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a b s t r a c t 

In the domain of optimal control for building HVAC systems, the performance of model-based control 

has been widely investigated and validated. However, the performance of model-based control highly de- 

pends on an accurate system performance model and sufficient sensors, which are difficult to obtain for 

certain buildings. To tackle this problem, a model-free optimal control method based on reinforcement 

learning is proposed to control the building cooling water system. In the proposed method, the wet bulb 

temperature and system cooling load are taken as the states, the frequencies of fans and pumps are the 

actions, and the reward is the system COP (i.e., the comprehensive COP of chillers, cooling water pumps, 

and cooling towers). The proposed method is based on Q-learning. Validated with the measured data 

from a real central chilled water system, a three-month measured data-based simulation is conducted 

under the supervision of four types of controllers: basic controller, local feedback controller, model-based 

controller, and the proposed model-free controller. Compared with the basic controller, the model-free 

controller can conserve 11% of the system energy in the first applied cooling season, which is greater than 

that of the local feedback controller (7%) but less than that of the model-based controller (14%). More- 

over, the energy saving rate of the model-free controller could reach 12% in the second applied cooling 

season, after which the energy saving rate gets stabilized. Although the energy conservation performance 

of the model-free controller is inferior to that of the model-based controller, the model-free controller 

requires less a priori knowledge and sensors, which makes it promising for application in buildings for 

which the lack of accurate system performance models or sensors is an obstacle. Moreover, the results 

suggest that for a central chilled water system with a designed peak cooling load close to 20 0 0 kW, three 

months of learning during the cooling season is sufficient to develop a good model-free controller with 

an acceptable performance. 

© 2020 Elsevier B.V. All rights reserved. 
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. Introduction 

The heating, ventilation and air-conditioning (HVAC) system

onsumes more than half of the total energy required for a build-

ng [1–4] . The cooling water system, also known as the condenser

ater system, is an essential subsystem of HVAC system. The cool-

ng water system includes cooling water pumps, cooling towers,

hiller condensers, and possibly water side economizers [5] . Cool-

ng water systems are intended to discharge the heat rejected by

he chillers. Operation of a cooling water system is essential to the
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hiller COP (coefficient of performance), which significantly influ-

nces the energy consumption of the entire HVAC system [ 5 , 6 ].

owever, a cooling water system also uses energy during its op-

ration. To reduce the energy consumption of HVAC systems, the

rade-off between cooling water system energy and chiller energy

hould be considered, thus revealing the importance of cooling wa-

er system optimal control [7] . The objective of this study is to in-

estigate a novel optimal control method for a cooling water sys-

em. 

.1. Optimal control of cooling water systems in buildings 

Optimal control methods, can be classified into model-based

ontrol, model-free control, hybrid control and performance map-

https://doi.org/10.1016/j.enbuild.2020.110055
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Fig. 1. Typical workflow of model-based control methods. 
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Nomenclature 

Cooling water system variables, Units 

T chws Chilled water temperature (outlet of chillers), ◦C 

T chwr Chilled water temperature (inlet of chillers), ◦C 

T cwr Cooling water temperature (inlet of chillers), ◦C 

T cws Cooling water temperature (outlet of chillers), ◦C 

F chw 

Chilled water flowrate, m 

3 /h 

F cw 

Cooling water flowrate, m 

3 /h 

F cw, t Cooling water flowrate through a cooling tower, 

m 

3 /h 

F cw, c Cooling water flowrate through a chiller, m 

3 /h 

C p Specific thermal capacity of water, kJ · k g −1 · K 

−1 

T chws, set T chws set point of a chiller, ◦C 

T wet Ambient wet bulb temperature, ◦C 

f pump Pump operating frequency, Hz 

f tower Cooling tower fan operating frequency, Hz 

P Electrical power, kW 

Reinforcement learning variables 

s Last state (environment) of the learning agent 

s’ Current state of the learning agent 

a Last action (operating frequency) taken by the 

learning agent 

a’ A potential action that learning agent may execute 

in the current state 

r Reward to the agent for the last action at last state 

Q Q-value in Q-table 

Accuracy indices 

MAPE Mean absolute percentage error 

CV(RMSE) Coefficient of variation of root-mean-square error 

COP Coefficient of performance 
s  
PLR Partial load ratio 

CC Chiller cooling capacity, kW 

CL Cooling load, kW 

RL Reinforcement learning 

AHU Air handling unit 

HVAC Heating, ventilation and air-conditioning 

ased control [8] . Among these four optimal control methods,

odel-based control is most frequently investigated. As illustrated

n Fig. 1 , the typical workflow of model-based control consists of

everal steps: (1) Establish an accurate system model with histori-

al data or other prepared information; (2) acquire real-time mon-

tored data; (3) use the optimization algorithm to search the opti-

al control action based on the prediction of the system model. 

Typical model-based control methods for building cooling water

ystems are reviewed as following. They are in accordance to the

orkflow in Fig. 1 . 

Ma and Wang [9] developed a fault-tolerant optimal control

ethod for condenser cooling systems. The method is composed

f a model-based optimal control process and an online fault de-

ection scheme. This method adopted simplified equipment mod-

ls to model the performance of chillers and cooling towers. With

ystem cooling load CL system 

, and the ambient wet-bulb tempera-

ure T wet as the real-time environmental data, the optimal control

ctions (number of operating cooling towers, and the set point of

 cwr ) are determined by a hybrid quick search method to maximize

he overall system coefficient of performance (SCOP). 

Yao et al. [10] built empirical performance models of the

hillers, pumps and cooling towers with field test data to predict

he system energy consumption under different operation condi-

ions, including different chilled water flowrates F chw 

, cooling wa-

er flowrates F cw 

and T chws values of the chillers. To enhance the

ystem COP, these variables are optimized given the uncontrollable



S. Qiu, Z. Li and Z. Li et al. / Energy & Buildings 218 (2020) 110055 3 

e  

t  

e  

H  

n  

t

 

l  

i  

c  

c  

c

a  

m

 

f  

w  

c  

a  

W  

p  

a  

c  

c  

t

 

a  

u  

t  

a  

t  

p

 

A  

g

1

 

m  

t  

a

1

 

b  

b  

a  

m  

m  

a  

t  

h  

d  

o

1

 

t  

t  

s  

r  

m  

a  

t  T
a

b
le
 
1
 

C
h

a
ra

ct
e

ri
st

ic
s 

o
f 

se
le

ct
e

d
 
m

o
d

e
l-

b
a

se
d
 
o

p
ti

m
a

l 
co

n
tr

o
l 

m
e

th
o

d
s.
 

R
e

fe
re

n
ce
 

E
q

u
ip

m
e

n
t 

m
o

d
e

ls
 

D
e

fi
n

it
io

n
 
o

f 
m

o
d

e
l 

p
a

ra
m

e
te

rs
 

R
e

q
u

ir
e

d
 
re

a
l-

ti
m

e
 
m

o
n

it
o

re
d
 
d

a
ta
 

[1
7

–
2

0
] 

C
O

P
-P

L
R
 
m

o
d

e
l:
 
P c

h
il
 
l e

r 
= 

f(
 P 

LR
, 

P 
L R

 2
 

, 
P 

L R
 3
 

) 
E

q
u

ip
m

e
n

t 
m

a
n

u
a

l 
S

y
st

e
m
 
co

o
li

n
g
 
lo

a
d
 
C

L s
y

st
em
 

[9
] 

S
im

p
li

fi
e

d
 
p

h
y

si
ca

l 
m

o
d

e
l:
 

P c
h

il
 
l e

r 
= 

f(
 F c

h
w
 

, 
F c

w
 

, 
C
 
L c

h
il
 
l e

r 
) 

F a
ir
 

= 
f (
 U

A
, 

F c
w
 

, 
T c

w
s 
, 

T w
et
 

) 

P t
ow

er
 

= 
f(
 F 

3
 

a
ir
 

, 
F 

2
 

a
ir
 

, 
F a

ir
 

) 

Id
e

n
ti

fi
ca

ti
o

n
 
w

it
h
 
h

is
to

ri
ca

l 
d

a
ta
 

C
L s

y
st

em
 

, 
a

n
d
 
th

e
 
a

m
b

ie
n

t 
w

e
t-

b
u

lb
 
te

m
p

e
ra

tu
re
 
T
 w

et
 

[1
0

] 
E

m
p

ir
ic

a
l 

m
o

d
e

l:
 

P c
h

il
 
l e

r 
= 

f (
 T c

on
d

en
si

n
g
 

, 
T e
 v a

p
or

a
ti

n
g
 

) 

P p
u

m
p
 

= 
f(
 n
 4
 

, 
n
 3
 

, 
n
 2
 

, 
n
 

) 

T c
w

r 
= 

f(
 T 

2
 

w
et
 

, 
T w

et
 

) 

R
e

g
re

ss
io

n
 
w

it
h
 
fi

e
ld
 
te

st
 
d

a
ta
 

T
 ch

w
r 
, T
 w

et
 

[2
1

] 
A

ir
-c

o
o

le
d
 
ch

il
le

r 
E

m
p

ir
ic

a
l 

m
o

d
e

l:
 
P c

h
il
 
l e

r 
= 

f(
 T c

h
w

r 
, 

T a
ir
 

, 
F c

h
w
 

, 
P

LR
 

) 
M

a
n

u
fa

ct
u

re
r’

s 
d

a
ta
 

T
 ch

w
r 
, 

T
 a

ir
 

, 
F 

ch
w
 

, 
C

L s
y

st
em
 

[ 1
5
 , 1

6
 , 2

2
 ] 

S
im

p
li

fi
e

d
 
p

h
y

si
ca

l 
m

o
d

e
l:
 

P c
h

il
 
l e

r 
= 

f(
 T c

h
w

s,
se

t 
, 

T c
w

r 
, 
C
 
L c

h
il
 
l e

r 
) 

F a
ir
 

= 
f (
 U

A
, 

F c
w
 

, 
T w

et
 

) 

P t
ow

er
 

= 
0
 . 6
 F 

3
 

a
ir
 

R
e

g
re

ss
io

n
 
b

a
se

d
 
o

n
 
h

is
to

ri
ca

l 
o

p
e

ra
ti

o
n

a
l 

d
a

ta
 

E
a

ch
 
ch

il
le

r’
s 

T
 ch

w
r 
, 

T
 ch

w
s 
, 

F 
ch

w
 

, 
T
 cw

r 
a

n
d
 
o

n
/o

ff
st

a
tu

s 

[ 1
3
 , 1

4
 ] 

N
o

v
e

l 
m

o
d

e
l:
 

P c
h

il
 
l e

r 
= 

f(
 T c

w
r 
, 
−−

−→
 

S c
h

il
 
l e

r 
, 

C
L 

p
re
 

sy
st

em
 

) 

P t
ow

er
 

= 
f(
 T 

p
re
 

w
et
 

, 
T c

w
r,

se
t 
, 

T c
w

s 
, 
−−

−→
 

S t
ow

er
 

) 

T c
w

r 
= 

f(
 T 

p
re
 

w
et
 

, 
T c

w
r,

se
t 
, 

T c
w

s 
, 
−−

−→
 

S t
ow

er
 

) 

R
e

g
re

ss
io

n
 
b

a
se

d
 
o

n
 
h

is
to

ri
ca

l 
d

a
ta
 

E
q

u
ip

m
e

n
t 

o
p

e
ra

ti
n

g
 
st

a
tu

s,
 
w

a
te

r 
te

m
p

e
ra

tu
re
 
in
 
ch

il
le

r 
co

n
d

e
n

se
r 

a
n

d
 
e

v
a

p
o

ra
to

r,
 
e

tc
. 
nvironmental variables, namely, the ambient wet-bulb tempera-

ure T wet , and T chwr of each operating chiller. In other studies, Yao

t al. [ 11 , 12 ] adopted state-space method to establish the model of

VAC system and refrigeration system. In doing so, each compo-

ent of the system is modeled with matrixes, which could benefit

he integration of component models. 

Huang et al. [13] proposed a cooling tower control strategy for

egacy chiller plants composed of multiple chillers, multiple cool-

ng towers, primary chilled water pumps of constant speed, and

ondenser water pumps of constant speed. As a model predictive

ontrol method, this strategy adopted a novel model to predict

hiller power and cooling tower power based on the predicted T wet 

nd system cooling load [14] . The set point of T cwr is optimized to

inimize the total power of chillers and cooling towers. 

Wang et al. [15] proposed an event-driven optimization method

or the building HVAC system. Unlike conventional optimization,

hich is triggered by a time point, this method is triggered by

ertain events (chiller on/off and chiller PLR change by 7%) within

 predefined event space. The HVAC system model established by

ang [16] was adopted as the system performance model. The set

oints of four variables are optimized to reduce the system oper-

tion cost: the cooling water supply temperature ( T cws ) from the

hiller(s), the chilled water supply temperature ( T chws ) from the

hiller(s), T chw 

from the heat exchanger(s), and the supply air (SA)

emperature of the air handling units (AHU). 

As for a model-based control method, the basic system model

long with the parameters, and the real-time monitored data are

sually defined as necessary preconditions for the applied system

o provide (typically from manuals or historical data). Hence, the

pplicability of a model-based control method highly depends on

he difficulty satisfying these requirements. These two essential

reconditions of the selected studies are listed in Table 1 . 

The defects of model-based control are discussed in Section 1.2 .

nd model-free control studies are reviewed in Section 1.3 , to-

ether with an introduction to reinforcement learning. 

.2. Defects of model-based control 

As introduced in Section 1.1 , the energy conservation perfor-

ance of model-based optimal control methods has been inves-

igated in a number of studies. The defects of model-based control

re also quite obvious: 

.2.1. Dependence of a priori knowledge 

As listed in Table 1 , most model-based control methods are

ased on multi-variate models, the parameters of which need to

e determined by regression of field test data or historical oper-

tional data. Field test data requires manual labor and measure-

ent instruments; historical data requires sufficient sensors imple-

ented in the targeted system. These cost and requirements can

ffect the applicability of model-based control methods. Moreover,

he number of required real-time monitored variables determines

ow many sensors must be implemented in the targeted system

uring the optimized operation, which influences the practicability

f a control method, too. 

.2.2. Risk of the model uncertainty 

Model uncertainties could strongly affect the performance of

he model-based controller. Zhu et al. [23] argued that the uncer-

ainties of model error could be classified into two types: model

tructure error and model parameter error. Model structure er-

or is the result of model simplification. Model parameter error is

ainly caused by faulty historical data; historical data is usually

dopted in regression to determine the parameters/coefficients in

he equipment model [ 24 , 25 ]. Moreover, even if the initial model
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is perfectly accurate, its accuracy might decrease due to unavoid-

able system degradation. 

Sun et al. [26] analyzed the calculation error of the chiller ca-

pacity resulting from model simplification and evaluated the accu-

racy of the calculation result using the confidence level. When the

calculation result exceeds the confidence interval, it should be re-

vised. Li et al. [27] investigated the model prediction error of the

chiller cooling capacity and observed the chiller capacity calcula-

tion results from the simplified model and that the sophisticated

model differed by approximately 4%. 

1.3. Application of reinforcement learning (RL) in building system 

control 

Reinforcement learning (RL), focuses on design of a learning

agent that adapts its own actions based on an environmental re-

ward to achieve a predefined goal (e.g., acquire the most reward)

[28] . Actions taken by the agent depend on the agent’s own expe-

rience accumulated during the game instead of a priori knowledge.

In the building control field, research has been conducted to apply

RL to the model-free control. 

De Gracia et al. [29] developed a model-free control method

based on RL techniques to optimize the open-close action of a

phase change material (PCM) ventilated facade [30] . In this study,

the temperature of the PCM is taken as the state of the RL agent,

and the reward is the thermal energy obtained by the facade mi-

nus its own electrical energy consumption. 

Valladares et al. [31] adopted deep reinforcement learning

method to optimize the operation of AHUs and ventilation fans.

In their study, a comprehensive objective function composed of

four variables (Predicted mean vote (PMV) index, CO 2 concentra-

tion, AHU power and ventilation fan power) with four weight fac-

tors is proposed and used as the reward. Indoor temperature set

point and the on-off signal of ventilation fan are selected as control

actions. And the state of the system contains a group of quantities

including indoor temperature, ambient temperature, CO 2 concen-

tration, PMV index, ambient humidity, average radiant temperature

and occupancy amount in the controlled room. After the training

with a ten-year dataset, the RL agent could save 4–5% of the sys-

tem energy with accepted PMV values and CO 2 concentration. 

Zou et al. [32] implemented deep deterministic policy gradient

to optimize the operation of the AHU. Two virtual environments

were established using long-short-term-memory (LSTM) networks

based on two-year measured operational data to approximate the

real HVAC operations. The LSTM built with the first-year data was

used to train the RL agents, and the other LSTM built with the

second-year data was used to test the control performance of the

trained agents. In their study, the state is defined with a com-

bination of multiple parameters including environmental parame-

ters and system operation parameters; the reward is composed of

predicted percentage of discomfort (PPD) and system energy con-

sumption; and the action is defined as the combination of four

sub-actions: damper position, heating valve status, fan speed, and

liquid solenoid status. The test results indicate that the weights of

PPD and energy consumption could influence the control perfor-

mance of the RL agents. After proper tuning of weight factors, the

agents could save 27–30% of AHU energy comparing to the actual

energy consumption, while maintaining the PPD at 10%. 

Henze et al. [33] adopted the Q-learning method to optimize

the charge-discharge action of energy storage equipment and in-

vestigated methods for choosing the state variables (i.e., state-of-

charge, cooling loads, and real-time pricing rates) when the reward

variable varies from the time-of-use utility rates to real-time pric-

ing utility rates. In that study, the controller agent was established

based only on a statistical summary of plant operation, without

any prediction or system models. 
.4. Motivation and structure of this research 

As discussed in Section 1.2 , the greatest defect in model-based

ontrol is that it highly depends on accurate system models and

ufficient sensors, which are difficult to provide for certain build-

ngs. To tackle the optimal control problem in these buildings, a

odel-free control method based on RL techniques is proposed in

his paper for the control of building cooling water systems. 

Section 2 presents the control methodology. Section 3 dis-

usses a measured-data based simulation case study that compares

he energy-conservation performance of the model-based control

ethod, basic control method, local feedback control method and

he proposed model-free control method. The simulation results

re illustrated and analyzed in Sections 4 , and 5 concludes this pa-

er. 

. Methodology 

.1. Overview 

Applied RL algorithm: Q-learning, which is a classical RL method

ased on the Q-table. The mechanism of Q-learning makes it easy

o converge and easy to be realized in programming [28] . Com-

ared with deep reinforcement learning techniques which are usu-

lly based on networks, Q-learning is more feasible in engineering

ractice. In the HVAC domain, studies have been carried out to in-

estigate the performance of Q-learning in controlling energy stor-

ge equipment [33–35] , lighting [36] ,and ventilation systems [37] . 

.1.1. Applied condition 

The proposed method is for a cooling water system composed

f identical units (i.e., identical chillers, identical cooling towers,

nd identical cooling water pumps). Also, the chilled water sys-

em corresponding to the targeted cooling water system should be

 decoupled system (constant primary chilled water flowrate and

ariable secondary chilled water flowrate) [38] . An example of the

nvestigated system’s layout is illustrated in Fig. 3 . 

.2.2. Optimization objective 

The optimization objective is the system COP, which is calcu-

ated by Eq. (1) . 

ystem COP = 

C L system 

P chil l ers + P cwps + P towers 
(1)

here CL system 

is the system cooling load (kW), P chillers is the to-

al power of all chillers (kW), P cwps is the total power of all cool-

ng water pumps (kW), and P towers is the total power of all cooling

owers (kW). The total energy consumption of the chillers, cool-

ng water pumps and cooling towers is referred to as the “system

nergy consumption” in this paper. 

.2.3. Requirements on prepared knowledge and real-time data 

nputs 

The proposed method needs prepared information prior to ap-

lication, i.e., system layout, history weather data and equipment

haracteristics on name plates. No models needed. And the re-

uired real-time data includes system cooling load, ambient wet

ulb temperature, and equipment power. 

.2.4. Optimized variable (control action) 

Operating frequencies of cooling tower fans and cooling water

umps. 
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Fig. 2. Workflow of the proposed method (the states, actions and Q values in this figure are merely shown as an example). 
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.2.5. Optimization interval 

Additionally, the optimization interval should be set between

wenty to sixty minutes when applying the proposed method be-

ause of two reasons: (1) the action taken by an untrained con-

roller is stochastic, thus shorter optimization interval may result

n oscillating behavior; (2) the RL-based controller needs accurate

nvironmental feedback (i.e., the reward) to evaluate the last taken

ction, and it takes time for the system to stabilize after each con-

rol action. 

As shown in Fig. 2 , the workflow of the proposed control

ethod is composed of several steps: 

A At the beginning of each time step, the amount of equipment

that must operate is determined using the sequencing on-off

control method, which is discussed in Section 2.2 . 

B The real-time measured data (wet bulb temperature and sys-

tem cooling load) of the cooling water system are discretized

to the state (s’) to match the structure of Q-tables. This step is

demonstrated in Section 2.3 . 

C The frequency of the cooling tower fans is optimized using the

Q-learning method: (1) Search the tower Q-table for the maxi-

mum Q-value in the current state (s’); (2) update the Q-value of

the last state (s) using updating formula ( Eq. (2) ) with the sys-

tem COP ( Eq. (1) ); and (3) determine the optimal frequencies

for the cooling tower fans using a certain optimization policy

and the updated tower Q-table. Details are given in Section 2.4 .

D Optimize the frequency of running cooling water pumps in the

same manner as in Step C. Note, Steps C and D are in parallel,

the order of these two steps does not matter. 

E Execute the on-off control signals and optimal frequency con-

trol signals on the system. 

F Record the current state (s’) as s, because the current time step

is ending, and the current state will be regarded as the last
state in the next time step. c  
.2. Sequencing on-off control 

As introduced in Section 2.1 , in the beginning of each time step,

he on-off status of each equipment should be controlled before

he optimization of frequencies. The following rules are adopted to

etermine proper on-off signals. 

1) The entire central chilled water system remains in the off con-

dition if the system cooling load is less than 50% of one chiller’s

rated cooling capacity [ 17–19 , 38 , 39 ]. 

2) While the cooling system is operating, all cooling towers are

run to optimize the energy consumption tradeoff between the

chillers and cooling towers, according to the studies of Braun

and Hartman [ 7 , 40 ]. 

3) The number of chillers required is determined based on the

system cooling load. When the system cooling load exceeds

105% of the current system cooling capacity, one additional

chiller is switched on [ 27 , 41 , 42 ]. The “k” in Fig. 2 represents

the total number of chillers in the applied system. 

4) The on-off status of the cooling water pumps and primary

chilled water pumps are coordinated to the status of the

chillers. In other words, when chiller 1 is switched on/off,

cooling water pump 1 and primary chilled water pump 1 are

switched on/off [43] . 

5) The frequency of each operating primary chilled water pump is

maintained at a nominal value because the targeted system is a

decoupled system, the primary chilled water flowrate of which

remains constant to protect the chillers [ 18 , 44 ]. 

6) For each running chiller, the set point of chilled water supply

temperature ( T chws, set ) is held equal to its nominal T chws . 

.3. Configuration and initialization of two Q-tables 

In this method, the frequencies of cooling water pumps and

ooling tower fans are optimized by two RL agents using the Q-
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Table 2 

Format of the Q-table. 

A \ S T wet , 1 , 0.5 CC T wet , 1 , 0.6 CC …… T wet, l , (k-0.1) CC T wet, l , k CC 

f 1 Q (s 1 , a 1 ) Q (s 2 , a 1 ) Q (s n-1 , a 1 ) Q (s n , a 1 ) 

f 2 Q (s 1 , a 1 ) Q (s 2 , a 2 ) Q (s n-1 , a 2 ) Q (s n , a 2 ) 

……

f m Q (s 1 , a m ) Q (s 2 , a m ) …… Q (s n-1 , a m ) Q (s n , a m ) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

t  

a

2

 

r  

l

Q  

w  

l  

l  

a  

t  

c  

t  

t  

t  

s  

t  

c

 

b  

fi  

t  

s

π  

w  

b  

t  

t  

s  

i  

a

 

p  

r  

i  

i  

t

π  

w  

fi  

w  

a  

f  

h  

s

1  

b  

s  

E

 

I  
learning method. And the tower Q-table and pump Q-table should

be configured and initialized in the following way. 

2.3.1. State 

The state in this study is defined as the combination of the dis-

cretized ambient wet bulb temperature ( T wet ) and the discretized

system cooling load ( CL system 

) because (1) these two variables are

not influenced by the system operation; (2) the system cooling

load is an essential variable in the operation of the central chilled

water system [ 17 , 18 , 20 , 27 , 41 , 45 , 46 ]; (3) T wet could significantly in-

fluence the cooling capacity of cooling towers, which is impor-

tant to the performance of the entire central chilled water system

[ 7 , 10 , 47 , 48 ]. 

These two continuous variables are discretized as follows: (1)

T wet is discretized to an integer (e.g., 24 °C, 25 °C), and the range

of discretized T wet (i.e., 24–28 °C, 23–29 °C, or else) should be spec-

ified according to the historical weather data of the city in which

the applied system is located; (2) The system cooling load should

be discretized according to the cooling capacity (CC) of each chiller

of the applied system, and if the system includes k chillers alto-

gether, then the system cooling load should be discretized to 0.5,

0.6, ……, k CC (e.g., when the measured cooling load is 0.57 CC,

then it should be discretized to 0.6 CC); (3) the real time values of

these two discretized variables are taken as the real time state, e.g.,

(24 °C, 530 kW). All combinations of these two discretized vari-

ables are taken as the state space (i.e., Q-table columns). 

2.3.2. Reward 

The system COP calculated by Eq. (1) is regarded as the reward,

same as the optimization objective. 

2.3.3. Q-value 

The meaning of the Q-value in this method is the system COP,

in accordance with the optimization objective. The Q-values should

be initialized 15–20% higher than the nominal system COP to en-

courage the RL agents to search for optimal control actions. 

2.3.3. Action 

The frequency set point of a pump or a cooling tower fan

is taken as the action in this method. The values of the actions

should be limited within a reasonable range considering capac-

ity allowance, according to the system manager and equipment

manual, to protect the hardware devices (e.g., the frequency of a

variable-speed pump is typically limited above 20 Hz). The preci-

sion of frequency is 1 Hz in this method. 

The abovementioned discretization precisions of the states and

actions are defined with consideration of the exploration cost.

Higher precision results in a larger Q-table (i.e., larger action space

and larger state space), which could benefit the control perfor-

mance of a well-trained model-free controller, because (1) the

identification of the state would be more accurate; (2) the control

action would be more precise. But a larger Q-table also requires a

longer period and more data to train the controller by updating Q

values in the table [28] . 

Table 2 is an example of the Q-table in this study, where l is

the number of possible T wet values, m is the number of available

actions, and n is the number of states. Two RL agents optimize
he cooling water pumps and cooling towers respectively and each

gent uses one Q-table. 

.4. Decision-making and Q-table updating 

During the “game”, a Q-learning agent must accumulate expe-

ience by updating the Q-table. The updating principle of the Q-

earning agents is described by Eq. (2) [28] : 

 ( s, a ) ← Q ( s, a ) + α
[ 

r + γ max 
a ′ 

Q 

(
s ′ , a ′ 

)
− Q ( s, a ) 

] 
(2)

here Q ( s , a ) is the Q-value corresponding to the last state (s) and

ast action (a), r is the reward resulting from action (a), α is the

earning rate (which is defined 0.9 in this study to accelerate the

gents’ learning), and γ represents the impact of future reward on

he decision of the current action. In this study, γ is set to 0.01 be-

ause the agent action does not affect the next state, which means

hat in every time step, the pump agent and tower agent only need

o focus on how to maximize the current reward instead of the to-

al reward over the long term. max 
a ′ 

Q( s ′ , a ′ ) is the max Q-value at

tate (s’) according to the current Q-table. In the proposed method,

he agents’ Q-tables should be updated for the entire system life to

ope with continuing system degradation [23] . 

In every time step, the agents must determine the next action

ased on the Q-table and a certain policy. In this study, a modi-

ed version of the ε-greedy policy [28] is developed for the agents

o determine the next actions. The original ε-greedy policy is de-

cribed by Eq. (3) : 

( a | s ) = 

{ 

1 − ε + 

ε 

m 

i f a = arg max 
a 

Q ( s, a ) 
ε 

m 

i f a � = arg max 
a 

Q ( s, a ) 
(3)

here ε is the predefined parameter that determines the balance

etween exploration and exploitation, m is the number of prac-

ical actions at state (s), and π ( a | s ) is the probability that a cer-

ain action is chosen at state (s). Eq. (3) means that in each time

tep, the probability that an agent chooses the known best action

s 1 − ε + 

ε 
m 

, and the probability that the agent chooses another

ction is ε 
m 

. 

In the ε-greedy policy, the ε value does not change with the

assage of time, which means that the balance between explo-

ation and exploitation is never changed during the game [28] . To

mprove this mechanism, a modified version of the ε-greedy policy

s developed herein. The modified version of the ε-greedy policy in

his study is described by Eq. (4) : 

( a | s ) = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

10 × q 
p 

1 + 10 × q 
p 

+ 

Q ( s, a ) ∑ 

Q ( s, a ) 
× 1 

1 + 10 × q 
p 

i f a = arg max 
a 

Q ( s, a ) 

Q ( s, a ) ∑ 

Q ( s, a ) 
× 1 

1 + 10 × q 
p 

i f a � = arg max 
a 

Q ( s, a ) 

(4)

here q is the number of passed time steps, and p is a prede-

ned parameter representing the initial period of agents’ learning,

hich should be defined based on the length of a cooling season

nd the optimization interval of the applied system. For instance,

or a system which is (1) used ten hours every day; (2) optimized

ourly; (3) located in a city with four-month long cooling sea-

ons, it is recommended to set p by 4 month × 30 day × 10 hour ×
 opt imizat ion per hour = 1200 . In this study, p is defined as 2208

ecause the length of the case study is three months, and the case

ystem operates 24/7 with hourly optimization (24 ×92 ×1 = 2208).

q. (4) is explained in the following way. 

At the start of system operation, the agent lacks experience.

n this situation, the probability that an action is selected is
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Table 3 

Cooling water system characteristics (nominal system COP = 5.83). 

Equipment Number Characteristics 

Screw chiller 2 Nominal: COP = 6.639, cooling capacity = 1060 kW, power = 159.7 kW, variable speed, cooling water flow rate = 195 m ³/h, 

chilled water flow rate = 131 m ³/h, cooling water temperature = 30.5/35.5 °C, chilled water temperature = 10/17 °C 
Chilled water pump 2 Nominal: power = 12.0 kW, flowrate = 150 m ³/h, head: 24 m, variable speed 

Cooling water pump 2 Nominal: power = 14.7 kW, flowrate = 240 m ³/h, head: 20 m, variable speed 

Cooling tower 2 Nominal: power = 7.5 kW, flowrate = 260 m ³/h, variable speed 

Fig. 3. Layout of the central chilled-water system. 
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Fig. 4. Photo of the real system (Chiller 2). 
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early proportional to its Q-value. And there is a small bonus

bonus = 

10 × q 
p 

1+10 × q 
p 

) on the probability that the optimal action is se-

ected. In other word, exploration is encouraged. 

As time passes (q increases), the agent becomes more willing

o choose the action with the maximum Q-value (bonus increased)

hile other actions can still be chosen, and the probability of each

onoptimal action to be selected is proportional to its Q-value. In

rief, exploitation is more heavily encouraged as time passes. 

When q reaches p, the bonus of the optimal action is 10 
11 , which

eans that the probability that the optimal action is selected is ap-

roximately 10 times the summed probability of the other actions.

eanwhile, the initial learning process is finished. The exploration

f the agent will continue after the initial learning period, with a

ontinuous reduction of exploring probability (i.e., continuous in-

rease of the bonus). 

. Measured data-based simulation case study 

.1. Case system 

A real HVAC system in a metro station in Guangzhou city is

dopted as the case system. The equipment characteristics pro-

ided by the manufacturer are listed in Table 3 . The two chillers

re identical, as are the other three types of appliances. The layout

f the case system is illustrated in Figs. 3 , and 4 show a photo of

he real system. The chilled water system in the case is a decou-

led system, as introduced in Section 2.1 . Measured weather data

 Fig. 5 ) and measured system cooling load data ( Fig. 6 ) are adopted
s the simulation input. Measured operational data ( Fig. 7 ) of the

eal system is used to establish the simulation model. 

The control strategy of the real case system includes: (1) the

emperature of supplied chilled water at the header pipe is con-

rolled at 10 °C. The number of operating chillers is adjusted man-

ally by the management engineer based on weather and passen-

er flow; (2) the number of running cooling water pumps and

hilled water pumps is equal to the number of operating chillers;

3) the frequencies of operating cooling water pumps are adjusted

qually to keep the �T cw 

(the difference between T cwr and T cws )

t 3.3 °C (the frequency is restrained within 35–50 Hz); (4) the

requency of the cooling tower fan is adjusted to maintain the ap-

roach (the difference between T cwr and T wet ) at 2.5 °C (the fre-

uency is restrained within 30–50 Hz); (5) the number of op-

rating cooling towers is adjusted manually by the management

ngineer, most time both cooling towers operates simultaneously;

6) primary chilled water pumps typically operate at nominal fre-

uency. Note, the set point values (3.3 °C and 2.5 °C) are deter-

ined empirically by the management engineer of the real case

ystem. 

The control strategy above is also reflected by the measured

ata in Fig. 7: (1) �T cw 

does not change much with time or sys-

em working condition; (2) T chws is maintained at approximately

0 °C; (3) F chw 

does not evidently vary with time, while F cw 

is on

he contrary; (4) T cwr is basically stable at 29 °C because T wet is

uite stable during the investigated period ( Fig. 5 ) 

As is shown in Figs. 6 (b) and 7 , the measured data con-

ains missing values and measurement faults. Hence the measured

ata needs pre-processing before being used for the model setup.

ig. 6 (b) shows the distribution of the missing data in the cooling

oad measurement. In this case study, missing data of cooling load

s filled with interpolation. Specially, when both sides of a missing

eries are zero values, this missing series is filled with zeros; in

ther words, the system is considered off during this period. 

And for the operational data used for model establishment

 Section 3.2 ), the pre-processing is realized in three steps: (1)

bandon data items including missing values; (2) select data items
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Fig. 5. Measured weather data (hourly), (a). Measured data after interpolation, (b). Missing data in the cooling load measurement (blanks represent missing data). 

Table 4 

Thresholds for the pre-processing of training data. 

Equipment Thresholds 

Chiller 80 ≤ F chw ≤ 160, and 3 ≤ COP ≤ 10, and F cw, c ≥ 150 

Cooling water pump 35 ≤ f pump ≤ 50, and 50 ≤ F cw 

Cooling tower 30 ≤ f tower ≤ 50, and 50 ≤ F cw, t ≤ 260 
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with thresholds defined in Table 4 for each equipment to be mod-

eled. This step is intended to drop the data which may be affected

by measurement faults or unstable operation; (3) use Hoteling’s T-

square test (95% confidence level) to remove the extreme outliers

[49] . 

3.2. Simulation system model based on measured data 

The hourly simulation case study is conducted on the Python

3.6 platform, and the simulation system model is built according

to the layout and characteristics of the real case system. The sim-

ulation process Fig. 8 ) imitates TRNSYS [50] . In each time step,

the system receives inputs and begins calculation, the system vari-

able values are updated by one equipment model, and the val-

ues are subsequently circulated in the entire system, from equip-

ment to equipment. The iteration does not stop until the variable

values converge. In this study, Eqs. (8) –( (11) compose the chiller

model; Eqs. (6) and (7) compose the pump model; and Eqs. (5) and

(6) compose the cooling tower model. As Fig. 8 shows, the variable

values are circulated in these three equipment models until T cwr 

converges (i.e., the difference of T cwr between current iteration cir-

cle and the last iteration circle is less than 0.2 °C). If the T cwr does

not converge within 50 iteration circles, then the iteration will be

stopped and the result of the last circle will be adopted. 

In detail, the chiller COP and cooling tower outlet water tem-

perature ( T cwr ) are simulated by random forest, a classical regres-

sion model proposed by Breiman [51–53] . In this study, random

forest regressors are trained and validated by the measured op-

erational data (from 19th June to 18th September) of the real

system. The power of the pumps and fans is modeled with the

conventional frequency-power formula Eq. (6) ). The coefficients in

Eq. (6) are determined by regression with measured data. Eqs. (9) –

( (11) are conventional equations used to calculate the other inter-

mediate variables. For Eq. (7) , the flowrate through a cooling water

pump is calculated simply with similarity because the pipeline re-

sistance does not change substantially in a cooling water system.
 cwr = Random f or est r egr essor ( T cws , f tower , T wet , F cw,t ) (5)

 = a f 2 + b f + c (6)

 cw 

= 

f pump 

f nominal 

× F nominal (7)

O P chil l er = Random f or est r egr essor ( CL, T cwr , T chwr , T chws , F cw,c 

(8)

 chil l er = 

CL 

CO P chil l er 

(9)

 cws = T cwr + ( P chil l er + CL ) ÷
(

C p × F cw,c × ρ

3600 s/h 

)
(10)

 

 

 

T chws = max 

[ 
T chws, set , T ′ 

chwr 
− CC/ 

(
C p × F chw 

× ρ

3600 s/h 

)] 
T chwr = T chws + CL/ 

(
C p × F chw 

× ρ

3600 s/h 

) (11)

here CL is the cooling load on the chiller (kW), CC is the nomi-

al cooling capacity of the chiller (kW), T cwr is the temperature of

he cooling water returning to the chillers from the cooling tow-

rs ( °C), T chwr is the temperature of the chilled water returning to

he chillers ( °C), T ′ 
chwr 

is T chwr of last time step, T chws is the tem-

erature of the chilled water leaving the chillers ( °C), F cw, c is the

ooling water flowrate through the chiller condenser (m ³/h), F cw, t 

s the cooling water flowrate through a cooling tower (m ³/h), C p is

he specific heat capacity of water = 4.2 kJ/(kg • K), ρ is the water

ensity = 10 0 0 kg/m ³, F chw 

is the chilled water flowrate through

he chiller evaporator (m ³/h), P is the electrical power (kW), f is

he frequency (Hz), a, b, and c are coefficients to be determined,

 nominal is the nominal flowrate of a cooling water pump (m ³/h), F cw 

s the flowrate through a cooling water pump (m ³/h), and P chiller is

he chiller power (kW). 

The coefficient of variation of the root-mean-square error

CV(RMSE), Eq. (12) ) and the mean absolute percentage error

MAPE, Eq. (13) ) are adopted as the error indices to assess the ac-

uracy of the abovementioned equipment models [54–56] . The ac-

uracy of the models is illustrated in Fig. 9 and Table 5 . 

V ( RMSE ) = 

√ 

n 

∑ n 
i =1 ( y i − ̂ y i ) 

2 ∑ n y i 
(12)
i =1 
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Fig. 6. Measured system cooling load data (hourly, kW). 

Table 5 

Error index values of equipment models and the system model. 

Chiller COP model 

T cwr model of cooling 

tower Cooling tower 

fan power 

model 

Cooling water 

pump power 

model 

Overall system 

model 

Train set Test set Trains set Test set T cwr T cws 

MAPE 0.60% 1.75% 0.24% 0.67% 1.58% 2.69% 1.39% 1.43% 

CV(RMSE) 0.90% 2.59% 0.36% 1.01% 2.31% 3.43% 2.71% 2.62% 



10 S. Qiu, Z. Li and Z. Li et al. / Energy & Buildings 218 (2020) 110055 

Fig. 7. Measured operational data of the real system, (all variables in this figure are of the header pipe, e.g., F cw is the total flowrate of cooling water in the system). 

Fig. 8. Simulation process at one time step (solid lines represent the iteration loop of the simulation process, and dashed lines represent the input and output procedure of 

the iteration loop). 

 

 

 

v  

t  

p  

d  

T  
MAP E = 

1 

n 

n ∑ 

i =1 

∣∣∣∣y i − ̂ y i 
y i 

∣∣∣∣ × 100% (13)

where n is the number of data points, y i is the i th measured value,

and 

̂ y is the i th predicted (simulated) value. 
i 
The error index values in Table 5 are all less than 5% [57] , which

erifies the accuracy of equipment models. It should be noted that

he datasets of COP and T cwr models are split randomly and inde-

endently, into a training set (80%) and a test set (20%) (the ran-

om seed of the COP model dataset is different from that of the

 cwr model dataset), because the regressors used to simulate COP
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Fig. 9. Accuracy validation of equipment models and the system model [ [58] ]. 
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Table 6 

Initial Q-table (cooling tower) in the case study. 

A \ S 24 °C, 530 kW …… 24 °C, 2120 Kw …… 28 °C, 2120 kW 

30 Hz 7 7 7 

31 Hz 7 7 7 

……

50 Hz 7 …… 7 …… 7 
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and T cwr are black-box models, and their generalization must be

validated by test sets, which are not used in model training. How-

ever, the datasets of the pump power and fan power are not split

because the model of the pump and fan power is a conventional

white-box model for which the accuracy has been validated, and

thus, there is no need to validate its generalization [52] . 

Moreover, a validation simulation is conducted to verify the

accuracy performance of the overall system model. This valida-

tion simulation is based on measured cooling load data, measured

weather data and especially measured control signals of the real

system. This work is intended to restore the real operation history

of the case system (from 19th June to 18th September), and T cwr 

and T cws are selected as two variables to evaluate the model accu-

racy. Validation results are illustrated in Fig. 9 (g) and Table 5 . 

Additionally, an important feature of the random forest is that it

is not able to extrapolate, which could result in inaccurate output

when the input combination is “special” compared to the training

data. As for this case study, the variety of the training data is im-

portant to this issue. The more variable the training data is, the

more robust the trained regressor is. Figs. 17 and 18 are attached

in the appendix to show the distribution and co-distribution of the

pre-processed training data. And these two figures indicate that

the variety of the training data is acceptable because (1) corre-

lations among variables are poor, except for the Frequency-Power

relationship and the T wet − T cwr relationship; (2) the distributional

width of each variable is not evidently restricted except for the

T chws , but it should not be a concern because T chws is constantly

set to 10 °C (within the range of the training data) in the follow-

ing simulation case study. 

Note that the system performance model is established only

for simulation of system operation. The knowledge of the system

performance is not embedded in the proposed model-free con-

troller. Only the system layout, weather data, and information on

the equipment name plates ( Table 3 ) are embedded in the model-

free controller prior to simulated operation. 

3.3. Realization details of proposed method and three comparative 

control methods 

In this study, three other control methods are simulated to-

gether with the proposed method to validate the performance of

the proposed method. The sequencing on-off control process of

these four control methods are the same as in Section 2.2 , and

the frequencies of the cooling water pumps and cooling tower fans

are controlled in different ways by four controllers. The frequen-

cies of all running chilled water pumps are 50 Hz. The set point

of the chilled water supply temperature ( T chws, set ) is 10 °C (nom-

inal value) under four controllers. Because the two cooling water

pumps are identical, their frequencies are set equal when they are

run simultaneously. The frequencies of two cooling tower fans are

set equally as well. 

As mentioned in Section 2.3 and according to the management

engineer or equipment manuals, the frequencies of the variable

speed appliances should be limited to protect the hardware. In

this simulation, the frequency of a cooling water pump is limited

within 35–50 Hz, and the frequency of a cooling tower fan is lim-

ited within 30–50 Hz. Three comparative methods are described

below. 

3.3.1. Basic control method 

The frequencies of all running cooling tower fans and cooling

water pumps are set at 50 Hz. This control method is considered

as the baseline control method in this study. 
.3.2. Local feedback control 

The control strategy of the real system which is introduced

n Section 3.1 is partly adopted herein as a comparative control

ethod. Specifically, frequencies of cooling water pumps and cool-

ng towers are adjusted as introduced in Section 3.1 in every sim-

lation time step. While the sequencing on-off control process is

he same as in Section 2.2 , which differs from the real system. 

.3.3. Model-based control 

Accurate performance models of all equipment (i.e., Eqs. (5) –

11) ) are embedded in the model-based controller prior to the sim-

lated operation. In every time step (i.e., every hour) of the sim-

lation, the model-based controller goes through all of the poten-

ial operation plans (frequencies of pumps and fans) and predicts

he corresponding energy consumption of each operation plan with

he simulation process described in Section 3.2 . The operation plan

ith the maximum system COP ( Eq. (1) ) is selected and executed

n the system model. Note that the traversal step of the operation

lans is 1 Hz, which means in every time step, the model-based

ontroller attempts (pump: 35 Hz, tower: 30 Hz), (pump: 36 Hz,

ower: 30 Hz), ……, (pump: 50 Hz, tower: 50 Hz) to find the opti-

al pair of frequency sets. 

In this case study, model-based control, local feedback control

nd model-free control are referred to “variable-speed control”, in

ontrast to the basic constant-speed control. Note, technically the

ocal feedback controller is also free of models, but the term of

model-free controller” in this case study is only referred to the

roposed model-free controller. 

For the Q-table in the case study, the states are specified ac-

ording to the measured weather data and system rated cooling

apacity. The real time wet bulb temperature is discretized to (24,

5, 26, 27, 28 °C). The discretized real time cooling load is (530,

36, ……, 2014, 2120 kW). The action options are restricted as

entioned. The initial values of the Q-table are set to 7, which

s slightly higher than the nominal system COP. Specifically, the

-table of the cooling tower in the case study is initialized as in

able 6 , the shape of which is 80 states ×21 actions. The Q-table

f the cooling water pump is similar to Table 6 , but actions range

rom 35 Hz to 50 Hz, the shape of pump Q-table is 80 states ×16

ctions. 

. Results and discussion 

The operation of the case system from 19th June to 18th

eptember is simulated on an hourly basis under the supervi-

ion of four control methods. The simulation results are discussed

rom several aspects: energy consumption, learning process of

he model-free controller, control actions taken by different con-

rollers, system water temperature, randomness of the model-free

ontroller, performance evolution of the model-free controller in

 longer period. Because the decision-making procedure of the

odel-free controller contains uncertainty and randomness, the

imulation under the model-free control is conducted five times

ndependently, details are given in Section 4.5 . 
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Table 7 

Energy consumption of case system under four control methods. 

Direction 

Cooling tower 

energy 

consumption (kWh) 

Cooling water 

pump energy 

consumption (kWh) 

Chiller energy 

consumption (kWh) 

System energy 

consumption (kWh) 

Real system measurement 23 260 54 634 380 379 458 273 

Basic control Forward/Reverse 28 235 72 964 362 995 464 194 

Local feedback control Forward/Reverse 18 814 48 316 361 974 428 924 

Model-based control Forward/Reverse 8 722 28 151 360 772 397 645 

Model-free control 

(five- round average) 

Forward 13 068 34 551 362 231 409 850 

Reverse 12 939 35 084 361 979 410 003 
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.1. Energy consumption 

The three-month energy consumptions of the system under

our control methods are listed in Table 7 . Compared with the ba-

ic controller, the local feedback controller can conserve 7% of sys-

em energy (summary of chillers, cooling water pumps and cooling

owers), the model-free controller can conserve 11% of the system

nergy, and the model-based controller can conserve 14% of the

ystem energy. 

Table 7 indicates that when controlled by the basic control

ethod, the case system requires the most energy, mainly due to

he unnecessary use of cooling water pumps and cooling towers.

ocal feedback control performs better than basic control in terms

f energy conservation because this control method adjusts the

requencies of the pumps and tower fans to maintain �T cw 

and the

ooling tower approach at predefined set points. However, the en-

rgy conservation capability of the variable speed pumps and fans

s not fully utilized under this control method because (1) the set

oints of �T cw 

and the cooling tower approach are predefined at

 low level by the management engineer of the actual system, and

2) these set points are constant instead of adaptive during system

peration. 

Moreover, Table 7 shows that the chiller energy consumption is

lightly influenced by the control method. That is because accord-

ng to Fig. 9 (e), chiller COP is slightly influenced by T cwr and F cw, c ,

oth of which vary with the control logic ( Fig. 15 ). 

The energy conservation performance of model-free control is

etter than that of local feedback control but worse than that

f model-based control because (1) compared with local feedback

ontrol, the model-free controller continues to learn and evolve by

earching for the optimal set points; (2) unlike the model-based

ontroller, the model-free controller is not embedded with the his-

orical operation data and equipment performance models, indi-

ating that the model-free controller must learn from square one

o build its own experience, which leads to the gap between the

odel-free controller and model-based controller. 

Fig. 10 (a) illustrates the daily energy conservation amounts

scatters) of the three variable-speed control strategies compared

ith the basic control. The scatters indicate that in the beginning

f operation, the energy saving rates of all three variable speed

ontrollers are unstable because the cooling load data is variable

n the beginning. On the contrary, the scatters after 60 days are

loser to regressed lines because the working condition of the sys-

em is more stable in this period. 

Moreover, Fig. 10 (a) shows that the model-free controller out-

erforms the local feedback controller in the very beginning, when

he model-free controller is not sufficiently trained. That is because

n this study, the set points of two controlled variables ( �T cw 

and

ooling tower approach) are set at a low level, which makes the

ocal feedback controller in this study tends to keep equipment op-

rating at high frequencies ( Fig. 14 (c)). Hence, in many situations

especially when the partial load ratio of running chiller(s) is high),

he control signals determined by the local feedback controller are

o  
lose to the ones by the basic controller. Besides, according to

ig. 7 , the real system controlled by a real local feedback controller

lso kept the F cw 

at a high level on both sides of the investigated

eriod. The abovementioned is why an untrained model-free con-

roller could outperform the local feedback controller in the begin-

ing. 

Three regression lines represent the daily energy conservation

rends of three variable-speed control methods, which all show up-

ard trends because the system cooling load is slightly decreased

fter 30th July, and partial load working conditions are more suit-

ble for variable-speed control methods in conservation of energy

n terms of pumps and tower fans. 

In order to better expose the learning effectiveness of the pro-

osed model-free control method, simulations are conducted once

ore in the reversed direction, from 18th September to 19th June,

nder the supervision of four controllers. Still, five independent

imulations are conducted for the model-free controller in this re-

ersed direction. The simulation results of basic controller, local

eedback controller and model-based controller do not change with

he simulation direction because (1) the system model is basically

ndependent of time sequence; (2) the control logic of these three

ontrollers are deterministic. As is shown in Fig. 10 (b), without

he benefit of the input data, the regression line of the proposed

ethod is nearly horizontal, unlike the other two variable speed

ontrollers which go downwards due to the input data. This could

erify the effectiveness of the reinforcement learning process. 

Parameters of regression lines are listed in Table 8 . Slope values

ould prove the improvement of the model-free controller due to

he learning process. Meanwhile, the standard deviations of slopes

uggest that the regression confidence of the model-free control

esult is the best, which is also verified by the shade areas in

ig. 10 (95% confidence intervals). 

.2. Learning process of the model-free controller 

As is shown in Fig. 11 , the reward (i.e., the comprehensive sys-

em COP) of the model-free controller is accumulated almost lin-

arly during the simulated operation. That is because (1) the com-

rehensive system COP is mainly determined by the chiller COP,

hich is typically within the range of 7–9 according to Fig. 18 ; (2)

he chiller COP is not evidently influenced by the operation of the

ooling water system ( Fig. 9 (e)). Moreover, Fig. 11 indicate that the

irection of learning (from heating period to cooling period or on

he contrary) does not substantially influence the learning effec-

iveness, which is also reflected in Table 7 . Additionally, the re-

erse line is slightly above the forward line because the cooling

oad after 30th July is lower, and the case system is more efficient

t partial-load working conditions. 

Because the learning process is not evidently influenced by the

earning direction, the following content including Sections 4.2 –4.4

ill be discussed merely based on the results of simulations in for-

ard direction. 

Fig. 12 shows trends of three variables: accumulated number

f updated pump Q-table entries, accumulated number of updated



14 S. Qiu, Z. Li and Z. Li et al. / Energy & Buildings 218 (2020) 110055 

Fig. 10. Daily energy saving (kWh) (shades around the regression lines are 95% confidence intervals for the regression estimate). 

Table 8 

Parameter of regression lines. 

Forward simulation Reverse simulation 

Slope value Standard deviation of the slope Slope value Standard deviation of the slope 

Local feedback control 1.620 0.514 −1.620 0.514 

Model-free control (five- round average) 1.389 0.364 0.004 0.338 

Model-based control 1.038 0.399 −1.038 0.399 

Fig. 11. Accumulated rewards of learning processes in two directions. 
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Fig. 12. Accumulated number of Q-table entries which are updated at least once; accumulated number of occurred different states. 

Fig. 13. Co-distribution of the system cooling load and T wet . 

t  

T  

o

7  

i  

u  

p  

t  

Q  

t  

c  

w  

c  

t  

a  

o

4

c

 

m  

s  

T  

e  

A  

p  
ower Q-table entries, and accumulated number of occurred states.

hese three lines indicate that (1) almost all possible states have

ccurred at least once in the first month of system operation (0–

00 steps); (2) the exploration of two RL agents is most evident

n the first month of learning; (3) the accumulated number of

pdated Q-table entries stabilizes between 400 and 500 for both

ump Q-table and tower Q-table, which is far from the total en-

ry amount of the defined Q-table (tower Q-table: 1280, pump

-table: 1680). This gap exists because the state is normally dis-

ributed as Fig. 13 shows, and the control actions at rare states

ould not be sufficiently explored without a long period. But that

ould not affect the performance of the proposed controller be-

ause only the control decision at typical, regular states really mat-

ers to the controller’s performance (Pareto’s law), and the learning

t

t these states is always quickly accomplished because these states

ccur frequently. 

.3. Frequency set points and system COP under three variable-speed 

ontrollers 

Fig. 14 shows the optimal frequency set points and maxi-

um system COP values under three variable-speed controllers. It

hould be noted that during the simulation, some states (such as

 wet = 24 °C and system cooling load = 2120 kW) did not occur

ven once. Thus, in Fig. 14 , the values at these states are blank.

dditionally, the results of the model-free controller represent the

olicy after the learning of the first cooling season (from 19th June

o 18th September). The following are inferred from this figure. 
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Fig. 14. Frequency set points and system COP of three variable-speed control methods, (a) Model-free control, (b) Model-based control, (c) Local feedback control. 
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Compared with model-free control and local feedback control,

model-based control sets lower frequencies for the pumps and

cooling tower fans. The system COP values of the model-based con-

troller are higher than those of the other two. The excellent perfor-

mance of the model-based controller is due to three aspects: (1) it
as embedded with accurate performance models for all equip-

ent, which means that it could accurately predict the outcome

nergy consumption caused by each control action; (2) the model-

ased controller is designed to search for the frequency set points

o achieve the maximum system COP in each time step; and (3)
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Fig. 15. Distributions of system water temperatures under four controllers (upper limit is the maximum among the data points which are smaller than upper quartile plus 

1.5 interquartile range; lower limit is the minimum among the data points which are larger than the lower quartile minus 1.5 interquartile range; and outliers are the data 

out of upper and lower limits). 
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able 3 suggests that the cooling water pumps and cooling towers

f the case system are actually oversized for the case chillers, thus

evealing additional potential for energy conservation [5] . 

Under local feedback control, the cooling water pump frequency

s highly correlated with the system cooling load because the heat

ejected by the chillers must be transferred by the cooling water

umps to the ambient environment. The higher the cooling load,

he more heat that must be rejected. To maintain �T cw 

at the

onstant set point, the local feedback controller must increase the

ooling water flowrate to cope with the increasing system cooling

oad. 

The heatmaps of the maximum system COP are similar un-

er three variable-speed controllers. The peak system COP appears

hen T wet is approximately 25 °C and the system cooling load is

pproximately 1484 kW for the following reasons: (1) The chillers

n the case system are both screw chillers, and they reach peak

OP when the PLR (partial load ratio) is approximately 70–80%

59] . When the system cooling load is approximately 1484 kW,

he cooling load on each chiller is 742 kW, and the PLRs on both

hillers are 70%, close to the optimal PLR, which leads to a high

ystem COP value; (2) The lower the value of T wet , the easier it is

or this system to reject heat to the outdoor environment [60] . 

.4. System water temperature distribution under four control 

ethods 

The simulation results of the system water temperature are il-

ustrated in Fig. 15 , which indicates the following. 

The system T cwr does not change substantially with the con-

rollers, because T cwr is primarily influenced by T wet , which is

hown in Fig. 9 (f). Under basic control, the values of �T cw 

are gen-

rally smaller than those under variable-speed control because the

requency of the cooling water pumps remains unchanged (50 Hz)

nder basic control, which leads to high flowrate and low delta-T

n the cooling water loop [61] . 
Together with the energy consumption results in Section 4.1 , it

s noted that �T cw 

is positively correlated with the energy con-

ervation performance of a control method because the pump fre-

uency and pump power are negatively correlated with the �T cw 

61] . When the system is operating at partial load conditions, re-

ucing the pump frequency could significantly reduce the pump

ower with a limited sacrifice in chiller COP. In brief, when chiller

peration is not optimized, a controller that better optimizes pump

peration is more likely to conserve more energy for the entire

ystem. 

.5. Randomness of the proposed model-free controller 

As is shown in Eq. (4) , the optimization policy of the proposed

odel-free controller contains uncertainty and randomness. Thus,

n this study, the simulations under the model-free control are all

epeated five times independently to cope with this issue. The en-

rgy consumption results are listed in Table 9 . The standard de-

iations of chiller energy, pump energy, cooling tower energy and

ystem energy are all less than 2.5% of the corresponding average

alues. The diversity of cooling tower energy is the largest because

he frequency of cooling tower fans is adjustable within 30–50 Hz

hich is wider than the 35–50 Hz of cooling water pumps. And

he diversity of chiller energy is not evident because as is men-

ioned in Section 4.1 , the control on the cooling water system does

ot evidently influence the chiller COP. 

.6. Performance evolution of the proposed model-free controller in 

onger period 

To better investigate the evolution of the proposed model-free

ontroller, five independent rounds of ten-episode simulation are

onducted. A ten-episode simulation is realized by continuously

imulating the system operation under the model-free control for

en times of the period from 19th June to 18th September, end to
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Table 9 

Energy consumption of five independent runs. 

Direction of simulation 

Cooling tower 

energy 

consumption (kWh) 

Cooling water 

pump energy 

consumption (kWh) 

Chiller energy 

consumption (kWh) 

System energy 

consumption (kWh) 

Forward Round 1 13 269 35 179 361 972 410 420 

Round 2 12 746 33 932 362 421 409 099 

Round 3 12 698 34 383 362 100 409 181 

Round 4 13 207 34 668 362 362 410 237 

Round 5 13 419 34 592 362 301 410 312 

Average 13 068 34 551 362 231 409 850 

Standard deviation 325 453 188 651 

Reverse Round 1 12 905 35 032 362 056 409 993 

Round 2 12 644 34 807 361 903 409 354 

Round 3 12 958 35 007 362 138 410 103 

Round 4 13 159 35 059 362 055 410 273 

Round 5 13 031 35 517 361 744 410 292 

Average 12 939 35 084 361 979 410 003 

Standard deviation 191 261 157 383 

Fig. 16. Evolution of the energy saving performance in ten episodes. 
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end. As is shown in Fig. 16 , the energy saving rate of the model-

free controller improves evidently in the first two episodes; af-

terwards the performance gets stabilized between 12% and 13%.

Two reasons could account for this: (1) the p value is defined as

the number of total simulation steps in one episode, which results

in more exploitation instead of exploration after the first episode;

(2) the cooling load data and weather data do not change with

episodes, which limits the learning of the controller after the first

episode. 

5. Conclusion and future work 

5.1. Conclusion 

A model-free optimal control method based on reinforcement

learning is proposed in this paper to control the building cool-

ing water system. In the proposed method, discretized wet bulb

temperature and system cooling load are the states, the frequen-

cies of the fans and pumps are the actions, and the rewards are

the comprehensive COP of the chillers, cooling water pumps, cool-

ing towers. A measured data-based simulation is conducted under

the supervision of four types of controllers: basic controller, local

feedback controller, model-based controller, and proposed model-

free controller. The three-month simulation results indicate that

the model-free controller was able to function and evolve simul-

taneously during the system operation period. 

Compared with the basic controller, the model-free controller

could conserve 11% of the system energy, which is more than that

of the local feedback controller at 7% but less than that of the
odel-based controller at 14%. Although the energy conservation

erformance of the model-free controller is inferior to that of the

odel-based controller, the model-free controller requires less a

riori knowledge and sensors to function, which makes it more ap-

licable in the engineering practice. 

For a central chilled water system with a scale is similar to that

f the case system, three month’s learning in the cooling season

s sufficient to develop a model-free controller with acceptable en-

rgy conservation performance. In this case study, simulations are

onducted on a laptop with 8G RAM, i7-8650U CPU. The hourly op-

imization by the model-free controller takes less than one second,

hich is sufficient for engineering practice, and the model-based

ontroller takes ten seconds for one optimization. 

Finally, the proposed model-free method is not intended to re-

lace the model-based method, but to offer an alternative to the

uildings whose accurate system performance models are not ac-

essible due to the lack of data or sensors. 

.2. Future work 

The optimization of chillers and chilled water pumps are not

ncluded in this study. Because the energy-saving performance of

he optimal chiller loading has been validated in many studies, it

s promising and meaningful to apply model-free control to op-

imization of the operation of chillers and even the entire cen-

ral chilled water system. Additionally, in this paper, the proposed

ethod is only validated on the system composed of identical

ooling units (identical chillers, identical cooling water pumps and

dentical cooling towers). The performance of the proposed method
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n systems with multiple sized units is worth further investigation.

urthermore, the optimization of cooling water pumps and cooling

owers are performed independently in this study, thus a better

ooperation mechanism is worth further investigation 
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Fig. 18. Distributions and co-distributions of the pre-processed training data of the chiller COP model. 
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