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a b s t r a c t

Incentive-based demand response (DR) program can induce end users (EUs) to reduce electricity demand
during peak period through rewards. In this study, an incentive-based DR program with modified deep
learning and reinforcement learning is proposed. A modified deep learning model based on recurrent
neural network (MDL-RNN) was first proposed to identify the future uncertainties of environment by
forecasting day-ahead wholesale electricity price, photovoltaic (PV) power output, and power load. Then,
reinforcement learning (RL) was utilized to explore the optimal incentive rates at each hour which can
maximize the profits of both energy service providers (ESPs) and EUs. The results showed that the
proposed modified deep learning model can achieve more accurate forecasting results compared with
some other methods. It can support the development of incentive-based DR programs under uncertain
environment. Meanwhile, the optimized incentive rate can increase the total profits of ESPs and EUs
while reducing the peak electricity demand. A short-term DR programwas developed for peak electricity
demand period, and the experimental results show that peak electricity demand can be reduced by 17%.
This contributes to mitigating the supply-demand imbalance and enhancing power system security.

© 2020 Elsevier Ltd. All rights reserved.
1. Introduction

Since the participators of wholesale electricity market usually
have difficulty in acquiring detailed market information, end users
(EUs) usually face the market uncertainty and the financial risks of
buying electricity at real-time prices [1]. Thus, energy service
providers (ESPs) which can monitor the market effectively, start to
participate into wholesale market on behalf the EUs. As the con-
nectors between grid operator (GO) and EUs, ESPs purchase elec-
tricity from GO and sell electricity to EUs for profits. They can help
EUs reduce energy expenditure and reduce the risks of market
uncertainties, but they always face the revenue risk [2]. In addition,
the imbalance between electricity supply and demand can bring
high risks for power system operation [3]. Therefore, ESPs have to
establish effective measures to manage their financial risks, and
fei University of Technology,
they should also take the responsibility of keeping supply-demand
balance to improve power system stability and reliability [4].

Demand response (DR) is an important strategy to address these
problems. In DR, EUs would change their electricity consumption
patterns by reducing or shifting electricity demand when they
receive induced signals from ESP [5]. In smart grid, advanced
metering infrastructure can support bidirectional communication
among GO, ESP and EUs [6]. Besides, smart appliances that can be
scheduled to perform their tasks during a time period specified by
EUs, have beenwidely adopted in buildings [7]. This hasmade DR to
be a promising way to promote supply-demand balance, improve
power system stability, as well as reduce financial risks of ESP. In
general, DR can be divided into price-based DR and incentive-based
DR. Price-based DR is to shift EUs’ peak electricity demand to off-
peak periods by implementing specific tariffs including time-of-
use (TOU) pricing, critical peak pricing, and real-time pricing [8].
Rahmani-Andebili and Shen [9] investigated a price-based energy
management method to minimize the cost of generation company.
To reduce the difference of electricity demand between peak and
valley periods, a hybrid price-based DR program was proposed in
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Ref. [10]. Srinivasan et al. [11] developed a dynamic pricing strategy
based on game theory and achieved peak electricity demand
reduction by 10% and 5% for residential and commercial users
respectively.

Incentive-based DR programs generally present certain rewards
for EUs to reduce their electricity demand during specific periods
[12]. They can be dispatched more flexibly than price-based DR
programs, and thereby ESP can get the required DR resources more
easily. In addition, EUs have high initiative to participate in the
incentive-based DR programs since they can get the rewards more
directly [13]. For example, in 2017, the peak electricity demand
reductions by incentive-based DR programs accounted for 93% of
the total peak electricity demand reduction in USA [14]. Up to now,
many research efforts have focused on developing different
incentive-based DR programs. Rahmani-Andebili established a
nonlinear incentive-based DR model and a nonlinear price-based
DR model which were implemented in four different power mar-
kets [15]. It revealed that the DR programs can shift part of the
electricity demand and save energy, while may lead to different
demand pattern with different responsive load behavioral model.
In Ref. [16], a nonlinear incentive-based DR and TOU-based DR
were used in unit commitment problem by considering the
nonlinear behaviors of residential customers. Erdinc et al. [17]
proposed a credits-based incentive approach for EUs to decrease
the critical load demands andmaintain the balance between supply
and demand during peak electricity demand periods, wherein the
uncertainty of the ambient temperature variations were taken into
account. Li et al. [18] developed a dynamic coupon incentive-based
DR program for distributed energy system with multiple load
aggregators, and a fairness function was defined to guarantee that
aggregators are rewarded. In Ref. [19], an improved incentive-based
DR model was presented, in which the elasticity depends not only
on the electricity price, but also on time and customer type. Be-
sides, Yu et al. [20] proposed an incentive-based DRmodel from the
perspective of GO to dispatch DR resources, and then a two-loop
Stackelberg game was constructed to capture interactions among
GO, ESP, and EUs. In addition, in Ref. [21], the incentives for drivers
of plug-in electric vehicles were optimized by fleet management,
and the charging demand was transferred to off-peak period from
peak period.

However, most of the existing related studies are based on
traditional model-based methods, including stochastic program-
ming, game theory, and mixed integer linear programming. It is
difficult to choose appropriate models for an actual energy system
and identify corresponding parameters that are EUs-dependent.
Besides, many assumptions were made in these model-based
methods which may be not applicable to real-world situations. In
addition, few studies have considered the uncertainty of both
electricity price and power load when developing incentive-based
DR program. Therefore, some traditional models may be ineffective
in volatile market environment. Also, some existing research work
just focused on a single EU and ignored the impact of multiple EUs
with different characteristics on the incentive-based DR.

In recent years, artificial intelligence (AI) based methods have
beenwidely used in decisionmaking problems [22]. Reinforcement
learning (RL) is a typical AI-based method, which has excellent
performance in solving the problem of maximizing returns or
achieving specific goals through learning strategies in the interac-
tion between agents and environment [23]. RL is a model-free al-
gorithm, and it has beenwidely used in smart energy management
[22,24]. For example, in Ref. [25], RL was applied to control the
building climate under dynamic pricing, in which the sequential
decision making problem was converted to a Markov decision
problem. Arif et al. [26] investigated the load scheduling of plug-in
electric vehicles using RL considering different dynamic price
schemes, thereby to minimize the total energy costs while meeting
the electricity demand of users. Wang et al. [27] proposed a RL-
based model to investigate the optimal energy trading among
microgrids, where each microgrid chooses a strategy individually
and randomly to trade the energy in an independent market and
maximizes its average revenue. In addition, Mahapatra et al. [28]
developed an improved RL algorithm to manage home appliances,
with the aim of reducing the power load during peak period, pro-
moting energy conserving, and reducing the carbon footprint of
residential dwellings. In Ref. [29], a multi-agents RL was developed
for a real-world smart grid scenario in which the forecasting
method was used to identify non-stationary electricity demand of
EUs. To deal with the uncertainty of electricity prices, Lu et al. [30]
forecasted market price using artificial neural network (ANN), and
then a multi-agents RL was used to make optimal decisions for the
operation of different home appliances. Similarly, in Ref. [31], the
power load and wholesale electricity price were forecasted using
ANN, and then the optimal incentives were acquired by RL based on
the forecasting results. However, few of above studies have
considered the uncertainties of users’ load demand and the power
purchase cost of ESP at the same time. The forecasting methods in
these works also have certain limitation in obtaining more accurate
results. Besides, the DERs and their uncertainties were rarely taken
into account when developing incentive-based DR models.

Therefore, to bridge these research gaps, this study proposed an
incentive-based DR model based on modified deep learning (MDL)
and RL, enabling the ESP to get required DR resources with mini-
mum costs and reducing the electricity bills of EUs. As a result, it
can promote supply-demand balance and improve power system
reliability. To reduce the uncertainties of external environment, a
modified deep learning model based on recurrent neural network
(MDL-RNN) was developed to forecast day-ahead wholesale elec-
tricity price, PV power output, and power load respectively. Then,
RL was used to obtain the optimal incentive rate for each EU while
maximizing the total profits of ESP and EUs. The contributions of
this study are as follows: (1) An incentive-based DRmodel based on
MDL and RL was proposed and the optimal incentive rate at each
hour can be autonomously learned by the interactions between the
ESP and EUs; (2) The uncertainties of environment were considered
by accurate forecasting of the day-ahead wholesale market price,
PV power output, and EUs power load with the proposedMDL-RNN
model, which achieved better performance; (3) The diversity of EUs
was taken into consideration and a theoretical proof on the rela-
tionship between the attitudes of EUs towards energy saving and
the optimal incentive rates was given; (4) A short-term DR program
was presented for peak electricity demand period to enhance the
security of power system operation.

The remainder of the study is organized as follows. Section 2
presents the incentive-based DR model. Section 3 introduces the
proposed MDL-RNN model for forecasting wholesale market price,
PV power output, and EUs’ power load. Section 4 provides the RL
method to determine the optimal incentive rates at each hour. The
experimental results and discussions are given in Section 5. Section
6 presents the conclusions.

2. Demand response model

Fig. 1 shows the schematic of a hierarchical electricity market.
There are mainly three kinds of participators in the electricity
market, i.e. GO, ESP, and EUs. ESP purchases electricity from GO
according to wholesale electricity price, and then sells electricity to
EUs at retail electricity price. Meanwhile, ESP has to help GO to
ensure electricity supply-demand balance and reduce peak elec-
tricity demand while pursuing maximum profit.

As shown in Fig. 1, the incentive-based DR program is



Fig. 1. Schematic of a hierarchical electricity market.
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implemented in retail market to reduce peak electricity demand for
the better balance of supply and demand, while maximizing the
total profits of ESP and EUs. The solar power also was considered in
the incentive-based DR program.

2.1. Energy service provider’s profits

By giving EUs certain rewards, ESP can procure required DR
resources from EUs, and reduce the cost of electricity purchasing
fromwholesale market. Here, the reduced electricity purchase cost
minus the rewards for EUs is regarded as the profit of ESP, as
described in Eq. (1). Therefore, ESP can obtain maximum profits by
setting optimal incentive rates for EUs.

profitesp ¼
Xn
i¼1

Xh
j¼1

�
pj �aij

�
DEij (1)

where i represents the i-th EU, n is the total number of EUs, j de-
notes j-th hour, h is the last hour of a day, pj is the wholesale
electricity price at hour j, DEij is the reduced electricity demand of
user i at hour j in response to the incentives, and aij is the incentive
rate for EU i at hour j. In addition, aij cannot be less than amin or
exceed amax, and this constraint is usually determined by electricity
trading market and regulatory authority [32].

2.2. End users’ profits

EUs can get rewards when they response to the incentive of ESP
to reduce electricity demand, but they will also have to bear the
discomfort caused by the reduction of electricity demand. Hence, as
shown in Eq. (2), the profits of EUs mainly come from the difference
between the electricity reduction rewards and the discomfort cost,
and the income that EUs sell their residual solar power inwholesale
electricity market. In particular, EUs were assumed to first consume
solar power, and the incentive rate is set to 0 when EUs’ electricity
demand can be met by solar power.

profiteu ¼
Xn
i¼1

Xh
j¼1

½li ,aij ,DEij �ð1� liÞ , costij
�
DEij

�þpj , PVij

3
5
(2)

DEij ¼ Eij,xj,
aij � amin

amin
(3)

In Eq. (2), l is the weight parameter which represents the atti-
tude of EUs towards incentive reward and discomfort cost. A small
li denotes that the EU i prefer comfort than incentive reward. In
contrast, a big li represents that the EU i believe that incentive
reward is more important than comfort. costijðDEijÞ is the discom-
fort cost of EU i at hour j when the electricity demand of EU i is
reduced by DEij, and PVij represents the amount of solar power sold
to GO by EU i at hour j. Here, pj is the tariff of solar power feed-in to
power system and is set to be equal to wholesale electricity price in
this study. In Eq. (3), Eij is the actual electricity demand of EU i at
hour j, xj is the elasticity coefficient that represents the ratio of
electricity demand variation to incentive variation [33]. In addition,
the electricity demand reductionDEij should bewithin a range [34].
It cannot exceed the upper bound DEmax and be less than lower



Table 1
Inputs of the MDL-RNN model.

Forecasting targets Inputs

EUs load Month, week, day, hour, temperature, humidity, wind speed, historical load
PV power output Month, day, hour, humid, temperature, global horizontal radiation, diffuse horizontal radiation, historical PV power output
Wholesale market price Month, week, day, hour, holiday, historical wholesale market price

Table 2
Ranges of hyper-parameters.

Hyper-parameters Range

Neuron number of layers 2, 3 and 4 [10, 200]
Neurons type of layer 2, 3 [LSTM, GRU, SimpleRNN]
Activation function of layer 4 [Sigmoid, ReLU]
Dropout of layer 2, 3, and 4 [0,1]
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bound 0. DEmax is determined by the characteristics of EUs and the
capacity of power generation.

The discomfort cost of EU i at hour j is a quadratic function of
DEij, which is defined as Eq. (4) [35].

costij
�
DEij

�¼mi
2
�
DEij

�2 þ ui,DEij (4)

In Eq. (6), mi and ui are discomfort parameters. They are positive
and EUs-dependent [20]. For the same amount of electricity
reduction, the discomfort degree of different EUs may be different.
This is due to that different EUs have different household appli-
ances and electricity consumption characteristics. Bigger mi and ui

mean that EU i will suffer from more discomfort even when
reducing the same electricity demand as EUs who have smaller m
and u.

Next, the objective of the DR model is to maximize the total
profits of ESP and EUs, as shown in Eq. (5).

max
�
profitesp þprofiteu

�
(5)

Then, the day-ahead incentive rates at each hour for every EU
were optimized by MDL-RNN and RL.
3. Modified deep learning model for forecasting

To overcome the uncertainties of environment, an MDL-RNN
model which has good forecasting performance, was proposed to
forecast wholesale electricity price, PV power output, and EUs po-
wer load respectively.
Fig. 2. Schematic of RL to find t
3.1. Recurrent neural network

There have been some many research efforts on time series
forecasting [36,37]. As a variant of ANN, recurrent neural network
(RNN) is a recursive neural network which adopts sequence data as
input, and it has been more and more used in time series fore-
casting [38]. RNN has the property of memory, parameters sharing,
and Turing completeness, so it can learn the non-linear character-
istics of time series data with high efficiency [39]. However, simple
RNN is vulnerable to gradient explosion or vanishing during
training. To deal with these problems, some novel cells were pro-
posed to replace original neurons in RNN, such as long short-term
memory (LSTM) unit [40] and gated recurrent unit (GRU) etc. [41].

3.2. Modified deep learning model based on RNN (MDL-RNN)

Considering the superior ability of deep learning model in
modeling nonlinear relationship and the excellent performance of
RNN in learning time dependencies, an MDL-RNN model is pro-
posed to forecast wholesale market price, PV power output, and
EUs power load.

3.2.1. Inputs and model structure
The selection of input variables is critical for improving the

forecasting accuracy [42]. In this paper, the inputs of the MDL-RNN
model were chosen based on the guideline of previous work [43],
and they were also limited by the availability of related data. The
inputs include three kinds of variables: time variables (month,
week, day, hour, and holiday), environment variables (temperature,
humidity, wind speed, global horizontal radiation, and diffuse
horizontal radiation), and historical variable. The inputs of the
MDL-RNN model for forecasting different targets are shown in
Table 1.

To obtain more accurate forecasting results, the MDL-RNN
adopts a 5-layers network which includes one input layer, two
GRU-RNN layers, one simple hidden layer, and one output layer. It
has been demonstrated that multi-layers networks usually have
better forecasting performance [44]. The input layer has 24 input
vectors which once adopts 24-h time series data, and each input
he optimal incentive rates.



Fig. 3. Flowchart of IDR-MDLRL algorithm.
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vector includes time variables, environment variables, and histor-
ical variable. This has improved forecasting accuracy because the
periods of wholesale electricity price, PV power output, and EUs
power load are 24-h.

3.2.2. Model setup
In order to obtain better forecasting results, some setups were

made in the training process of MDL-RNN model. First, the training
data was preprocessed by min-max normalization to eliminate
dimension and improve calculation efficiency [45]. For a given
variable x, its normalization can be expressed as

x0k ¼
xk � xmin

xmax � xmin
(6)

where xk is a value of variable x, xmin is the maximumvalue of x, and
xmax is the minimum value of x.
Then, weight decay regularization was used to solve the over-

fitting problem by adding regularization term to cost function [46].
Meanwhile, dropout was also employed in the MDL-RNN model
[47]. At last, the Adam gradient descent algorithmwas used to train
the MDL-RNN model through back-propagation due to its fast
convergence speed [48].

In addition, there are some other hyper-parameters that need to
be set, such as neuron number of layer 2 and layer 3, the neurons
type of layer 2 and layer 3, the activation function of layer 4, and the
dropout of layer 2, layer 3, and layer 4. Table 2 shows the range of
these hyper-parameters.

Next, a global optimized method Hyperopt was used to deter-
mine the most suitable value of hyper-parameters until the optimal
MDL-RNN model was obtained.



Fig. 4. Distributions of Dt in forecasting wholesale electricity price, PV power output,
and EU 1’s power load.
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3.2.3. Modified forecasting results
The forecasting results affect the optimization of incentive rates.

However, absolutely accurate forecasting results cannot be ob-
tained. Therefore, a modified method was employed to further
improve the forecasting performance. As shown in Eq. (7), Dt was
assumed to obey normal distribution.

Dt ¼
yt; true � yt; forecast

yt; forecast
� N

�
m; s2

�
(7)

Then, the modified forecasting results can be obtained as shown
in Eq. (8).

yt;true ¼ð1þDtÞ� yt;forecast ¼ E
h
ð1þDtÞ� yt;forecast

i
¼ E
h

�ð1þDtÞ� yt;forecast
i
¼ð1þmÞ � yt;forecast (8)

In real scenarios, the final forecasting model was obtained by
learning from historical data. When the related variables are input
into the MDL-RNN model, the future targets (i.e. wholesale market
price, PV power output, and power load) can be output. However,
the actual future targets cannot be acquired in advance, and thus
the distribution of Dt cannot be identified. Therefore, the distri-
bution of Dt in training process was used to replace it.

3.2.4. Evaluation metrics
The forecasting results were evaluated by two commonmetrics,

i.e. mean absolute error (MAE) and mean absolute percentage error
(MAPE). Their definitions are shown in Eq. (9) and Eq. (10)
respectively.

MAE¼
PT

t¼1

���yt;true � yt;forecast
���

T
(9)

MAPE¼ 100%
T

XT

t¼1

�����yt;true � yt;forecast
yt;true

����� (10)

In Eq. (9) and Eq. (10), t represents the time step, T is the total
time step, yt;true is the true value at time step t, and yt;forecast is the
forecasting value at time step t.

4. Reinforcement learning for incentive rates optimization

As an agent-based machine learning method, RL can learn the
optimal actions (i.e. optimal policy) by the iterations between agent
and environment. With the optimal policy, the agent can get the
biggest reward. In this paper, RL was used to explore the optimal
incentive rates at each hour of a day to obtain the maximal total
profits of ESP and EUs. Fig. 2 shows the schematic of RL to find the
optimal incentive rates.

In Fig. 2, the agent represents ESP and the environment repre-
sents EUs. When ESP gives EUs incentive (i.e. action), EUs response
to the incentive and reduce their electricity demand. Then, ESP will
get the reduced electricity demand from EUs (i.e. state), and the
profits of ESP and EUs (i.e. reward) can be obtained. Then, the it-
erations will continue until reaching themaximal profits of ESP and
EUs.

Generally, RL can be formalized as a Markov Decision Process
(MDP) which contains three elements: state Sij2SðDEijÞ, action
Aij2AðaijÞ, and reward RijðSij;AijÞ, where i is the i-th EU, j is the j-th
hour of a day, Sij is the reduced electricity demand of EU i at hour j,
Aijis the incentive rate for EU i at hour j, and RijðSij;AijÞ is the current
reward of EU i at hour j. In RL model, the state transition only relies
on the current state and current action, and thus the profits and the



Fig. 5. Forecasting results of wholesale electricity price from July 23, 2018 to July 29,
2018.

Fig. 6. Forecasting results of PV power output from July 23, 2018 to July 29, 2018.

Fig. 7. Power load forecasting results of three EUs from July 23, 2018 to July 29, 2018.
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electricity demand reduction only rely on the current incentive
rate. Then, the MDP can be expressed as Eq. (11) inwhich H denotes
the final hour of a day, Ri1ðSi1;Ai1Þ is the reward of EU i at hour 1,
and RihðSih;AihÞ is the reward of EU i at the final hour of a day.

Si1;Ai1;Ri1ðSi1;An1Þ; Si2;Ai2;Ri2ðSi2;Ai2Þ//Si;h;Ai;h;RihðSih;AihÞ:
(11)

Considering the long-term returns, future reward has to be
taken into account besides current reward [24]. The future reward
will decay at a discount rate r, so the cumulative discounted reward
of EU i at the first hour and hour l can be described as Eq. (12) and
Eq. (13) respectively.

Ri1 ¼Ri1ðSi1;Ai1Þ þ r,Ri2ðSi2;Ai2Þ þ/þ rh�1,RihðSih;AihÞ
(12)

Ril ¼RðSil;AilÞ þ r,R
�
Si;lþ1;Ai;lþ1

�þ/þ rh�l,RðSih;AihÞ (13)

In Eq. (12) and Eq. (13), r2½0;1� indicates that agent pursues



Table 3
Quantitative evaluation of forecasting results.

MDL-RNN ANN SVM ELM

MAE MAPE MAE MAPE MAE MAPE MAE MAPE

Price 3.31 0.096 5.88 0.153 8.19 0.391 6.28 0.159
PV 0.11 0.039 0.17 0.106 0.16 0.101 0.29 0.249
Load 1 0.25 0.129 0.55 0.173 0.59 0.185 0.36 0.131
Load 2 0.14 0.111 0.69 0.379 0.72 0.385 0.38 0.161
Load 3 0.28 0.137 0.36 0.382 0.38 0.394 0.31 0.154

Table 4
Parameters of RL model.

Parameters Value

Discomfort parameter m1/m2/m3 1/2/3
Discomfort parameter ui 1
Maximum electricity reductionDEmax 0.3Eij
Minimum incentive rate amin 0.3pmin

Maximum incentive rate amax pmin

Table 5
Electricity elasticity in different hours.

Period Elasticity(xj)

0 ame6 am, 22 pme23 pm 0.5
7 am - 16 pm 0.3
17 pme21 pm 0.1

Fig. 8. Convergence of Q-value to acquire optimal incentive rates for EU 2 with
different l.

Fig. 9. Convergence of Q-value to acquire optimal incentive rates for different EUs.
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current reward or strive for future reward. When r ¼ 0, the agent
only consider the current reward, and when r>0 the agent will
consider both current and future rewards. In this paper, ris set as
0.9 which is a common value in RL modeling [49]. Rnl is the reward
of EU i at hour l, Sil is the electricity demand reduction of EU i at
hour l, Ail is the incentive rate for EU i at hour l, and RðSil;AilÞ is the
current reward of EU i at hour l.

The solution of MDP is to find the optimal policy which can
maximize the cumulative discounted reward, and then the optimal
actions and states corresponding to the optimal policy can be ob-
tained. Therefore, Eq. (12) can be transformed into Eq. (14).

Rij ¼R
�
Sij;Aij

�þ r,maxRi;jþ1 (14)
Eq. (14) satisfies the Bellman equationwhich is usually solved by
finding approximate solution [50]. The approximate solution can be
found through policy based approaches (e.g. policy gradient algo-
rithm) or value based approaches (e.g. Q-learning and Sarsa) [51].
Some other methods combining policy gradient based algorithm
and value based algorithm can also solve the Bellman equation (e.g.
Actor-Critic) [52]. In addition, these methods can be divided into
model-based approach and model-free approach according to
whether the dynamics of the system (i.e. transition probabilities
between states) are known [53]. In the model-free method, the
agent finds the optimal policy without determining transition
probabilities between the states, but themodel-basedmethod is on
the contrary. As for the RL model in this paper, the dynamics of the
system are known. Thus, model-free method is more suitable to
solve the model.

Q-learning is a model-free and off-policy method which has
been widely used to solve RL model due to its simplicity [54]. Be-
sides, it can learn from environment directly without knowing the
environment, and that is why Q-learning was chosen to solve the
proposed RL model. In a simple Q-learning example, a table is



Fig. 10. Results of different EUs when l ¼ 0.1.
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established and the state-action values (i.e. Q-values) are stored in
it. For a Q-value QðSij; AijÞ, it will be updated at each iteration to
optimize the result until acquiring the maximum discounted
reward Rij. Then, Eq. (14) can be transformed into Eq. (15).
Qij ¼Q
�
Sij;Aij

�þ r,maxQi;jþ1 (15)

At each hour, the ESP provides an incentive rate for EUs. EUs will
reduce their electricity demand for rewards, and then the corre-
sponding Q-value (i.e. action and state) will be updated as Eq. (16).

Qij ¼ð1� qÞQij þ q
�
Q
�
sij; aij

�þ r ,maxQi;jþ1
�

(16)

In Eq. (16), q2½0;1� is the learning rate which represents towhat
extent the new knowledge overrides old knowledge [24]. If q ¼ 0,
the agent learns nothing. If q ¼ 1, all previous knowledge is lost. To
balance the old knowledge and new knowledge, q should be set as
decimal between 0 and 1. In practice, q is usually set to 0.1.

After several iterations, the Q-value will converge to the optimal
value which corresponds to the optimal policy of MDP. Then, the
optimal incentive rates at each hour for every EU can be obtained.
The algorithm of the proposed incentive-based DR program based
on MDL and RL (IDR-MDLRL) is shown in Fig. 3.

As shown in Fig. 3, the modified forecasting results will be input
into RL model to overcome the uncertainties of the environment. In
the RL model, the action was chosen by ε-greedy policy which can
realize exploration and exploitation mechanism. It is because that
the agent cannot acquire maximum reward by only exploiting the
already known knowledge. The agent is supposed to explore new
knowledge for better reward. ε is generally set to a decimal be-
tween 0 and 1 [55]. A big ε denotes that the agent tends to explore
new actions, and a small εmeans that agent tends to exploit current
actions. εwas set to 0.1 in the proposed IDR-MDLRL model as it was
a widely used value in RL modeling [56].
5. Results and discussions

5.1. Data

The experimental data were all obtained from public data
sources. The power load data comes from Dataport which provides
the data that ranges from electricity market operations to
appliance-level EUs behavioral research [57]. The building types of
EUs include apartment, mobile home, single-family home, sales
and town home. The hourly load data (i.e. average load in an hour)
from January 1, 2018 00:00 am to July 29, 2018 23:00 pm of three
users in Austin, Texas, USA was chosen randomly for experiments.
Meanwhile, the environment data was acquired from Mesowest
which provides free detailed environment data throughout the USA
[58]. The training period of load forecasting is from January 1, 2018
00:00 am to July 22, 2018 23:00 pm, and the testing period is from
July 23, 2018 00:00 am to July 29, 2018 23:00 pm.

The hourly wholesale electricity price data (i.e. average price in
an hour) was obtained from PJM by Data Miner 2 [59]. PJM is one of
the electric industry leaders in reliable operations and efficient
wholesale electricity markets in the USA. It provides rich data
sources about electric power system operation and wholesale
electricity markets. The wholesale electricity price data from
January 1, 2018 00:00 am to July 29, 2018 23:00 pmwas used in the
wholesale electricity price forecasting. The training period and
testing period division is the same as that in power load forecasting.

DKA Solar Center is a demonstration facility for commercialized
solar technologies operating in the arid solar conditions of Alice
Springs, Central Australia [60]. It provides free access to PV power
output data and related environment data for researchers all over
the world. The hourly solar power output data (i.e. average output
in an hour) of a PV panel whose rated output power is 5.5 kW was
used in the experiments, and the division of training and testing
data is the same as that in the forecasting of load and wholesale



Table 6
Cost benefit analysis of end users.

l 0.1 0.5 0.9

users EU 1 EU 2 EU 3 EU 1 EU 2 EU 3 EU 1 EU 2 User3

mn 1 2 3 1 2 3 1 2 3

DR resources (kWh) 7.01 6.44 2.27 9.12 13.12 3.13 9.12 13.19 3.13
Incentive income (￠) 8.34 6.72 2.74 12.03 17.57 4.41 12.03 17.69 4.40
Discomfort cost (￠) 8.49 9.51 2.93 11.53 24.68 4.29 11.53 24.88 4.29
Profit 1 (￠) �6.81 �7.89 �2.36 0.25 �3.56 0.06 9.67 13.43 3.53
Solar power income (￠) 6.56 49.93 100.22 6.56 49.93 100.22 6.56 49.93 100.22
Profit 2 (￠) �0.25 42.04 97.86 6.81 46.37 100.28 16.23 63.36 103.75

Table 7
Cost benefit analysis of energy service provider.

l 0.1 0.5 0.9

Gross income of DR (￠) 50.05 76.05 76.23
Cost of DR (￠) 17.80 34.01 34.12
Profit (￠) 32.25 42.04 42.11
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electricity price.
It should be pointed out that the hourly data represents the

average value in each hour. Meanwhile, although wholesale elec-
tricity price, PV power output, and power load data come from
different data sources, the experiment results will not be affected as
they are only used to simulate real-world situations.
5.2. Modified deep learning-based forecasting results

In this section, the proposed MDL-RNN model was used to
forecast wholesale electricity price, PV power output, and EUs’
power load respectively. After training and testing, we obtained the
optimal forecasting model which has the minimum forecasting
errors. Then, the modified method was used to further improve
forecasting accuracy. Fig. 4 (a)-(c) are the distributions of Dt in
forecasting wholesale electricity price, PV power output, and EU 1’s
power load.

It can be seen from Fig. 4 that Dt generally obey normal distri-
bution. By using more historical data to train the MDL-RNN model,
the distribution of Dt will be more stable and the forecasting can be
further improved.

Fig. 5 shows the forecasting results of wholesale electricity price
from July 23, 2018 to July 29, 2018. Fig. 6 shows the forecasting
results of PV power output from July 23, 2018 to July 29, 2018. Fig. 7
(a)-(c) presents the load forecasting results of three different EUs
from July 23, 2018 to July 29, 2018. Table 3 shows the evaluation
results of MDL-RNN in forecasting wholesale electricity price, PV
power output, and EUs power load by two common metrics (i.e.
MAE andMAPE). It should be noted that we just calculate theMAPE
of PV power output at daytime when PV system is on operation.

As shown in Fig. 5 and Table 3, the forecasting errors of
wholesale electricity price are small, although there are many
fluctuations in the profile. From Fig. 6, it can be found that the PV
power output present periodicity. It increases smoothly with the
enhancement of illumination and reaches the maximum power
output at around 13:00 pmwhen sunlight is the strongest. Besides,
we find from Table 3 that the MDL-RNN model achieved best per-
formance (MAE: 0.11, MAPE: 0.039) in forecasting PV power output
as its profiles are smoother and more regular than other profiles.

From Fig. 7, it can be seen that the power loads of these three
EUs are of high volatility and show different characteristics.
Meanwhile, there are basically two load peaks in the morning and
evening over which EUs tend to consume more electricity due to
their living needs.We can also find from Table 3 that the forecasting
errors are small in forecasting the power load of different EUs. It
illustrates that the MDL-RNN model has great capability in fore-
casting complex and nonlinear power load. In addition, compared
with the forecasting in Ref. [31], the proposed MDL-RNN method
achieve less MAE value.

Table 3 shows that the MDL-RNN model performs well in
forecasting wholesale electricity price, PV power output, and EUs’
power load. At the same time, the MDL-RNN model is superior to
conventional methods, such as simple ANN, support vector ma-
chine (SVM), and extreme learning machine (ELM). It can learn the
time dependencies and nonlinearity in time series data. In addition,
it can be noted that the MDL-RNN model achieves better perfor-
mance in forecasting PV power output and wholesale electricity
price than EUs’ power load. This is due to the fact that EUs’ power
load is of higher volatility and fluctuation which will increase the
difficulty in learning the relationship between the input variables
and the output power load.

5.3. Incentive rate optimization based on reinforcement learning

The day-ahead forecasting results were regarded as the inputs of
the RL model to reduce the impact of environment uncertainties.
But the forecasting hourly PV power output and EUs’ power load
data have to be first converted to hourly power generation and
hourly electricity demand data. In this section, the forecasting re-
sults on July 23, 2018 were selected as a detailed case study. The
incentive rates at each hour were optimized by the proposed RL
model for each EU to maximize the total profits of ESP and EUs.

5.3.1. Parameters setup
Table 4 shows the parameters of RL model including the

discomfort parameters, the upper bound of electricity reduction,
the minimum incentive rate, and the maximum incentive rate,
which were referenced from Refs. [20]. Table 5 presents the elec-
tricity elasticity at different hours [61]. The electricity elasticity
reflects the impact of incentive variation on electricity demand
variation. The elasticity period can be divided into three parts
corresponding to valley, mid-peak, and peak periods respectively. It
should be noted that the values of parameters will not affect the
mechanism of our RL model in essence.

5.3.2. Convergence of Q-value
During the iterations of RL, Q-value will gradually converge to

the maximum value which corresponds to the maximum profits of
ESP and EUs. Fig. 8 shows the Q-value profile of EU 2 to acquire
optimal incentive rates under different l. As shown in Fig. 8, the
start Q-value is very small as the agent has very limited knowledge
on choosing the best actions which will bring optimal reward. After
several iterations, the agent can learn from previous experience to
determine the optimal action and the Q-value tends to be stable. It



Fig. 11. Results of EU 2 with different l2.
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can be also found from Fig. 8 that the optimal Q-value will grow
with the increase of l. It is because that EU places a higher premium
on the reward than discomfort cost when l is larger, and thus the
total profits of ESP and EUs increase with l.

Fig. 9 (a)-(b) shows the convergence of Q-value for different EUs.
When l¼0.9, EUs are willing to reduce their electricity demand to
obtain rewards and even almost neglect the incurred discomfort
costs. It can be seen from Fig. 9 that the maximum Q-value of EU 2
(m2 ¼ 2, u2 ¼ 1) is larger than that of others. It is because that the
discomfort cost paprameter m2 is less than that of EU 3 (m3 ¼ 3).
Meanwhile, the overall electricity consumption of EU 2 is relatively
higher than that of others. Hence, EU 2 has more poetntial to
response to incentives and reduce their electricity demand for the
rewards. When l¼0.1, the EUs place higher premium on discomfort
cost than the reward provided by ESP. This leads to less electricity
demand reduction and small Q-value as shown in Fig. 9. Moreover,
the discomfort cost has more influence on the profits of EUs under
this circumstance. Thereby, it can be found that the maximal Q-
value of EU 1 is more than that of EU 2.

In addition, from Figs. 8 and 9, it can be seen that Q-value fol-
lows a fluctuating ascending trend, and still fluctuates when
converging to optimal Q-value. It is caused by the ε-greedy policy
which makes the agent explore new knowledge while exploiting
acquired konledge during iterations. The convergence of Q-value
will be proofed theoretically in Appendix A.1.

5.3.3. Results of different EUs with different l
First, in order to explore how EUs response to the optimal

incentive rate at each hour obtained by the proposed RL model, the
incentive rate profiles and electricty demand reduction of different
EUs with the same l value (l ¼ 0.1) were presented in Fig. 10.

In Fig. 10, the blue line represents the optimal incentive rates,
the red line is the day-ahead wholesale electricity price, the yellow
part is the original electricity demand, and the green part denotes
actual electricity consumption when the EUs response to the
incentive-based DR program. It can be seen that the actual elec-
tricity demand is low for EU 1 and even equal to 0 for EU 2 and EU
3 at noon. It is because that each EU is assumed to install the same
PV panels which can provide enough electricity for their usage and
sell extra solar power inwholesale electricity market over that time
period. Meanwhile, ESP will also not provide incentive for EUs
when their actual electricity demand is 0. In addition, it can be
expected that EU 3 will has less electricity demand reductionwhen
it has same original electricity demand as EU 1 or EU 2. The reason
is that EU 3 has larger discomfort parameter m3 ¼ 3 which denotes
that EU 3 possess more conservative attitude towards incentive
reward.

From Fig. 10, what can be also found is that the incentive rates
vary with wholesale market price changes. During lower wholesale
market price period, ESP will provide less incentive to reduce EUs’
electricity demand. Nevertheless, electricity supply is insufficient
over higher wholesale market price period, and ESP is more incline
to induce EUs to reduce electricity demand by higher incentive rate.
This will promote the reliability and stability of power system, and
also bring certain profits for ESP and EUs.

The objective of the proposed RL model is to maximize the total
profits of ESP and EUs. This can balance the benefits of ESP and EUs
and encourage EUs to participate into the incentive-based DR
program. The cost benefit analysis of EUs and ESPwas carried out as
shown in Tables 6 and 7 respectively.

In Table 6, profit 2 represents the total profits of EUs that is
calculated by Eq. (2), and profit 1 equals profit 2 subtract the selling
income of solar power. Since EUs first consume solar power and ESP
provides the unmet electricity demand, the selling income of solar
power is fixed for each EU with different l. It can be seen that EU 3



Table 8
Financial analysis of EU 2 with different l2.

l2 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

DR resources (kWh) 6.44 7.96 9.82 12.02 13.12 13.19 13.19 13.19 13.19
Incentive income (￠) 6.72 8.86 11.88 15.70 17.56 17.68 17.68 17.68 17.68
Discomfort cost (￠) 9.51 12.44 16.44 21.82 24.68 24.88 24.88 24.88 24.88
Profit 1 (￠) �7.89 �8.18 �7.95 �6.81 �3.56 0.66 4.91 9.17 13.43
PV income (￠) 49.93 49.93 49.93 49.93 49.93 49.93 49.93 49.93 49.93
Profit 2 (￠) 42.04 41.75 41.98 43.12 46.37 50.59 54.84 59.10 63.36

Table 9
Cost benefit analysis of energy service provider.

l2 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Gross income of DR (￠) 21.41 25.71 30.96 36.93 39.56 39.72 39.72 39.72 39.72
Cost of DR (￠) 6.72 8.86 11.88 15.70 17.56 17.68 17.68 17.68 17.68
Profit (￠) 14.69 16.85 19.08 21.23 22.00 22.04 22.04 22.04 22.04

Fig. 12. Real load demand of EUs.

Table 10
Benefits of energy service provider implementing the short-term DR program.

EUs 1 2 3 Total

Cost of DR (￠) 6.898 8.869 4.007 19.774
Cost without DR (￠) 15.599 21.332 8.315 45.246
Peak electricity demand under DR (kWh) 2.726 4.840 1.303 8.869
Peak electricity demand without DR (kWh) 3.304 5.723 1.661 10.688
Total electricity demand reduction (kWh) 4.284 5.776 2.294 12.354
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gained the maximum income (100.22￠) by selling extra solar po-
wer to GO, and EU 1 obtained the minimum income (6.56￠)
because its electricity demand is relatively higher during daytime.
With the increase of l, EUs prefer incentive reward to comfort, and
they aremore active to reduce electricity consumption. Therefore, it
can be found that profit 1 and profit 2 of each EU are gradually
increasing. Here, it can be noticed that the procured DR resources,
incentive income, and discomfort cost do not increase when l>0.5.
It is because that the EUs prefer reward than comfort. This also
conforms to the actual situation that EUs tend to enjoy better
comfort than reward.

Table 7 shows the profits of ESP which was calculated by Eq. (1).
The gross income of DRmeans the reduced electricity purchase cost
of ESP, and the cost of DR denotes the rewards for EUs in the
incentive-based DR program. It can be seen that cost of DR grows
with the increase of l. However, with the increase of l, ESP will get
more DR resources and profits. At the same time, it can be found
that the increase of ESP’s profit is not obvious when l changes from
0.5 to 0.9. In a real scenario, ESP will not raise the incentive rate
anymore when the EUs place higher premium on comfort than
reward. The detailed explanation will be given in next Section.
5.3.4. Results of same EU with different l
Fig. 11 shows the results of EU 2 adopting different l2 (0.1, 0.5,

and 0.9). As we can see form Fig. 11, the profiles of incentive rate
show the same trend as wholesale electricity price. A big l2 denotes
that EU 2 pursues the reward provided by ESP. To improve the
profits, ESP would raise the incentive rate to procure more DR re-
sources. However, the ESP cannot further reduce the electricity
demand if l2 > 0.5 as the EU obtained the maximal electricity
reduction at each time step. At the same time, the ESP will not raise
the incentive rate anymore.

To further explore the relationship between responsive re-
sources and l2, more values of l2 were tested and the cost benefit
analysis of EU 2 is shown in Table 9.

In Table 8, it can be found that the incentive income and the
discomfort cost of EU 2 are increasing with the increase of l2, but do
not change when l2 is more than 0.6. However, the profit 1 and
profit 2 always increase with l2. The profit 1 is negative when
l2 <0:6. The reason is that the final discomfort cost is more than the
final reward. As for ESP, it can be seen from Table 9 that the gross
income of DR, cost, and profits stop increasing when l2 � 0:6 as ESP
cannot acquire more DR resources. This can be proved theoretically
as shown in Appendix A.2.
5.3.5. Short-term incentive-based DR program
Incentive-based DR programs are effective methods to reduce

EUs’ electricity demand during peak electricity demand period
rather than all over a day. This contributes to promoting the balance
between supply and demand and ensuring the security of power
system operation in real time. Besides, more accurate results of
short-term forecasting can be obtained as more accurate environ-
mental variables in the next few hours can be acquired, such as
temperature and light intensity. Therefore, a short-term DR pro-
gram which can also be called an emergency DR program, was
developed using the proposed IDR-MDLRL algorithm. Fig. 12 shows
the actual load demand profiles of three EUs and their total load
demand profile.

As shown in Fig. 12, the load demands in daytime are low as the
solar systems deployed in EUs side can provide enough solar power.
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It can be seen that the peak load demand occurs at evening cor-
responding to 17:00 pm - 22:00 pm. The ESP would like to reduce
the total electricity demand to ensure the security of power system
by providing rewards for EUs. Once receiving the incentive rates
form ESP, EUs will response to short-term DR program and sacrifice
a part of discomfort for the rewards. Besides, EUs are of great po-
tential to response to DR program at that time due to the high
electricity price. To guarantee the necessary electricity demand for
normal life, they can shift the peak electricity demand to other
periods. For example, EUs can schedule their washing machine to
work at deep night rather than during the peak period. What
should be noticed is that pmin is the minimum wholesale market
price over 17:00 pm - 22:00 pm, not the minimum value of the day.
The benefits of ESP implementing the short-term incentive-based
DR program are show in Table 10.

In the short-term DR program, we just considered the worst
scenario, i.e. l is set to 0.1 and m is set to 3. In this scenario, EUs
prefer comfort than the reward, and the unit discomfort cost is
more than the unit reward incurred by the electricity demand
reduction. The cost of DR represents the payments to EUs by ESP to
obtain required DR resources. The cost without DR is the payments
by ESP to GO for purchasing the same resources from GO. As it can
be seen from Table 10, the cost for obtaining required resources was
reduced by 25.472 ￠. Besides, the peak electricity demand which
represents the maximal electricity demand during 17:00 pm -
22:00 pm, decreased to 8.869 kWh, almost a 17% reduction. The
total electricity demand reduction also achieved a reduction of
12.354 kWh. It can be expected that higher reduction of peak
electricity demand and total electricity demand can be achieved if
other better scenarios are taken into consideration.

6. Conclusions

This study proposed an incentive-based DR program based on
deep learning and reinforcement learning for smart grid operation.
The complexities and uncertainties of environment were consid-
ered by forecasting wholesale electricity price, PV power output,
and power load with a DL-RNN model using a modified method.
Then, a model-free method, RL, was employed to find the day-
ahead optimal incentive rates at each hour for each EU.
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Particularly, a short-term incentive-based DR program was pro-
posed to reduce electricity demand during peak electricity demand
periods. The experimental results show that the peak electricity
demand was reduced by 17%. This shows that the proposed
incentive-based DR program contributes to balancing supply-
demand and improving power system reliability. It also provides
an effective way to implement incentive-based DR program in
uncertain and dynamic environment. In futurework, wewill collect
real-world data to quantify the parameters and investigate the
relationships among EU-dependent parameters, socioeconomic
backgrounds and weather conditions. In addition, the interactions
among multiple ESPs, EUs and the electricity elasticity will be
further explored.
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Appendix A

A. 1 The convergence of Q-value

From Eq. (1), Eq. (3), Eq. (4), Eq. (6), and Eq. (9), the total profits
of EUs and ESP can be obtained as follows.
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Thus, the total profits of EUs and ESP is a quadratic function of
incentive rate aij. Since1> li >0;1� l>0; amin >0; Eij > 0; xj > 0;
pj >1;mi >0;ui ¼ 1, it can be easily obtained that
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Therefore, the opening of the parabola is down, and the sym-
metry axis is on the right. From above, it can be found that the total
profits of EUs and ESP increase with incentive rates and then
decrease with incentive rates. In other words, the total profits can
get the maximum value within the range of incentive rates, and
thus the Q-value will converge to optimal value.

A. 2 The discomfort cost do not change any more when l2 > 0.6

From Eq. (2), Eq. (4), and Eq. (5), it can be obtained that
0:3pmin � aij � pmin and 0 � DEij � 0:3Eij, thus 0 � Eij, xj,

aij�amin
amin

�

0:3Eij. Therefore, 0:3pmin � aij �
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xj
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!
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From above, it can be seen that the incentive rate aij is within
certain range. When li is growing, it means that EU i regard
incentive reward as more important than comfort. Therefore, in the
learning of RL, the agent will improve incentive rate at each hour to
acquire more DR resources for rewards. But aij has reached the
maximum value when l2 � 0:6, and thus the DR resources, incen-
tive income, and discomfort cost which just correlate with aij, will
not change as shown in Table 8. This has also proved the results in
Section 5.3.3 where the increase of ESP’s profit is not obvious when
l changes from 0.5 to 0.9.
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