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H I G H L I G H T S

• A data-driven framework for uncertainty-aware residential AC control is proposed.

• Bayesian Convolutional Neural Networks (BCNN) are utilized to model AC dynamics.

• Q-learning agents are developed for automated control, considering system uncertainty.
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A B S T R A C T

Most existing methods for controlling the energy consumption of air conditioning (AC), focus on either sche-
duling the switching (on/off) of compressors or optimizing the overall energy consumption of AC system of an
entire building. Unlike commercial buildings, residential apartments typically house separate ACs in individual
rooms occupied by people with different thermal comfort preferences. Fortunately, the advancement of Internet-
of-Things (IoT) technology has enabled the exploitation of sensory data to intelligently control the set-point
temperature of ACs in individual rooms based on environmental conditions and occupant’s preferences, im-
proving the energy efficiency of residential buildings. Indeed, control decisions based on sensory data may suffer
from uncertainties due to error in data measurement and contribute to model uncertainty. This work proposes a
data-driven uncertainty-aware approach to control split-type inverter ACs of residential buildings. First, in-
formation from similar AC and residential units are aggregated to reduce data imbalances, and Bayesian-
Convolutional-Neural-Networks (BCNNs) are utilized to model the performance and uncertainty of the ACs from
the aggregated data. Second, a Q-learning based reinforcement learning algorithm for set-point decision making
is designed for setpoint optimization with transitions sampled from the BCNN models. Third, a case study is
simulated based on such a framework to show that the control actions taken by the uncertainty-aware agent
perform better in terms of discomfort management and energy savings compared to the uncertainty unaware
agent. Further, the agent could also be adjusted to capture the trade-off between energy savings and comfort
levels for varying degrees of energy and discomfort savings.

1. Introduction

Air conditioning (AC) units within residential buildings account for
up to 40% of the total electricity consumption in Singapore and up to
45% of that in the USA [1]. According to [2], there is a gap between
actual and theoretical performances of ACs due to over-generalization
in simulation and occupancy models. With the advancement of In-
ternet-of-Things (IoT), controls of AC could be implemented more ef-
ficiently by considering various sensory data [3] for different target

areas to reduce this gap. For example, [4] combined readings from
cameras, indoor temperature sensors and outdoor sensors to control the
AC of a mosque, with processing being done on a Raspberry Pi. By
specifically controlling the setpoints of AC according to different indoor
conditions, [5,6] show that it is possible to reduce the energy con-
sumption of ACs while maintaining human comfort at an acceptable
level. However, most residents do not have the time or knowledge to
personally optimize the settings of their AC [7], which has motivated
the emergence of automated AC control. Leveraging on sensors,
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computing and IoT technology, many startups have sprung up to fill this
market demand. A well known example will be the Google Nest Ther-
mostat, where it combines indoor temperature readings, outdoor tem-
perature forecasts, and user defined schedules to enable energy savings
for AC systems.

Existing research on automated AC control can be classified into
three types: rule-based, model-free, and model-based. Rule based con-
trollers, such as in [5,8], are heuristics to control the on and off time of
the AC and other possible actions. Although such rule-based controllers
can be simple to implement and provide good energy savings, they are
system-specific and might have to redesign if there are changes to the
system, for example, a change in room layout. Model-free controllers
attempt to learn the optimal policy from direct or historical interaction
with the AC environment without special consideration of the dynamics
of the system. An example is [9] where a reinforcement learning al-
gorithm is used to learn an optimal policy for AC control in data cen-
ters. When used in their vanilla form [10], model-free methods incur
huge overheads in terms of data collection as they require a large
number of system transitions to learn and converge to the optimal
policy. Consequently, model-free methods are not practical in data-
scarce scenarios.

Finally, model-based methods are used to capture the dynamics of a
system before applying optimization algorithms to decide on the con-
trol actions. Model-based methods can further be classified into three
kinds: the black-box model, the white-box model, and the grey-box
model. White-box models attempt to reconstruct the physical interac-
tion between the AC components and the thermal characteristics of the
residence [11]. This approach relies heavily on obtaining the exact
measurements of each thermal characteristics such as furniture within
rooms and occupancy behavior that are difficult to obtain in real sce-
narios. Grey-box models estimate the thermal characteristics of the
room and the AC components by fitting metered load data to a generic
physical model [12]. Black-box data-driven techniques have advantages
in modelling the more complex and volatile AC systems as compared to
white-box and grey-box techniques, striking a balance between com-
plexity of implementation and accuracy. By not having a pre-defined
physical model, black-box models are not restricted to the data re-
quirements of the actual physical model, but are able to predict the AC
consumption by mapping interactions between the load data collected
and other exogenous information like weather and consumer behaviour
with good accuracy. This way, black-box models facilitates model
building without the need of physical knowledge on the room (e.g.
window size, build material etc.) In recent years, black-box models
have received increasing attention to drive automation and reduce
human intervention. Examples of black-box models for AC load fore-
casting includes a regression tree based model [13], a support vector
regression model [14], and neural network model [15]. [16] utilized a
support vector regression to predict the state of a HVAC system before
using a rule-based approach to apply cooling to a zone. [17] applied a
mixed logical dynamical model to capture dynamics of a residential
HVAC system coupled with a photovoltaic setup, before applying a
model predictive control logic for efficient energy usage.

Clearly, existing literature provides valuable insights into how to
model various AC loads. In the case when studies do not have the luxury
of curating data collection, data imbalance might become an obstacle
[18]. Classes of interest are drown-out by other classes, skewing pre-
diction results towards the classes with more data. Further, accuracy of
data-driven models decreases when training data deviates from testing
data. Although it is ideal for data-driven models to be trained on da-
tasets that cover all operating conditions, gathering a completed dataset
could be challenging in real-world scenarios as operating conditions are
usually fixed due to habit or operational requirements (unless explored
forcibly).

Now, existing models typically employ point forecasts that provide
only the mean values for the output. However, when training a model
on an incomplete dataset, it is important that the model is able to

estimate an uncertainty bound on its prediction so that an optimization
algorithm can disregard an uncertain prediction from an unfamiliar
scenario in the planning stage. As such, probabilistic modeling has
started to gain more interest in recent years. For example, the models
proposed in [19,20] model aggregated electricity loads with a pinball
loss guided LSTM, and a Wavelet neural network respectively. Few
literatures have applied a probabilistic approach to modelling and
controlling AC loads. [21] attempted to determine the uncertainty of an
AC system using Kalman Filters in a white-box modelling setting. In
[22], a black-box Gaussian process approach is used to forecast building
AC load with uncertainty, before a stochastic model predictive control
is used to optimized building AC setpoint.

Note that AC setpoint optimization in a model predictive control
(MPC) framework often involves solving an optimization problem at
each time step to choose the best AC setpoint over a certain time hor-
izon, with regards to constraints put out by the system dynamics models
as well as limitations due to human comfort and electricity prices
[23,24]. Since AC dynamic models are often complex and non-linear,
the resulting optimization becomes non-convex and computationally
expensive. In [25], an MPC based on the EnergyPlus building simulator
is developed, which is limited to a look ahead horizon of one-time step
for real-time operation. Otherwise, it will take an entire day to plan the
optimal control strategy for the next day. Now, instead of solving for
the optimal action at each step, reinforcement learning can serve as an
alternative to MPC for decision optimization. Reinforcement learning
has been applied in recent years to cloud computing [26], UAV protocol
transmission [27], and other smart cities services [28]. When re-
inforcement learning reaches a certain state, it explores the whole state-
action space before deciding on an optimal policy to take a certain
action. This policy is typically approximated by a neural network and is
suitable for real-time implementation due to its flexibility to be pre-
computed on a powerful computer, shrunk down, and implemented on
a smaller and less powerful discrete controller. Further, in [29], Q-
learning is used as an optimization algorithm to control building AC
setpoint and room ventilation with models supplemented by EnergyPlus
simulation. [30] uses a customized Q-learning algorithm to automate
control of heat-pump in residential settings. However, the reinforce-
ment learning literature on AC control do not consider the uncertainty
factor of the actions that they undertake.

In summary, the following gaps are identified from existing litera-
ture that requires further investigation:

1. Current data-driven techniques used in AC forecasting overlook the
reliability of the estimate and does not deal well with data im-
balances.

2. Optimization of AC setpoint is usually done by MPC which has to be
run with a huge computational cost at each time step. At the same
time, most literature focus on centralized AC systems for a whole
building or singular AC system with on–off compressors.

3. There is a gap in the literature in AC control for split-type AC sys-
tems with variable speed (inverter) compressors that are commonly
found in residential houses.

Now, to complement the existing studies on AC control, this paper
proposes an automating AC control scheme for split-type AC systems by
making the following contributions:

• Aggregating data from all households in a neural network training
framework before building individual models for individual house-
holds that helps to reduce data imbalances and overfitting.
• Using a Bayesian Convolutional Neural Network (BCNN) to model
AC and room temperature such that we are able to take into account
the random nature of AC components and model the uncertainty for
planning.
• Training a Q-learning reinforcement agent for automated AC control
that takes into account uncertainty from the generated models.

C. Lork, et al. Applied Energy 276 (2020) 115426

2



The rest of the paper is organized as follows. Section 2 discusses the
system model, where the modeling and control framework is in-
troduced. Section 3 provides the models for power prediction and room
temperature forecasting. In Section 4, we introduce the proposed re-
inforcement learning framework. Section 5 presents the results of the
proposed approach in a case study, and finally the study is concluded in
Section 6.

2. System model

2.1. Data description

The dataset that is investigated in this paper consists of 10 single-
unit load power readings (P) from 10 residential units in the Singapore
University of Technology and Design [5]. These units have the same
floor area and uses the same type of inverter split-type AC, the Pana-
sonic CU-S24PKZ. Data from each unit are read off propriety Panasonic
IOT sensors, and consist of the following features: AC setpoint (SP), AC
power status (PS), indoor room temperature (IT), outdoor temperature
(OT), outdoor humidity (H), the number of 30secs blocks since the AC
has been powered on (Tonsin), and the number of 30secs blocks since
the AC has been powered off (Toff). The data frequency is every 10 min,
with the dataset being continuous between 1 Apr 2015 to 31 Dec 2016.
The ranges of each feature in the dataset is detailed in the Table 1. To
facilitate machine learning, the data is min–max normalized to 0–1
according to their ranges. P, SP, PS, IT, TonSin, and Toff are data cap-
tured off each AC by means of a wireless sensor network. OT and H are
weather data supplied by a weather station in Changi, Singapore,
scraped off www.wunderground.com.

2.2. The proposed framework

The general idea of this paper is to obtain uncertainty-aware power
and temperature models for each room, before planning the optimal SP
for each room using reinforcement learning. The general modelling
framework is shown in Fig. 1. While looking at the AC consumption
pattern of a single room, we find that the consumers typically keep to a
narrow set of setpoints, as illustrated in Fig. 2. For example, the re-
sidents in Room 5 has been using their AC at mostly 23 °C for the en-
tirety of the observation period. If we build a black-box model for each
room based on the limited and incomplete dataset for each room, we
risk a high chance of generating erroneous predictions P as the model
might not have an idea on the AC behavior for other setpoints outside of
the data it has seen. The first step in our methodology is to aggregate
the data from all residences and combined the AC data with weather
data. This increases the chances of us obtaining a more complete model
for room power and temperature prediction, since each consumer is
using slightly different preference for their AC setpoint.

In the second step, we train an overall Room Power and Room
Temperature model based on the aggregated data, before retraining the
models with specific room data so that the model can fit more closely to
the room dynamics, while retaining information on other setpoints
outside the limited dataset of a specific room. The choice of model used

is the Bayesian Convolutional Neural Network (BCNN), to be further
explained in Section 4, which allows the neural network to express its
uncertainty if the data is scarce or wildly fluctuating. This will result in
having in N different Room Power models and N different Room
Temperature models for N different rooms.

Finally, with the Room Power and Room Temperature models
ready, a Q-learning agent will be developed for each room. Together
with historical weather data, the Room Power and Room Temperature
model serve as a virtual environment, where the Q-learning agent can
sample transitions from. After repeated exploration of this virtual en-
vironment, the Q-learning agent will be able to learn and choose the
best action at any given state based on a specific reward function. The
Q-learning algorithm for this purpose is described in detail in Section 5.
Room 5 and Room 8 were randomly chosen to serve as case studies.

3. Room power & room temperature modelling

3.1. Uncertainty-Aware Neural Networks

Artificial neural networks (ANN) have been a popular choice for
systems modelling problems due to it’s ability to approximate any non-
linear process to a high degree of accuracy [15]. By using ANNs to
model AC systems, users do not have to actively know the heat gain of
the room, the thermal mass and nor the physical control characteristics
of the AC, for which they can be implicitly modelled in the model. This
allows for the data-driven calibration of any arbitrary room and AC
system. However, one of the main gripes of the traditional ANN is that
it only supports point forecasts, making it overly confident with regards
to unseen scenarios. One way to enable a neural network to express its
uncertainty over its input data is to replace all the deterministic weights
of a network with a distribution over its weights, and doing back pro-
pagation with a process known as variational inference [31]. However,
compared to the regular gradient descent for normal neural networks,
variational inference is prohibitively slow. In [32], Gal et al. proved
mathematically that by applying dropout to fully connected neural
networks during training time and testing time, and doing Monte Carlo
sampling to the resulting network, we can approximate Bayesian neural
nets (BNN) and expresses uncertainty when there is little or conflicting
data. They also found that the probability of dropout for BNNs does not
matter as the uncertainty estimates will converge in the end. To reduce
the computational overheads with regards to Monte Carlo sampling,
[33] proposed and proved the mathematical viability of using of a dual
output neural network to estimate the bayesian dropout neural network
proposed by [32], with one output estimating the mean of the neural
network and the other estimating the variance.

In this paper, we leverage the idea proposed by [33]. Considering a
normal feedforward neural network Y with D hidden layers, with Wk

k
1

weight matrix linking layer k 1 to layer … +k k D D, {1, , , 1}, where
layer 0 being the input layer and layer +D 1 being the output layer. We
approximate a Bayesian Neural Network Y by applying a dropout
matrix diag d( )k to each weight matrix as per Eq. (1). Wk

k
1 is scaled by

p1/(1 ) so that the output of the weight layer will maintain it’s ex-
pected scaling, as without dropout. Each element of the diagonal matrix
diag d( )k is sampled from a Bernoulli distribution with dropping prob-
ability p, where < <p0 1 in Eq. (2). If the result of the Bernoulli sample
is 1, the weight within the weight matrix is kept; and when it is 0, the
weight within the weight matrix is dropped. Adding dropout to a fully
connected neural network is akin to the creation of an ensemble of
neural networks with different weight connection matrices, with each
neural network in the ensemble predicting slightly different values due
to having dropped weights connection. The output neurons will be re-
sponsible for predicting the mean and variance of this ensemble of
network.

=W diag d W p( ) ·1/(1 )k
k k

k
k

1 1 (1)

Table 1
List of features at 10 min frequency.

Features Min Max Units

AC Power (P) 0 3000 Watts
AC SetPoint (SP) 16 30 °C
AC PowerStatus (PS) 0 1 Boolean
Indoor Temperature (IT) 16 40 °C
Outdoor Temperature (OT) 16 40 °C
Outdoor Humidity (H) 0 100 %
Time on Since (TonSin) 0 240 No. 30s blocks
Time off (Toff) 0 240 No. 30s blocks
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=
=
=B j p

p j
p j( ; )

if 0
1 if 1 (2)

datapoints refers to the number of samples considered at each batch. At
layer +N 1, the output neuron Ymean for estimating mean value has the
standard mean squared error (MSE) loss function, with a linear acti-
vation function:

Y Y( )
datapoints

actual mean
2 (3)

, and the output neuron Yvar for estimating variance minimizes the ne-
gative log likelihood (NLL):

+log Y Y Y
Y

( ( ) ( ) )
datapoints

var
actual mean

var

2

(4)

In order to enforce positivity, Yvar has the SoftPlus activation function.
Most neural network modelling problems select features from a set

of engineered features to improve modelling accuracy. However, the
process to engineer and select from such features is tedious. To solve
this problem, we designed a double convolutional layer, which can help
to automatically extract a higher level set of features that improves
model performance. The first convolutional filter has a kernel size of 6
to look for long duration features that occur throughout the hour, while
the second convolution filter has a kernel size of 4 to look for shorter
duration features that occur within 40 min. The output of the con-
volutional layers is in the form of a 2D array, while the input to the
dense layers with dropout only takes in 1D arrays. In order to combine
the convolutional layers with the dense layers with dropout, we flatten
the 2D output of the convolutional layers into a 1D array before ap-
plying dropout on it. With xk 1 being the input and xk being the output
of the k layer respectively, a convolutional layer is represented by Eq.
(4) and a dense layer with dropout is represented by Eq. (5).Total Filters
refers to the number of filters considered for that convolutional layer.

= +x a g x b( )k
Total Filters

k k k1 (5)

bk represents the bias vector of each layer, gk represents the 1D con-
volutional kernel for layer k, represents the convolutional operator,
and a (.) represents the activation function. The rectified linear unit
(ReLu) activation function is used as the activation function in this
work.Total Units refer to the number of filters considered for that dense
layer.

= +x a m W x b( )k Total Units
k
k k k

1
1 (6)

Fig. 1. AC modelling framework.

Fig. 2. Setpoints distribution across all rooms.

C. Lork, et al. Applied Energy 276 (2020) 115426

4



The neural network architecture used for both room power modelling
and room temperature modelling is shown in Fig. 3. The performance of
the neural network is evaluated using the metric known as Mean Ab-
solute Percentage Error (MAPE) as defined in Eq. (7).

=MAPE
datapoints

actual predicted
actual

100% | |
datapoints

(7)

3.2. Room power modelling

Since the AC for all the rooms are of the same type, and we have
selected rooms of the same size, it is highly likely the data for different
rooms and setpoints are based on the same physics model of the AC
compressor and room structure. Therefore, we attempt to combined all
the data from different rooms to estimate this physics model (Combined
Model), before fine tuning the model to suit the dynamics of each room
(Retrained Model). The Room Power Model aims to predict AC power
consumption P of each room for the current time slot based on the input
features, SP, IT, OT, H, PS, TonSin, Toff and P1 (P of the previous time
slot). Before we begin training the model, we separate the dataset into 3
different dataset: a training set, a validation set, and a test set. The
training set consists of data from all 10 rooms from 1 Apr 2015 to 31
Dec 2016 barring the months of Aug 2015, and Mar to June 2016. The
validation set will consist of data from only the room of interest with

the same time period as the training set. The test set will consist of data
from the room of interest in the month of Aug 2015, and Mar to June
2016. The Room Power Model is trained according to Algorithm 1. The
input to the neural network consists of a sliding window of 24 timesteps
of the input features, from the previous 23rd timestep back to the current
timestep. Structure of the neural network is shown in Fig. 3. By training
the neural network on a n-step look ahead output, the chances of the
neural network mapping a naive output to the previous power input
decreases, and the neural network is less prone to output a time-lagged
version of itself [34]. Output of the neural network predicts 6 outputs,
the power prediction of the current time step and also the power pre-
dictions for the subsequent time steps, but only the first output is used
for evaluation.

A regularization technique used for training the neural networks is
early stopping. This refers to stop the training of neural network if the
loss on the validation set does not change or actually increases over a
window of training epochs [35], ie. 10 epoches were used in this paper.
The loss considered for early stopping is a summation of the MSE loss in
Eq. (3) and the Negative Log Likelihood in Eq. (4). The purpose of first
training the room power neural network model on all the data is to
allow the model to get a big picture view of all the possible setpoints,
and the retraining on the specific room training set allows the network
to settle on dynamics specific to the room prediction. The various
networks throughout the training process are evaluated and presented

Fig. 3. Bayesian convolutional neural network architecture.
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in Table 2.
For comparison, we evaluated a version of the bayesian neural

network without the CNN layer (BNN), with the input layer being di-
rectly connected to the flatten layer, and also with a BCNN neural
network trained directly on the validation set (specific room data)
without the training set (all room’s data). As we can see from the results
in Table 2, retraining of the neural network with a dataset more tar-
geted to the room after training with an aggregated dataset improves
result as compared to a neural network trained on the specific room
dataset, preventing overfitting to the specific dataset due to class im-
balances. This is seen in Table 2, where the Retrained Model have lower
error than that of the Combined Model across various datasets. Also,
addition of a convolutional layer helps in increasing modelling accu-
racy for both rooms, by around 10%, as seen from the error of the
Retrained Models using BCNN being less than that of the error of the
Retrained Models using BNN in Table 2. A plot of the residuals between
the prediction via the Retrained Model and the actual power con-
sumption in the first week of Aug 2015 is shown in Fig. 4. The power
model is fairly expressive with regards to uncertainty, stating a low
uncertainty when the AC is switched off and having zeros power con-
sumption, and outputting high uncertainty estimate when the AC is is
switched on. Also, most of the error lies within 95% uncertainty
margin, represented by the blue line for prediction residuals lying be-
tween the maroon lines for uncertainty bounds in Fig. 4.

Algorithm 1. Power and Temperature Model Training

1: Initialization: Prepare training data, test data and validation data, initialize ne-
ural network;

2: Combined Model: Train neural network on training data with early stopping b-
ased on validation set, evaluated against test set;

3: Retrained Model: Retrain Combined Model on validation set, with early stopping
based on test set, evaluated against test set;

4: Return: Retrained Model;

3.3. Room temperature modelling

Similar to room power modelling, we aggregate all the data for
different rooms and setpoints, and train an aggregated model first be-
fore fine tuning the room temperature model with data pertaining to
each room. The Room Temperature Model forecasts the room tem-
perature IT for the next time slot based on the input features of the
previous time slot: SP1, IT1, OT1, H1, PS1, and P1. The structure of the
neural network used is the same as that of the Room Power Model, with
the exception of the inputs. The data is separated into a training, va-
lidation and a test set with the same intervals as room power modelling,
just that with different set of features. Again, the input to the neural
network consist of a sliding window of 24 previous timesteps and the
neural network is to predict 6 future outputs of IT. The neural network
is trained according to Algorithm 1.

The type of models compared is the same as the room power
models, expressed in Table 3. For the temperature model, the BCNN
performed the best out of the other variants. It is interesting to note that
the adding convolution layers increased the performance of the Room
Temperature by around 8%, with the Retrained Models using BCNN
having a lower error than that of the Retrained Models using BNN in
Table 3. Retraining with specific room data also improves performance,
compared to just using the model trained on aggregated data, with the
Retrained Models having a lower accuracy than that of the Combined

Table 2
Room power modelling results in MAPE.

Combined Model Retrained Model

Room 5 - BCNN with all data 13.0668 10.9441
Room 5 - BNN with all data 19.8135 18.6805
Room 5 - BCNN with 1 room data - 16.5431
Room 8 - BCNN with all data 12.3226 10.3010
Room 8 - BNN with all data 19.8135 18.6805
Room 8 - BCNN with 1 room data - 16.5431

Fig. 4. Room power and temperature model prediction residuals (predicted - actual).
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Models. Again, uncertainty values are high when the AC is first swit-
ched on or off. Residuals for temperature prediction also largely lies
within the 95% uncertainty bound, as seen in Fig. 4.

4. Q-learning for AC control

In light of the room power model and room temperature model
being complex and non linear, Q-learning is used to optimize the con-
trol of the AC with regards to a cost function that penalize energy
consumption, thermal discomfort, modelling uncertainty, and opera-
tion smoothness. This is an educated trial and error process, where a Q-
learning agent will explore the environment, calculate the expected
reward at each state when taking a particular action, and update this
value in a table. Over time, the agent will learn which is the best pos-
sible action to take in order to obtain the maximum reward over each
episode. The variant of Q-learning used in this work uses a neural
network to approximate the Q table, incorporate a prioritized experi-
ence replay buffer, and double learning as detailed in [36]. Further
information on the Q-learning process and values of hyperparameters
used in this work can be found in Algorithm 2. Eventually, when the Q-
learning agent is deployed in production, real-time performance data
can be used to update the BCNNs and at the same time the Q-learning
agent, allowing the system to learn autonomously.

Algorithm 2. Q-learning for Single Room AC Control

1: Initialization: Prepare AC environment for room, initialize neural nets
Q s a Q s a( , ), ( , )aux , replay buffer D with capacity Dc , exploration factor , min
exploration factor m, decay factor , discounted reward factor , number of
episodes E, and copy steps C.

2: while len(D) Dc do
3: Initialize random state st , take random action at , query Room Power Model,

Room Temperature Model, step through weather data, and observe reward rt ,
store resulting transition ( +s a r s, , ,t t t t 1) in D

4: end while
5: while episodes E do
6: Select episode randomly from pool of episodes
7: for all step in episode do
8: With probability select action at , else =a Q s aargmax ( , )t a aux
9: Query Room Power Model, Room Temperature Model, step through weather

data, and observe reward rt to obtain resulting transition ( +s a r s, , ,t t t t 1)
10: Replace transition in D with resulting ( +s a r s, , ,t t t t 1) from action at according

to prioritised action replay
11: Sample minibatch of 64 transitions ( +s a r s, , ,j j j j 1) from D based on priority
12: Set =y rj j if +sj 1 is terminal, else = + + +y r Q s Q s a( , argmax ( , ))j j j a aux j1 1

13: Run gradient descent to minimize Huber Loss between yj andQ s a( , )aux j j with
learning rate

14: Decrease exploration probability with = + e(1 )m m lambda steps

15: end for
16: if step % C == 0 then
17: Copy weights of Q s a( , )aux to Q s a( , )
18: end if
19: end while
20: Return: Q s a( , )

4.1. States

We consider each on/off cycle taken by occupants in each room as

an episode, and the Q-learning agent is to explore for the optimal SP to
be taken at each step in the episode. The states in Q-learning are the
observations on the system regarded by the Q-learning agent at each
control step. In this study, the states are a 1 × 2 flatten subset of the
24 × 8 vector used for predicting room power and room temperature,
together with future outdoor temperature. The state vector is in the
form of:

=
SP IT OT H PS TonSin Toff P

state SP IT OT H PS TonSin Toff P
OT OT OT OT OT OT

[ , , , , , , , 1,
1, 1, 1, 1, 1, 1, 1, 2,

, , , , , ]1 2 3 4 5 6 (8)

The variables with the postfix x will be the x time lagged version of
the variable (eg. Px being P with x time lag), while the variables with
the suffix -x will be the forecasted future information (eg.OT x being OT
x steps ahead of time). The room power and room temperature model
consist of the virtual environment, where the effect of an action is
fedback to the agent. At each step, depending on the SP taken, the room
power P and P1 in the state vector will be updated according to the
room power model, and the room temperature IT will be updated via
the room temperature model. Since we are not optimizing for the on/off
of the AC but only for the SP at each on/off cycle, the remainder of the
state vector are updated based on historical data.

4.2. Actions

The Q-learning agent is to decide on the SP at each step, from 15
different possible SP, from 16 to 30 °C with an interval of 1 °C. The
quality of each action at each state, the Q-learning network, is modelled
by two layered neural networks, Q s a( , ) and Q s a( , )aux with 64 neurons
of ‘ReLu’ activation follow by 32 neurons of ’ReLu’ activation in the
hidden layers. The network will take in the state vector and outputs 15
values, one for each possible action. The structure of the network is
shown in Fig. 5. At every step, the Q-learning agent will look through
all the values from Q s a( , )aux and choose the action with the highest Q-
value. The Q-learning network is trained with backpropagation based
on Huber Loss [37] that is clipped at −1 and 1.

4.3. Rewards

Choosing the a good reward function r is extremely important in
driving convergence in Q-learning. Our reward function consists of five
parts. The first consideration is energy consumption, which is P at each
step of an episode. The second consideration is thermal comfort. We
consider the original at the start of each episode as the preferred tem-
perature of the occupant, and formulate the comfort penalty as the
difference between the SPorignal and IT at each step. The third and fourth
consideration is uncertainty in power prediction (P ) and temperature
prediction (IT ). The fifth condition is the smoothness of operation,
which penalizes the difference in action for the current time step chosen
and the previous time step. Together they are expressed in Eq. (9) with
the constant a, which ranges between 0 to 1 to weigh between saving
energy and more thermal comfort. Choosing a higher value for a means
more emphasis on power savings.

=

+

+ +

+r

a P a

a a

max abs SP SP

(1 ) (1 )

(1 )

0.5( (1 3 ( ), 0))
2.5

mean
abs SPoriginal ITmean

Pvar ITvar

(3 ( ))
3

(0.04 )
0.04

(0.002 )
0.002

1
(9)

The values of 3, 0.04, 0.02 and 2.5 are normalization factors such that
the impact of each factor is weighted and the resulting r ranging be-
tween 0 and 1.

4.4. Hyperparameters

Q-learning is an algorithm that learns purely by sampling from the

Table 3
Room temperature modelling results in MAPE.

Combined Model Retrained Model

Room 5 - BCNN with all data 1.2376 1.1552
Room 5 - BNN with all data 9.5991 8.0021
Room 5 - BCNN with 1 room data - 7.3835
Room 8 - BCNN with all data 1.1378 0.9125
Room 8 - BNN with all data 9.3714 8.0853
Room 8 - BCNN with 1 room data - 5.6250
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environment, in this case, the developed room temperature and power
model. controls the chance that the Q-learning agent explore the
environment. Exploration is generally kept to a maximum at the start of
the algorithm to gather information about the dynamics of the system.
Once the agent becomes familiar with the system after a certain number
of steps, the exploration is decreases exponentially according to the
simple -greedy strategy with constant [38] to the minimum ex-
ploration rate, m. Another constant is , ranging from 0–1, which
controls how much emphasis the agent takes to future rewards. If is
kept low, the agent will only select actions that maximise immediate
rewards. If is high, the agent will try to optimize by taking future
actions into account. The learning rate of the agent, , controls how
sensitive the reinforcement agent is to each piece of information,
driving convergence to the optimal policy. [39] recommends setting

=
episodes

1
0.8 , which is the value used in this paper. Also, the ratio of the

number of episodes to run, E, the replay buffer capacity, Dc, and the
steps before Q s a( , )aux is updated, C will also affect the learning con-
vergence of the system. The hyperparameters used in the q learning
algorithm, Algorithm 2, are summarized in Table 4.

5. Simulated case study

The Q-learning agents are trained using historical weather condi-
tions and user on/off sequences in the month of April to June 2015,
before being evaluated against the normal user defined setpoint data in
the month of Aug 2015 to compare between uncertainty aware and

uncertainty unaware Q-learning. A special 50hr sequence in the month
of Oct 2015 is also taken for evaluation to compare between un-
certainty-aware Q-learning with a rule-based control scheme as detailed
in [5]. This 50 h sequence is a set of real-world experimental results
where an energy saving algorithm is actively controlling the user’s AC
setpoint in the real-world after user has given their permission. We also
investigated the effect of considering uncertainty in Q-learning before
the effect of changing the a parameter in the reward function, and its
performance compared to a rule-based control scheme. The various
data used for different evaluations are summarized in Table 5.

5.1. Comparison between uncertainty-aware Q-learning vs. uncertainty-
unaware Q-learning

For uncertainty-unaware Q-learning, we do not consider uncertainty
in our reward function while keeping the rest of the terms, resulting in
the following equation:

=

+

+r

a P a

max abs SP SP

(1 ) (1 )

0.5( (1 3 ( ), 0))
1.5

mean
abs SPoriginal ITmean(3 ( ))

3
1

(10)

A reason for including uncertainty in the reward function is to allow the
Q-learning agent to differentiate between the effects of selecting a
particular AC. When using a uncertainty-aware reward function, an
action leading to high uncertainty in power and room temperature
prediction will have less chance to be proposed by the Q-learning agent,

Fig. 5. Architecture of DQN for AC decision.

Table 4
Q-learning parameters.

Q-Learning Setup
Offline training (Room Power/Room Temperature Models) to offline control (Q-Learning)
Q-Learning Training Inputs (April to June 2015)
Internal States SP SP IT IT PS PS TonSin TonSin Toff Toff P P, 1, , 1, , 1, , 1, , 1, 1, 2
External States H H OT OT OT OT OT OT OT OT, 1, , 1, , , , , ,1 2 3 4 5 6
Q-Learning Outputs
argmax over Q values for each setpoint (16,17,18…30)
Hyperparmeters
Dc m E C
20000 0.01 0.001 0.85 100000

episodes
1

0.8
100
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leading to a narrower range of operation with smaller power and
temperature fluctuations. We are interested to see how this rewards
function perform compared to the uncertainty-unaware reward func-
tion. We set the a value to 0.5 to evaluate uncertainty-aware (UA) Q-
learning that uses the reward function defined in Eq. (9) and un-
certainty-unaware (UU) Q-learning that uses reward function defined in
Eq. (10). Boxplots of the control actions taken by the each agent is
shown in Fig. 6. Training of the agents were done with on/off sequences

in the month of April to June 2015, before being evaluated with user
defined control data in the month of Aug 2015.

Discomfort per Time Step refers to the absolute difference between
indoor temperature and preferred after taking an action at each time
step. Energy Saved per Time Step refers to the difference between en-
ergy consumed by the proposed control action by the Q-learning agents
and the energy consumed by the original user defined control action in
Aug 2015. From the plots, we see that in both Room 5 and Room 8, the

Table 5
Comparison summary.

Agents for comparison Training Inputs Testing Inputs

Comparison between uncertainty-aware Q-
learning vs. uncertainty-unaware Q-
learning

uncertainty-aware Q-learning agent compared to
user on/off sequences in Aug 2015

historical weather conditions and
user on–off sequences from April
2015 to June 2015

historical weather conditions and
user on–off sequences in the month
of Aug 2015

uncertainty-unaware Q-learning agent compared
to user on/off sequences in Aug 2015

historical weather conditions and
user on–off sequences from April
2015 to June 2015

historical weather conditions and
user on–off sequences in the month
of Aug 2015

Effect of adjusting a for power vs. comfort
in uncertainty-aware Q-learning

uncertainty-aware Q-learning agent with a =
(0.1, 0.3, 0.5, 0.7, 0.9) compared to user on/off
sequences in Aug 2015

historical weather conditions and
user on–off sequences from April
2015 to June 2015

historical weather conditions and
user on–off sequences in the month
of Aug 2015

Comparison between uncertainty-aware Q-
learning vs. Rule Based Control

uncertainty-aware Q-learning agent compared to
rule-based control agent [5]

historical weather conditions and
user on–off sequences from April
2015 to June 2015

historical weather conditions and
user on–off sequences of 50 h in Oct
2015

Fig. 6. Spread of discomfort and energy saved per time step for Uncertainty-Unaware (UU) and Uncertainty-Aware (UA) agents.
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standard deviation of the UA Q-learning agents are lower than that of
the UU Q-learning agents, validating the fact that UA Q-learning agents
will have less fluctuations in operation. However, incidentally, the UA
Q-learning agents performed better than the UU Q-learning agents in
terms of their mean. This means that in this case, using the UA reward
function, we are able to optimize AC with more energy savings and
discomfort reduction as compared to the UU reward function, with
more stable operation.

5.2. Effect of adjusting for power vs. comfort

The agent will be evaluated based on the net sum of energy it has
saved, as well as the amount of discomfort it has incurred. Similarly, the
agents were trained with on/off sequences in the month of April to June
2015, before being evaluated with the user control data in the month of
Aug 2015. Averaged discomfort is defined as hourly mean of the ab-
solute difference between indoor temperature and the user setpoint
across all timesteps, defined as =

= abs IT SP f( )timesteps
timesteps N

original1 , with f
being the number of timesteps per hour. In the month of Aug 2015, user
defined control in Room 5 incurred 263.45 kWh of energy, 5.21 °C/hr
of averaged discomfort across 342 operating hours, operating at an
average setpoint of 23.08 °C. Meanwhile, Room 8 incurred 509.11 kwh
of energy, 5.24 °C of averaged discomfort across 388 operating hours,
operating at an average setpoint of 21.70 °C. A Q-learning agent was
implemented for the operating conditions in Aug 2015 with varying a
values of 0.1, 0.3, 0.5, 0.7, and 0.9. Larger values of a place more
emphasis on energy conservation over reducing discomfort.

The results for energy saved and averaged discomfort reduced are
normalized and presented in Fig. 7. Generally, the Q-learning agents
reduced discomfort and energy consumption as compared to using the
rule based control in [5]. However, there is a trade-off with regards to
optimizing the control actions for energy conservation vs. for comfort.
Looking at the gradient of the graph, discomfort levels increase slowly
when emphasis on energy conservation is low but increases drastically
as more emphasis is placed on energy conservation. In other words, at
low values of a (a 0.5), users can sacrifice small amount of comfort to
achieve good amounts of energy savings. Once past a certain a
( >a 0.5), users will have to sacrifice a lot more comfort to achieve

similar amounts of energy savings. The optimal a for consumers would
probably be at 0.5. Different rooms are likely to have the same shape for
their energy vs. comfort trade-off curves. However, the actual energy
and discomfort conserved in different rooms might be different due to
different operating conditions. Factors affecting operating conditions
include different setpoints, different time of use, and differences in
physical properties of the cooling space due to furniture placement.

5.3. Comparison of UA Q-learning vs. rule based control

A sample control sequence for Room 8 proposed by the Q-learning
agent when a = 0.5 is compared to the 50hr sequence affeced by the
rule based control scheme in [5], shown in Fig. 8. The actual control
sequence consumed 20.63 kWh of energy over 50hrs, with 1.56 °C/hr of
averaged discomfort. Meanwhile, the control sequence proposed by the
Q-learning agent for Room 8 consumed a slightly lower 19.89 kWh of
energy, with just 1.44 °C/hr of averaged discomfort. The interesting
observation is the Q-learning agent has learnt to take cues from the
future weather conditions given to it (6 time steps in advance), low-
ering the proposed setpoint when outdoor temperature is expected to be
high and increasing the proposed setpoint when the outdoor tempera-
ture is expected to be low.

The results of changing a for the 50hr control sequence is shown in
Table 6. When a is kept low, the discomfort incurred and power con-
sumed by the UA Q-learning agent is comparable to that of the rule
based control in [5]. However, when we increase the value of a, we can
achieve a much higher energy savings with the UA Q-learning agent as
compared to the rule based control, albeit at the sacrifice of thermal
comfort.

5.4. Computational requirements

Algorithms described in this paper are written in Python, with the
neural networks implemented using Keras and TensorFlow. The com-
putation time for Room Power Model and Room Temperature Model
training described in Section 4 takes around 10 min running on a Intel
i7-7700HQ CPU with a GTX 1060 GPU, for each model. For Q-learning
detailed in Section 5, the training time for each room is around 30 min.
Inference of the Q-learning agent to provide setpoint decision at each
time step is relatively fast at 500 ms.

The design of the BCNN, and the neural network for the Q-learning
agent is important as it will influence the complexity of the algorithm. If
the complexity of the BCNN increase by 2 times due to the addition of a
few more layers, leading to an slowdown of a factor during BCNN in-
ference, the time taken for Q-learning training will increase by around
22 times due to it having to query the network repeatedly during the
training process. Meanwhile, complexity of the Q-learning agent neural
network is linearly related to the training and inference performance of
the Q-learning algorithm.

5.5. Practical limitations of proposed technique

One of the limitations for the generation of the room power and
room temperature models in Section 3 is that it requires a dataset with
good quality in the distribution of data, more than that of data quantity.
Since the purpose of the modelling technique is to solve the data im-
balance issue of just observing each room alone, it is better to have data
that covers all possible set pints across all outdoor conditions rather
than data that only cover a narrow range of setpoints across a limited
range of outdoor conditions. In countries where the weather is seasonal,
it is important to have at least a year’s worth of data. When there is
limited information, simulations in building energy software can be
performed to supplement the dataset.

Another limitation in the algorithm is that it only suitable for
buildings with similar room type and AC types with similar operation
modes. When applied to buildings where room types and AC differs, theFig. 7. Energy vs. comfort trade-off.
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models in Sections 3 and 4 will either have to take on more input
variables to differentiate the room types and AC types, or pre-clustering
will have to be done to group the data, before having separate models
created for each group.

The third limitation is that the Q-learning output layer in Section 4
will have to be modified to match the range of setpoints modelled in
Section 3. For example, if the models in Section 3 only models the
setpoint of ACs from 15 °C to 25 °C with 1 °C increment, the output
layer of the Q-learning network will need to have 10 outputs neurons to
represent each increment in the range. If the setpoints of AC between 15
°C and 25 °C are desired to have 0.5 °C increment, the output of the Q-
learning network will have to be change to 20 neurons.

In its vanilla form, the algorithms described in this paper are more
suited to buildings where room types and AC types are similar. This
includes hostels, hotels, or condominiums with homogeneous man-
agement-installed cooling systems.

6. Conclusion and future work

In this work, we have achieved our goal of creating an automated
data driven AC controller. We have shown that by aggregating data
from multiple rooms in a neural network training framework, we are
able to reduce the problems of overfitting and data imbalances. The
Bayesian Convolutional Neural Networks (BCNN) used for Room Power
and Room Temperature Modelling are able to express uncertainty with
regards to different states. Using these models as a simulation en-
vironment, the Q-learning agents trained with a uncertainty-aware re-
ward function have shown potential in reducing energy consumption of
ACs while preserving human comfort, with flexibility towards energy
savings or discomfort reduction by changing the parameter a in the
reward function.

A potential limitation of our framework is the large data pool re-
quired for successful implementation. However, with the increasing
popularity of IoT, as well as more cities in the world subscribing to
smart cities initiative, it is easier to collect data. Cities in Europe [40]
and Singapore [41] have the ambition to push for zero energy buildings
through the installation of smart meters and other related infra-
structure, and this could be a potential source of information for our
framework. Another advantage of using a neural network based ap-
proach is that once new data is available from a real-world setup, we
could conduct transfer learning to retrain the model to adapt them to
real-world conditions. Our framework is also easily transferable be-
tween setup to setup, due to the basic parameters that we use for our AC
Power and Temperature models, which are common across different
types of ACs. As future work, we would like to extend our framework to
another real-world setup for further testing, if the opportunity arises.

Currently, this work is consumer-centric in the sense that it opti-
mizes energy and comfort for the benefit of the consumer. However, the
Q-learning agents can be incorporated with dynamic pricing for the ACs
to participate in grid level Demand Response [42]. Also, with knowl-
edge of the Room Power and Room Temperature models of each in-
dividual residence, the Grid Operator can plan for direct control for ACs
or various demand response incentives to benefit the various stake-
holders.
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Fig. 8. UA Q-learning and rule based control for room 8.

Table 6
Results of different control scheme applied to 50hr sequence.

Averaged Discomfort per hour (°
C)/hr

Total Power Consumed
(kWh)

Discomfort improved vs. Baseline
(%)

Power saved vs. Baseline
(%)

Rule Based Control Scheme in [5]
(Baseline)

1.56 20.63 0 0

Uncertainty-Aware Q-Learning, a = 0.1 1.50 21.89 3.85 −6.11
Uncertainty-Aware Q-Learning, a = 0.5 1.44 19.89 7.69 3.59
Uncertainty-Aware Q-Learning, a = 0.9 3.24 9.69 −107.7 53.0
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