich B, Anwer N, Mathieu L, Wartzack S. Skin Model Shapes: a new paradigm
shift for geometric variations modelling in mechanical engineering. Comput Aided
Des 2014;50:1–15.

[29] Schleich B, Anwer N, Mathieu L, Wartzack S. Shaping the digital twin for design and
production engineering. Cirp Ann Manuf Technol 2017;66(no. 1):141–4.

[30] Knapp GL, Mukherjee T, Zuback JS, Wei HL, Palmer T, De A, et al. Building blocks
for a digital twin of additive manufacturing. Acta Mater 2017;135:390–9.

[31] Konstantinov S, Ahmad M, Ananthanarayan K, Harrison R. The cyber-physical E-
machine manufacturing system: virtual engineering for complete lifecycle support.
Procedia CIRP 2017;63:119–24.

[32] Guerrero LV, López VV, Mejía JE. Virtual commissioning with process simulation
(Tecnomatix). Comput Aided Des Appl 2014;11.

[33] Fält J, Halmsjö J. Emulation of a production cell - developing a virtual commis-
sioning model in a concurrent environment. 2016.

[34] Harrison R, Vera D, Ahmad B. Engineering methods and tools for cyber–Physical
automation systems. Proc IEEE 2016;104(no. 5):973–85.

[35] Uhlemann TH-J, Lehmann C, Steinhilper R. The digital twin: realizing the cyber-

Fig. 17. Stage 2 Platform in proposal. (a) Digital Twin of the production line in Process Simulate. (b) Shape Terra as a reference model to interface with the smart
manufacturing scheduler.

K. Xia, et al. Journal of Manufacturing Systems xxx (xxxx) xxx–xxx

20

http://refhub.elsevier.com/S0278-6125(20)30105-9/sbref0005
http://refhub.elsevier.com/S0278-6125(20)30105-9/sbref0005
http://refhub.elsevier.com/S0278-6125(20)30105-9/sbref0005
http://refhub.elsevier.com/S0278-6125(20)30105-9/sbref0010
http://refhub.elsevier.com/S0278-6125(20)30105-9/sbref0010
http://refhub.elsevier.com/S0278-6125(20)30105-9/sbref0010
http://refhub.elsevier.com/S0278-6125(20)30105-9/sbref0015
http://refhub.elsevier.com/S0278-6125(20)30105-9/sbref0015
http://refhub.elsevier.com/S0278-6125(20)30105-9/sbref0015
http://refhub.elsevier.com/S0278-6125(20)30105-9/sbref0020
http://refhub.elsevier.com/S0278-6125(20)30105-9/sbref0020
http://refhub.elsevier.com/S0278-6125(20)30105-9/sbref0025
http://refhub.elsevier.com/S0278-6125(20)30105-9/sbref0025
http://refhub.elsevier.com/S0278-6125(20)30105-9/sbref0030
http://refhub.elsevier.com/S0278-6125(20)30105-9/sbref0030
http://refhub.elsevier.com/S0278-6125(20)30105-9/sbref0035
http://refhub.elsevier.com/S0278-6125(20)30105-9/sbref0035
http://refhub.elsevier.com/S0278-6125(20)30105-9/sbref0040
http://refhub.elsevier.com/S0278-6125(20)30105-9/sbref0040
http://refhub.elsevier.com/S0278-6125(20)30105-9/sbref0040
http://refhub.elsevier.com/S0278-6125(20)30105-9/sbref0045
http://refhub.elsevier.com/S0278-6125(20)30105-9/sbref0045
http://refhub.elsevier.com/S0278-6125(20)30105-9/sbref0045
http://refhub.elsevier.com/S0278-6125(20)30105-9/sbref0050
http://refhub.elsevier.com/S0278-6125(20)30105-9/sbref0050
http://refhub.elsevier.com/S0278-6125(20)30105-9/sbref0055
http://refhub.elsevier.com/S0278-6125(20)30105-9/sbref0055
http://refhub.elsevier.com/S0278-6125(20)30105-9/sbref0055
http://refhub.elsevier.com/S0278-6125(20)30105-9/sbref0060
http://refhub.elsevier.com/S0278-6125(20)30105-9/sbref0060
http://refhub.elsevier.com/S0278-6125(20)30105-9/sbref0060
http://refhub.elsevier.com/S0278-6125(20)30105-9/sbref0065
http://refhub.elsevier.com/S0278-6125(20)30105-9/sbref0065
http://refhub.elsevier.com/S0278-6125(20)30105-9/sbref0065
http://refhub.elsevier.com/S0278-6125(20)30105-9/sbref0070
http://refhub.elsevier.com/S0278-6125(20)30105-9/sbref0070
http://refhub.elsevier.com/S0278-6125(20)30105-9/sbref0075
http://refhub.elsevier.com/S0278-6125(20)30105-9/sbref0075
http://refhub.elsevier.com/S0278-6125(20)30105-9/sbref0080
http://refhub.elsevier.com/S0278-6125(20)30105-9/sbref0080
http://refhub.elsevier.com/S0278-6125(20)30105-9/sbref0080
http://refhub.elsevier.com/S0278-6125(20)30105-9/sbref0085
http://refhub.elsevier.com/S0278-6125(20)30105-9/sbref0085
http://refhub.elsevier.com/S0278-6125(20)30105-9/sbref0085
http://refhub.elsevier.com/S0278-6125(20)30105-9/sbref0090
http://refhub.elsevier.com/S0278-6125(20)30105-9/sbref0090
http://refhub.elsevier.com/S0278-6125(20)30105-9/sbref0090
http://refhub.elsevier.com/S0278-6125(20)30105-9/sbref0095
http://refhub.elsevier.com/S0278-6125(20)30105-9/sbref0095
http://refhub.elsevier.com/S0278-6125(20)30105-9/sbref0100
http://refhub.elsevier.com/S0278-6125(20)30105-9/sbref0100
http://refhub.elsevier.com/S0278-6125(20)30105-9/sbref0100
http://refhub.elsevier.com/S0278-6125(20)30105-9/sbref0105
http://refhub.elsevier.com/S0278-6125(20)30105-9/sbref0105
http://refhub.elsevier.com/S0278-6125(20)30105-9/sbref0110
http://refhub.elsevier.com/S0278-6125(20)30105-9/sbref0110
http://refhub.elsevier.com/S0278-6125(20)30105-9/sbref0115
http://refhub.elsevier.com/S0278-6125(20)30105-9/sbref0115
http://refhub.elsevier.com/S0278-6125(20)30105-9/sbref0115
http://refhub.elsevier.com/S0278-6125(20)30105-9/sbref0115
http://refhub.elsevier.com/S0278-6125(20)30105-9/sbref0120
http://refhub.elsevier.com/S0278-6125(20)30105-9/sbref0120
http://refhub.elsevier.com/S0278-6125(20)30105-9/sbref0120
http://refhub.elsevier.com/S0278-6125(20)30105-9/sbref0125
http://refhub.elsevier.com/S0278-6125(20)30105-9/sbref0125
http://refhub.elsevier.com/S0278-6125(20)30105-9/sbref0130
http://refhub.elsevier.com/S0278-6125(20)30105-9/sbref0130
http://refhub.elsevier.com/S0278-6125(20)30105-9/sbref0135
http://refhub.elsevier.com/S0278-6125(20)30105-9/sbref0135
http://refhub.elsevier.com/S0278-6125(20)30105-9/sbref0140
http://refhub.elsevier.com/S0278-6125(20)30105-9/sbref0140
http://refhub.elsevier.com/S0278-6125(20)30105-9/sbref0140
http://refhub.elsevier.com/S0278-6125(20)30105-9/sbref0145
http://refhub.elsevier.com/S0278-6125(20)30105-9/sbref0145
http://refhub.elsevier.com/S0278-6125(20)30105-9/sbref0150
http://refhub.elsevier.com/S0278-6125(20)30105-9/sbref0150
http://refhub.elsevier.com/S0278-6125(20)30105-9/sbref0155
http://refhub.elsevier.com/S0278-6125(20)30105-9/sbref0155
http://refhub.elsevier.com/S0278-6125(20)30105-9/sbref0155
http://refhub.elsevier.com/S0278-6125(20)30105-9/sbref0160
http://refhub.elsevier.com/S0278-6125(20)30105-9/sbref0160
http://refhub.elsevier.com/S0278-6125(20)30105-9/sbref0165
http://refhub.elsevier.com/S0278-6125(20)30105-9/sbref0165
http://refhub.elsevier.com/S0278-6125(20)30105-9/sbref0170
http://refhub.elsevier.com/S0278-6125(20)30105-9/sbref0170
http://refhub.elsevier.com/S0278-6125(20)30105-9/sbref0175

physical production system for industry 4.0. Procedia CIRP 2017;61:335–40.
[36] Tao F, Zhang H, Liu A, Nee AYC. Digital twin in industry: state-of-the-Art. IEEE

Trans Ind Inform 2019;15(no. 4):2405–15.
[37] Schroeder GN, Steinmetz C, Pereira CE, Espindola DB. Digital twin data modeling

with AutomationML and a communication methodology for data exchange. IFAC-
PapersOnLine 2016;49(no. 30):12–7.

[38] Haag S, Anderl R. Digital twin – proof of concept. Manuf Lett 2018;15:64–6.
[39] Tao F, Zhang M. Digital twin shop-floor: a new shop-floor paradigm towards smart

manufacturing. IEEE Access 2017;5:20418–27.
[40] Kritzinger W, Karner M, Traar G, Henjes J, Sihn W. Digital Twin in manufacturing: a

categorical literature review and classification. IFAC-PapersOnLine 2018;51(no.
11):1016–22.

[41] Lee JH, Shin J, Realff MJ. Machine learning: overview of the recent progresses and
implications for the process systems engineering field. Comput Chem Eng
2017;114:111–21.

[42] Chen W, Liu H, Qi E. Discrete event-driven model predictive control for real-time
work-in-process optimization in serial production systems. J Manuf Syst
2020;55:132–42.

[43] Tirinzoni A, Sessa A, Pirotta M, Restelli M. Importance weighted transfer of samples
in reinforcement learning. ICML 2018: Thirty-Fifth International Conference on
Machine Learning 2018.

[44] Siemens PLM Software. Process Simulate - Manufacturing process verification in
powerful 3D environment [Online]. Available:. 2011https://www.plm.automation.
siemens.com/en_gb/Images/7457_tcm642-80351.pdf.

[45] Cimini C, Pirola F, Pinto R, Cavalieri S. A human-in-the-loop manufacturing control
architecture for the next generation of production systems. J Manuf Syst
2020;54:258–71.

[46] Mittal S, Khan MA, Romero D, Wuest T. Smart manufacturing: characteristics,
technologies and enabling factors. Proc Inst Mech Eng Part B J Eng Manuf
2019;233(no. 5):1342–61.

[47] Jamshidi M. System of systems engineering - New challenges for the 21st century.
IEEE Aerosp Electron Syst Mag 2008;23(no. 5):4–19.

[48] FreeOpcUa: open source C++ and Python opc-ua server and client libraries and

tools. 2020 [Online]. Available:. http://freeopcua.github.io/.
[49] Mnih V, Kavukcuoglu K, Silver D, Rusu AA, Veness J, Bellemare MG, Graves A,

Riedmiller M, Fidjeland AK, Ostrovski G, Petersen S, Beattie C, Sadik A, Antonoglou
I, King H, Kumaran D, Wierstra D, Legg S, Hassabis D. Human-level control through
deep reinforcement learning. Nature 2015;518(no. 7540):529–33.

[50] Riedmiller M, Hafner R, Lampe T, Neunert M, Degrave J, Wiele TVd, Mnih V, Heess
N, Springenberg JT. Learning by playing - solving sparse reward tasks from scratch
arXiv preprint arXiv:1802.10567 2018.

[51] Silver D, Schrittwieser J, Simonyan K, Antonoglou I, Huang A, Guez A, Hubert T,
Baker L, Lai M, Bolton A, Chen Y, Lillicrap T, Hui F, Sifre L, Driessche Gvd, Graepel
T, Hassabis D. Mastering the game of Go without human knowledge. Nature
2017;550(no. 7676):354–9.

[52] Wuest T, Weimer D, Irgens C, Thoben K-D. Machine learning in manufacturing:
advantages, challenges, and applications. Prod Manuf Res 2016;4(no. 1):23–45.

[53] Silver DH, Graves A, Antonoglou I, Riedmiller M, Mnih V, Wierstra D, et al. Playing
atari with deep reinforcement learning arXiv preprint arXiv:1312.5602 2013.

[54] Zhang S, Sutton RS. A deeper look at experience replay arXiv preprint
arXiv:1712.01275 2017.

[55] Schaul T, Quan J, Antonoglou I, Silver D. Prioritized experience replay. ICLR 2016 :
International Conference on Learning Representations 2016 2016.

[56] Hasselt Hv, Guez A, Silver D. Deep reinforcement learning with double Q-learning
arXiv preprint arXiv:1509.06461 2015.

[57] Wang Z, Schaul T, Hessel M, Hasselt Hv, Lanctot M, Freitas Nd. Dueling network
architectures for deep reinforcement learning arXiv preprint arXiv:1511.06581
2015.

[58] Silver D, Lever G, Heess N, Degris T, Wierstra D, Riedmiller M. Deterministic policy
gradient algorithms. Proceedings of The 31st International Conference on Machine
Learning 2014.

[59] Ou X, Chang Q, Chakraborty N. Simulation study on reward function of re-
inforcement learning in gantry work cell scheduling. J Manuf Syst 2019;50:1–8.

[60] Harik R, Shi Y, Baek S. Shape Terra: mechanical feature recognition based on a
persistent heat signature. Comput Aided Des Appl 2017;14(no. 2):206–18.

K. Xia, et al. Journal of Manufacturing Systems xxx (xxxx) xxx–xxx

21

http://refhub.elsevier.com/S0278-6125(20)30105-9/sbref0175
http://refhub.elsevier.com/S0278-6125(20)30105-9/sbref0180
http://refhub.elsevier.com/S0278-6125(20)30105-9/sbref0180
http://refhub.elsevier.com/S0278-6125(20)30105-9/sbref0185
http://refhub.elsevier.com/S0278-6125(20)30105-9/sbref0185
http://refhub.elsevier.com/S0278-6125(20)30105-9/sbref0185
http://refhub.elsevier.com/S0278-6125(20)30105-9/sbref0190
http://refhub.elsevier.com/S0278-6125(20)30105-9/sbref0195
http://refhub.elsevier.com/S0278-6125(20)30105-9/sbref0195
http://refhub.elsevier.com/S0278-6125(20)30105-9/sbref0200
http://refhub.elsevier.com/S0278-6125(20)30105-9/sbref0200
http://refhub.elsevier.com/S0278-6125(20)30105-9/sbref0200
http://refhub.elsevier.com/S0278-6125(20)30105-9/sbref0205
http://refhub.elsevier.com/S0278-6125(20)30105-9/sbref0205
http://refhub.elsevier.com/S0278-6125(20)30105-9/sbref0205
http://refhub.elsevier.com/S0278-6125(20)30105-9/sbref0210
http://refhub.elsevier.com/S0278-6125(20)30105-9/sbref0210
http://refhub.elsevier.com/S0278-6125(20)30105-9/sbref0210
http://refhub.elsevier.com/S0278-6125(20)30105-9/sbref0215
http://refhub.elsevier.com/S0278-6125(20)30105-9/sbref0215
http://refhub.elsevier.com/S0278-6125(20)30105-9/sbref0215
https://www.plm.automation.siemens.com/en_gb/Images/7457_tcm642-80351.pdf
https://www.plm.automation.siemens.com/en_gb/Images/7457_tcm642-80351.pdf
http://refhub.elsevier.com/S0278-6125(20)30105-9/sbref0225
http://refhub.elsevier.com/S0278-6125(20)30105-9/sbref0225
http://refhub.elsevier.com/S0278-6125(20)30105-9/sbref0225
http://refhub.elsevier.com/S0278-6125(20)30105-9/sbref0230
http://refhub.elsevier.com/S0278-6125(20)30105-9/sbref0230
http://refhub.elsevier.com/S0278-6125(20)30105-9/sbref0230
http://refhub.elsevier.com/S0278-6125(20)30105-9/sbref0235
http://refhub.elsevier.com/S0278-6125(20)30105-9/sbref0235
http://freeopcua.github.io/
http://refhub.elsevier.com/S0278-6125(20)30105-9/sbref0245
http://refhub.elsevier.com/S0278-6125(20)30105-9/sbref0245
http://refhub.elsevier.com/S0278-6125(20)30105-9/sbref0245
http://refhub.elsevier.com/S0278-6125(20)30105-9/sbref0245
http://refhub.elsevier.com/S0278-6125(20)30105-9/sbref0250
http://refhub.elsevier.com/S0278-6125(20)30105-9/sbref0250
http://refhub.elsevier.com/S0278-6125(20)30105-9/sbref0250
http://refhub.elsevier.com/S0278-6125(20)30105-9/sbref0255
http://refhub.elsevier.com/S0278-6125(20)30105-9/sbref0255
http://refhub.elsevier.com/S0278-6125(20)30105-9/sbref0255
http://refhub.elsevier.com/S0278-6125(20)30105-9/sbref0255
http://refhub.elsevier.com/S0278-6125(20)30105-9/sbref0260
http://refhub.elsevier.com/S0278-6125(20)30105-9/sbref0260
http://refhub.elsevier.com/S0278-6125(20)30105-9/sbref0265
http://refhub.elsevier.com/S0278-6125(20)30105-9/sbref0265
http://refhub.elsevier.com/S0278-6125(20)30105-9/sbref0270
http://refhub.elsevier.com/S0278-6125(20)30105-9/sbref0270
http://refhub.elsevier.com/S0278-6125(20)30105-9/sbref0275
http://refhub.elsevier.com/S0278-6125(20)30105-9/sbref0275
http://refhub.elsevier.com/S0278-6125(20)30105-9/sbref0280
http://refhub.elsevier.com/S0278-6125(20)30105-9/sbref0280
http://refhub.elsevier.com/S0278-6125(20)30105-9/sbref0285
http://refhub.elsevier.com/S0278-6125(20)30105-9/sbref0285
http://refhub.elsevier.com/S0278-6125(20)30105-9/sbref0285
http://refhub.elsevier.com/S0278-6125(20)30105-9/sbref0290
http://refhub.elsevier.com/S0278-6125(20)30105-9/sbref0290
http://refhub.elsevier.com/S0278-6125(20)30105-9/sbref0290
http://refhub.elsevier.com/S0278-6125(20)30105-9/sbref0295
http://refhub.elsevier.com/S0278-6125(20)30105-9/sbref0295
http://refhub.elsevier.com/S0278-6125(20)30105-9/sbref0300
http://refhub.elsevier.com/S0278-6125(20)30105-9/sbref0300

	A digital twin to train deep reinforcement learning agent for smart manufacturing plants: Environment, interfaces and intelligence
	Introduction
	Literature review
	Simulation environment of the digital twin
	System overview
	Construction of virtual cell
	Simulation of robot motions
	Event-based simulations

	System control loops and communication pathways
	Physical control loop and its digital counterpart
	Integrating the digital engine
	Remote human interface via OPC server

	Deep Reinforcement Learning augmented by digital twinning of smart manufacturing systems
	Artificial intelligence driven operation scheduling
	Related work
	Training Deep Reinforcement Learning agents with developed digital twin system
	Performance indicators

	Case study
	Low-level offline robot programming using the digital twin
	Training dynamic scheduler for digital engine
	Trade-off between exploration and exploitation in Reinforcement Learning

	Conclusion and future work
	Declaration of Competing Interest
	Acknowledgements
	References

