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a b s t r a c t 

Selective maintenance, which aims to choose a subset of feasible maintenance actions to be performed 

for a repairable system with limited maintenance resources, has been extensively studied over the past 

decade. Most of the reported works on selective maintenance have been dedicated to maximizing the 

success of a single future mission. Cases of multiple consecutive missions, which are oftentimes encoun- 

tered in engineering practices, have been rarely investigated to date. In this paper, a new selective main- 

tenance optimization for multi-state systems that can execute multiple consecutive missions over a finite 

horizon is developed. The selective maintenance strategy can be dynamically optimized to maximize the 

expected number of future mission successes whenever the states and effective ages of the components 

become known at the end of the last mission. The dynamic optimization problem, which accounts for 

imperfect maintenance, is formulated as a discrete-time finite-horizon Markov decision process with a 

mixed integer-discrete-continuous state space. Based on the framework of actor-critic algorithms, a cus- 

tomized deep reinforcement learning method is put forth to overcome the “curse of dimensionality” and 

mitigate the uncountable state space. In our proposed method, a postprocess is developed for the actor 

to search the optimal maintenance actions in a large-scale discrete action space, whereas the techniques 

of the experience replay and the target network are utilized to facilitate the agent training. The perfor- 

mance of the proposed method is examined by an illustrative example and an engineering example of a 

coal transportation system. 

© 2019 Elsevier B.V. All rights reserved. 
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1. Introduction 

Maintenance activities have been pervasively implemented in

industry practices to restore aged systems to a better condition, to

restore system performance, and to prolong systems’ residual lives

( Nourelfath, Fitouhi & Machani, 2010 ; Yang, Ye, Lee, Yang & Peng,

2019 ). In some engineering applications, systems are intended to

execute a sequence of missions with a finite break between two

adjacent missions. Maintenance actions can be performed within a

break to recover components from a worse/failure state to a bet-

ter state to ensure the success of the next mission. However, due

to limited maintenance resources, such as budget, time, manpower,

and repair facilities, performing all the desirable maintenance ac-

tions in a break is oftentimes impossible. Alternatively, a subset of

maintenance actions that can maximize the success of the ensuing
∗ Corresponding author at: No. 2006, Xiyuan Avenue, West High-Tech Zone, 
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0377-2217/© 2019 Elsevier B.V. All rights reserved. 
issions are selected from all the options and performed before

he start of the next mission. This strategy is known as selective

aintenance ( Cassady, Pohl & Murdock, 2001 ). 

The earliest study on selective maintenance can be tracked back

o Rice, Cassady and Nachlas (1998) in which a selective main-

enance model for parallel-series systems with identical compo-

ents was developed. Following the framework proposed in Rice

t al. (1998) , many new selective maintenance optimization mod-

ls and solutions have been intensively explored over the past few

ecades from various angles. For example, Cassady, Murdock and

ohl (2001) introduced a set of variations of selective maintenance

odels with distinct objective functions and constraints. A general

elective maintenance was proposed by Cassady et al. (2001) , in

hich the lifetime of components conforms to the Weibull distri-

ution and one of three optional maintenance actions, i.e., min-

mal repair, corrective replacement, and preventive replacement,

an be performed for components. The selective maintenance

trategy was implemented for machine lines to reduce mainte-

ance costs and failure losses ( Zhu, Liu, Shao, Liu & Deng, 2011 ).

https://doi.org/10.1016/j.ejor.2019.10.049
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ejor
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ejor.2019.10.049&domain=pdf
mailto:yuliu@uestc.edu.cn
https://doi.org/10.1016/j.ejor.2019.10.049
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aaroufi, Chelbi and Rezg (2013) studied a selective mainte-

ance strategy for systems subject to propagated failures with

lobal effects and failure isolation phenomena. A selective main-

enance model for a fleet of systems was investigated by Schneider

nd Cassady (2015) . By taking into account the stochastic mis-

ion durations and break duration, a new selective maintenance

odel was presented by Khatab, Aghezzaf, Djelloul and Sari (2017) .

hree heuristic methods were introduced by Lust, Roux and Ri-

ne (2009) to facilitate the optimization of a selective maintenance

odel with many components. 

Nevertheless, these preceding works assumed that both a sys-

em and its components are in binary-state, i.e., either working

erfectly or failing completely. In engineering practices, some sys-

ems, such as manufacturing systems ( Nourelfath et al., 2010 ) and

etworked systems ( Ramirez-Marquez & Coit, 2005 ), exhibit multi-

tate characteristics; namely, they possess multiple distinguished

erformance capacities or damage severities between the perfect

orking and completely failed states. These systems are termed as

ulti-state systems. By using multi-state system models, the dete-

ioration behavior of engineered systems can be characterized in a

ore detailed manner than that of traditional binary-state system

odels. In the context of multi-state systems, many new selec-

ive maintenance models have been developed over the past few

ears. For example, Liu and Huang (2010) put forth a new selec-

ive maintenance model for multi-state systems, and each binary-

apacitated component in the system can be imperfectly repaired

o a state somewhere between “as good as new” and “as bad as

ld” states during a break. The selective maintenance model for

ulti-state systems consisting of multi-state components was in-

estigated by Pandey, Zuo and Moghaddass (2013) . Three selec-

ive maintenance models, taking account of the economic depen-

ence ( Dao, Zuo & Pandey, 2014 ), stochastic dependence ( Dao &

uo, 2016 ), and structural dependence ( Dao & Zuo, 2017 ) among

omponents, were developed for multi-state systems. As the uncer-

ainties associated with the durations of breaks and maintenance

ctions may produce significant impacts on the selective mainte-

ance effectiveness, sequence planning for the selective mainte-

ance of multi-state systems was recently studied by Liu, Chen and

iang (2018) . 

Notably, all these aforementioned models for selective mainte-

ance only maximized the success of the next mission and can-

ot be used for cases where more than one consecutive mission is

o be executed in order. For multiple consecutive missions, Iyoob,

assady and Pohl (2006) developed a selective maintenance model

or systems performing a sequence of identical missions with the

ame durations of breaks between the adjacent missions, and a

iscrete-time Markov chain was utilized to evaluate the long-run

verage cost per mission. Based on the premise that failed com-

onents can be minimally repaired immediately during a mission,

hatab, Aghezzaf and Claver (2015) and Pandey, Zuo and Moghad-

ass (2016) studied a selective maintenance strategy for systems

xecuting multiple missions. Such an assumption of minimal re-

airs upon failures may not be valid in real-world systems, as

aintenance actions can only be performed during breaks between

wo adjacent missions in the general framework of selective main-

enance. With the assumption that a binary-state series-parallel

ystem is composed of identical components and that lifetime

f the components complies with the exponential distribution,

he selective maintenance optimization for a system over a finite

orizon was formulated as a stochastic dynamic programming by

aillart, Cassady, Rainwater and Schneider (2009) . In their study,

he failed components to be replaced in each break are dynam-

cally identified at the end of the last mission. The approximate

ynamic programming algorithm was used by Ahadi (2018) to ad-

ress the selective maintenance optimization raised in Maillart et

l. (2009) when the number of components in a series-parallel
ystem is extremely large. However, the assumptions of identical

omponents and exponentially distributed lifetimes block the im-

lementation of selective maintenance for many real-world engi-

eering systems. Even though the reliability assessment and opti-

ization of phased-mission systems, which can experience several

hases in a mission, have been extensively investigated in the lit-

rature ( Levitin, Finkelstein & Dai, 2017 ; Wang, Peng & Xing, 2018 ,

020 ), the system studied in most of these works was unrepairable

nd the system will stop functioning for the remaining phases if it

ails in any one of preceding phases. 

To further advance the state-of-the-art of selective maintenance

ptimization and facilitate its implementation to broader applica-

ions, a new dynamic selective maintenance model for multi-state

ystems over a finite horizon is put forth hereinafter, in which

oth the assumptions of the identical components and exponen-

ial lifetime distribution in the earlier literature are released. Mul-

iple maintenance actions, including “doing nothing”, minimal re-

air, imperfect maintenance, and replacement, are available to be

hosen for each component, and they can only be performed in-

etween two adjacent missions. However, due to limited mainte-

ance resources in each break, the selective maintenance strategy

as to be dynamically optimized at the end of each mission based

n the states and effective ages of all the components in a sys-

em to ensure the maximum expected number of the successes

f future missions. The resulting stochastic dynamic programming

s formulated as a discrete-time finite-horizon Markov decision

rocess with a mixed integer-discrete-continuous state space. To

eal with the “curse of dimensionality” and the uncountable state

pace, a customized deep reinforcement learning (DRL) approach

s developed based on the framework of actor-critic algorithms

 Sutton & Barto, 2018 ). The critic, which evaluates the effectiveness

f maintenance actions, is mimicked by an artificial neural net-

ork named the Q-network, whereas a postprocess is used in the

ctor to identify the optimal maintenance actions in a large-scale

iscrete action space. The two techniques, specifically the experi-

nce replay and the target network, of the deep Q-network (DQN),

re utilized to improve the robustness of the customized DRL ap-

roach. The performance of the proposed method is examined by

n illustrative example and an engineering example of a coal trans-

ortation system. 

The remainder of this paper is implemented out as follows.

ection 2 gives the problem description and the basic assumptions

n our study. The states and effective ages of the components at the

nd of the last mission, along with the probability of a system suc-

essfully completing the next mission, are evaluated in Section 3 ,

nd the dynamic selective maintenance optimization is formulated

s a discrete-state finite-horizon Markov decision process. A cus-

omized DRL algorithm is put forth in Section 4 to resolve the re-

ulting optimization problem. Two illustrative examples are pre-

ented in Section 5 to examine the effectiveness of the proposed

ethod. Section 6 details conclusions and some future studies. 

. Problem description and model assumptions 

.1. Selective maintenance of multi-state systems 

In many military and industrial environments, systems are

lanned to execute multiple missions with a break in-between

wo adjacent missions. Maintenance actions can only be performed

uring the break to restore the aged system to a better condition

nd thus complete as many future missions as possible. For ex-

mple, a truck is scheduled to finish a sequence of transportation

asks with a break between two adjacent tasks, whereas an air-

raft is intended to complete multiple flights with a stop between

wo consecutive flights. However, due to limited maintenance

esources, only a subset of components, rather than all of the
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Fig. 1. Selective maintenance for a system that can execute multiple consecutive missions. 
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components in a system, can be recovered to their better condi-

tions. Due to the randomness of components’ failures in a mis-

sion, the state of each component at the end of each mission varies

from one system to another as shown in Fig. 1 . The selective main-

tenance strategy has to be dynamically optimized based on the

health status of all the components in a specific individual system

to ensure the maximum number of the successes of future mis-

sions for the system. 

Without loss of generality, the specific selective maintenance

problem and the multi-state systems’ characteristics are defined as

follows: 

(1) A multi-state system is composed of M statistically indepen-

dent binary-capacitated components. The performance ca-

pacity of component l ( l ∈ { 1 , 2 , · · · , M} ) at any time instant

t , denoted as G l (t) , equates g l, 1 and g l, 0 for the operational

state (State 1) and the failure state (State 0), respectively.

Specifically, the performance capacity of components in the

failure state is zero, specifically, g l, 0 = 0 . 

(2) The performance capacity of the entire system at any

time instant t , denoted as G (t) , can be determined by

the performance capacities of all the components and the

structure function φ(·) of the system. For instance, one

has G (t) = φ( G 1 (t) , G 2 (t)) = min { G 1 (t) , G 2 (t) } if two compo-

nents in a flow transmission system are connected in se-

ries, whereas G (t) = φ( G 1 (t) , G 2 (t)) = G 1 (t) + G 2 (t) is used

for a parallel connection. Several existing tools, such as the

universal generating function (UGF) ( Levitin, 2005 ), multi-

valued decision diagram ( Amari, Xing, Shrestha, Akers &

Trivedi, 2010 ; Mo, Xing, Zhong & Zhang, 2016 ), and Bayesian

network ( Jiang & Liu, 2017 ), can efficiently enumerate all

the possible combinations of components’ states with re-

spect to each system performance capacity. The system can,

therefore, exhibit a finite number of states, denoted as G =
{ g 1 , g 2 , . . . , g N s } , distinguished by the system performance

capacity, where g 1 and g N s are the worst and best states, re-

spectively, and N s is the number of the possible states. At

any particular time instant t , G (t) ∈ G = { g 1 , g 2 , . . . , g N s } . 
(3) The system is intended to execute a sequence of K mis-

sions, and the duration of the k th mission is denoted as Z k ,

where k ∈ { 1 , 2 , . . . , K} . The system configuration remains

unchanged throughout all the missions. Additionally, even if

a proceeding mission fails, the system can be recovered to

the functioning state in a break by executing maintenance

actions. 

(4) The failure time of each component can conform to an ar-

bitrary distribution. The state of component l at the begin-

ning of the k th mission is denoted as a binary variable X l,k ,

where: 

X l,k = 

{
1 if component l is functioning 

0 if component l is failed 

. (1)
The state of component l at the end of the k th mission is

denoted as a binary variable Y l,k , where: 

Y l,k = 

{
1 if component l is functioning 

0 if component l is failed 

. (2)

Hence, the states of all the components in a system at

the beginning and end of the k th mission are represented

by a vector X k = ( X 1 ,k , X 2 ,k , . . . , X M,k ) and a vector Y k =
( Y 1 ,k , Y 2 ,k , . . . , Y M,k ) , respectively. At the beginning of the first

mission, all the components are in brand new condition and

one has X 1 = (1 , 1 , . . . , 1) . 

(5) The k th mission is successfully completed if the system per-

formance capacity at the end of the k th mission is greater

than a prespecified demand, denoted as W k , which could be

either a constant or a random quantity in engineering real-

ity ( Ekin, 2018 ; Sloan, 2004 ). In the case that the prespeci-

fied demand of the k th mission is a random variable with H

possible values, the h th possible value of the demand of the

k th mission is denoted as w h,k . 

(6) Several optional maintenance actions, including “doing noth-

ing”, minimal repair, imperfect maintenance, and replace-

ment, can be chosen for each failed or aged component.

However, due to limited maintenance budget and time in

each break, denoted as C lim 

and T lim 

, respectively, only a sub-

set of components can be maintained in each break. In our

study, it is assumed that the maintenance time and budget

of each break are pre-specified as reported in Iyoob et al.

(2006) , Maillart et al. (2009) , and Ahadi (2018) . For example,

production lines can, oftentimes, only be maintained at the

weekend, and maintenance budget for each weekend has to

be pre-specified at the beginning of a month. 

.2. Imperfect maintenance model 

During each break, maintenance actions can be performed to

ecover the condition of a failed or aged component in a sys-

em to ensure the success of future missions. Based on the ef-

ciency, maintenance actions can be categorized into three cat-

gories, i.e., perfect repair/maintenance (including replacement),

inimal repair/maintenance, and imperfect repair/maintenance

 Pham & Wang, 1996 ). Apart from the minimal repair and re-

lacement that restore a component to “as bad as old” and “as

ood as new” conditions, respectively, many maintenance actions

n engineering practices can be viewed as imperfect maintenance

ith which a failed/aged component can only be restored to

omewhere between the aforementioned two extremes ( Pham &

ang, 1996 ). A higher quality of maintenance action, of course,

onsumes a greater amount of maintenance resources (cost and

ime). Without loss of generality, in this study, “doing nothing”

an be viewed as one of the optional maintenance actions for a

omponent. 
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Fig. 2. The chronological time vs. the effective age for the Kijima type II model. 
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Suppose that N L + 1 optional maintenance actions are available

or each component. The selected maintenance action for compo-

ent l in the k th break, i.e., the break between the k th mission

nd the ( k + 1 )st mission, is denoted as a l,k ( a l,k ∈ { 0 , 1 , · · · , N L } ),
nd a greater value of a l,k represents a maintenance action with a

igher efficiency. a l,k = N L and a l,k = 0 represent the replacement

nd “doing nothing”, respectively. Specifically, for a failed com-

onent, a l,k = 1 signifies a minimal repair that merely recovers a

ailed component back to its functioning state, whereas a l,k = 0

orresponds to “doing nothing”, namely, the component is left in

ts failure state. 

The maintenance cost associated with maintenance action a l,k 
or component l in the k th break is given by the following: 

 l,k = 

{
0 a l,k = 0 

c 0 
l 

+ c l ( a l,k , Y l,k ) a l,k = 1 , 2 , · · · , N L 

, (3) 

here c 0 
l 

is the fixed maintenance cost of component l, such as

he disassembly and assembly costs, the setup cost, and the cost

f organizing maintenance personnel. c l ( a l,k , Y l,k ) denotes the vari-

ble maintenance cost that is determined by the selected mainte-

ance action a l,k and the state of component l at the end of the k th

ission. Specifically, c l ( a l,k , 1) and c l ( a l,k , 0) correspond to preven-

ive maintenance and corrective maintenance for a failed and func-

ioning component l, respectively. The total maintenance cost to be

onsumed in the k th break, denoted as C k , can be evaluated by the

ollowing: 

 k = 

M ∑ 

l=1 

C l,k . (4) 

In the same manner, the maintenance time of component l can

e defined as follows: 

 l,k = 

{
0 a l,k = 0 

t 0 
l 

+ t l ( a l,k , Y l,k ) a l,k = 1 , 2 , · · · , N L 

, (5) 

here t 0 
l 

is the fixed maintenance time of component l, whereas

 l ( a l,k , Y l,k ) is the variable maintenance time associated with the

elected maintenance action and the state of component l at the

nd of the k th mission. The total maintenance time to be spent in

he k th break, denoted as T k , is a function of the respective main-
enance time of each component, and it can be given, in a general

orm, as: 

 k = f ( T 1 ,k , T 2 ,k , · · · , T M,k ) . (6)

n the case that the selected maintenance actions have to be ex-

cuted in a sequential manner, the total maintenance time is the

ummation of the respective maintenance times of all the compo-

ents. If all the selected maintenance actions can be executed in-

ependently in a parallel fashion, the total maintenance time will

quate to the longest maintenance time among all the individually

elected maintenance actions. 

Many imperfect maintenance models have been developed to

haracterize the imperfection of maintenance actions ( Doyen &

audoin, 2004 ; Kijima, 1989 , 1988 ; Pham & Wang, 1996 ; Shen, Cui

 Ma, 2019 ; Si & Yang, 2016 ; Wu & Zuo, 2010 ). In this study, the

ijima type II model is specifically used to reflect the imperfection

f maintenance actions via the age reduction mechanism ( Dijoux,

ouladirad & Nguyen, 2016 ; Kijima, 1989 ). The Kijima type II model

ssumes that the condition of a component is closely associated

ith its effective age, which may not be necessarily the same as

he calendar age. The effective age of component l at the begin-

ing and end of the k th mission are denoted as A l,k and B l,k , re-

pectively, and based on the Kijima type II model, one has the fol-

owing: 

 l,k +1 = b l,k B l,k , (7) 

here b l,k ( 0 ≤ b l,k ≤ 1 ) is the age reduction factor, representing

he efficiency of a selected maintenance action for component l

t the end of the k th mission. A smaller value of b l,k indicates

 superior maintenance efficiency. The relationship between the

hronological time and effective age of two components is given in

ig. 2 to exemplify the principle of the Kijima type II model. 

B k = ( B 1 ,k , B 2 ,k , . . . , B M,k ) denotes the effective ages of all

he components at the end of the k th mission and a k =
( a 1 ,k , a 2 ,k , . . . , a M,k ) denotes the selected maintenance actions for

ll the components in the k th break. The states and effective

ges of all the components at the beginning of the ( k + 1 )st

ission, denoted as X k + 1 = ( X 1 ,k + 1 , X 2 ,k + 1 , . . . , X M,k + 1 ) and A k +1 =
( A 1 ,k +1 , A 2 ,k +1 , . . . , A M,k +1 ) , respectively, can, therefore, be com-

letely determined by a k , B k , and Y k . 
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3. Dynamic selective maintenance decision model 

To achieve the maximum number of successes for future mis-

sions, maintenance actions in each break should be dynamically

selected based on the states and effective ages of all the com-

ponents in a system. By identifying the maintenance actions for

each combination of the states and effective ages of all the com-

ponents in each break, a “maintenance policy” (also called a policy

function), denoted as π (i.e., a k = π( Y k , B k , k ) ), is determined. In

this section, the state and effective age of a component at the

end of a mission are deduced in Section 3.1 , and the probability

of a system successfully completing a mission is evaluated via the

universal generating function (UGF) in Section 3.2 . The resulting

discrete-time finite-horizon Markov decision process is formulated

together with its Bellman equation in Section 3.3 . 

3.1. The states and effective ages of components at the end of a 

mission 

Based on the state and effective age of component l at the be-

ginning of the k th mission, the state and effective age of the com-

ponent at the end of the k th mission can be evaluated by the fol-

lowing two cases. 

Case 1: X l,k = 0 

Component l is in the failure state at the beginning of the k th

mission, and the state of the component remains unchanged dur-

ing the k th mission, i.e., Y l,k = X l,k = 0 ; meanwhile, the effective

age of the component is suspended, that is, B l,k = A l,k . 

Case 2: X l,k = 1 

Component l is functioning at the beginning of the k th mission.

Let F l (t) and f l (t) denote the cumulative distribution function and

the probability density function of the failure time of component l,

respectively. The survival probability of component l at the end of

the k th mission, i.e., the probability of component l functioning at

the end of the k th mission, is equal to the following: 

r l,k = 1 − F l ( A l,k + Z k ) − F l ( A l,k ) 

1 − F l ( A l,k ) 
= 

1 − F l ( A l,k + Z k ) 

1 − F l ( A l,k ) 
. (8)

In this case, the state and effective age of the component at the

end of the k th mission comprise one of the following two cases. 

Case 2.1: X l,k = Y l,k = 1 

Component l remains functioning at the end of the k th mission.

The increment of the effective age of component l is equal to the

duration of the k th mission. Hence, the effective age of component

l at the end of the k th mission equates as follows: 

B l,k = A l,k + Z k . (9)

Case 2.2: X l,k = 1 and Y l,k = 0 

Component l is functioning at the beginning of the k th mission,

but it fails within the k th mission. The operating time of compo-

nent l, denoted as T l,k , in the k th mission is a random variable with

the probability density function formulated as follows: 

f T l,k (t) = 

f l ( A l,k + t) 

F l ( A l,k + Z k ) − F l ( A l,k ) 
. (10)

where T l,k ∈ (0 , Z k ) . f T l,k (t) is, essentially, the conditional probabil-

ity density function of f l (t) on the condition that component l

fails within the time interval of ( A l,k , A l,k + Z k ) . The effective age of

component l at the end of the k th mission can therefore be given

by the following: 

B l,k = A l,k + T l,k . (11)

p l, X l,k , Y l,k denotes the probability of component l sojourning in state

 l,k at the end of the k th mission, while being in state X l,k at the

beginning of the k th mission. The state transition probability of
omponent l at the end of the k th mission is given by the follow-

ng: 

p l, X l,k , Y l,k = Pr { Y l,k | X l,k } = 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

1 X l,k = 0 , Y l,k = 0 

r l,k X l,k = 1 , Y l,k = 1 

1 − r l,k X l,k = 1 , Y l,k = 0 

0 X l,k = 0 , Y l,k = 1 

. (12)

The effective age of component l at the end of the k th mission

s one of the following three cases: 

 l,k = 

⎧ ⎨ 

⎩ 

A l,k X l,k = 0 , Y l,k = 0 

A l,k + Z k X l,k = 1 , Y l,k = 1 

A l,k + T l,k X l,k = 1 , Y l,k = 0 

. (13)

As seen from these derivations, the states and effective ages of

ll the components at the end of the k th mission, i.e., Y k and B k ,

an be completely determined by the states and effective ages of

ll the components at the beginning of the k th mission, i.e., X k and

 k . The transition of the state and effective age of a component is,

herefore, independent of its history. 

.2. Evaluating the probability of a system successfully completing a 

ission 

In this study, a mission is successfully completed by a system

f the system performance capacity at the end of the mission is

ot less than a prespecified demand. The probability of a system

uccessfully completing the k th mission, denoted as R k , can there-

ore be evaluated by the state distribution of the system at the end

f the mission. The universal generating function (UGF) method

 Ushakov, 1986 ), as a computationally efficient tool for evaluating

he state distribution of multi-state systems ( Levitin & Lisnianski,

0 0 0 ), is utilized to estimate the state distribution of a system at

he end of a mission by the state distribution of all the compo-

ents. 

The UGF is a polynomial form representation of the probability

ass function of a discrete random variable. As the state of each

omponent is a discrete random variable, the UGF of component l

t the end of the k th mission, denoted as u l,k , is written as follows:

 l,k = 

1 ∑ 

Y l,k =0 

p l, Y l,k · z 
g l , Y l ,k . (14)

here p l, Y l,k is the probability of component l sojourning in state

 l,k at the end of the k th mission. Given the state and effective

ge of component l at the beginning of the k th mission, i.e., X l,k 
nd A l,k , one has p l, Y l,k = p l, X l,k , Y l,k , where p l, X l,k , Y l,k is computed by

q. (12) . Let p s,i,k denote the probability of the system performance

apacity being equal to g i at the end of the k th mission, and the

GF of the system at the end of the k th mission, denoted as U s,k ,

an be evaluated by the following: 

 s,k = 

N s ∑ 

i =1 

p s,i,k z 
g i 

= 

1 ∑ 

Y 1 ,k =0 

1 ∑ 

Y 2 ,k =0 

· · ·
1 ∑ 

Y M,k =0 

( 

M ∏ 

l=1 

p l, Y l,k z 
φ( g 1 , Y 1 ,k , g 2 , Y 2 ,k , ··· , g M, Y M,k 

) 

) 

, (15)

here φ( g 1 , Y 1 ,k , g 2 , Y 2 ,k , . . . , g M, Y M,k 
) is the structure function of the

ystem. 

Hence, the probability of a system successfully completing the

 th mission can be written as follows: 

 k = 

N s ∑ 

i =1 

p s,i,k · 1( g i ≥ W k ) , (16)



Y. Liu, Y. Chen and T. Jiang / European Journal of Operational Research 283 (2020) 166–181 171 

w  

t  

o  

p  

b

R

w  

s

 

n

N

 

t  

w  

m  

o

 

m  

o  

p  

A  

c

c

3

 

m  

d  

v  

t  

i  

a

 

s  

i  

a  

c  

c

 

d  

t  

f

S

 

a  

i

 

i  

m  

i  

V  

v  

a  

c

V

 

w  

n  

s  

f

w  

e  

t  

e  

b

N

 

n  

k  

n  

a  

v  

t

Q

 

c

V  

 

o  

v  
here 1(·) is an indictor function that is equal to one if g i ≥ W k is

rue or zero otherwise. In the case that the prespecified demand

f the k th mission is a random variable with H possible values, the

robability of a system successfully completing the k th mission can

e given by the following: 

 k = 

H ∑ 

h =1 

Pr { W k = w h,k } ·
N s ∑ 

i =1 

p s,i,k · 1( g i ≥ w h,k ) . (17) 

here w h,k is the h th possible value of the demand of the k th mis-

ion. 

The expected number of the successes of future missions, de-

oted as N, can be evaluated by the following: 

 = 

K ∑ 

k =1 

R k . (18) 

It is worth noting that the weight of each mission is assumed

o be identical in this study. If each mission possesses a different

eight, the expected weighted number of the successes of future

issions can be evaluated by K · ∑ K 
k =1 αk R k , where αk is the weight

f the k th mission and 

∑ K 
k =1 αk = 1 . 

The probability of a system successfully completing the k th

ission is completely determined by the states and effective ages

f all the components at the beginning of the k th mission. The

robability R k can therefore be represented as a function of X k and

 k , i.e., R k = R ( X k , A k ) . Referring to Section 2.2 that X k and A k are

ompletely determined by a k −1 , B k −1 , and Y k −1 , the probability R k 
an be further represented as R k = R ( Y k −1 , B k −1 , a k −1 ) . 

.3. Markov decision process and Bellman equation 

Maximizing the expected number of the successes of future

issions, i.e., Eq. (18) , with the maintenance budget and limited

uration of breaks, is a stochastic dynamic programming; it can be

iewed as a Markov decision process (MDP) since the transitions of

he states and effective ages of all the components in a system are

ndependent of their histories. The state space, the action space,

nd the reward of the MDP are detailed as follows. 

State Space : The state space of the MDP consists of all the pos-

ible combinations of the states and effective ages of components

n a system at the end of a mission. The state of a component is

 binary variable, whereas the effective age of a component is a

ontinuous variable. Hence, the MDP has a mixed integer-discrete-

ontinuous state space that is uncountable. 

Action Space : In the k th break, the action space of the MDP,

enoted as S act 
k 

( k ∈ { 1 , 2 , . . . , K − 1 } ), is the set of feasible main-

enance actions for all the components, and S act 
k 

can be written as

ollows: 

 

act 
k = 

{ 

a k | 
M ∑ 

l=1 

C l,k ≤ C lim 

, 

M ∑ 

l=1 

T l,k ≤ T lim 

} 

. (19) 

Reward : In the k th break, the reward of the MDP is the prob-

bility of the system successfully completing the ( k + 1 ) mission,

.e., R k +1 . 

Given the states and the effective ages of all the components

n a system at the end of the k th mission, i.e., Y k and B k , the

aximum expected number of the successes of the future remain-

ng K − k missions is a value function of the MDP, denoted as

 ( Y , B , k ) . If k = K − 1 , that is, only one future mission is left, the
k k 
alue of V ( Y K−1 , B K−1 , K − 1) is equivalent to the maximum prob-

bility of the system successfully completing the last mission and

an be computed by the following: 

 ( Y K−1 , B K−1 , K − 1) = max 
a K−1 ∈ S act 

K−1 

R K = max 
a K−1 ∈ S act 

K−1 

R ( Y K−1 , B K−1 , a K−1 ) . 

(20) 

S F 
k 

= { l| X l,k = 1 , Y l,k = 0 } denotes the set of components that fail

ithin the k th mission, where S F 
k 

⊆ { 1 , 2 , · · · , M} . M k denotes the

umber of components in S F 
k 
. Hence, if more than one future mis-

ion is left, the Bellman equation of the MDP can be formulated as

ollows: 

V ( Y k , B k , k ) = max 
π

E 

[ 

K ∑ 

n = k +1 

R n | Y k , B k 

] 

= max 
a k ∈ S act 

k 

{
R ( Y k , B k , a k ) + 

[
1 ∑ 

Y 1 ,k +1 =0 

1 ∑ 

Y 2 ,k +1 =0 

· · ·
1 ∑ 

Y M,k +1 =0 (
M ∏ 

l=1 

p l, X l,k +1 , Y l,k +1 

∫ Z k 

0 

∫ Z k 

0 

· · ·
∫ Z k 

0 

M k +1 ∏ 

m =1 

f T l m ,k +1 
( t l m ,k +1 ) 

·V ( Y k +1 , B k +1 , k + 1) d t l 1 ,k +1 d t l 2 ,k +1 · · · d t l M k +1 
,k +1 

)]}
, (21) 

here l m 

∈ S F 
k +1 

is the m th component in S F 
k +1 

; t l m ,k +1 is the op-

ration time of component l m 

during the ( k + 1 )st mission, i.e.,

 l m ,k +1 = B l m ,k +1 − A l m ,k +1 . For a brand new system, the maximum

xpected number of the successes of future missions can be solved

y the following: 

 

∗ = V ( X 1 , A 1 , 0) = max 
π

E 

[ 

K ∑ 

n =1 

R n | X 1 , A 1 

] 

= R ( X 1 , A 1 ) + 

[
1 ∑ 

Y 1 , 1 =0 

1 ∑ 

Y 2 , 1 =0 

· · ·
1 ∑ 

Y M, 1 =0 (
M ∏ 

l=1 

p l, X l, 1 , Y l, 1 ·
∫ Z 1 

0 

∫ Z 1 

0 

· · ·
∫ Z 1 

0 

M 1 ∏ 

m =1 

f T l m , 1 ( t l m , 1 ) 

·V ( Y 1 , B 1 , 1) d t l 1 , 1 d t l 2 , 1 · · · d t l M 1 , 1 

)]}
. (22) 

Once the states, the effective ages, and the selected mainte-

ance actions of all the components in a system at the end of the

 th mission, i.e., Y k , B k , and a k , are given, the maximum expected

umber of the successes of the future remaining K − k missions is

 “Q-function” (also called “state-action” value function or “action-

alue” function) of the MDP, denoted as Q 

∗( Y k , B k , k, a k ) . This func-

ion can be formulated as follows: 

 

∗( Y k , B k , k, a k ) = R k +1 + max 
π

E 

[ 

K ∑ 

n = k +2 

R n | Y k , B k , a k 

] 

= R ( Y k , B k , a k ) + max 
π

E 

[ 

K ∑ 

n = k +2 

R n | Y k , B k , a k 

] 

. (23) 

The relationship between the value function and the Q-function

an be written as follows: 

 ( Y k , B k , k ) = max 
a k ∈ S act 

k 

Q 

∗( Y k , B k , k, a k ) . (24)

The value function can be solved by the Q-function. On the

ther hand, the Q-function can be computed by the value function

ia the Bellman equation. Based on the Q-function and Bellman
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Fig. 3. An illustration of the actor-critic framework. 
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equation, the optimal selective maintenance strategy can be found

by the following: 

π ∗( Y k , B k , k ) = argmax 
a k ∈ S act 

k 

Q 

∗( Y k , B k , k, a k ) . (25)

4. The proposed deep reinforcement learning algorithm 

The discrete-state finite-horizon Markov decision process can

be resolved by the dynamic programming or heuristic algorithms

when its state and action spaces are quite small and enumerable.

However, in this study, the mixed integer-discrete-continuous state

space of the MDP is uncountable. Furthermore, due to the “curse

of dimensionality”, the state and action spaces of the MDP in-

crease exponentially with respect to the number of components in

a system. For example, without the constraints of maintenance re-

sources, the number of possible maintenance actions is ( N L + 1) M 

for each combination of the states and the effective ages of all the

components. Hence, the resulting optimization problem cannot be

readily resolved by the traditional methods ( Andriotis & Papakon-

stantinou, 2019 ), such as the dynamic programming, genetic algo-

rithm, and tabu search. 

As an alternative, the deep reinforcement learning (DRL)

( Sutton & Barto, 2018 ) is a promising tool to overcome system-

atic problems in a computationally efficient manner. The DRL al-

gorithms have been studied in recent years to resolve complicated

MDP problems, particularly in the field of artificial intelligence

( Dulac-Arnold et al., 2015 ; Lillicrap et al., 2015 ; Mnih et al., 2015 ;

Silver et al., 2014 ; Sutton & Barto, 2018 ). In the DRL algorithms,

an agent derives efficient representations of the environment from

high-dimensional inputs and uses them to generalize past experi-

ences to new situations ( Mnih et al., 2015 ). Hence, the agent must

discover how to interact with a dynamic environment to maximize

its expected cumulative rewards ( Schmidhuber, 2015 ). Specifically,

the DRL algorithm defeated humans in numerous games such as

Atari 2600 games, Go, chess, and shogi ( Mnih et al., 2015 ; Silver

et al., 2018 ). The DRL algorithm was recently used to facilitate

engineering systems management ( Andriotis & Papakonstantinou,

2019 ). 

To resolve our specific optimization problem, a customized DRL

algorithm is put forth in this study to resolve the MDP with a

mixed integer-discrete-continuous state space and overcome the

“curse of dimensionality” for both the state space and action space.

In the proposed DRL algorithm, an agent will repeatedly execute

the K missions with the same initial conditions. Based on the

framework of the actor-critic algorithms, a critic will judge the ef-

fectiveness of the selected maintenance actions by evaluating the

maximum expected number of the successes of future missions for
 given condition, i.e., evaluating the value of the Q-function. For

implicity, the value of the Q-function estimated by the critic is

enoted as the “Q-value”. Based on the states and effective ages of

ll the components, an actor, as a reference to the learned policy,

ill select maintenance actions for all the components with the

onstraints of maintenance resources for the maximum Q-value.

y performing the maintenance actions selected by the actor, the

gent can estimate the states and effective ages of all the compo-

ents at the end of the mission along with the reward, i.e., the

robability of the system successfully completing the next mis-

ion. As the iteration evolves, the actor adjusts its parameters for

 higher Q-value from the critic, whereas the critic changes its pa-

ameters based on the rewards from the selected maintenance ac-

ions to accurately judge the effectiveness of the selected mainte-

ance actions. An illustration of the customized DRL algorithm is

iven in Fig. 3 . 

Inspired by the Wolpertinger architecture ( Dulac-Arnold et al.,

015 ), which can search actions in a large discrete action space,

 postprocess is utilized in the actor. The two major techniques,

amely, the experience replay and the target network of the deep

-network (DQN) ( Mnih et al., 2015 ), are used to train the net-

orks in the customized DRL algorithm. Both the ε-greedy policy

 Mnih et al., 2015 ) and the noise ( Lillicrap et al., 2015 ) are uti-

ized for exploration and exploitation. The basic elements of the

ustomized DRL algorithm are elaborated in the ensuing sections. 

.1. Critic: Q-Network 

In the actor-critic framework, a critic will evaluate the effective-

ess of the actions selected by an actor. In this study, based on the

tates and effective ages of all the components in a system, the

ritic evaluates the effectiveness of the selected maintenance ac-

ions in each break by evaluating the maximum expected number

f the successes of future missions, i.e., the Q-function. To over-

ome the “curse of dimensionality” of the state space, the critic is

epresented by a multi-layer artificial neural network to approxi-

ate the Q-function, i.e., Q( Y k , B k , k, a k ) ≈ Q 

∗( Y k , B k , k, a k ) , where

(·) is the artificial neural network with parameters θQ . The artifi-

ial neural network is the so-called Q-network, and its structure is

elineated in Fig. 4 . 

As shown in Fig. 4 , at the end of the k th mission, the inputs

f the Q-network consist of the states and effective ages of all the

omponents, the number of completed missions, and the selected

aintenance actions, i.e., Y k , B k , k , and a k . The output of the Q-

etwork is the Q-value, representing the effectiveness of the se-

ected maintenance actions. The nonlinearity rectifier, i.e., the rec-

ified linear unit (ReLU), serves as the activation function of the

-network. 
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Fig. 4. The structure of the Q-network of the customized DRL algorithm. 

Fig. 5. The structure of the actor network of the customized DRL algorithm. 
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.2. Actor: actor network and postprocess 

In the actor-critic framework, an actor will select an action

ased on a specific situation. Identifying the optimal action via

he Q-function is important for the DRL algorithm. In the problems

ith a small-scale action space, the optimal action can be selected

y enumerating all the possible actions as reported in many exist-

ng approximate dynamic programming (ADP) and reinforcement

earning (RL) algorithms ( Sutton & Barto, 2018 ). However, enu-

erating all the possible actions is computationally unaffordable

or large-scale problems. Likewise, in lieu of an exhaustive enu-

eration, a multi-layer artificial neural network, namely, the actor

etwork, is also constructed to select the maintenance actions in

his study. μ(·) denotes the actor network and θμ represents its

arameters. The configuration of the actor network is presented

n Fig. 5 , where each hidden layer is followed by a nonlinearity

ectifier. 

The inputs of the actor network are composed of the states

nd effective ages of all the components at the end of the

 th mission and the number of completed missions, i.e., Y k ,

 k , and k . The outputs of the actor network, denoted as a 
μ
k 

,

re the selected maintenance actions, namely, a 
μ
k 

= μ( Y k , B k , k ) =
(a 

μ
1 ,k 

, a 
μ
2 ,k 

, · · · , a 
μ
M,k 

) , where a 
μ
l,k 

is the maintenance action for com-
onent l in the k th break. Each output of the actor network, i.e.,

 

μ
l,k 

, is a continuous value and has to be converted into a discrete

alue to represent all the optional maintenance actions for compo-

ent l. To deal with this problem and search the optimal mainte-

ance actions for all the components in the large discrete action

pace, a postprocess, inspired by the Wolpertinger architecture de-

eloped by Dulac-Arnold et al. (2015) , is used in this study. The

llustration of the postprocess for a two-component case is delin-

ated in Fig. 6 , where the dark dots represent the optional main-

enance actions for the two components and the purple dot is an

utput from the actor network, i.e., a 
μ
k 

. All the optional mainte-

ance actions neighboring to a 
μ
k 

can be iteratively identified by the

ostprocess, and the action with the maximum Q-value will be se-

ected as the optimal maintenance actions for the two components.

he detailed procedures are as follows. 

Step 1: Produce a proto-action. By putting the states and ef-

ective ages of all the components and the number of completed

issions, i.e., Y k , B k , and k , into the actor network, a continu-

us output vector, i.e., a 
μ
k 

= μ( Y k , B k , k ) , can be obtained. Con-

equently, a 
μ
k 

can be normalized to an integer vector by round-

ng down each element in a 
μ
k 

. The normalized maintenance ac-

ions for all the components are denoted as a proto-action, denoted

s a 
p 

. 

k 
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Fig. 6. Illustration of the postprocess for the actor. 
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Step 2: Find all the neighboring solutions to the proto action a 
p 

k 
.

All the optional maintenance actions with the 2-norm distance to

the proto action a 
p 

k 
being less than a prespecified value of L will be

identified as the neighbors of the proto action a 
p 

k 
. A greater value

of L implies a larger local search space and a longer time consump-

tion. 

Step 3: Select the feasible neighboring solutions complying with

all the constraints of maintenance resources. Evaluate the mainte-

nance cost and time of each neighboring solution by Eqs. (4) and

( 6 ). If all of the neighboring solutions violate the constraints, the

neighboring solution with the minimal maintenance cost and time

among all the neighbors will be chosen as a new proto-action, and

the iteration goes to Step 2 for finding all the neighbors to the

new proto-action. Steps 2 and 3 will be repeatedly executed un-

til at least one of the neighbors of the proto action satisfies all

the constraints. The illustration of selecting the feasible neighbors

around the proto action is delineated in Fig. 7 , where the dark dots

represent the optional maintenance actions for all the components.

The neighbors violating the constraints will be eliminated during

the search process. 

Step 4: Identify the optimal maintenance actions. Based on Y k ,

B k , and k , the Q-values of all the feasible neighboring solutions

around the proto action can be evaluated by the Q-network of the

critic. The solution with the maximum Q-value will be chosen by

the actor as the optimal maintenance actions for all the compo-

nents. 

The process of the actor selecting the maintenance actions for

all the components can be represented by the policy function

π( Y k , B k , k | μ, Q ) = a k , where μ and Q represent the actor network

and Q-network, respectively. 
.3. Agent training: experience replay and target network 

In this study, a multi-state system is intended to execute K

onsecutive missions. The customized DRL algorithm iteratively

imulates the processes of executing missions and maintenance

ecision-making until reaching a prespecified maximum number

f iterations I max . In each iteration, the agent sequentially selects

aintenance actions for all the breaks. The detailed simulation

rocedure of the agent in the k th break is as follows: First, given

he states and effective ages of all the components at the end

f the k th mission, i.e., Y k and B k , the agent executes the se-

ected maintenance actions, i.e., a k , for all the components. Sec-

nd, the probability of the repaired system successfully completing

he ( k + 1 )st mission, i.e., R k +1 , can be evaluated by Eq. (17) . Third,

he states and effective ages of all the components, i.e., Y k +1 and

 k +1 , at the end of the ( k + 1 )st mission can be randomly simu-

ated. After executing a simulation iteration, a transition realization

enoted as ( Y k , B k , k, a k , R k +1 , Y k +1 , B k +1 ) can be recorded. 

The agent can be iteratively trained by a number of recorded

ransitions, i.e., N D records, stored in a memory, denoted as D .

he memory will be overwritten by the N D most recent transi-

ion records. However, each individual record in the memory D

as strong correlation with one another, and such correlations have

n adverse impact on the agent training. To break the correlations

mong records, as in the DQN ( Mnih et al., 2015 ), the experience

eplay technique is utilized in our study. Based on the experience

eplay technique, a minibatch with the size of N m 

( N m 

< N D ) is used

o update the Q-network and actor network by randomly sampling

rom the memory D . 

In addition to the experience replay technique, the target net-

ork technique is also used to enhance the robustness of the pro-

osed DRL algorithm. After every C iterations of the foregoing sim-

lation of the customized DRL algorithm, the Q-network and the

ctor network are cloned to obtain a target Q-network and a tar-

et actor network, respectively, and the two target networks are

sed to generate the target values for the update of the Q-network

nd the actor network in each iteration. C is the frequency for the

arget network update. The target Q-network is denoted as ˆ Q (·)
ith parameters ˆ θQ , whereas the target actor network is denoted

s ˆ μ(·) with parameters ˆ θμ. 

Through the experience replay and target network tech-

iques, the agent can iteratively update its Q-network and ac-

or network by the transition records of the minibatch. The jth

ecord in the minibatch is denoted as ( Y k j , j , B k j , j , k j , a k j , j , R k j +1 , j ,

 k j +1 , j , B k j +1 , j ) , and the target value of the Q-network, denoted as

 j , can be computed by the following: 

 j = 

⎧ ⎨ 

⎩ 

R k j +1 , j k j = K − 1 

R k j +1 , j + 

ˆ Q ( Y k j +1 , j , B k j +1 , j , k j + 1 , 

π( Y k j +1 , j , B k j +1 , j , k j + 1 | ̂  μ, ˆ Q )) k j < K − 1 

, (26)

here the target value of the Q-network is evaluated by the

wo target networks, i.e., the target Q-network and target ac-

or network. Because the maximum expected number of the suc-

esses of future remaining K − k j − 1 missions falls in the range of

0 , K − k j − 1] , Eq. (26) can be further written as follows: 

 j = 

{
R k j +1 , j k j = K − 1 

R k j +1 , j + max { 0 , min { K − k j − 1 , q j }} k j < K − 1 

, (27)

here q j = ̂

 Q ( Y k j +1 , j , B k j +1 , j , k j + 1 , π( Y k j +1 , j , B k j +1 , j , k j + 1 | ̂  μ, ˆ Q )) .

he parameters of the Q-network can be updated by the following:

Q = arg 
θQ 

min 

N m ∑ 

j=1 

( y j − Q( Y k j , j , B k j , j , k j , a k j , j )) 
2 
. (28)
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Fig. 7. Illustration of searching for feasible neighboring solutions. 
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Fig. 8. Configuration of a three-component system. 
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n this study, the Levenberg-Marquardt algorithm ( Hagan & Men-

aj, 1994 ), which executes several iterative steps to resolve

onlinear least squares problems, is implemented to resolve

q. (28) . To avoid overfitting, the Levenberg–Marquardt algorithm

nly executes one step in Eq. (28) with respect to θQ . 

In the same fashion, the target value of the actor network of the

jth record in the minibatch, denoted as ˆ a k j , j , is generated by the

-network and target actor network, and 

ˆ a k j , j can be, therefore,

ritten as follows: 

ˆ 
 k j , j = π( Y k j , j , B k j , j , k j | ̂  μ, Q ) . (29)

The parameters of the actor network can be updated by the fol-

owing: 

μ= arg 
θμ

min 

N m ∑ 

j=1 

∥∥ˆ a k j , j − μ( Y k j , j , B k j , j , k j ) 
∥∥

2 
, (30) 

here ‖ · ‖ 2 is the 2-norm of a vector. The Levenberg–Marquardt

lgorithm carries out one step on Eq. (30) with respect to θμ to

void overfitting. 

The Q-network and the actor network are iteratively updated

y Eqs. (26) –( 30 ), whereas after every C iterations, the target Q-

etwork and target actor network are updated by the following:

ˆ θQ = θQ 

ˆ θμ = θμ

. (31) 

.4. Exploration and exploitation 

The “exploration-exploitation dilemma” is a crucial problem of

he customized DRL algorithm. Exploring too many possible main-

enance actions results in computational inefficiency, and the algo-

ithm may fall into the local optimum due to excessive exploita-

ion. In this study, a ε-greedy policy and noise are introduced to

ddress these phenomena. 

At the beginning of the customized DRL algorithm, the Q-

etwork and actor network are randomly initialized, and the two

arget networks are initialized by Eq. (31) . In the first 10% of it-

rations, the agent randomly performs maintenance actions for all

he components to explore the action space. In the remaining it-

rations, the agent executes maintenance actions with a ε-greedy

olicy, namely, randomly performing maintenance actions for all

he components with a probability of ε or executing maintenance

ctions selected by the actor with a probability of 1 − ε. 

In addition to the ε-greedy policy, for exploration, noise de-

oted as a vector of N π = ( N π, 1 , N π, 2 , . . . , N π,l , . . . , N π,M 

) is in-

luded by the actor to select maintenance actions, where N π,l is

oise to be added to the selected maintenance action for compo-

ent l. Hence, the maintenance actions for all the components in
he k th break becomes π( Y k , B k , k | Q, μ) + N π . In this study, noise

s generated from the normal distribution as follows: 

 π,l ∼
I max − I 

I max 
· N(0 , σ 2 ) , (32) 

here I is the index of iterations; N(0 , σ 2 ) is a normally distributed

andom number with a mean of zero and a variance of σ 2 . As

he iteration evolves, the magnitude of the noise will gradually de-

rease. 

In summary, the pseudocode of the customized DRL algorithm

or our specific dynamic selective maintenance problem is pro-

ided in the Appendix. 

. Illustrative examples 

In this section, two illustrative examples are presented to

emonstrate the effectiveness of the proposed method. A three-

omponent flow transmission system with the exact solution is

rst designed to examine the accuracy of the proposed DRL algo-

ithm, whereas a coal transportation system is presented as the

econd illustrative example to demonstrate the implementation of

he proposed method to large-scale systems. 

.1. A three-component system 

The configuration of a three-component flow transmission sys-

em is delineated in Fig. 8 . Components #1 and #2 are connected

n parallel, whereas the two components are connected with Com-

onent #3 in series. The structure function of the system is defined

s: G (t) = min { G 1 (t) + G 2 (t ) , G 3 (t ) } . 
Following the studies reported in Liu and Huang (2010) and

andey, Zuo, Moghaddass and Tiwari (2013) , if a l,k > 0 , the vari-

ble maintenance cost and time associated with a particular main-

enance action a l,k are respectively formulated as follows: 

 l ( a l,k , Y l,k ) = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

c rf 
l 

· a l,k − 1 

N L − 1 

Y l,k = 0 

c rp 

l 
· a l,k 

N L 

Y l,k = 1 

, (33)

 l ( a l,k , Y l,k ) = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

t rf 
l 

· a l,k − 1 

N L − 1 

Y l,k = 0 

t rp 

l 
· a l,k 

N L 

Y l,k = 1 

. (34)
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Table 1 

The parameter settings of each component, where the performance capacity is in tons/hour, time is in days, 

and costs are in 10 3 US dollars. 

Component ID g l βl ηl m 

p 

l 
c rp 

l 
t rp 

l 
m 

f 
l 

c rf 
l 

t rf 
l 

c 0 
l 

t 0 
l 

A l, 1 X l, 1 

1 55 1.5 25 2.5 10 0.5 2.5 15 0.5 2 0.1 0 1 

2 80 2.4 38 2.2 10 0.5 2.0 15 0.5 2 0.1 0 1 

3 90 2.6 40 2.2 26 0.8 3.2 40 1 5 0.3 0 1 
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Table 2 

The comparison between the dynamic programming and the proposed deep 

reinforcement learning method, where the runtime is in seconds. 

Methods N Relative Error Runtime 

Dynamic Programming 2.8856 – 1.1989 × 10 4 

The Proposed DRL Algorithm 2.8886 0.10% 1.1160 × 10 3 
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The efficiency of a particular maintenance action a l,k in the k th

break is quantified by defining the age reduction factor b l,k of the

maintenance action as a function of the variable maintenance cost

of component l, and it is formulated as follows: 

b l,k = 

⎧ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎩ 

1 −
(

c l ( a l,k , 0) 

c rf 
l 

) 1 

m f 
l 

Y l,k = 0 

1 −
(

c l ( a l,k , 1) 

c rp 

l 

) 1 

m 
p 
l 

Y l,k = 1 

, (35)

where c rf 
l 

and c 
rp 

l 
are the corrective and preventive replacement

costs for a failed component and a functioning component, re-

spectively, namely, c rf 
l 

= c l ( N L , 0) and c 
rp 

l 
= c l ( N L , 1) . m 

f 
l 

( m 

f 
l 
> 0 )

and m 

p 

l 
( m 

p 

l 
> 0 ) are two characteristic parameters that can pre-

cisely determine the relationship between the variable mainte-

nance cost and the age reduction factor of a failed component l

and a functioning component l, respectively; and these parameters

can be inferred by historical data and/or experts’ judgements as

mentioned in Doyen and Gaudoin (2004)) , Gasmi, Love and Kahle

(2003) , and Liu, Huang and Zhang (2012) . In this example, all the

selected maintenance actions are executed sequentially, hence the

total maintenance time to be spent in the k th break, i.e., T k , is given

by: 

T k = f ( T 1 ,k , T 2 ,k , · · · , T M,k ) = 

M ∑ 

l=1 

T l,k . (36)

The studied system is in the brand new condition and is in-

tended to execute three missions with a maintenance budget

 lim 

= 50 ×10 3 US dollars and a limited duration of T lim 

= 3 days

for each break. The pre-specified demand of each mission is set at

50 tons/hour, and the duration of each mission is set at Z k = 10 days

( k = 1 , 2 , 3 ). In this case, three optional maintenance actions are

available to each component, i.e., N L = 2. The failure time of compo-

nent l is assumed to conform to the Weibull distribution with the

shape parameter βl and the scale parameter ηl . All the parameter

settings for each component, including the performance capacity,

the maintenance cost, the parameters of the failure time distribu-

tion, the initial effective ages and states of all the components are

tabulated in Table 1 . 

The dynamic selective maintenance optimization problem is re-

solved by the proposed DRL algorithm with the aim of maximiz-

ing the expected number of the successes of the three consecutive

missions. Four artificial neural networks, namely, the Q-network,

target Q-network, actor network, and target actor network, are

constructed, each of which has three hidden layers and each hid-

den layer consists of ten neurons. The distance L in the postprocess

is set at 1. The size of the memory is set at N D = 200, and the size

of the minibatch is set at N m 

= 32. The parameter of the ε-greedy

policy is set at ε= 0.01. The noise is set to be normally distributed

with the distribution of N π,l ∼ ( I max − I) / I max · N(0 , 0 . 5 2 ) . The max-

imum number of iterations for agent training is set at I max = 10 0 0,

and all the target networks will be dynamically updated with ev-

ery ten iterations. 
The runtime of training neural networks is 1.1160 × 10 3 seconds

n a PC with an Intel Core (TM) i5-4590 3.30GHz CPU and 8 G

AM. The expected number of successes of the three missions is

.8886 as evaluated by the Q-network, whereas the average num-

er of successful missions is 2.8837 from a Monte Carlo simulation

ith 10 6 samples. The Q-network can therefore obtain an accurate

stimation of the expected number of the successes of the three

issions. 

To further examine the effectiveness of the proposed DRL al-

orithm, the dynamic programming algorithm is implemented to

olve the problem and serves as the benchmark for comparison.

s the dynamic programming algorithm can only tackle with a

iscrete state space, the effective age of each component is dis-

retized with an interval of 0.5 days. The expected number of suc-

esses of the three missions of the dynamic programming algo-

ithm and the proposed deep reinforcement learning method are

resented in Table 2 . As presented in Table 2 , for the dynamic

rogramming algorithm, the maximum expected number of suc-

esses of the three missions is 2.8856, which is close to the re-

ult from the proposed DRL algorithm. However, the runtime of the

ynamic programming algorithm is 1.1989 × 10 4 seconds, which is

uch greater than the runtime of the proposed DRL algorithm. On

he other hand, the computational time and the memory space

onsumption of the dynamic programming algorithm will signifi-

antly increase with respect to the number of discretized effective

ges. 

The maximum expected number of successes of the three mis-

ions varies for both the maintenance budget C lim 

and the dura-

ion T lim 

of each break. By changing the maintenance budget from

 to 80 × 10 3 US dollars and the break duration from 0 to 3 days,

he maximum expected number of the successes of the three mis-

ions was found by the proposed DRL algorithm, as shown in Fig. 9 .

he figure shows that with the increase of both the maintenance

udget and the break duration, the maximum expected number

f successes of the three missions gradually approaches a value of

.8935, which is three times of the probability of a brand new sys-

em successfully completing a mission. 

.2. A multi-state coal transportation system 

A multi-state coal transportation system introduced in Liu and

uang (2010) is illustrated here to examine the effectiveness of

he proposed method for a large-scale system. The system is com-

osed of five subsystems as shown in Fig. 10 . Feeder #1, con-

isting of three components, loads coal from the bin to Con-

eyor #1. Conveyor #1 has two components for transferring the

oal to the stacker reclaimer, which has three components. Feeder
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Fig. 9. The expected number of successes of the three missions vs. the maintenance budget and the break durations. 

Fig. 10. The configuration of a multi-state coal transportation system. 
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2 is composed of two components and can load coal from the

tacker reclaimer to the Conveyor #2, which has four components.

he failure time of each component conforms to the Weibull dis-

ribution with shape parameter βl and scale parameter ηl ( l ∈
 1 , 2 , . . . , 14 } ). The parameters for all the components follow the

ettings reported in Liu and Huang (2010) and are tabulated in

able 3 . The system is in brand new condition and is intended

o execute five consecutive missions with a break in-between two

djacent missions. The maintenance budget and the duration of

ach break are set at 200 × 10 3 US dollars and 3 days, respectively.

he duration of each mission is set at Z k = 10 days ( k = 1 , 2 , . . . , 5 ).

uring each break, one of the eight optional maintenance ac-

ions, i.e., N L = 7, from replacement down to “doing nothing”, can

e selected for each component. The maintenance cost and time

ssociated with each optional maintenance action are given by

qs. (33) and ( 34 ), whereas the age reduction factor of each main-

enance action is formulated by Eq. (35) . All the selected main-

enance actions are conducted sequentially and the total main-

enance time to be spent in the k th break can be obtained by

q. (36) . 
Based on the structure function of the coal transportation sys-

em, the performance capacity of the entire system can be deter-

ined by the performance capacities of all the components as fol-

ows: 

 (t) = min { G 1 (t) + G 2 (t) + G 3 (t ) , G 4 (t ) + G 5 (t) , 

G 6 (t) + G 7 (t) + G 8 (t ) , G 9 (t ) + G 10 (t) , 

G 11 (t) + G 12 (t) + G 13 (t) + G 14 (t) } . (37) 

The demand of each mission is a random variable with the

robability distribution as shown in Table 4 . 

Without taking into account the constraints of the maintenance

udget and the duration of each break, the size of the action space

s 8 14 = 4 . 3980 × 10 12 , whereas the state space is composed by

 

14 = 16384 possible combinations of the states of all the compo-

ents and the uncountable combinations of the effective ages of all

he components. In this case, the dynamic programming is inappli-

able due to the huge action and state spaces. 
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Table 3 

The parameter settings of each component, where the performance capacity is in tons/hour, time is in days, and 

costs are in 10 3 US dollars. 

ID g l βl ηl m 

p 

l 
c rp 

l 
t rp 

l 
m 

f 
l 

c rf 
l 

t rf 
l 

c 0 
l 

t 0 
l 

A l, 1 X l, 1 

1 55 1.5 25 2.5 15 0.13 2.5 25 0.25 3 0.03 0 1 

2 80 2.4 38 2.2 20 0.20 2.0 32 0.31 4 0.03 0 1 

3 120 1.6 28 2.6 25 0.20 3.0 35 0.33 3 0.03 0 1 

4 90 2.6 40 2.2 20 0.12 3.2 35 0.32 5 0.04 0 1 

5 145 1.8 28 1.8 25 0.21 4.0 34 0.34 2 0.02 0 1 

6 70 2.4 34 2.4 15 0.14 3.2 20 0.19 3 0.03 0 1 

7 95 2.5 26 2.8 24 0.20 3.0 30 0.27 6 0.05 0 1 

8 80 2.0 28 2.3 20 0.17 2.8 35 0.31 5 0.05 0 1 

9 95 1.2 26 2.0 18 0.18 2.5 28 0.26 3 0.04 0 1 

10 130 1.4 35 2.5 20 0.20 2.8 35 0.32 6 0.05 0 1 

11 50 2.8 40 3.2 22 0.21 3.0 32 0.31 7 0.07 0 1 

12 75 1.5 35 2.6 25 0.23 2.2 35 0.33 4 0.04 0 1 

13 85 2.4 30 2.8 18 0.16 2.8 36 0.35 6 0.06 0 1 

14 95 2.2 45 2.2 15 0.14 2.6 38 0.35 3 0.05 0 1 

Table 4 

Mission demand. 

Demand(ton/hour) 120 90 60 30 10 

Probability 0.1 0.25 0.35 0.2 0.1 
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Alternatively, through the proposed DRL algorithm, the “curse

of dimensionality” can be overcome. The parameters settings for

the proposed DRL algorithm are set at: the memory size N D = 200,

the minibatch size N = 32, the maximum number of iterations
m 

Fig. 11. The training process of the proposed DRL algorithm. (a) The training process of a

process of the 2500th to 30 0 0th iterations; (d) The training process of the 40 0 0th to 450
or agent training I max = 50 0 0, the frequency of updating the tar-

et network C= 50, the ε-greedy parameter ε= 0.01, and the noise

 π,l ∼ ( I max − I) / I max · N(0 , 0 . 5 2 ) . Each of the four artificial neural

etworks, i.e., the Q-network, target Q-network, actor network, and

arget actor network, has three hidden layers, each of which con-

ists of ten neurons. The distance L in the postprocess is set at 1.

s shown in Fig. 11 , the maximum expected number of successes

f the five missions estimated by the Q-network and target Q-

etwork in the proposed DRL algorithm evolves iteratively. At the
ll the iterations; (b) The training process of the first 500 iterations; (c) The training 

0th iterations. 
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A

eginning of the first 500 iterations, the agent randomly explored

ll the possible maintenance actions, and the convergence of the

alues of the Q-network and target Q-network was relatively slow

s seen in Fig. 11 (b). However, after the first 2500 iterations, the

alues of the Q-network and target Q-network gradually converged

s shown in Fig. 11 (c) and Fig. 11 (d). 

The estimated maximum expected number of successes of the

ve missions is 4.3859 when the iteration reaches I max , and the

untime is 6.8581 × 10 3 seconds on a PC with an Intel Core (TM)

5-4590 3.30 GHz CPU and 8 G RAM. By using the Monte Carlo

imulation with 10 6 samples, the agent can successfully complete

.3721 missions on average. The absolute error of the Q-network

ith respect to the result from the Monte Carlo simulation is

.0138, with the relative error being less than 0.3%. 

The effectiveness of taking into account the imperfect mainte-

ance is illustrated by comparing the results from the case where

nly three optimal maintenance actions, i.e., “doing nothing”, min-

mal repair, and replacement, can be selected. The maximum ex-

ected number of the successes of the five missions for this case

as resolved by the proposed DRL algorithm, and it is only 3.3817

hich is much inferior to the case of imperfect maintenance. 

. Conclusions and future works 

In this paper, a new dynamic selective maintenance optimiza-

ion for multi-state systems that can execute multiple consecu-

ive missions over a finite horizon was developed. To maximize

he successes of future missions, the aged or failed components

an be maintained/repaired during the break in-between two ad-

acent missions, and multiple optional maintenance actions can be

hosen for each component. The resulting stochastic dynamic pro-

ramming was formulated as a discrete-time finite-horizon Markov

ecision process with a mixed integer-discrete-continuous state

pace. Based on the framework of actor-critic algorithms, the DRL

lgorithm was customized to overcome the “curse of dimensional-

ty” and cope with the uncountable state space, and two multi-

ayer artificial neural networks were constructed for the critic

nd actor, respectively. A postprocess was proposed for the ac-

or to select the optimal maintenance actions for all the compo-

ents in a large discrete action space subject to the constraints of

aintenance resources. The experience replay and target network
ere implemented to enhance the robustness of the customized

RL algorithm. As demonstrated in the two illustrative examples,

he proposed DRL approach can dynamically identify the optimal

aintenance actions for all the components in a computationally

fficient manner. 

It is noteworthy that there are several challenges to be ad-

ressed in our future work. Firstly, in this study, the duration of

ach individual mission, maintenance action, and break are as-

umed to be deterministic. Such an assumption will be released

o accommodate the stochastic case ( Khatab et al., 2017 ; Liu et al.,

018 ). Nevertheless, if the durations of breaks and maintenance ac-

ions are stochastic, the sequence of maintenance actions will pro-

uce a significant impact on the success of the next mission ( Liu

t al., 2018 ). On the other hand, the uncertainty associated with

he durations of missions will also post a challenge in terms of

valuating the probability of a system successfully completing a

ission. Secondly, the system configuration is assumed to be un-

hanged throughout all the missions. In some engineering cases,

he system configuration and/or components’ failure behaviors

ay vary from one mission to another. Thirdly, as a prelimi-

ary study, the maintenance budget for each break is assumed to

e pre-specified. However, in some engineering applications, the

aintenance budget could be shared among all the breaks, and

he maintenance budget for each break may be, therefore, dis-

inct. A more efficient maintenance strategy could be identified by

aking account of the shared total maintenance budget. Lastly, in

ome engineering situations, a multi-state system can keep operat-

ng even if the system demand cannot meet the demand ( Levitin,

ing & Huang, 2019 ). In such a circumstance, the reward of the

DP should be associated with the expected unsupplied demand

o reflect the performance of a repaired system in future missions.
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