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A B S T R A C T

In this paper, a truck scheduling problem at a cross-docking center is investigated where inbound trucks are also
used as outbound. Moreover, inbound trucks do not need to unload and reload the demand of allocated desti-
nation, i.e. they can be partially unloaded. The problem is modeled as a mixed integer program to find the
optimal dock-door and destination assignments as well as the scheduling of trucks to minimize makespan. Due to
model complexity, a hybrid heuristic-simulated annealing is developed. A number of generic and tailor-made
neighborhood search structures are also developed to efficiently search solution space. Moreover, some re-
inforcement learning methods are applied to intellectually learn more suitable neighborhood search structures in
different situations. Finally, the numerical study shows that partial unloading of compound trucks has a crucial
impact on makespan reduction.

1. Introduction

Cross docking is a logistics strategy that reduces total supply chain
costs through exploiting the economies of scale in transportation
through demand consolidation, and also reducing the amount of in-
ventory held in distribution centers (Shakeri, Low, Turner, & Lee,
2012). The advantage of cross docking compared to traditional ware-
houses is shorter storage time. Although specifying an exact boundary is
difficult, some papers (Li, Lim, & Rodrigues, 2004; Vahdani & Zandieh,
2010) define 24 h as the maximum acceptable storage time in these
centers. Moreover, cross docking reduces or eliminates two of four
major fundamental functions (receiving, storage, order picking, and
shipping) of traditional warehouses including storage and order picking
(Li et al., 2004). It is estimated that implementation of cross-docking
centers instead of traditional warehouses may decrease operational cost
up to 70% (Vahdani & Zandieh, 2010).

Dock-door assignment and truck-scheduling problems are two im-
portant operational decisions in cross docking. Some papers consider a
simple cross-docking center with one receiving and one shipping dock
door (Wooyeon & Egbelu, 2008). However, the majority of papers in
the literature consider truck-scheduling problem in a multi dock-door
cross-docking center (for example, Joo & Kim, 2013; Shakeri et al.,
2012; Rahmanzadeh Tootkaleh, Fatemi Ghomi, & Sheikh Sajadieh,
2016; Van Belle, Valckenaers, Berghe, & Cattrysse, 2013). In addition,
some papers study truck scheduling in a resource-constrained cross-

docking center (Chmielewski, Naujoks, Janas, & Clausen, 2009;
Hermel, Hasheminia, Adler, & Fry, 2016; Shakeri et al., 2012), while
the remaining consider models without any resource limitation (see
Boloori Arabani, Fatemi Ghomi, & Zandieh, 2010; Boloori Arabani,
Fatemi Ghomi, & Zandieh, 2011; Boloori Arabani, Zandieh, & Fatemi
Ghomi, 2011; Boloori Arabani, Zandieh, & Fatemi Ghomi, 2012;
Bodnar, de Koster, & Azadeh, 2015; Joo & Kim, 2013; Konur & Golias,
2013; Van Belle et al., 2013; Vahdani & Zandieh, 2010; Rahmanzadeh
Tootkaleh et al., 2016).

A number of assumptions have been studied in the literature. Some
papers consider the situation in which trucks should leave the cross-
docking center in a pre-defined departure time (Liao, Egbelu, & Chang,
2013; Ladier & Alpan, 2018; Molavi, Shahmardan, & Sajadieh, 2018;
Van Belle et al., 2013; Fazel Zarandi, Khorshidian, & Akbarpour Shirazi,
2016). For example, Fazel Zarandi et al. (2016) Zarandi et al., 2016
studied a truck-scheduling problem with a JIT approach in a two-phase
model. In the first phase, total earliness and tardiness of outbound
trucks are minimized, and in the second phase, the number of pre-
emption of outbound trucks is minimized. They developed three solu-
tion approaches to solve the model comprising integer programming,
constraint satisfaction programming, and genetic algorithm. Ladier and
Alpan, 2018 studied a truck scheduling problem when the number
pallets transferred in the cross-docking center in each time period is
limited with the number of workers and material handling equipment.
The objective function was the minimization of total earliness and
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tardiness as well as the total number of pallets places at storage. Three
heuristic algorithms were developed to solve proposed model.

The literature can be classified into two general categories, multi-
objective (e.g. see Amini & Tavakkoli-Moghaddam, 2016; Vahdani
et al., 2019) and single objective problem where in the multi-objective
setting, the decision maker tries to find Pareto optimal solutions. Ma-
kespan (total completion time of all operations inside the cross-docking
center) is one of the common objectives in the literature (for example,
see Chiarello, Gaudioso, & Sammarra, 2018; Arabani et al., 2011; Chen
& Lee, 2009; Chen & Song, 2009; Hermel et al., 2016; Joo & Kim, 2013;
Keshtzari, Naderi, & Mehdizadeh, 2016; Mohtashami, 2015; Molavi
et al., 2018; Shakeri et al., 2012; Ye, Li, Li, & Hui, 2018; Wooyeon &
Egbelu, 2008; Wisittipanich & Hengmeechai, 2017). When there is any
due date for release time of inbound and\or outbound trucks mini-
mizing earliness (when a truck leaves the center before its pre-defined
due date) and\or tardiness (when a truck leaves the center after its pre-
defined due date) plays an important role in the optimization problem
(see, Amini & Tavakkoli-Moghaddam, 2016; Assadi & Bagheri, 2016;
Bodnar et al., 2015; Boysen, 2010; Ladier & Alpan, 2018; Rijal, Bijvank,
& de Koster, 2019; Serrano, Delorme, & Dolgui, 2017; Van Belle et al.,
2013; Vahdani et al., 2019; Zarandi et al., 2016). Other objective
functions are inventory holding costs, truck replacement costs, total
traveling time, processing time and etc. Table 1 shows the objective
functions studied in different papers.

Cross-docking centers can operate on either exclusive or mixed-
mode of services. In exclusive mode, a dock-door is assigned to just
either inbound or outbound trucks while in mixed-mode of service, a
dock-door can be assigned to both types of trucks. This type of service
increases the utilization of these centers.

Majority of papers study the exclusive mode of service (see for in-
stance, Rahmanzadeh Tootkaleh et al., 2016; Vahdani & Zandieh, 2010;
Van Belle et al., 2013 etc.).

On the other hand, some studies (Berghman, Briand, Leus, & Lopez,
2015; Bodnar et al., 2015) show that, despite higher complexity of
operations handling, mixed mode of service increases the flexibility of
cross-docking center, the mixed-mode of service can reduce the objec-
tive function by 18% and based on studies on real-world cross-docking
centers, 5 out of 9 cross-docking centers are operating under mixed-
mode of services Ladier and Alpan (2018). However, just a few papers
have studied truck-scheduling problem under this assumption amongst
with (Arpan Rijal et al., 2019; Berghman et al., 2015; Bodnar et al.,
2015; Dulebenets, 2019; Hermel et al., 2016; Shakeri et al., 2012;
Vahdani et al., 2019). Berghman et al. (2015) presented a mathematical
program for truck scheduling such that some of dock doors are oper-
ating in mixed-mode to minimize the total weighted sojourn times. In
this paper, an outbound truck can be assigned to a dock door if the
precedence inbound truck is assigned to a dock door. They assessed
how operating on mixed-mode of service will increase the chance to
find feasible or optimal solutions and how changing some of exclusive
dock doors to mixed-mode will increase the efficiency of cross-docking
centers. Arpan Rijal et al. (2019) studied integrated scheduling and
assignments of trucks in cross-docking center with mixed-mode of
service for dock doors. They investigated the impact of integrated
modeling of the problem and how mixed-mode of service will improve
costs and how the position of mixed dock-doors effects the cost. Also,
Shakeri et al. (2012) investigated truck scheduling problem in a re-
source constrained cross-docking center with mixed-mode of service in
which pallets are moved to appropriate dock door if there is any forklift
available. Hermel et al. (2016) also studied truck (container) sche-
duling with mixed-mode of service where there is resource limitation
inside the cross-docking center. They first assigned trucks to dock doors
and then scheduled trucks by considering resource limitations.
Dulebenets (2019) considers a truck scheduling problem such that
products are immediately transported to the dock door to be loaded into
the appropriate outbound truck or are temporarily stored in the parking
area until the appropriate outbound trucks is allocated to the dock door.Ta
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The author developed a delayed start parallel evolutionary algorithm to
minimize total cost including total truck handling, truck waiting, ear-
liness and tardiness, and storage space utilization costs. Moreover,
Vahdani et al. (2019) investigate truck scheduling problem when
forklifts are used for material handling inside the cross-docking center
and one of the objective functions tries to minimize the energy con-
sumption by these forklifts. On the other hand, trucks are assigned to
dock doors with mixed-mode of services and scheduled such that total
cost as the second objective function is minimized.

One of the characteristics, known as product allocation, which can
be considered to distinguish between the types of cross-docking centers
is when and how customers are assigned to products. Van Belle,
Valckenaers, and Cattrysse (2012) defined two types of cross-docking
centers based on product allocation criterion namely pre-distribution and
post-distribution. On the other hand, Serrano et al. (2017) present a more
general classification and add another category called destination. Based
on the definition by Serrano et al. (2017), the production allocation is
known as Destination if just the destination of products are known.
Moreover, the production allocation is considered pre-distribution if in
addition to the destination of products, the information on the exact
outbound truck in which the product must be loaded in known. Finally,
if the destination of products and the content of outbound trucks is
defined by the number of product per each type, the allocation mode is
known as post-distribution. Based on this definition, the production al-
location mode of our model is destination. Table 1 shows the classifi-
cation of some papers regarding production allocation characteristic of
cross-docking centers.

There are some papers which study transshipment planning and
scheduling problem inside the cross-docking centers such that some
objective functions such as maximum number of products which are
unloaded from inbound trucks and directly loaded into outbound
trucks, minimum truck pre-emption costs, and etc. are optimized. In
these problems, the manager determines not only the scheduling of
outbound trucks, but also the assignment of outbound trucks to desti-
nations. Larbi, Alpan, and Penz (2009) studied a transshipment pro-
blem inside a multi-door cross-docking center. In this problem, un-
loaded products are directly loaded into outbound trucks if the
outbound trucks are available or temporary stored inside the center
which incurs inventory holding cost. Moreover, it is possible to replace
an outbound truck with another one to directly load product resulting a
replacement costs. The model address the transshipment scheduling
and assignment of outbound trucks to destinations to minimize total
costs amongst with inventory holding and truck replacement costs.
Alpan, Ladier, Larbi, and Penz (2011) developed several heuristics to
solve the model presented by Larbi et al. (2009). Similarly, Larbi,
Alpan, Baptiste, and Penz (2011) studied transshipment problem inside
a cross-docking center under three conditions: first, there is full in-
formation regarding the order of arrival time and contents of inbound
trucks; second, and third, there are partial and no information about the
arrival of inbound trucks. In a more comprehensive model, Ladier and
Alpan (2018) studied both inbound and outbound trucks scheduling
and transshipment planning problem in a multi-door cross-docking
center under resource constraints. In this paper, there is no difference
between dock doors and the transportation time inside the cross-dock
does not depend on the distance between dock doors (neglected) and
the model determines the assignments of trucks to time slots and how
products allocated to each destination and outbound trucks. Serrano
et al. (2017) studied the scheduling of arrival time of inbound trucks,
departure of outbound trucks, and material handling operations inside
the cross-docking centers. In the paper, the repackaging operations
inside the center, the capacity of storage area, the capacity of trucks and
the dimension of components are considered. Bodnar et al. (2015)
studied inbound and outbound truck scheduling when there are both
exclusive and mixed dock doors to minimize operational cost including
handling costs of storages and tardiness of outbound trucks. The model
should determine the assignment of truck to time slots and if products

should directly be loaded into outbound trucks or moved to storage
area. They also investigate the impact of using a subset of dock doors in
mixed mode with respect to total operational costs.

Recently, a few papers consider truck-scheduling problem in such a
way that inbound trucks can also be used as outbound trucks after
unloading of products (see for instance Joo & Kim, 2013). Although this
assumption has been studied in the vehicle routing problem with cross
docking (for instance, see Morais, Mateus, & Noronha, 2014; Tarantilis,
2013), truck scheduling decision has not been included. For more de-
tail, readers are referred to Ladier and Alpan (2016),an Belle et al.
(2013) and Boysen and Fliedner (2010). In the following, we review the
paper more related to this research in details.

Joo and Kim (2013) studied a truck-scheduling problem in a cross-
docking center with the exclusive mode of service for dock doors, where
trucks are classified into three groups:

• Inbound-only trucks: Trucks, visiting only receiving dock doors, just
bring incoming products to the cross-docking center to unload them.
• Outbound-only trucks: Trucks, visiting only shipping dock doors, are
just responsible for delivery of products to destinations.
• Compound trucks: Trucks, visiting both receiving and shipping dock
doors, that are responsible for both bringing incoming products to
the cross dock, and then loading and delivery of products to desti-
nations. In fact, compound trucks are inbound trucks which are then
used as outbound trucks to deliver the demand of destinations.

The motivation of our paper is to compensate enumerated draw-
backs of Joo and Kim’s (2013) model Joo and Kim (2013). Despite the
model by Joo and Kim (2013), we develop a truck scheduling model in
a cross-docking center with a mixed mode of service, that is, a dock
door can be assigned to both outbound and compound trucks. In this
situation, two trucks with high amount of exchanged products can be
assigned to the same dock door, and as a result, it hugely removes
unnecessary transportation inside the cross-docking center. Therefore,
it reduces makespan and the need to material handling equipment.

In addition, in the proposed model, it is not necessary to completely
unload compound trucks and in this situation, i.e., some of the products
can be kept in trucks without unloading. Besides,due to mixed-mode
dock doors, compound trucks can start their loading operations without
changing their dock doors (despite the model by Joo & Kim (2013)).
Sensitivity analysis shows the impact of partial unloading on the ob-
jective function and how this assumption can result in lower makespan.

Moreover, because of partial unloading of compound trucks, the
unloading and re-loading of time is saved for some products. As the
destination assigned to each compound truck can change, the unloading
time (compound trucks are not completely unloaded and the amount of
unloaded products depends on the destination assigned to those trucks),
the designation assignment should be optimized to minimize makespan.
The contributions of this paper as follows:

• Addressing partial unloading of compound trucks and assessing the
impact of partial unloading.
• Developing a truck scheduling in a cross docking with mixed mode
of services.
• Developing an efficient heuristic algorithm to find good initial so-
lutions in a very short computational time.
• Proposing a simulated annealing with a number of generic and
tailor-made neighborhood search structures.
• Using intelligent and self-adaptive (reinforcement learning) ap-
proaches for neighborhood search structure selection.

it is notable that Shakeri et al. (2012) studied a truck scheduling pro-
blem where at first, trucks unload their products and then, load other
products provided by other trucks. Based on these operations, it is
possible to inferred that all trucks are operating as compound truck
whereas it is not explicitly stated that these trucks are compound trucks
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or they are used in a closed-loop SCM where they bring and unload the
demand of customers to the cross-docking center and then load the
returned products from customers to deliver to suppliers. Moreover, no
information is presented regarding partial unloading and destination
assignment of trucks.

The rest of paper is organized as follows: Section 2 describes as-
sumptions, notations, and proposed model. In Section 3, the heuristic
and meta-heuristic approaches are presented. Computational results
and sensitivity analysis are presented in Sections 4 and 5, respectively.
Conclusions and future researches are provided in Section 6.

2. Problem description and formulation

Cross-docking (CD) center considered is one in a few-to-many con-
figuration distribution network which is common in retailing supply
chains (see Buijs, Vis, & Carlo, 2014). In this type of cross-docking
networks, the number of origins is less than that of destinations in
which a destination can be a single destination or a zone. Trucks are
divided into two categories amongst with compound trucks and out-
bound trucks. Compound trucks bring products from origins to CD,
unload some of them, and then are loaded with other products to be
delivered. In Fig. 1, there are three compound trucks assigned to origins
and destinations after partial unloading and reloading. Regarding the
fact that the number of destinations can be larger than that of origins in
a few-to-many distribution network, there should be some trucks for
delivery of products from cross-docking center to destinations. These
trucks which just load and deliver products to destinations are called
outbound trucks.

As compound trucks can also be served as outbound trucks after
unloading process, the demand of the assigned destination is not un-
loaded. Fig. 2 shows an example with four destinations and three
compound trucks. Each color represents a destination; while circle, and
triangle demonstrates product types. As the number of destinations is
more than that of compound trucks, an outbound truck is needed to be
allocated to the remained destination.

According to Fig. 3, compound trucks 1, 2, and 3 are assigned to
destinations 2, 4, and 3, respectively. In this situation, compound truck
1 would not unload the demand for destination 2 (products in blue),
and so on. When each compound truck unloads the demand of unas-
signed destinations (for example, the demand of destinations 1, 3, and 4
should be unloaded from compound truck 1), they are moved toward
the appropriate dock doors to be loaded into their corresponding trucks.
As destination 1 is not assigned to any compound trucks, outbound
truck 1 deliver the demand of this destination.

The proposed model can be applied in both pre-distribution and
post-distribution cross docking. In pre-distribution, at first, planning
and scheduling at the cross-docking center should be done, and then,
origins are informed about the destination assigned to each compound

truck. The demand for assigned destination to each compound truck is
then loaded.

On the other hand, this model can be applied in post-distribution
cross docking such that all products loaded into a compound truck are
the same. In this situation, partial unloading is possible if an origin
provides single type products and each destination needs a known
amount of products.

The main advantage of this model is the unloading, loading, internal
transportation, makespan reduction, as well as less need to material
handling equipment and resources. In other words, it reduces the de-
livery lead time from origins to destinations. Although partial un-
loading of compound trucks and mixed mode of service of dock doors
increase the complexity of operations planning, the numerical results
reveal the usefulness of proposed model and justify its applications in
real-world cross-docking centers.

In this problem, cross-docking center is controlled in a centralized
manner. As third-party logistics (3PLs) and less-than-truckload (LTL)
companies usually use cross-docking as the major transportation
strategy (see Ertek, 2012; Terreri, 2001), all these operations can be
controlled under a unique entity. To make this planning easier, some
technologies such as RFID, tracking tools, and Internet of Things can be
useful. The assumptions, notation, and proposed model are presented
then as follows:

2.1. Assumptions and notation

• Each truck, whether compound or outbound truck, should be as-
signed to just one destination which can be a single customer, or a
zone. The number of compound trucks is less than or equal to that of
doors, i.e. scheduling and sequencing of the compound truck is re-
duced to just the door assignment.
• All compound and outbound trucks are available at the beginning of
horizon time.
• A pre-distribution cross-docking is considered, so products handled
in the cross-docking center are not interchangeable.
• Travel time depends on dock doors assigned.
• There is a storage space in front of each dock door with enough
capacity.

The objective is to find the best door assignment, destination as-
signment of compound and outbound trucks and the scheduling of
outbound trucks to minimize makespan.
Indices

I set of compound trucks
F set of outbound trucks
K set of product types
M set of dock doors

Fig. 1. The structure of studied distribution system with a cross-docking center.
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D set of destinations

Problem parameters

DEi entering time of truck i I F (the time required for truck i
to be located at dock door and be ready for unloading pro-
cess).

DLi exit time of truck i I F (the time required for truck i to
leave the dock door and move to the yard).

fidk the number of product type k initially loaded into the com-
pound truck i that should be delivered to the destination d.

tmn the time required to move a unit of products from dock-door
m to dock-door n.

tk loading/unloading time of a product unit of type k
bid 1 if compound truck i was loaded with products needed by

destination d ( f 0k K idk ), otherwise 0 ( =f 0k K idk )

Continues variables

makespan
ai time when loading of compound truck i starts
df time when loading of outbound truck f starts

Binary Variable

Q L( )f f 1 if outbound truck f is processed as the first (last) one among
outbound trucks assigned to the same door.

Pfl 1 if outbound truck f and outbound truck l are both assigned
to the same dock door and truck f precedes truck l, otherwise
0

Yidm 1 if compound truck i is assigned to the dock door m and
destination d, otherwise 0

Zfdn : 1 if outbound truck f is assigned to dock door n and desti-
nation d, otherwise 0

Fig. 2. Initial state of compound and outbound trucks.

Fig. 3. Partial unloading of compound trucks.
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2.2. Mathematical model

The proposed mathematical model to minimize the makespan is
given below:

Min

+ +a f t Y DL i I. .i
j I i d D m M k K

jdk k idm i
(1)

+ +d f t Z DL f F. .f
j I d D n M k K
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(8)
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a d, , 0i f (18)

The objective function minimizes the makespan. Constraints (1) and (2)
ensure that makespan is equal to the maximum completion time of all
compound or outbound trucks. Constraints (3) state that compound
trucks can start loading products when the unloading operations of
demands for unassigned destinations is finished. No need to say, if the
compound truck is assigned to a destination, the unloading time of that
destination is not be considered. Constraints (4) make sure that all
products should be available to be loaded into a specific compound
truck. Constraints (5) declare that outbound truck can start loading
products after the compound truck leaves the dock door, assuming both
trucks are assigned to the same door. Outbound trucks can start loading
products when products arrive at the assigned dock door, according to
Constraints (6). Constraints (7) ensure that if two outbound trucks are
allocated to the same door, loading process of latter truck begins when
loading process of former is done. Constraints (8)–(12) determine the
sequence of outbound trucks when two outbound trucks are assigned to
the same door. Constraints (13) enforce that each compound truck
needs to be allocated to just one door and one destination. Constraints
(14) guarantee that at most, one compound truck can be assigned to
each door. Each outbound truck should be dedicated to one door and
one destination that it is depicted by Constraints (15). Constraints (16)
ensure that each destination is assigned to exactly one of all trucks,
either compound truck or outbound. Constraints (17) and (18) show the
type of variables. Some constraints such as Constraints (4)–(7) should
only be active if some conditions are satisfied. So, large positive num-
bers (M1-M4) are used to activate these constraints and areobtained
through Eqs. (19)–(22).

= + +

M

DE f t f

t

max ( ) max . max .

max ( )

i I
i

i I d D k K
idk k

i I d D k K
idk

m n M
mn

1

, (19)

= + + +M M f t DL DEmax . max ( ) max ( )
d D i I k K

idk k
i I

i
f F

f2 1
(20)

= + +

M

DE f t f

t

max ( ) max . max .

max ( )

i I
i

i I d D k K
idk k

i I d D k K
idk

m n M
mn

3

, (21)

= + + +M M F f t DL DE. max . max ( ) max ( )
d D i I k K

idk k
f F

f
f F

f4 3

(22)

It is notable that truck changeover time is equal to +DE DLj i if
truck j is the immediate successor to truck i.

3. Solution approach

If we relax the destination assignment of trucks in the proposed
model, the problem reduces to a truck scheduling problem, which has
been proved to be NP-hard (Kuo, 2013). Thus, the proposed model is
also an NP-Hard problem and it can then be solved to optimality just for
small problems in a reasonable time which is not applicable in real-
world cross-docking centers. A heuristic algorithm and reinforcement
learning-based simulated annealing algorithms are then used to find
optimal/near optimal solution in large-scale problems.
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3.1. Heuristic algorithm

This algorithm is a constructive and single stage which provides a
feasible solution. One advantage of this algorithm is that it does not
need any predefined parameter.

Because compound trucks both unload and load products, it takes a
long time to finish their unloading and loading operation. Also, the
destination assignment of compound trucks affects their operations. So,
we assign each compound truck to a destination that leads to the least
unloading and loading time. To find dock-door assignment of trucks, a
truck with the highest unloading and/or loading time is in priority.
Therefore, it should be assigned to most desirable dock door, i.e. the
doors located in the middle of the cross-docking center. Based on this
consideration, one truck is assigned to each dock door. For unassigned
trucks, whenever a free dock door is available, a truck with the highest
priority is assigned. In the following, parameters used in the heuristic
method are presented:

Tid total partial unloading time of compound truck i as well as
loading time of demand of destination d which was initially
loaded in other compound trucks, if compound truck i to
destination d.

= +T f t f t d D i I. . ,id
d D d d k K

id k k
j I i k K

jdk k
, (23)

Tm the summation of time distance from other doors to dock-
door m.

=T tm
n M

mn
(24)

UTi total unloading time of compound truck i. This parameter is
calculated after finding the destination allocated to com-
pound trucks i (di).

=UT f t i I.i
d D d d k K

id k k
, (25)

LTd total loading time for demand of destination d. CT and OT
stand for compound truck and outbound truck, respectively.

=LT

f t l d

f t d

. if CT is assigned to destionation

. if an OT is assigned to destionation
d

j I l k K
jdk k

i I k K
idk k

(26)

Td total waiting time for destination d. This parameter shows the
time when the truck assigned to destination d can finish its
loading process with the known allocation of trucks to des-
tinations neglecting the time traveling between dock doors.
This parameter considers the time when the trucks can start
the loading process and total loading time. Eq. (27) shows
this parameter.

=T
UT UT b l d

UT b d

max( , . ) if CT truck is assigned to destination

max( , ) if an OT is assigned to destionationd
i I l

l i id

i I
i id

(27)

TEEf total entering and exiting time of outbound trucks.
= +TEE DE DL f Ff f f

df
1 the time when outbound truck f starts loading process based

on Constraints (5). This value is calculated for outbound
trucks which are successor to a compound truck, assuming
both are assigned to the same dock door, where ai

1 and aa
2 are

calculated from Constraints (3) and (4) with known Yidm and
Yjd n, respectively.

= + + +d a a f t DL DE f F i Imax( , ) . ,f i a
j I k K

jd k k i f
1 1 2

i (28)

df the time when outbound truck f stars its loading process,
where dd

2 and dd
3 are calculated from constraints (6) and (7)

with known Y Z,id m fdn and Pfl. =d d d d f Fmax( , , )f f f f
1 2 3 .

FTi t he time when the compound truck i leaves the assigned
door.

= + +FT a f t DL i I.i i
j I i k K

jd k k ii
(29)

FTf the time when the outbound truck f leaves assigned dock
door.

= + +FT d f t DL f F. .f f
i I k K

id k k ff (30)

FTm the time when operations on dock door finish. This parameter
is updated when operations of truck assigned to this dock
door finishes.

=FT
FT i m
FT f m

ifCT is assigned todock door
ifOT is assigned todock doorm

i

m (31)

FAT (First Assigned Trucks) a list of compound and outbound
trucks processed as the first truck on each door. Thus, the
number of trucks in the list is equal to the number of doors. In
order to minimize makespan ( =C FTmaxmax m M m), trucks
with higher processes time are processed first. Processing
compound trucks are expected to be more time consuming as
they should unload and reload the products. So, all com-
pound trucks are on the list. If the number of doors exceeds
that of compound trucks, some of the outbound trucks can
also be processed as the first truck. These outbound trucks are
the ones with the longer loading process.

The steps of the proposed heuristic algorithm are as follows:

Step 1: Calculate Tid for each pair of compound truck and destination
using Eq. (23).

Step 2: Use Vogel’s approximation algorithm to allocate each com-
pound truck to one destination. Rest of destinations will be
assigned to outbound trucks.

Step 3: Calculate UT LT,i d and Td for each destination using Eqs.
(25)–(27).

Step 4: Find TEEf for each outbound truck and sort them in ascending
order.

Step 5: Assign the outbound truck with lowest TEEf to an unassigned
destination with highest Td. Remove these destination and
outbound truck from the list. Repeat this step till all outbound
trucks are allocated.
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Step 6: Calculate Tm using Eq. (24) and sort them in ascending order.
Step 7: Construct FAT and sort it in descending order based on Td.
Step 8: Assign truck in FAT list with highest Td to dock door with

lowest Tm. In the case of more than one dock door with the
same value of Tm, dock door with the lowest destination from
assigned dock doors in the previous steps is selected. Remove
the truck and the dock door selected from the list and repeat
this step if there is any unassigned truck on the list.

Step 9: Calculate a a FT, ,i i i
1 2 and FTm using Eqs. (29) and (31) for each

compound truck and assigned dock door.
Step 10: Calculate d d d d, , ,i i i i

1 2 3 and FTf for outbound trucks in FAT list
and FTm using Eqs. (28), (30), and (31).

Step 11: Assign remained outbound truck with highest Td to dock door
with lowest FTm. Remove outbound truck assigned from the
list. Calculate d d d d FT, , , ,f f f f f

1 2 3 and FTm using Eqs. (28), (30)
and (31). Repeat this step to allocate all remained outbound
trucks.

Step 12: Calculate Cmax .

Vogel’s approximation algorithm (VAA) employed in Step 2 is a
known heuristic algorithm used to find a good basic solution for
Transportation Problem (TP) (see Korukoğlu & Ballı, 2011). The basis of
VAA is based on the concept of penalty cost or regret. In this paper, this
algorithm is used to assign compound trucks to destinations. It is pos-
sible that two compound truck are competing to be allocated to the
same destination (both trucks i and j have the lowest Tid and Tjd), while
one of them should be selected. Therefore, the regret is calculated for
each one, i.e. the penalty if the truck is not assigned to this destination.
Based on these regrets, a good answer for the assignment problem is
obtained.

3.2. Simulated annealing

This section presents the simulated annealing algorithm developed
to solve the proposed model. Generally, SA starts the optimization
process from a random initial solution while in this paper, it takes the
advantage of heuristic algorithm as initial solution. As numerical results
show, this heuristic algorithm can provide good initial solutions in a
very short computational time. Moreover, several generic and problem-
specific neighborhood structures are developed to efficiently explore
solution space. In addition, in order to consciously select a neighbor-
hood structure to generate a new solution, several reinforcement
learning approached are used to learn the value and efficiency of each
neighborhood structure. In the following, some aspects of SA algorithm
are presented. Besides, reinforcement learning approaches are pre-
sented in the next Section 3.3.

Solution Representation: The destination and dock-door assignment
and sequencing of each compound and outbound truck are represented
in a solution. A × D3 matrix is used for this purpose. In this matrix,
columns 1 to I and columns +I| | 1 to D correspond to compound and
outbound trucks, respectively. The first and the second rows shows the
destination allocation of trucks and dock-door assignment, respectively.
Finally, the third row demonstrates the sequencing of all trucks. Fig. 4
shows proposed solution representation of the model.

In this paper, some generic and some tailor-made neighborhood
search structures are developed to efficiently explore and exploit so-
lution spaces. Here, we present these neighborhood search structures:

• Swap of destinations, k=1: Two trucks, either compound or out-
bound, are randomly chosen and their assigned destinations are
swapped.
• Swap of dock door for compound (outbound) trucks, k=2 (k=3):
Two compound (outbound) trucks are randomly chosen and their
assigned dock doors are swapped.
• Insertion of outbound trucks, k=4: An outbound truck is chosen and
assigned to another door.

In addition to these generic neighborhood search structures, some
problem-specific ones are developed as follows:

• Insertion of Compound Truck to a Dock Door, k=6: Based on un-
loading time of compound truck (UTi), one of them is selected ac-
cording to roulette wheel selection mechanism and is assigned to a
dock door selected through roulette wheel on the basis of Tm.
• Insertion of outbound Truck to a dock door, k=7: Based on loading
time of outbound truck (Tdf total loading time of destination as-
signed to outbound truck f), one of them is selected according to
roulette wheel selection mechanism and is assigned to a dock door
selected through roulette wheel on the basis of Tm.
• Insertion of compound Truck to a destination, k= 8: A compound
truck is selected according to Tmaxd D id and is assigned to a desti-
nation. Both selections are done through roulette wheel selection
mechanism.

It is worth mentioning that the SA algorithm uses the final solution
of developed heuristic algorithm as the initial solution. As numerical
results represent, it help the SA algorithm to find better solutions in
shorter computational time. Moreover, we use =T T.new old as the
cooling scheme and to equally compare all algorithms, we set a total
computational CPU time limitation as the termination criteria. In this
regards, all algorithms are run for × ×+( )M 0.7I D

2 seconds.

3.3. Reinforcement learning-based selection mechanism

One of the main concern in meta-heuristic algorithms is that how
neighborhood search structures (NS) are selected to generate a new
solution. In most cased, NSs are randomly selected and it is not obvious
if this NS is a good choice or not. On the other hand, it possible to
oversee the performance of each NS and then on this basis, select a NS.
For example, if a NS is selected while no improvement is achieved, it
may imply that this neighborhood search is not appropriate for the
current state, so it should receive some punishment. Contrarily, if a NS
provides significant improvement, it may be inferred that this NS is
good enough and should receive some reward. This concept is modeled
as a reinforcement learning problem and the model can learn the value
of each action by tracing the punishment and reward of each action.
Fig. 5 represents the general concept of reinforcement learning and how
it interacts with environment.

Multi-armed bandit (MAB) is one of the basic problems in re-
inforcement learning. Suppose there are K slot machines and each
machine provides different rewards according to a probability dis-
tribution. The player who does not know the probability distribution of
reward of each slot machine should maximize the expected value of his

Fig. 4. Solution representation of SA algorithm.
Fig. 5. Agent-Environment interaction in RL (adopted from Sutton et al.
(1998)).
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gained rewards meanwhile learn the true value of expected reward of
each slot machine. In our problem, each neighborhood search structure
can be considered a slot machine. We want to select a NS that max-
imizes the expected value of probability of improvement in the current
solution. Here, the reward is defined as 1 if the objective value of new
solution is equal or better than that of current solution, otherwise 0. In
this paper, four variants of MAB are addressed to learn the true value
function of each NS.

Suppose the value function of each action (neighborhood search
structure) is represented byQ a a A( ) , and N A( ) is the number of
times that action (NS) A is selected. Moreover, assume that when an
action is taken, the system receive reward R, where shows the
learning rate. In this situation, each of four MAB variants can be pre-
sented as follows:

Incremental Implementation: This method estimates the value func-
tion of each action by averaging the rewards actually received.
Incremental implementation which uses less memory to store data,
updates value functions as follows:

+Q a Q a
N a

R Q a( ) ( ) 1
( )

. [ ( )]

Non-Stationary Problem: In incremental implementation, it is sup-
posed that the environment is stationary and the probability distribu-
tion of reward of each slot machine is the same all the time. However,

this assumption can be easily violated and the current approach updates
the value functions with different weight to follow any changes in
probability distribution as follows:

+Q a Q a R Q a( ) ( ) . [ ( )]

Upper-Confidence-Bound Action Selection - Type 1: Many algorithms
use -greedy method to try non-greedy actions and so, learn their value
functions. However, this method, does not take into account how good
each action is. Upper-confidence-bound (UCP) method chose an action
with largest possible value of value function in a confidence interval as
follows:

= +A Q a c lnt
N a

argmax ( ) .
( )t

a A
t

t

It is worth mentioning that in this formulation,Q a( )t is updated same as
incremental implementation method.

Upper-Confidence-Bound Action Selection - Type 2: This method is
same as the former method while Q a( )t is updated similar to non-sta-
tionary problem one.

These method are some common methods to balance exploration
and exploitation in RL field. However, these are not considered fully RL
methods. On the other hand, there are some state variables (contextual
variables in MAB literature) which may help us to make decisions.

Table 2
Comparison of all algorithms according to objective function in small-scale problems.

# Size Exact H SA SA-NS SA-RL1 SA-RL2 SA-RL3 SA-RL4 SA-RL5 SA-RL6

1 (2,3,2) 257.00 257.00 257.00 257.00 257.00 257.00 257.00 257.00 257.00 257.00
2 (2,3,2) 724.00 724.00 724.00 724.00 724.00 724.00 724.00 724.00 724.00 724.00
3 (2,3,2) 652.00 661.00 652.00 652.00 652.00 652.00 652.00 652.00 652.00 652.00
4 (2,4,3) 1368.00 1394.00 1368.00 1368.00 1368.00 1368.00 1368.00 1368.00 1368.00 1368.00
5 (2,4,3) 1020.00 1086.00 1020.00 1020.00 1020.00 1020.00 1020.00 1020.00 1020.00 1020.00
6 (2,4,3) 1644.00 1692.00 1675.00 1644.00 1644.00 1644.00 1644.00 1644.00 1644.00 1644.00
7 (3,4,4) 1715.00 1846.00 1715.00 1715.00 1715.00 1715.00 1715.00 1715.00 1715.00 1715.00
8 (3,4,4) 1543.00 1723.00 1543.00 1543.00 1543.00 1543.00 1543.00 1543.00 1543.00 1543.00
9 (3,4,4) 1721.00 1796.00 1721.00 1721.00 1721.00 1721.00 1721.00 1721.00 1721.00 1721.00
10 (3,5,3) 617.00 624.00 617.00 617.00 617.00 617.00 617.00 617.00 617.00 617.00
11 (3,5,3) 2009.00 2037.00 2009.00 2009.00 2009.00 2009.00 2009.00 2009.00 2009.00 2009.00
12 (3,5,3) 1973.00 1996.00 1973.00 1973.00 1973.00 1973.00 1973.00 1973.00 1973.00 1973.00
13 (3,6,4) 1890.00 1944.00 1890.00 1890.00 1890.00 1890.00 1890.00 1890.00 1890.00 1890.00
14 (3,6,4) 2107.00 2177.00 2115.75 2107.85 2107.05 2107.20 2107.15 2107.25 2107.25 2107.35
15 (3,6,4) 2753.00 2851.00 2800.80 2753.95 2753.45 2753.45 2753.50 2753.60 2753.60 2753.65
16 (3,6,4) 2726.00 2900.00 2789.00 2727.15 2726.00 2726.00 2726.10 2726.10 2726.05 2726.30
17 (3,6,4) 1527.00 1631.00 1575.40 1527.95 1527.35 1527.35 1527.10 1527.60 1527.30 1527.60
18 (3,6,4) 910.00 931.00 927.05 911.00 910.00 910.00 910.25 910.15 910.10 910.50
19 (4,6,4) 1760.00 1823.00 1760.15 1760.60 1760.00 1760.00 1760.00 1760.00 1760.15 1760.15
20 (4,6,4) 2951.00 3068.00 2951.05 2952.85 2951.05 2951.10 2951.00 2951.05 2951.00 2951.20
21 (4,6,4) 1609.00 1650.00 1609.40 1611.10 1609.10 1609.00 1609.00 1609.10 1609.10 1609.40
22 (4,7,4) 6360.00 6447.00 6360.25 6362.00 6360.05 6360.00 6360.05 6360.05 6360.05 6360.45
23 (4,7,4) 2320.00 2445.00 2322.40 2327.10 2320.10 2320.20 2320.65 2320.30 2320.80 2321.50
24 (4,7,4) 1448.00 1495.00 1449.80 1451.35 1449.30 1449.55 1449.50 1449.15 1449.25 1449.55
25 (5,7,6) 4681.00 4682.00 4681.00 4681.00 4681.00 4681.00 4681.00 4681.00 4681.00 4681.00
26 (5,7,6) 2612.00 2771.00 2619.80 2618.60 2617.15 2616.25 2615.60 2616.95 2615.10 2616.80
27 (5,7,6) 2536.00 2699.00 2536.20 2536.20 2536.00 2536.10 2536.00 2536.00 2536.00 2536.00
28 (5,7,5) 4113.00 4197.00 4113.00 4116.00 4113.00 4113.05 4113.10 4113.00 4113.65 4113.00
29 (5,7,5) 1775.00 1847.00 1775.40 1786.50 1775.00 1775.60 1775.15 1775.10 1775.25 1775.65
30 (5,7,5) 1634.00 1758.00 1635.90 1646.75 1635.00 1635.00 1635.00 1635.00 1635.00 1635.50
31 (6,7,6) 3923.00 4171.00 3923.00 3923.00 3923.00 3923.00 3923.00 3923.00 3923.00 3923.00
32 (6,7,6) 1679.00 1852.00 1679.00 1679.00 1680.20 1680.15 1679.70 1679.70 1679.60 1679.35
33 (6,7,6) 1992.00 2179.00 1992.00 1992.00 1992.00 1992.00 1992.00 1992.00 1992.00 1992.00
34 (5,8,5) 5146.00 5207.00 5148.10 5167.30 5144.70 5144.60 5145.15 5145.30 5145.25 5149.55
35 (5,8,5) 2761.00 2811.00 2762.75 2785.50 2762.30 2762.10 2761.35 2761.50 2762.65 2763.70
36 (5,8,5) 1678.00 1775.00 1678.00 1681.05 1678.00 1678.00 1678.00 1678.00 1678.00 1678.00
37 (5,9,6) 6473.00 6695.00 6474.20 6473.90 6473.85 6473.65 6474.00 6473.65 6474.05 6474.10
38 (5,9,6) 2990.00 3307.00 2993.25 3006.95 2991.60 2990.95 2991.25 2991.70 2991.15 2989.90
39 (5,9,6) 1618.00 1718.00 1635.95 1638.15 1637.20 1635.35 1636.50 1635.85 1634.40 1637.05
40 (6,9,6) 7158.00 7349.00 7158.45 7158.45 7158.60 7158.65 7158.40 7158.85 7158.55 7158.50
41 (6,9,6) 3557.00 3666.00 3555.65 3556.60 3556.05 3556.65 3556.40 3556.95 3556.10 3556.00
42 (6,9,6) 2004.00 2050.00 2008.35 2008.15 2007.30 2008.25 2007.50 2008.65 2007.30 2008.20

Average 2427.00 2522.19 2433.22 2430.50 2427.82 2427.79 2427.77 2427.85 2427.75 2428.05
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Q-learning: Q-Learning is a kind of reinforcement learning algo-
rithms (off-policy) which tries to find optimal (near-optimal) solutions
in Markov Decision Process (MPD) problems. In order to use Q-learning
for action selection, it is important to define states, actions, and re-
wards. In this context, actions and rewards in Q-learning are the same
as the ones in former MAB methods, while states are defined based on
the number of times that current solution is not improved (improve-
ment is occurred if objective function of new solution is as good as the
current solution). If NI represents the number of times that the current
solution is not improved, state variable is defined as follows (Ahmadi,
Goldengorin, Süer, & Mosadegh, 2018):

=S

NI
NI
NI
NI
NI

1 0
2
3
4
5

1

1 2

2 3

3 4

4

Suppose that the system state is st and action at is chosen and re-
ward rt is received. Therefore, the action-value function is updated as
follows where (0, 1) is discount factor.

+ + +Q s a Q s a r Q s b Q s a( , ) ( , ) . [ . max ( , ) ( , )]t t t t t
b A

t t t1

Note: It is of great importance to mention that in order to si-
multaneously exploit current good neighborhood search structure and
exploit other ones, percent of the times a NS is randomly chosen and
Prol percent of the times a NS is chosen through roulette wheel me-
chanism based on state-action or action-value functions. Otherwise, a
greedy NS based on one of the reinforcement learning algorithms is
selected as follows Ahmadi et al. (2018). For more details about MAB,
Q-learning and generally RL, see Sutton et al. (1998).

= < +
+

NS
if rand

Q a Q s a if rand Pr
Q a Q s a if rand Pr

Random Selection
Roullete wheel based on ( ) ( , ),
Greedy Selection based on ( ) ( , ),

rol

rol

4. Experimental results

To evaluate the performance of proposed algorithms, it is necessary
to assess these methods in different test problems. As there is no stan-
dard test problem in truck scheduling problems, data sets are generated
randomly on the basis of data used by Van Belle et al. (2013). In this
paper, an I-shape cross-docking center is studied and transporting time

Table 3
Comparison of all algorithms according to computational time in small-scale problems.

CPU Time (s) Best found solution (s)

# Size Exact H Meta SA SA-NS SA-RL1 SA-RL2 SA-RL3 SA-RL4 SA-RL5 SA-RL6

1 (2,3,2) 0.05 0.15 3.50 0.04 0.03 0.04 0.04 0.04 0.04 0.04 0.04
2 (2,3,2) 0.14 0.14 3.50 0.04 0.03 0.04 0.04 0.04 0.04 0.04 0.04
3 (2,3,2) 0.08 0.14 3.50 0.05 0.04 0.05 0.04 0.05 0.05 0.05 0.05
4 (2,4,3) 0.19 0.13 6.31 0.06 0.05 0.06 0.07 0.06 0.06 0.06 0.06
5 (2,4,3) 0.44 0.14 6.31 0.10 0.11 0.10 0.11 0.10 0.10 0.13 0.08
6 (2,4,3) 0.27 0.13 6.31 0.11 0.15 0.15 0.14 0.17 0.13 0.14 0.08
7 (3,4,4) 0.14 0.15 9.81 0.12 0.16 0.26 0.27 0.33 0.23 0.16 0.13
8 (3,4,4) 0.34 0.15 9.81 0.09 0.73 0.41 0.48 0.50 0.52 0.37 0.38
9 (3,4,4) 0.20 0.15 9.81 0.12 0.34 0.34 0.33 0.29 0.24 0.22 0.20
10 (3,5,3) 0.45 0.14 8.40 0.54 1.48 0.80 0.79 0.85 0.85 0.53 0.86
11 (3,5,3) 0.44 0.13 8.40 0.53 1.04 0.96 0.65 0.72 0.85 0.51 0.53
12 (3,5,3) 0.42 0.13 8.40 0.28 0.61 0.42 0.28 0.45 0.35 0.29 0.23
13 (3,6,4) 8.75 0.13 12.60 1.77 3.54 1.85 2.93 2.45 2.59 2.58 2.04
14 (3,6,4) 8.25 0.14 12.60 6.65 4.25 7.15 6.22 7.12 6.54 6.43 7.41
15 (3,6,4) 10.67 0.13 12.60 6.52 5.37 6.94 7.42 7.38 7.18 6.87 6.56
16 (3,6,4) 10.30 0.14 12.61 7.39 7.31 6.28 8.40 6.26 7.22 7.68 6.93
17 (3,6,4) 9.34 0.14 12.61 7.49 5.83 7.79 8.91 7.48 6.75 6.86 6.89
18 (3,6,4) 7.28 0.14 12.61 5.91 6.43 7.25 6.55 6.85 7.05 7.24 8.11
19 (4,6,4) 4.91 0.13 14.01 6.87 5.56 7.38 5.42 5.61 6.03 8.18 5.70
20 (4,6,4) 6.27 0.13 14.00 10.31 6.41 7.64 8.43 6.48 8.17 8.34 7.82
21 (4,6,4) 11.09 0.13 14.00 8.35 5.86 6.99 7.73 8.31 9.43 9.01 8.52
22 (4,7,4) 43.20 0.13 15.40 12.82 9.01 10.19 9.67 10.44 10.82 10.70 11.15
23 (4,7,4) 64.33 0.13 15.41 11.16 9.47 12.76 12.87 12.89 11.57 11.71 13.77
24 (4,7,4) 78.73 0.13 15.41 10.22 8.76 11.64 11.41 10.12 11.19 11.74 10.16
25 (5,7,6) 1645.61 0.14 25.20 0.61 0.82 0.69 0.60 0.61 0.48 0.67 0.53
26 (5,7,6) 1143.83 0.14 25.20 13.48 20.95 11.73 13.69 12.49 13.08 14.17 15.14
27 (5,7,6) 1049.80 0.14 25.21 12.14 15.97 10.01 9.84 10.08 11.07 11.07 12.25
28 (5,7,5) 199.41 0.13 21.01 10.33 14.03 10.32 11.61 10.72 10.24 10.94 11.18
29 (5,7,5) 73.53 0.13 21.01 18.35 13.87 16.63 16.67 16.11 17.50 17.49 17.33
30 (5,7,5) 173.56 0.13 21.01 18.01 12.63 15.73 17.08 15.62 16.95 17.76 19.33
31 (6,7,6) 700.31 0.15 27.31 1.91 1.18 1.85 3.27 2.33 2.87 3.43 1.44
32 (6,7,6) 558.84 0.15 27.31 14.68 14.51 11.11 13.32 12.72 13.27 14.44 15.73
33 (6,7,6) 251.38 0.15 27.31 1.79 1.85 2.35 2.78 2.50 3.27 2.20 2.38
34 (5,8,5) 8277.33 0.13 22.76 19.24 13.87 18.81 18.90 19.54 19.82 20.39 20.18
35 (5,8,5) 1611.88 0.13 22.76 20.98 16.70 18.80 19.13 18.47 18.60 19.91 19.59
36 (5,8,5) 4986.67 0.13 22.76 15.40 15.25 14.87 13.16 14.60 13.44 14.04 13.66
37 (5,9,6) 10800.13 0.14 29.41 17.38 25.09 15.33 17.00 16.11 16.70 16.14 18.35
38 (5,9,6) 10800.00 0.18 29.41 24.43 24.93 20.42 21.16 22.03 22.23 22.27 24.75
39 (5,9,6) 10800.00 0.14 29.41 19.21 24.34 15.43 15.94 16.74 16.18 17.99 17.89
40 (6,9,6) 10800.00 0.13 31.51 22.71 21.83 20.45 19.76 20.79 21.65 21.89 23.59
41 (6,9,6) 10800.39 0.13 31.51 26.53 25.21 22.47 22.69 23.03 23.02 23.40 24.97
42 (6,9,6) 10800.63 0.13 31.51 25.32 24.95 22.13 22.91 22.67 22.83 24.11 25.92

Average 2041.42 0.14 17.13 9.05 8.82 8.25 8.54 8.39 8.60 8.86 9.09
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between two adjacent dock doors is set 1s. Other parameters are gen-
erated as follows: DE DL U t U, ~ (3, 10), ~ (0, 20)i i k and f U~ (0, 20)idk . All
proposed algorithms are executed in MATLAB v 7.13 on an Intel Corei7,
2.2 GHz computer with 4 GB memory. Also, GAMS commercial software
with solver Cplex is used to find optimal solutions.

The size of test problems is defined according to the number of
compound trucks, destinations, and dock doors. In small size class, the
number of destinations, compound trucks, and dock doors are less than
10, 7 and 7, respectively. The size of each test problem in computa-
tional results are represented as a tuple I D M( , , ), where I D, , and M
show the number of compound vehicles, of destinations, and dock
doors, respectively.

The proposed algorithms are compared with exact solutions ob-
tained from GAMS software in small sizes. The solutions gained by al-
gorithms are compared with optimal solutions (if optimality is proven
within 10,800s) or best-found solutions (due to the incapability of
GAMS for solving test problems in large-scale problems, the best solu-
tion obtained through all algorithms is considered optimal). In addition,
because metaheuristic algorithms use a random procedure to select
solutions and moves, there are 20 replications for each small or large
scale problem instance.

In small-scale problem, we compare 9 algorithms with exact solu-
tion obtained through GAMS software and present the outcome of all
these algorithms for large-scale problems. These algorithms comprises

as:

• Heuristic algorithm (H)
• Simple simulated annealing without learning and without tailor-
made neighborhood structures (SA).
• Simple simulated annealing without learning and with tailor-made
neighborhood structures (SA-NS).
• Simulated annealing with the learning approach “Incremental

Implementation” with tailor-made neighborhood structures (SA-RL1).
• Simulated annealing with the learning approach “Non-Stationary

Problem” with tailor-made neighborhood structures (SA-RL2).
• Simulated annealing with the learning approach “Upper-Confdence-

Bound Action Selection - Type 1” with tailor-made neighborhood
structures (SA-RL3).
• Simulated annealing with the learning approach “Upper-Confdence-

Bound Action Selection - Type 2” with tailor-made neighborhood
structures (SA-RL4).
• Simulated annealing with “Q-learning” approach with tailor-made
neighborhood structures (SA-RL5) where =( , , , )1 2 3 4
(5, 10, 15, 20).
• Simulated annealing with “Q-learning” approach with tailor-made
neighborhood structures where (SA-RL6) =( , , , )1 2 3 4
(10, 20, 50, 100).

Table 4
Comparison of all algorithms according to objective function in large-scale problems.

# Size H SA SA-NS SA-RL1 SA-RL2 SA-RL3 SA-RL4 SA-RL5 SA-RL6

1 (8,10,8) 3388.00 3269.23 3268.70 3254.33 3253.45 3254.95 3253.28 3253.98 3253.45
2 (8,10,8) 5603.00 5382.65 5383.30 5379.55 5378.60 5377.25 5376.80 5376.85 5377.50
3 (8,10,8) 4992.00 4944.60 4946.00 4937.93 4935.88 4936.83 4940.15 4933.70 4934.28
4 (8,12,9) 6332.00 6144.40 6144.55 6139.55 6139.30 6139.50 6139.45 6139.60 6139.30
5 (8,12,9) 6587.50 6337.03 6330.58 6331.73 6323.53 6321.30 6324.85 6325.13 6320.00
6 (8,12,9) 6272.00 6102.00 6102.70 6099.00 6098.15 6096.05 6095.70 6096.50 6097.55
7 (10,13,10) 3002.00 2735.38 2733.65 2733.05 2733.25 2732.45 2732.93 2732.25 2729.75
8 (10,13,10) 6081.50 5619.18 5616.65 5614.13 5616.70 5621.85 5612.03 5612.08 5618.05
9 (10,13,10) 6792.00 6065.10 6068.40 6074.00 6068.10 6059.60 6066.05 6062.00 6058.95
10 (10,15,11) 3614.00 3198.85 3198.05 3193.75 3195.50 3195.55 3191.10 3191.40 3191.75
11 (10,15,11) 5783.00 5708.80 5706.85 5701.40 5702.50 5701.45 5704.30 5700.05 5702.10
12 (10,15,11) 3912.00 3788.20 3787.75 3783.05 3783.90 3783.55 3784.05 3783.95 3781.95
13 (11,15,12) 5611.00 4858.50 4858.50 4853.50 4853.50 4853.50 4853.50 4853.50 4853.50
14 (11,15,12) 5562.00 4897.35 4895.55 4888.75 4894.60 4891.85 4898.20 4891.90 4890.90
15 (11,15,12) 5441.00 5134.35 5134.80 5135.75 5141.85 5126.80 5131.85 5144.45 5135.95
16 (12,16,12) 3812.00 3543.25 3547.85 3541.35 3538.00 3540.10 3538.65 3540.15 3534.60
17 (12,16,12) 5120.00 4856.55 4849.80 4846.50 4847.65 4854.15 4846.75 4851.25 4851.55
18 (12,16,12) 3741.00 3572.20 3576.05 3567.05 3567.85 3562.55 3569.45 3568.45 3564.25
19 (12,18,14) 4093.00 3652.40 3668.55 3647.15 3657.45 3655.50 3644.65 3651.95 3649.00
20 (12,18,14) 3487.00 3054.35 3057.50 3048.90 3049.25 3053.60 3047.65 3050.20 3053.45
21 (12,18,14) 4337.00 4142.70 4142.35 4133.50 4138.55 4135.60 4137.85 4134.50 4134.05
22 (14,19,14) 5869.00 5374.00 5382.40 5366.10 5358.75 5362.30 5362.10 5372.45 5364.90
23 (14,19,14) 5174.00 4976.70 4975.90 4972.85 4969.90 4971.10 4974.00 4972.50 4972.60
24 (14,19,14) 5637.00 5229.95 5224.00 5220.00 5231.65 5231.95 5223.00 5223.65 5223.50
25 (14,22,16) 6041.00 5646.23 5643.88 5640.60 5638.25 5640.95 5643.18 5640.70 5641.05
26 (14,22,16) 5795.00 5586.80 5581.50 5583.40 5578.90 5581.30 5576.10 5580.25 5577.60
27 (14,22,16) 5354.00 5323.50 5319.25 5317.45 5313.20 5316.45 5315.90 5314.40 5315.20
28 (15,23,15) 7429.00 6982.40 6982.15 6978.00 6982.90 6978.80 6986.50 6987.95 6994.10
29 (15,23,15) 6190.00 5980.00 5978.05 5972.05 5970.20 5973.95 5971.10 5977.15 5976.90
30 (15,23,15) 5992.00 5769.75 5768.10 5765.40 5766.25 5761.90 5761.75 5765.70 5764.10
31 (17,25,17) 6291.50 5740.78 5734.13 5745.80 5738.95 5750.38 5731.73 5728.88 5744.38
32 (17,25,17) 5053.00 4879.65 4880.90 4875.65 4875.65 4870.85 4876.60 4875.55 4872.35
33 (17,25,17) 6315.00 6113.80 6112.65 6109.90 6109.30 6106.80 6104.80 6104.45 6106.20
34 (18,25,18) 4814.00 4174.55 4168.10 4167.10 4169.25 4169.85 4172.10 4166.50 4165.40
35 (18,25,18) 4851.00 4543.05 4540.65 4537.95 4535.70 4539.40 4536.20 4533.90 4534.85
36 (18,25,18) 4949.00 4647.60 4647.05 4636.75 4642.40 4640.30 4647.25 4639.15 4641.20
37 (18,25,20) 5564.00 5048.85 5048.20 5059.05 5064.95 5069.05 5060.40 5057.85 5053.60
38 (20,27,20) 7989.00 6860.00 6856.40 6852.20 6853.40 6856.55 6853.55 6855.65 6850.00
39 (20,27,20) 8495.00 7513.30 7514.05 7511.20 7509.80 7509.80 7501.90 7509.80 7506.20
40 (20,30,20) 4328.00 3714.90 3716.95 3712.20 3713.40 3712.55 3709.90 3708.60 3708.40
41 (20,30,20) 6823.00 6705.30 6698.40 6694.65 6695.50 6694.15 6691.75 6692.90 6693.05
42 (20,30,20) 5597.00 5386.90 5382.45 5373.55 5375.90 5379.05 5372.80 5372.90 5371.65

Average 5431.27 5076.31 5075.55 5071.33 5071.71 5071.70 5070.52 5070.83 5070.22
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Table 2 represents the performance of all algorithms on the basis of
objective value in small-scale problems. According to Table 2, problem-
specific neighborhood structures help the basic simulated annealing
algorithm to find better solutions. Moreover, learning approaches en-
hance the performance of SA algorithm. Based on numerical results,
there is not significant difference between the outcome of all learning-
based SA algorithms. Table 3 also shows the performance of all algo-
rithms in small-scale problems in terms of computational time.

In addition, based on Tables 2 and 3, heuristic algorithm provides

good initial solutions in a very short computational time and both
heuristic and meta-heuristic algorithms are less dependent up on the
size of the problem and they can provide good solutions in acceptable
computational time.

Similarly, all algorithms are compared in large-scale problem where
commercial solvers are not able to solve the problems. As the results
show (Table 4), all learning-based SA algorithms outperform basic SA
with\without problem-specific neighborhood structures, where Q-
learning based simulated annealing algorithms are slightly better than
others. Similarly, all learning-based algorithms converge in shorter
computational time. Because the developed truck scheduling problem is
an operational one, it is vital to find good solutions shortly. Therefore,
Q-learning based algorithm with =( , , , ) (10, 20, 50, 100)1 2 3 4 is
suggested for this problem. Similar to small-scale problems, the heur-
istic algorithm can find good solutions in negligible time. It is worth
mentioning that our algorithms, i.e. SA-RL5 and SA-RL6 are compared
with commonly used algorithms in the literature namely Genetic Al-
gorithm, Particle Swarm Optimization, and Differential Evolution al-
gorithms as benchmarks and results are provided in Appendix A (see
Table 5).

Table 5
Comparison of all algorithms according to computational time in large-scale problems.

CPU Time (s) Best found solution (s)

# Size H Meta SA SA-NS SA-RL1 SA-RL2 SA-RL3 SA-RL4 SA-RL5 SA-RL6

1 (8,10,8) 0.18 50.41 47.45 47.91 31.07 29.20 29.77 28.94 30.63 37.34
2 (8,10,8) 0.17 50.41 39.98 43.91 23.52 23.16 22.81 23.36 24.35 29.54
3 (8,10,8) 0.17 50.41 34.44 34.59 19.25 17.93 18.76 19.09 21.80 21.44
4 (8,12,9) 0.18 63.01 48.61 50.81 25.57 27.54 26.77 26.51 29.50 32.77
5 (8,12,9) 0.18 63.01 48.46 50.30 28.16 28.18 28.34 27.72 30.48 31.48
6 (8,12,9) 0.18 63.01 46.30 46.14 25.52 25.39 25.27 27.05 29.42 28.60
7 (10,13,10) 0.17 80.51 46.76 48.39 25.40 24.33 26.42 27.42 29.28 31.14
8 (10,13,10) 0.17 80.51 48.23 47.70 24.44 25.33 25.87 25.28 30.08 29.75
9 (10,13,10) 0.17 80.51 33.75 34.47 19.20 19.58 18.68 18.89 23.35 21.66
10 (10,15,11) 0.18 96.26 59.36 64.46 38.49 39.50 38.13 39.84 46.61 43.34
11 (10,15,11) 0.18 96.26 83.91 81.29 49.33 47.62 51.41 49.34 55.74 54.25
12 (10,15,11) 0.18 96.26 55.18 57.51 32.87 33.65 35.46 33.63 36.51 39.60
13 (11,15,12) 0.18 109.21 36.47 39.18 22.18 20.05 22.43 24.45 25.04 23.90
14 (11,15,12) 0.19 109.21 66.21 65.15 34.06 36.63 35.76 33.82 41.04 42.49
15 (11,15,12) 0.18 109.21 60.16 55.83 30.21 29.40 33.64 41.15 33.37 34.20
16 (12,16,12) 0.18 117.61 63.39 64.48 35.30 35.43 37.30 36.41 42.05 41.87
17 (12,16,12) 0.17 117.61 79.56 72.13 49.12 44.33 45.58 43.52 51.86 49.45
18 (12,16,12) 0.17 117.61 78.41 73.06 48.33 45.70 47.55 44.82 49.81 48.88
19 (12,18,14) 0.18 147.01 87.57 93.07 59.79 55.75 59.31 65.43 55.01 60.48
20 (12,18,14) 0.18 147.01 72.19 77.93 45.38 46.59 43.09 41.97 45.34 47.14
21 (12,18,14) 0.18 147.01 78.04 73.12 42.22 42.09 43.78 47.70 52.79 44.08
22 (14,19,14) 0.17 161.71 67.40 74.40 51.19 42.36 43.54 45.29 47.79 52.06
23 (14,19,14) 0.17 161.71 86.44 88.16 49.49 62.11 65.97 59.43 68.04 58.66
24 (14,19,14) 0.17 161.71 83.89 83.22 69.16 59.92 52.82 63.74 66.50 53.74
25 (14,22,16) 0.18 201.61 100.70 107.35 62.23 57.53 68.75 65.26 69.40 65.24
26 (14,22,16) 0.18 201.61 104.72 112.06 85.02 80.26 78.37 79.57 84.28 66.67
27 (14,22,16) 0.18 201.61 106.49 99.68 63.31 66.35 62.09 75.90 66.53 73.05
28 (15,23,15) 0.18 199.51 109.56 117.45 91.17 75.58 73.79 82.62 85.99 80.26
29 (15,23,15) 0.18 199.51 113.54 125.41 73.02 74.48 88.25 82.95 84.65 70.21
30 (15,23,15) 0.18 199.51 97.04 90.59 55.39 52.62 69.70 62.16 69.47 66.05
31 (17,25,17) 0.18 249.91 97.74 105.80 69.00 64.16 59.78 66.74 81.42 69.99
32 (17,25,17) 0.18 249.91 182.38 167.27 120.33 141.25 119.19 143.39 120.94 134.17
33 (17,25,17) 0.18 249.91 167.79 155.23 122.07 128.53 114.93 156.76 145.96 131.00
34 (18,25,18) 0.18 270.91 120.55 119.67 94.96 92.10 83.33 94.26 98.68 112.07
35 (18,25,18) 0.18 270.91 156.43 146.15 107.82 116.05 124.35 113.38 123.85 131.98
36 (18,25,18) 0.18 270.91 154.41 153.62 114.98 114.71 103.12 110.39 119.13 112.39
37 (18,25,20) 0.18 301.01 99.37 92.53 66.15 67.23 64.24 68.05 83.44 66.54
38 (20,27,20) 0.18 329.01 121.82 123.41 89.02 83.78 85.71 101.78 107.81 90.97
39 (20,27,20) 0.20 329.01 127.77 121.33 97.23 106.26 85.07 87.63 96.30 110.58
40 (20,30,20) 0.18 350.01 172.43 162.89 124.36 123.84 130.56 132.80 159.09 153.44
41 (20,30,20) 0.18 350.01 239.28 203.44 176.21 182.72 165.86 178.55 215.03 151.85
42 (20,30,20) 0.19 350.01 219.33 239.04 229.81 194.58 179.09 189.94 225.18 177.65

Average 0.18 172.66 93.89 93.10 64.79 63.90 62.73 66.36 71.51 67.19

Table 6
Influence of partial unloading and complete unloading in the objective func-
tion.

Demand density Objective function Improvement (%)

t= 4 t= 6 t=8 t= 10 t=4 t= 6 t=8 t= 10

0.21 634 927 1219 1511 0 0 0 0
0.32 588 862 1137 1413 7.26 7.01 6.73 6.49
0.41 560 828 1095 1361 11.67 10.68 10.17 9.93
0.61 527 774 1020 1266 16.88 16.5 16.32 16.21
0.71 470 688 906 1124 25.87 25.78 25.68 25.61
0.87 316 463 611 759 50.16 50.05 49.88 49.77
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5. Sensitivity analysis

In this section, we evaluate the impact of unloading/loading time
and destination bound product ratio (DBPR) on the makespan. Also, the
influence of partial unloading of compound trucks is investigated and
compared with the situation in which all products should be unloaded.
Destination bound product ratio is defined as the maximum proportion
of demand of a destination which was initially loaded into a compound
truck.

Actually, this factor shows whether the demand of each destination
is distributed between compound trucks or not. It is possible that a
compound truck brings the demand of many destinations into the cross-
docking center and in this situation, it is expected that just a small
proportion of its capacity is dedicated to each destination. In this case,
if a compound truck is assigned to a destination, a little saving can be
achieved through partial unloading (as the majority of the capacity of a
compound truck is dedicated to unassigned destinations). It is worth
mentioning that in this case, the value of this factor is small.

However, it would be possible that each compound truck brings the
demand of a few destinations (for example, three or four destinations),
i.e., a majority of its capacity is filled with the demand of a few desti-
nations. In this case, a considerable proportion of capacity of compound
trucks is dedicated to a single destination. In this situation, partial
unloading will considerably decrease makespan. Generally, destination
bound product ratio is a factor which is used to measure how demand
for destinations are distributed in different trucks. Eq. (32) represents
the value of this parameter:

=DBPR
f t

f t
d Dmax

.
.

d
i I

k K idk k

i I
k K

idk k
(32)

At first, we analyze these assumptions in a problem with 5 compound
trucks, 7 destinations (or 2 outbound trucks), 5 doors and 1 product
type. All test problems in sensitivity analysis are solved using GAMS
software to find optimal solutions. Table 6 shows the impact of these
parameters on the objective function. By increasing the destination
bound product ratio, improvement in the objective function arises up to
50% in comparison with the situation that destination bound product
ratio is diverse as much as possible. It can then be concluded that in a
certain density by different loading/unloading time, the same im-
provement is obtained and destination bound product ratio has more
influence than unloading/loading time on the improvement of objective
function.

To investigate the influence of partial unloading on the objective
function, our model is compared with the situation where all products
should be unloaded and then reloaded (complete unloading). Table 7
shows that partial unloading can improve the objective function at least
11.6% when one product type is considered. As DBPR arises, the im-
provement obtained increases up to 55.9%. As results show, the im-
provement does not strongly depend on unloading/loading time.

5.1. Sensitivity analysis on learning component

One of the main concern in reinforcement learning is the explora-
tion-exploitation trade-off. The agent wants to maximize its own reward
and so take greedy decisions. On the other hand, it wants to explore
other decisions to determine the average reward of other actions. In this

Table 7
Influence of DBPR and loading/unloading in the objective function with one product type.

Demand density Objective function with our assumption Objective function without our assumption Improvement (%)

t= 4 t= 6 t= 8 t= 10 t= 4 t=6 t= 8 t= 10 t= 4 t=6 t=8 t=10

0.21 634 927 1219 1511 717 1052 1386 1720 11.6 11.9 12 12.2
0.32 588 862 1137 1413 712 1054 1396 1736 17.4 18.2 18.6 18.6
0.41 560 828 1095 1361 716 1057 1402 1746 21.8 21.7 21.9 22.1
0.61 527 774 1020 1266 708 1044 1380 1718 25.6 25.9 26.1 26.3
0.71 470 688 906 1124 701 1041 1377 1709 33.0 33.9 34.2 34.2
0.87 316 463 611 759 703 1045 1387 1723 55.0 55.7 55.9 55.9

Fig. 6. Convergence of objective function of MAB problem with different set-
tings.

Fig. 7. Average value function over NFE in 50 runs.
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regard, the agent takes the greedy action most of the time (1 per-
cent of times) and take random ones in percent of times. In this si-
tuation, it can balance the exploration-exploitation trade-off. Therefore,
it is of great importance to appropriately tune the value of .

Fig. 6 shows the convergence of objective function for different
setting in a single test problem when the problem is replicated for 50
iterations and then average value is reported. The dark blue curve
shows the situation when the agent takes greedy action all the time and
the initial value of all action-value functions ( =Q a a A( ) 0 ). In
this setting, the algorithm traps in local optima in the first iterations of
the algorithm which results in poor performance. On the other hand,
the red curve presents the setting when the agent takes greedy action all
the time while the initial value of all action-value functions is set to

=Q a a A( ) 1 . As none of neighborhood structures can improve
the current solution all the time, the true value of action value functions
is definitely less than 1. Therefore, when the agent chooses one of the
NSs two scenario are possible: first, if the selected NS produces a new
solution with lower objective function, then the value of action-value
function remains the same. Second, if the selected NS produces a new
solution with worse objective function, then the value of action-value
function decreases. In this situation, at the beginning of algorithm all
actions are selected for at least a few times. Therefore, the algorithm
can find better solutions compared to the first setting. This technique
for encouraging the algorithm for exploration is called optimistic initial
values Sutton et al. (1998).

Fig. 7 represents the value of value functions over time in setting
= =Q a a A0.3, ( ) 0 . At the beginning of the algorithm, the

value of action-value functions increases and stays almost constant.
Then, they decrease converge to zero. At the beginning of the algo-
rithm, it is more likely to improve the current fathom solution, so, ac-
tion-value functions increase or stays constant. However, when the al-
gorithm continues, each NS can improve the current solution just a few
times and the value of value functions decreases. These behavior sug-
gests that the learning problem is non-stationary and the probability
distribution of rewards changes over time. Because of non-stationary
probability distribution of rewards, it can be inferred why Q learning
based approached results in better solutions.

Remark: From Fig. 6, it is obvious that the optimistic initial values
technique can help the algorithm to better explore the solution space.
However, from Fig. 7, the problem is non-stationary and it is important
to take random actions in all stages of the algorithm to find the value of
each value function when its reward probability distribution changes.
Fig. 6 justify why -greedy policy is better than the optimistic initial

values technique.

6. Conclusion and future researches

This paper studies a truck-scheduling problem in a cross-docking
center where compound trucks can also serve as outbound trucks.
Moreover, compound trucks can be partially unloaded, so the time of
unloading and reloading of some products is saved. An integrated
model is proposed to find the optimal dock-door assignment, destina-
tion assignment, and truck scheduling to minimize makespan. Because
of NP-Hardness of the model, a new heuristic, and several reinforce-
ment learning-based simulated annealing algorithms are developed.
Moreover, to better search the solution space, several generic and
tailor-made neighborhood search structures are proposed. Moreover,
because of unclear performance of each NS in different stages of opti-
mization process, reinforcement learning approaches are used to learn
appropriateness of each neighborhood search structure. Based on the
performance of each NS, RL methods decide on which NS should be
chosen to generate a new solution.

Sensitivity analysis shows that partial unloading has a crucial im-
pact on the reduction of objective function, i.e. it can improve the ob-
jective function up to 56%. The results also show that if the demands
are distributed among few compound trucks, partial unloading is more
desirable. In other words, the improvement of objective function has a
high dependency on destination-bound-product ratio while low de-
pendency on unloading/loading time.

As directions for future research, it can be considered that the de-
mand of destinations exceeds the capacity of trucks, so more than one
truck should be assigned to each destination. Therefore, integrated
truck scheduling and vehicle routing problems are more desirable.
Moreover, this model can be studied in a resource-constrained cross-
docking center. In addition, other objective functions such as mini-
mization of total cost or combination of several objective functions can
be used as criteria to assign trucks to destinations. This paper assumes
that the number of compound trucks is at most the as same as that of
dock door. Future research can study the case when the number of
compound trucks is significantly larger than of dock doors. This pro-
blem will be more realistic if the model considers uncertainty in the
problem. Besides, other reinforcement learning approaches such as
SARSA, double Q-learning can be embedded in SA algorithm. Also, it is
possible to take the advantage of the problem to defined different states
in MDP problem. Finally, the proposed reinforcement learning-based
simulated annealing can be applied to different problems.

Appendix A

A.1. Benchmarking

In this section, we compare the performance of our developed reinforcement learning-based simulated annealing algorithms with the conven-
tional algorithms used in the literature. In truck scheduling problem in cross-docking center, several papers have used Genetic Algorithm (GA) (e.g.
Arabani et al., 2011; Molavi et al., 2018; Mohtashami, 2015), Particle Swarm Optimization (PSO) (see e.g. Chen, Hsiao, Reddy, & Tiwari, 2016;
Keshtzari et al., 2016; Wisittipanich & Hengmeechai, 2017), and Differential Evolution (DE) algorithms (e.g. Arabani et al., 2011; Assadi & Bagheri,
2016; Liao et al., 2013; Warren Liao, Egbelu, & Chang, 2012; Yazdani, Naderi, & Mousakhani, 2015). Therefore, we consider these algorithms as
benchmark and evaluate the performances of SA-RL5 and SA-RL6. Table A1 represents the performance of benchmark and our developed algorithms
for small-scale problems. It is obvious that, in general, our developed algorithms outperform benchmarks.

Similarly, Table A2 shows the performance of benchmarks and our algorithms and out algorithms not only can find better solutions and lower
objective value, but also they converge to their best solution faster than benchmarks. From Tables A1,A2, it can be concluded that our algorithms are
better in terms of objective function and computational time and they can be recommended to solve the proposed model.
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Table A2
Comparison of Benchmark Algorithms With Our Developed Algorithms in Large-Scale Problems.

# Size Objective Function Best found solution (s)

DE GA SA-RL5 SA-RL6 PSO DE GA SA-RL5 SA-RL6

1 (8,10,8) 3266.80 3261.45 3275.68 3253.98 3253.45 19.88 38.53 5.29 30.63 37.34
2 (8,10,8) 5398.58 5381.28 5409.20 5376.85 5377.50 19.78 31.66 5.46 24.35 29.54
3 (8,10,8) 4957.45 4933.98 4973.78 4933.70 4934.28 27.31 33.61 5.17 21.80 21.44
4 (8,12,9) 6170.70 6153.45 6160.50 6139.60 6139.30 39.81 46.99 16.29 29.50 32.77
5 (8,12,9) 6395.00 6377.30 6385.35 6325.13 6320.00 39.56 43.08 21.37 30.48 31.48
6 (8,12,9) 6139.60 6115.65 6135.20 6096.50 6097.55 34.41 44.02 18.87 29.42 28.60
7 (10,13,10) 2740.83 2736.83 2747.40 2732.25 2729.75 35.89 54.76 26.40 29.28 31.14
8 (10,13,10) 5668.95 5645.33 5659.38 5612.08 5618.05 58.34 58.23 23.21 30.08 29.75
9 (10,13,10) 6108.35 6068.40 6101.40 6062.00 6058.95 40.25 56.84 23.72 23.35 21.66
10 (10,15,11) 3264.75 3249.40 3241.90 3191.40 3191.75 59.27 72.05 58.41 46.61 43.34
11 (10,15,11) 5764.35 5752.25 5759.25 5700.05 5702.10 66.30 73.06 39.92 55.74 54.25
12 (10,15,11) 3809.95 3803.15 3810.20 3783.95 3781.95 46.84 68.18 39.34 36.51 39.60
13 (11,15,12) 4891.95 4862.05 4878.18 4853.50 4853.50 47.83 67.92 19.96 25.04 23.90
14 (11,15,12) 4984.85 4956.15 4961.40 4891.90 4890.90 66.07 78.63 42.56 41.04 42.49
15 (11,15,12) 5231.20 5163.05 5192.60 5144.45 5135.95 45.62 78.77 33.11 33.37 34.20
16 (12,16,12) 3588.10 3565.85 3585.10 3540.15 3534.60 75.00 86.30 42.42 42.05 41.87
17 (12,16,12) 4934.75 4921.25 4910.85 4851.25 4851.55 73.27 88.91 30.65 51.86 49.45

(continued on next page)

Table A1
Comparison of Benchmark Algorithms With Our Developed Algorithms in Small-Scale Problems.

# Size Objective Function Best found solution (s)

DE GA SA-RL5 SA-RL6 PSO DE GA SA-RL5 SA-RL6

1 (2,3,2) 257.00 257.00 257.00 257.00 257.00 0.26 0.18 0.17 0.04 0.04
2 (2,3,2) 724.00 724.00 724.00 724.00 724.00 0.26 0.18 0.17 0.04 0.04
3 (2,3,2) 652.00 652.00 652.00 652.00 652.00 0.26 0.18 0.17 0.05 0.05
4 (2,4,3) 1368.00 1368.00 1368.00 1368.00 1368.00 0.28 0.19 0.18 0.06 0.06
5 (2,4,3) 1020.00 1020.00 1020.10 1020.00 1020.00 0.38 0.24 0.20 0.13 0.08
6 (2,4,3) 1644.00 1644.00 1644.10 1644.00 1644.00 0.44 0.27 0.21 0.14 0.08
7 (3,4,4) 1741.00 1741.00 1741.00 1715.00 1715.00 0.49 0.32 0.21 0.16 0.13
8 (3,4,4) 1577.80 1577.00 1577.00 1543.00 1543.00 0.68 0.30 0.23 0.37 0.38
9 (3,4,4) 1756.00 1756.00 1756.10 1721.00 1721.00 0.56 0.38 0.24 0.22 0.20
10 (3,5,3) 617.00 617.00 617.45 617.00 617.00 2.28 0.65 0.77 0.53 0.86
11 (3,5,3) 2009.00 2009.00 2012.60 2009.00 2009.00 1.31 1.14 0.63 0.51 0.53
12 (3,5,3) 1975.50 1973.00 1973.00 1973.00 1973.00 1.30 0.69 0.35 0.29 0.23
13 (3,6,4) 1890.00 1890.00 1891.20 1890.00 1890.00 2.68 1.48 1.19 2.58 2.04
14 (3,6,4) 2108.85 2107.00 2108.35 2107.25 2107.35 5.41 4.09 0.96 6.43 7.41
15 (3,6,4) 2753.70 2753.30 2756.30 2753.60 2753.65 6.64 4.91 0.94 6.87 6.56
16 (3,6,4) 2730.70 2726.15 2729.10 2726.05 2726.30 5.54 3.83 0.76 7.68 6.93
17 (3,6,4) 1528.00 1527.15 1528.25 1527.30 1527.60 3.26 4.84 0.69 6.86 6.89
18 (3,6,4) 914.70 910.00 913.90 910.10 910.50 5.37 2.14 0.69 7.24 8.11
19 (4,6,4) 1760.15 1760.00 1767.40 1760.15 1760.15 2.84 4.92 1.07 8.18 5.70
20 (4,6,4) 2961.85 2951.05 2961.10 2951.00 2951.20 3.81 3.77 0.78 8.34 7.82
21 (4,6,4) 1613.15 1609.00 1611.85 1609.10 1609.40 3.44 4.59 0.82 9.01 8.52
22 (4,7,4) 6366.05 6360.00 6364.85 6360.05 6360.45 6.71 8.03 1.48 10.70 11.15
23 (4,7,4) 2323.70 2321.55 2331.35 2320.80 2321.50 8.16 10.20 1.79 11.71 13.77
24 (4,7,4) 1452.95 1449.50 1452.15 1449.25 1449.55 9.57 6.19 1.77 11.74 10.16
25 (5,7,6) 4681.00 4681.00 4681.00 4681.00 4681.00 1.20 0.60 0.32 0.67 0.53
26 (5,7,6) 2621.05 2616.15 2627.05 2615.10 2616.80 8.46 15.50 3.65 14.17 15.14
27 (5,7,6) 2539.30 2536.00 2540.80 2536.00 2536.00 7.20 4.51 1.06 11.07 12.25
28 (5,7,5) 4125.95 4113.05 4142.65 4113.65 4113.00 6.13 10.30 1.45 10.94 11.18
29 (5,7,5) 1800.25 1775.45 1786.00 1775.25 1775.65 7.89 11.93 1.71 17.49 17.33
30 (5,7,5) 1655.85 1637.20 1647.60 1635.00 1635.50 3.89 14.01 1.98 17.76 19.33
31 (6,7,6) 3923.00 3923.00 3925.25 3923.00 3923.00 1.82 1.33 0.76 3.43 1.44
32 (6,7,6) 1684.05 1679.00 1688.75 1679.60 1679.35 6.58 9.62 1.63 14.44 15.73
33 (6,7,6) 1992.00 1992.00 1993.40 1992.00 1992.00 0.70 1.83 1.51 2.20 2.38
34 (5,8,5) 5163.00 5160.90 5170.45 5145.25 5149.55 11.62 14.41 2.97 20.39 20.18
35 (5,8,5) 2774.60 2769.05 2788.10 2762.65 2763.70 10.35 16.13 2.12 19.91 19.59
36 (5,8,5) 1678.90 1678.00 1684.00 1678.00 1678.00 6.52 7.57 2.86 14.04 13.66
37 (5,9,6) 6494.60 6478.05 6514.70 6474.05 6474.10 14.20 19.60 2.22 16.14 18.35
38 (5,9,6) 3015.60 3004.35 3026.95 2991.15 2989.90 17.41 22.06 3.99 22.27 24.75
39 (5,9,6) 1668.80 1653.30 1680.95 1634.40 1637.05 17.54 23.27 8.23 17.99 17.89
40 (6,9,6) 7182.40 7161.05 7178.30 7158.55 7158.50 16.72 20.75 5.80 21.89 23.59
41 (6,9,6) 3573.95 3562.40 3574.80 3556.10 3556.00 17.74 23.04 4.90 23.40 24.97
42 (6,9,6) 2015.40 2017.30 2029.35 2007.30 2008.20 18.13 24.07 4.79 24.11 25.92

Average 2436.54 2431.90 2439.01 2427.75 2428.05 5.86 7.24 1.63 8.86 9.09
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Table A2 (continued)

# Size Objective Function Best found solution (s)

DE GA SA-RL5 SA-RL6 PSO DE GA SA-RL5 SA-RL6

18 (12,16,12) 3616.95 3610.85 3610.60 3568.45 3564.25 75.40 85.59 39.15 49.81 48.88
19 (12,18,14) 3897.05 3844.00 3792.05 3651.95 3649.00 95.27 116.26 75.83 55.01 60.48
20 (12,18,14) 3153.40 3134.15 3119.75 3050.20 3053.45 106.02 112.86 76.42 45.34 47.14
21 (12,18,14) 4253.55 4231.25 4214.45 4134.50 4134.05 95.51 120.79 52.94 52.79 44.08
22 (14,19,14) 5590.55 5587.90 5503.10 5372.45 5364.90 98.63 119.03 63.13 47.79 52.06
23 (14,19,14) 5086.30 5062.10 5045.45 4972.50 4972.60 102.57 118.56 68.74 68.04 58.66
24 (14,19,14) 5355.60 5337.65 5319.85 5223.65 5223.50 97.21 115.08 72.68 66.50 53.74
25 (14,22,16) 5842.25 5791.23 5738.38 5640.70 5641.05 137.23 165.44 109.73 69.40 65.24
26 (14,22,16) 5782.40 5747.15 5678.35 5580.25 5577.60 154.27 151.95 94.19 84.28 66.67
27 (14,22,16) 5532.30 5495.35 5429.60 5314.40 5315.20 127.47 161.49 106.89 66.53 73.05
28 (15,23,15) 7427.55 7328.80 7147.55 6987.95 6994.10 141.52 153.13 121.71 85.99 80.26
29 (15,23,15) 6149.45 6121.05 6061.85 5977.15 5976.90 148.95 148.52 94.30 84.65 70.21
30 (15,23,15) 5904.05 5859.85 5831.00 5765.70 5764.10 123.55 156.20 88.56 69.47 66.05
31 (17,25,17) 5988.63 5960.45 5867.30 5728.88 5744.38 168.76 190.90 126.48 81.42 69.99
32 (17,25,17) 5045.55 5024.55 4971.15 4875.55 4872.35 163.72 185.29 150.10 120.94 134.17
33 (17,25,17) 6306.95 6293.80 6212.45 6104.45 6106.20 181.96 170.85 169.92 145.96 131.00
34 (18,25,18) 4362.65 4325.50 4264.15 4166.50 4165.40 168.16 196.58 148.31 98.68 112.07
35 (18,25,18) 4687.20 4703.30 4647.30 4533.90 4534.85 177.68 202.56 136.79 123.85 131.98
36 (18,25,18) 4803.40 4820.80 4747.55 4639.15 4641.20 184.56 191.08 166.52 119.13 112.39
37 (18,25,20) 5373.10 5272.10 5221.55 5057.85 5053.60 225.39 217.16 168.59 83.44 66.54
38 (20,27,20) 7184.25 7125.45 7009.40 6855.65 6850.00 231.46 243.98 198.44 107.81 90.97
39 (20,27,20) 7774.20 7751.80 7679.55 7509.80 7506.20 203.89 241.48 159.82 96.30 110.58
40 (20,30,20) 4048.50 4039.70 3916.75 3708.60 3708.40 252.54 192.02 190.81 159.09 153.44
41 (20,30,20) 6897.25 6884.50 6819.85 6692.90 6693.05 258.04 281.35 181.40 215.03 151.85
42 (20,30,20) 5600.70 5584.30 5500.85 5372.90 5371.65 271.73 251.83 169.23 225.18 177.65

Average 5204.37 5178.05 5147.23 5063.46 5062.86 113.97 126.46 82.93 71.51 67.19
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