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In the domain of optimal control for building HVAC systems, the performance of model-based control
has been widely investigated and validated. However, the performance of model-based control highly de-
pends on an accurate system performance model and sufficient sensors, which are difficult to obtain for
certain buildings. To tackle this problem, a model-free optimal control method based on reinforcement
learning is proposed to control the building cooling water system. In the proposed method, the wet bulb
temperature and system cooling load are taken as the states, the frequencies of fans and pumps are the
actions, and the reward is the system COP (i.e., the comprehensive COP of chillers, cooling water pumps,
and cooling towers). The proposed method is based on Q-learning. Validated with the measured data
from a real central chilled water system, a three-month measured data-based simulation is conducted
under the supervision of four types of controllers: basic controller, local feedback controller, model-based
controller, and the proposed model-free controller. Compared with the basic controller, the model-free
controller can conserve 11% of the system energy in the first applied cooling season, which is greater than
that of the local feedback controller (7%) but less than that of the model-based controller (14%). More-
over, the energy saving rate of the model-free controller could reach 12% in the second applied cooling
season, after which the energy saving rate gets stabilized. Although the energy conservation performance
of the model-free controller is inferior to that of the model-based controller, the model-free controller
requires less a priori knowledge and sensors, which makes it promising for application in buildings for
which the lack of accurate system performance models or sensors is an obstacle. Moreover, the results
suggest that for a central chilled water system with a designed peak cooling load close to 2000 kW, three
months of learning during the cooling season is sufficient to develop a good model-free controller with
an acceptable performance.
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1. Introduction

The heating, ventilation and air-conditioning (HVAC) system
consumes more than half of the total energy required for a build-
ing [1-4]. The cooling water system, also known as the condenser
water system, is an essential subsystem of HVAC system. The cool-
ing water system includes cooling water pumps, cooling towers,
chiller condensers, and possibly water side economizers [5]. Cool-
ing water systems are intended to discharge the heat rejected by
the chillers. Operation of a cooling water system is essential to the
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chiller COP (coefficient of performance), which significantly influ-
ences the energy consumption of the entire HVAC system [5,6].
However, a cooling water system also uses energy during its op-
eration. To reduce the energy consumption of HVAC systems, the
trade-off between cooling water system energy and chiller energy
should be considered, thus revealing the importance of cooling wa-
ter system optimal control [7]. The objective of this study is to in-
vestigate a novel optimal control method for a cooling water sys-
tem.

1.1. Optimal control of cooling water systems in buildings

Optimal control methods, can be classified into model-based
control, model-free control, hybrid control and performance map-
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Fig. 1. Typical workflow of model-based control methods.
Nomenclature PLR Partial load ratio
CcC Chiller cooling capacity, kW
Cooling water system variables, Units CL Cooling load, kW
Tehws Chilled water temperature (outlet of chillers), °C RL Reinforcement learning
Tehwr Chilled water temperature (inlet of chillers), °C AHU Air handling unit
Tewr Cooling water temperature (inlet of chillers), °C HVAC  Heating, ventilation and air-conditioning
Tews Cooling water temperature (outlet of chillers), °C
Fenw Chilled water flowrate, m3/h
Few Cool?ng water flowrate, m3/h ) based control [8]. Among these four optimal control methods,
Few, ¢ Co301mg water flowrate through a cooling tower, model-based control is most frequently investigated. As illustrated
m /h ] 5 in Fig. 1, the typical workflow of model-based control consists of
Few, ¢ Cool{ng water ﬂowratg through a chiller, ”17 /h : several steps: (1) Establish an accurate system model with histori-
G Specific thermal capaqty of water, kJ - kg™ - K~ cal data or other prepared information; (2) acquire real-time mon-
Tehws, set Tenws Set point of a chiller, °C itored data; (3) use the optimization algorithm to search the opti-
Twet Ambient wet bulb temperature, °C mal control action based on the prediction of the system model.
foump  Pump operating frequency, Hz Typical model-based control methods for building cooling water
frower Cooling tower fan operating frequency, Hz systems are reviewed as following. They are in accordance to the
P Electrical power, kW workflow in Fig. 1.
. . . Ma and Wang [9] developed a fault-tolerant optimal control
Reinforcement learning variables . .
. . method for condenser cooling systems. The method is composed
S Last state (environment) of the learning agent . .
, - of a model-based optimal control process and an online fault de-
S Current state of the learning agent . . o .
. . tection scheme. This method adopted simplified equipment mod-
a Last action (operating frequency) taken by the . . .
. els to model the performance of chillers and cooling towers. With
learning agent . .
, . . . system cooling load CLsystern, and the ambient wet-bulb tempera-
a A potential action that learning agent may execute ; . .
. ture Tyer as the real-time environmental data, the optimal control
in the current state . . . -
. actions (number of operating cooling towers, and the set point of
r Reward to the agent for the last action at last state . . . ..
Q Q-value in Q-table Tewr) are determined by a hybrid quick search method to maximize
the overall system coefficient of performance (SCOP).
Accuracy indices Yao et al. [10] built empirical performance models of the
MAPE Mean absolute percentage error chillers, pumps and cooling towers with field test data to predict
CV(RMSE) Coefficient of variation of root-mean-square error the system energy consumption under different operation condi-
) tions, including different chilled water flowrates F,,, cooling wa-
cop Coefficient of performance ter flowrates Foy and Tqs values of the chillers. To enhance the
system COP, these variables are optimized given the uncontrollable
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environmental variables, namely, the ambient wet-bulb tempera-
ture Twer, and T, Of each operating chiller. In other studies, Yao
et al. [11,12] adopted state-space method to establish the model of
HVAC system and refrigeration system. In doing so, each compo-
nent of the system is modeled with matrixes, which could benefit
the integration of component models.

Huang et al. [13] proposed a cooling tower control strategy for
legacy chiller plants composed of multiple chillers, multiple cool-
ing towers, primary chilled water pumps of constant speed, and
condenser water pumps of constant speed. As a model predictive
control method, this strategy adopted a novel model to predict
chiller power and cooling tower power based on the predicted Tyt
and system cooling load [14]. The set point of Ty, is optimized to
minimize the total power of chillers and cooling towers.

Wang et al. [15] proposed an event-driven optimization method
for the building HVAC system. Unlike conventional optimization,
which is triggered by a time point, this method is triggered by
certain events (chiller on/off and chiller PLR change by 7%) within
a predefined event space. The HVAC system model established by
Wang [16] was adopted as the system performance model. The set
points of four variables are optimized to reduce the system oper-
ation cost: the cooling water supply temperature (Tews) from the
chiller(s), the chilled water supply temperature (T,s) from the
chiller(s), T, from the heat exchanger(s), and the supply air (SA)
temperature of the air handling units (AHU).

As for a model-based control method, the basic system model
along with the parameters, and the real-time monitored data are
usually defined as necessary preconditions for the applied system
to provide (typically from manuals or historical data). Hence, the
applicability of a model-based control method highly depends on
the difficulty satisfying these requirements. These two essential
preconditions of the selected studies are listed in Table 1.

The defects of model-based control are discussed in Section 1.2.
And model-free control studies are reviewed in Section 1.3, to-
gether with an introduction to reinforcement learning.

1.2. Defects of model-based control

As introduced in Section 1.1, the energy conservation perfor-
mance of model-based optimal control methods has been inves-
tigated in a number of studies. The defects of model-based control
are also quite obvious:

1.2.1. Dependence of a priori knowledge

As listed in Table 1, most model-based control methods are
based on multi-variate models, the parameters of which need to
be determined by regression of field test data or historical oper-
ational data. Field test data requires manual labor and measure-
ment instruments; historical data requires sufficient sensors imple-
mented in the targeted system. These cost and requirements can
affect the applicability of model-based control methods. Moreover,
the number of required real-time monitored variables determines
how many sensors must be implemented in the targeted system
during the optimized operation, which influences the practicability
of a control method, too.

1.2.2. Risk of the model uncertainty

Model uncertainties could strongly affect the performance of
the model-based controller. Zhu et al. [23] argued that the uncer-
tainties of model error could be classified into two types: model
structure error and model parameter error. Model structure er-
ror is the result of model simplification. Model parameter error is
mainly caused by faulty historical data; historical data is usually
adopted in regression to determine the parameters/coefficients in
the equipment model [24,25]. Moreover, even if the initial model

Table 1

Characteristics of selected model-based optimal control methods.

Required real-time monitored data

Definition of model parameters

Equipment models

Reference

Equipment manual System cooling load CLsystem
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is perfectly accurate, its accuracy might decrease due to unavoid-
able system degradation.

Sun et al. [26] analyzed the calculation error of the chiller ca-
pacity resulting from model simplification and evaluated the accu-
racy of the calculation result using the confidence level. When the
calculation result exceeds the confidence interval, it should be re-
vised. Li et al. [27] investigated the model prediction error of the
chiller cooling capacity and observed the chiller capacity calcula-
tion results from the simplified model and that the sophisticated
model differed by approximately 4%.

1.3. Application of reinforcement learning (RL) in building system
control

Reinforcement learning (RL), focuses on design of a learning
agent that adapts its own actions based on an environmental re-
ward to achieve a predefined goal (e.g., acquire the most reward)
[28]. Actions taken by the agent depend on the agent’s own expe-
rience accumulated during the game instead of a priori knowledge.
In the building control field, research has been conducted to apply
RL to the model-free control.

De Gracia et al. [29] developed a model-free control method
based on RL techniques to optimize the open-close action of a
phase change material (PCM) ventilated facade [30]. In this study,
the temperature of the PCM is taken as the state of the RL agent,
and the reward is the thermal energy obtained by the facade mi-
nus its own electrical energy consumption.

Valladares et al. [31] adopted deep reinforcement learning
method to optimize the operation of AHUs and ventilation fans.
In their study, a comprehensive objective function composed of
four variables (Predicted mean vote (PMV) index, CO, concentra-
tion, AHU power and ventilation fan power) with four weight fac-
tors is proposed and used as the reward. Indoor temperature set
point and the on-off signal of ventilation fan are selected as control
actions. And the state of the system contains a group of quantities
including indoor temperature, ambient temperature, CO, concen-
tration, PMV index, ambient humidity, average radiant temperature
and occupancy amount in the controlled room. After the training
with a ten-year dataset, the RL agent could save 4-5% of the sys-
tem energy with accepted PMV values and CO, concentration.

Zou et al. [32] implemented deep deterministic policy gradient
to optimize the operation of the AHU. Two virtual environments
were established using long-short-term-memory (LSTM) networks
based on two-year measured operational data to approximate the
real HVAC operations. The LSTM built with the first-year data was
used to train the RL agents, and the other LSTM built with the
second-year data was used to test the control performance of the
trained agents. In their study, the state is defined with a com-
bination of multiple parameters including environmental parame-
ters and system operation parameters; the reward is composed of
predicted percentage of discomfort (PPD) and system energy con-
sumption; and the action is defined as the combination of four
sub-actions: damper position, heating valve status, fan speed, and
liquid solenoid status. The test results indicate that the weights of
PPD and energy consumption could influence the control perfor-
mance of the RL agents. After proper tuning of weight factors, the
agents could save 27-30% of AHU energy comparing to the actual
energy consumption, while maintaining the PPD at 10%.

Henze et al. [33] adopted the Q-learning method to optimize
the charge-discharge action of energy storage equipment and in-
vestigated methods for choosing the state variables (i.e., state-of-
charge, cooling loads, and real-time pricing rates) when the reward
variable varies from the time-of-use utility rates to real-time pric-
ing utility rates. In that study, the controller agent was established
based only on a statistical summary of plant operation, without
any prediction or system models.

1.4. Motivation and structure of this research

As discussed in Section 1.2, the greatest defect in model-based
control is that it highly depends on accurate system models and
sufficient sensors, which are difficult to provide for certain build-
ings. To tackle the optimal control problem in these buildings, a
model-free control method based on RL techniques is proposed in
this paper for the control of building cooling water systems.

Section 2 presents the control methodology. Section 3 dis-
cusses a measured-data based simulation case study that compares
the energy-conservation performance of the model-based control
method, basic control method, local feedback control method and
the proposed model-free control method. The simulation results
are illustrated and analyzed in Sections 4, and 5 concludes this pa-
per.

2. Methodology
2.1. Overview

Applied RL algorithm: Q-learning, which is a classical RL method
based on the Q-table. The mechanism of Q-learning makes it easy
to converge and easy to be realized in programming [28]. Com-
pared with deep reinforcement learning techniques which are usu-
ally based on networks, Q-learning is more feasible in engineering
practice. In the HVAC domain, studies have been carried out to in-
vestigate the performance of Q-learning in controlling energy stor-
age equipment [33-35], lighting [36],and ventilation systems [37].

2.1.1. Applied condition

The proposed method is for a cooling water system composed
of identical units (i.e., identical chillers, identical cooling towers,
and identical cooling water pumps). Also, the chilled water sys-
tem corresponding to the targeted cooling water system should be
a decoupled system (constant primary chilled water flowrate and
variable secondary chilled water flowrate) [38]. An example of the
investigated system’s layout is illustrated in Fig. 3.

2.2.2. Optimization objective
The optimization objective is the system COP, which is calcu-
lated by Eq. (1).

CLsystem
System COP = a4 1
Y Pchillers + Pcwps + Ptowers ( )

where CLgystem is the system cooling load (kW), Pgjers is the to-
tal power of all chillers (kW), Payps is the total power of all cool-
ing water pumps (kKW), and Pgowers is the total power of all cooling
towers (kW). The total energy consumption of the chillers, cool-
ing water pumps and cooling towers is referred to as the “system
energy consumption” in this paper.

2.2.3. Requirements on prepared knowledge and real-time data
inputs

The proposed method needs prepared information prior to ap-
plication, i.e., system layout, history weather data and equipment
characteristics on name plates. No models needed. And the re-
quired real-time data includes system cooling load, ambient wet
bulb temperature, and equipment power.

2.2.4. Optimized variable (control action)
Operating frequencies of cooling tower fans and cooling water
pumps.
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Fig. 2. Workflow of the proposed method (the states, actions and Q values in this figure are merely shown as an example).

2.2.5. Optimization interval

Additionally, the optimization interval should be set between
twenty to sixty minutes when applying the proposed method be-
cause of two reasons: (1) the action taken by an untrained con-
troller is stochastic, thus shorter optimization interval may result
in oscillating behavior; (2) the RL-based controller needs accurate
environmental feedback (i.e., the reward) to evaluate the last taken
action, and it takes time for the system to stabilize after each con-
trol action.

As shown in Fig. 2, the workflow of the proposed control
method is composed of several steps:

A At the beginning of each time step, the amount of equipment
that must operate is determined using the sequencing on-off
control method, which is discussed in Section 2.2.

B The real-time measured data (wet bulb temperature and sys-
tem cooling load) of the cooling water system are discretized
to the state (s’) to match the structure of Q-tables. This step is
demonstrated in Section 2.3.

C The frequency of the cooling tower fans is optimized using the
Q-learning method: (1) Search the tower Q-table for the maxi-
mum Q-value in the current state (s’); (2) update the Q-value of
the last state (s) using updating formula (Eq. (2)) with the sys-
tem COP (Eq. (1)); and (3) determine the optimal frequencies
for the cooling tower fans using a certain optimization policy
and the updated tower Q-table. Details are given in Section 2.4.

D Optimize the frequency of running cooling water pumps in the
same manner as in Step C. Note, Steps C and D are in parallel,
the order of these two steps does not matter.

E Execute the on-off control signals and optimal frequency con-
trol signals on the system.

F Record the current state (s’) as s, because the current time step
is ending, and the current state will be regarded as the last
state in the next time step.

2.2. Sequencing on-off control

As introduced in Section 2.1, in the beginning of each time step,
the on-off status of each equipment should be controlled before
the optimization of frequencies. The following rules are adopted to
determine proper on-off signals.

(1) The entire central chilled water system remains in the off con-
dition if the system cooling load is less than 50% of one chiller’s
rated cooling capacity [17-19,38,39].

(2) While the cooling system is operating, all cooling towers are
run to optimize the energy consumption tradeoff between the
chillers and cooling towers, according to the studies of Braun
and Hartman [7,40].

(3) The number of chillers required is determined based on the
system cooling load. When the system cooling load exceeds
105% of the current system cooling capacity, one additional
chiller is switched on [27,41,42]. The “k” in Fig. 2 represents
the total number of chillers in the applied system.

(4) The on-off status of the cooling water pumps and primary
chilled water pumps are coordinated to the status of the
chillers. In other words, when chiller 1 is switched on/off,
cooling water pump 1 and primary chilled water pump 1 are
switched on/off [43].

(5) The frequency of each operating primary chilled water pump is
maintained at a nominal value because the targeted system is a
decoupled system, the primary chilled water flowrate of which
remains constant to protect the chillers [18,44].

(6) For each running chiller, the set point of chilled water supply
temperature (Tepys se¢) iS held equal to its nominal Tepyys.

2.3. Configuration and initialization of two Q-tables

In this method, the frequencies of cooling water pumps and
cooling tower fans are optimized by two RL agents using the Q-
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Table 2

Format of the Q-table.
AS  Twer, 1,05 CC Ty 1,06 CC ... Twet, 1»(k-0.1) CC Tye, 1,k CC
fi Q (s1, 1) Q (s2, a1) Q (sn-1, a1) Q (sn, a1)
f2 Q (s1, 1) Q (s2, a2) Q (Sn-1, A2) Q (sn, a2)
fm  Q(s1, am) Q(sz, am) e Q (sn-1, am) Q (sn, am)

learning method. And the tower Q-table and pump Q-table should
be configured and initialized in the following way.

2.3.1. State

The state in this study is defined as the combination of the dis-
cretized ambient wet bulb temperature (Twe:) and the discretized
system cooling load (CLsystem) because (1) these two variables are
not influenced by the system operation; (2) the system cooling
load is an essential variable in the operation of the central chilled
water system [17,18,20,27,41,45,46]; (3) Twe: could significantly in-
fluence the cooling capacity of cooling towers, which is impor-
tant to the performance of the entire central chilled water system
[7,10,47,48].

These two continuous variables are discretized as follows: (1)
Twet is discretized to an integer (e.g., 24 °C, 25 °C), and the range
of discretized Ty (i.e., 24-28 °C, 23-29 °C, or else) should be spec-
ified according to the historical weather data of the city in which
the applied system is located; (2) The system cooling load should
be discretized according to the cooling capacity (CC) of each chiller
of the applied system, and if the system includes k chillers alto-
gether, then the system cooling load should be discretized to 0.5,
0.6, ...... , k CC (e.g., when the measured cooling load is 0.57 CC,
then it should be discretized to 0.6 CC); (3) the real time values of
these two discretized variables are taken as the real time state, e.g.,
(24 °C, 530 kW). All combinations of these two discretized vari-
ables are taken as the state space (i.e., Q-table columns).

2.3.2. Reward
The system COP calculated by Eq. (1) is regarded as the reward,
same as the optimization objective.

2.3.3. Q-value

The meaning of the Q-value in this method is the system COP,
in accordance with the optimization objective. The Q-values should
be initialized 15-20% higher than the nominal system COP to en-
courage the RL agents to search for optimal control actions.

2.3.3. Action

The frequency set point of a pump or a cooling tower fan
is taken as the action in this method. The values of the actions
should be limited within a reasonable range considering capac-
ity allowance, according to the system manager and equipment
manual, to protect the hardware devices (e.g., the frequency of a
variable-speed pump is typically limited above 20 Hz). The preci-
sion of frequency is 1 Hz in this method.

The abovementioned discretization precisions of the states and
actions are defined with consideration of the exploration cost.
Higher precision results in a larger Q-table (i.e., larger action space
and larger state space), which could benefit the control perfor-
mance of a well-trained model-free controller, because (1) the
identification of the state would be more accurate; (2) the control
action would be more precise. But a larger Q-table also requires a
longer period and more data to train the controller by updating Q
values in the table [28].

Table 2 is an example of the Q-table in this study, where [ is
the number of possible Tye: values, m is the number of available
actions, and n is the number of states. Two RL agents optimize

the cooling water pumps and cooling towers respectively and each
agent uses one Q-table.

2.4. Decision-making and Q-table updating

During the “game”, a Q-learning agent must accumulate expe-
rience by updating the Q-table. The updating principle of the Q-
learning agents is described by Eq. (2) [28]:

Q@s, a) < Q(s, a) +a[r+ ymang(s’,a/) —Q¢s. a)] (2)

where Q(s,a) is the Q-value corresponding to the last state (s) and
last action (a), r is the reward resulting from action (a), « is the
learning rate (which is defined 0.9 in this study to accelerate the
agents’ learning), and y represents the impact of future reward on
the decision of the current action. In this study, y is set to 0.01 be-
cause the agent action does not affect the next state, which means
that in every time step, the pump agent and tower agent only need
to focus on how to maximize the current reward instead of the to-
tal reward over the long term. max Q(s’,a’) is the max Q-value at
a

state (s’) according to the current Q-table. In the proposed method,
the agents’ Q-tables should be updated for the entire system life to
cope with continuing system degradation [23].

In every time step, the agents must determine the next action
based on the Q-table and a certain policy. In this study, a modi-
fied version of the e-greedy policy [28] is developed for the agents
to determine the next actions. The original e-greedy policy is de-
scribed by Eq. (3):

e
1-e+ — if a=argmaxQ(s,a)
m(als) =1 ¢ m ‘ (3)

= if a# argmaaxQ(s, a)

where ¢ is the predefined parameter that determines the balance
between exploration and exploitation, m is the number of prac-
tical actions at state (s), and m(a|s) is the probability that a cer-
tain action is chosen at state (s). Eq. (3) means that in each time
step, the probability that an agent chooses the known best action
is 1-e+ £, and the probability that the agent chooses another
action is £.

In the e-greedy policy, the & value does not change with the
passage of time, which means that the balance between explo-
ration and exploitation is never changed during the game [28]. To
improve this mechanism, a modified version of the e-greedy policy
is developed herein. The modified version of the ¢-greedy policy in
this study is described by Eq. (4):

0xf Qo 1
1+10><% > Q(, a) 1+10><%
if a=argmaxQ(s,a)
QG a) 1 ‘
QG a)  1+10x ¢
ifa;éargmuaxQ(s, a)

m(als) =

where q is the number of passed time steps, and p is a prede-
fined parameter representing the initial period of agents’ learning,
which should be defined based on the length of a cooling season
and the optimization interval of the applied system. For instance,
for a system which is (1) used ten hours every day; (2) optimized
hourly; (3) located in a city with four-month long cooling sea-
sons, it is recommended to set p by 4 month x 30 day x 10 hour x
1 optimization per hour = 1200. In this study, p is defined as 2208
because the length of the case study is three months, and the case
system operates 24/7 with hourly optimization (24x92x1 = 2208).
Eq. (4) is explained in the following way.

At the start of system operation, the agent lacks experience.
In this situation, the probability that an action is selected is
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Table 3
Cooling water system characteristics (nominal system COP = 5.83).

Equipment Number Characteristics

Screw chiller 2

Nominal: COP = 6.639, cooling capacity = 1060 kW, power = 159.7 kW, variable speed, cooling water flow rate = 195 m?/h,

chilled water flow rate = 131 m?/h, cooling water temperature = 30.5/35.5 °C, chilled water temperature = 10/17 °C

Chilled water pump 2
Cooling water pump 2
Cooling tower

Nominal: power = 12.0 kW, flowrate = 150 m?/h, head: 24 m, variable speed
Nominal: power = 14.7 kW, flowrate = 240 m?/h, head: 20 m, variable speed
Nominal: power = 7.5 kW, flowrate = 260 m?*/h, variable speed

Cooling tower 1

Cooling water pump 1 542
>

-
Fa)
& i
-w s Cooling tower 2

Cooling water pump 2

_ =N
- {
>
- .
Primary chilled ~ Chiller 1

water pump 1

e

N

Primary chilled Chiller 2
water pump 2
Bypass pipe

Secondary chilled

water pumps

Fig. 3. Layout of the central chilled-water system.

nearly proportional to its Q-value. And there is a small bonus

(bonus = on the probability that the optimal action is se-

X P )
1+10x §
lected. In other word, exploration is encouraged.

As time passes (q increases), the agent becomes more willing
to choose the action with the maximum Q-value (bonus increased)
while other actions can still be chosen, and the probability of each
nonoptimal action to be selected is proportional to its Q-value. In
brief, exploitation is more heavily encouraged as time passes.

When q reaches p, the bonus of the optimal action is %, which
means that the probability that the optimal action is selected is ap-
proximately 10 times the summed probability of the other actions.
Meanwhile, the initial learning process is finished. The exploration
of the agent will continue after the initial learning period, with a
continuous reduction of exploring probability (i.e., continuous in-
crease of the bonus).

3. Measured data-based simulation case study
3.1. Case system

A real HVAC system in a metro station in Guangzhou city is
adopted as the case system. The equipment characteristics pro-
vided by the manufacturer are listed in Table 3. The two chillers
are identical, as are the other three types of appliances. The layout
of the case system is illustrated in Figs. 3, and 4 show a photo of
the real system. The chilled water system in the case is a decou-
pled system, as introduced in Section 2.1. Measured weather data
(Fig. 5) and measured system cooling load data (Fig. 6) are adopted

Fig. 4. Photo of the real system (Chiller 2).

as the simulation input. Measured operational data (Fig. 7) of the
real system is used to establish the simulation model.

The control strategy of the real case system includes: (1) the
temperature of supplied chilled water at the header pipe is con-
trolled at 10 °C. The number of operating chillers is adjusted man-
ually by the management engineer based on weather and passen-
ger flow; (2) the number of running cooling water pumps and
chilled water pumps is equal to the number of operating chillers;
(3) the frequencies of operating cooling water pumps are adjusted
equally to keep the AT, (the difference between Tqyr and Teys)
at 3.3 °C (the frequency is restrained within 35-50 Hz); (4) the
frequency of the cooling tower fan is adjusted to maintain the ap-
proach (the difference between Tqyr and Tye) at 2.5 °C (the fre-
quency is restrained within 30-50 Hz); (5) the number of op-
erating cooling towers is adjusted manually by the management
engineer, most time both cooling towers operates simultaneously;
(6) primary chilled water pumps typically operate at nominal fre-
quency. Note, the set point values (3.3 °C and 2.5 °C) are deter-
mined empirically by the management engineer of the real case
system.

The control strategy above is also reflected by the measured
data in Fig. 7: (1) ATw does not change much with time or sys-
tem working condition; (2) T, is maintained at approximately
10 °C; (3) F.y does not evidently vary with time, while Fqy is on
the contrary; (4) Tewr is basically stable at 29 °C because Ty is
quite stable during the investigated period (Fig. 5)

As is shown in Figs. 6(b) and 7, the measured data con-
tains missing values and measurement faults. Hence the measured
data needs pre-processing before being used for the model setup.
Fig. 6(b) shows the distribution of the missing data in the cooling
load measurement. In this case study, missing data of cooling load
is filled with interpolation. Specially, when both sides of a missing
series are zero values, this missing series is filled with zeros; in
other words, the system is considered off during this period.

And for the operational data used for model establishment
(Section 3.2), the pre-processing is realized in three steps: (1)
abandon data items including missing values; (2) select data items
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Fig. 5. Measured weather data (hourly), (a). Measured data after interpolation, (b). Missing data in the cooling load measurement (blanks represent missing data).

Table 4
Thresholds for the pre-processing of training data.
Equipment Thresholds
Chiller 80 < Fgy < 160,and3 < COP < 10,and Fy, ¢ > 150

Cooling water pump
Cooling tower

35 Sfpump < 50,and 50 < Fqy
30 < frower < 50,and 50 < Fy, ¢ < 260

with thresholds defined in Table 4 for each equipment to be mod-
eled. This step is intended to drop the data which may be affected
by measurement faults or unstable operation; (3) use Hoteling's T-
square test (95% confidence level) to remove the extreme outliers
[49].

3.2. Simulation system model based on measured data

The hourly simulation case study is conducted on the Python
3.6 platform, and the simulation system model is built according
to the layout and characteristics of the real case system. The sim-
ulation process Fig. 8) imitates TRNSYS [50]. In each time step,
the system receives inputs and begins calculation, the system vari-
able values are updated by one equipment model, and the val-
ues are subsequently circulated in the entire system, from equip-
ment to equipment. The iteration does not stop until the variable
values converge. In this study, Eqs. (8)—((11) compose the chiller
model; Eqs. (6) and (7) compose the pump model; and Egs. (5) and
(6) compose the cooling tower model. As Fig. 8 shows, the variable
values are circulated in these three equipment models until Ty,
converges (i.e., the difference of Ty, between current iteration cir-
cle and the last iteration circle is less than 0.2 °C). If the Ty does
not converge within 50 iteration circles, then the iteration will be
stopped and the result of the last circle will be adopted.

In detail, the chiller COP and cooling tower outlet water tem-
perature (Teyr) are simulated by random forest, a classical regres-
sion model proposed by Breiman [51-53]. In this study, random
forest regressors are trained and validated by the measured op-
erational data (from 19th June to 18th September) of the real
system. The power of the pumps and fans is modeled with the
conventional frequency-power formula Eq. (6)). The coefficients in
Eq. (6) are determined by regression with measured data. Egs. (9)-
((11) are conventional equations used to calculate the other inter-
mediate variables. For Eq. (7), the flowrate through a cooling water
pump is calculated simply with similarity because the pipeline re-
sistance does not change substantially in a cooling water system.

Tewr = Random forest regressor (Tews, ftowers Twets Fewt) (5)

P=af?+bf+c (6)
_ fpump

Fow = ——— X Eyomina (7)
fnominal

COPpijer = Random forest regressor (CL, Tewr, Tenwrs Tehwss Fewc)

(8)
CL
e ™ COPpitter Y
Cp x Fope x
Tews = Tewr + (Penitter + CL) + (W) 1o
Cp x Fopyy X

Tepws = max [Tchws, sets Tc/hwr - ¢/ (W>]

__ +CL/(M) "
chwr = fchws 3600s/h

where CL is the cooling load on the chiller (kW), CC is the nomi-
nal cooling capacity of the chiller (kW), Tewr is the temperature of
the cooling water returning to the chillers from the cooling tow-
ers (°C), Tepwr is the temperature of the chilled water returning to
the chillers (°C), T/, . is Tepwy Of last time step, Tepys is the tem-
perature of the chilled water leaving the chillers (°C), Few, ¢ is the
cooling water flowrate through the chiller condenser (m*/h), Few, ¢
is the cooling water flowrate through a cooling tower (m*/h), C, is
the specific heat capacity of water = 4.2 KkJ/(kg*K), o is the water
density = 1000 kg/m?, F,, is the chilled water flowrate through
the chiller evaporator (m?/h), P is the electrical power (kW), f is
the frequency (Hz), a, b, and c are coefficients to be determined,
Fromina 1S the nominal flowrate of a cooling water pump (m?3/h), Few
is the flowrate through a cooling water pump (m?/h), and Pjge, is
the chiller power (kW).

The coefficient of variation of the root-mean-square error
(CV(RMSE), Eq. (12)) and the mean absolute percentage error
(MAPE, Eq. (13)) are adopted as the error indices to assess the ac-
curacy of the abovementioned equipment models [54-56]. The ac-
curacy of the models is illustrated in Fig. 9 and Table 5.

n ~\2
CV (RMSE) = —”Z‘z:}fyj’/_yl) (12)
i=1JYi
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(a). Measured data after interpolation

(b). Missing data in the cooling load measurement (blanks represent missing data)

Fig. 6. Measured system cooling load data (hourly, kW).

Table 5
Error index values of equipment models and the system model.

Tewr model of cooling Overall system

Cooling tower  Cooling water

Chiller COP model tower model
fan power pump power
Train set Test set Trains set Test set model model Tewr Tews
MAPE 0.60% 1.75% 0.24% 0.67% 1.58% 2.69% 1.39% 1.43%
CV(RMSE)  0.90% 2.59% 0.36% 1.01% 2.31% 3.43% 2.71% 2.62%
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Fig. 7. Measured operational data of the real system, (all variables in this figure are of the header pipe, e.g., Foy is the total flowrate of cooling water in the system).
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Fig. 8. Simulation process at one time step (solid lines represent the iteration loop of the simulation process, and dashed lines represent the input and output procedure of
the iteration loop).

The error index values in Table 5 are all less than 5% [57], which

verifies the accuracy of equipment models. It should be noted that

x 100% (13) the datasets of COP and T, models are split randomly and inde-
pendently, into a training set (80%) and a test set (20%) (the ran-
dom seed of the COP model dataset is different from that of the
Tewr model dataset), because the regressors used to simulate COP

yi —¥i

.l n
MAPEzﬁg

1

where n is the number of data points, y; is the ith measured value,
and y; is the ith predicted (simulated) value.
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and Teyr are black-box models, and their generalization must be
validated by test sets, which are not used in model training. How-
ever, the datasets of the pump power and fan power are not split
because the model of the pump and fan power is a conventional
white-box model for which the accuracy has been validated, and
thus, there is no need to validate its generalization [52].

Moreover, a validation simulation is conducted to verify the
accuracy performance of the overall system model. This valida-
tion simulation is based on measured cooling load data, measured
weather data and especially measured control signals of the real
system. This work is intended to restore the real operation history
of the case system (from 19th June to 18th September), and Tewr
and Tqys are selected as two variables to evaluate the model accu-
racy. Validation results are illustrated in Fig. 9(g) and Table 5.

Additionally, an important feature of the random forest is that it
is not able to extrapolate, which could result in inaccurate output
when the input combination is “special” compared to the training
data. As for this case study, the variety of the training data is im-
portant to this issue. The more variable the training data is, the
more robust the trained regressor is. Figs. 17 and 18 are attached
in the appendix to show the distribution and co-distribution of the
pre-processed training data. And these two figures indicate that
the variety of the training data is acceptable because (1) corre-
lations among variables are poor, except for the Frequency-Power
relationship and the Tye — Tewr relationship; (2) the distributional
width of each variable is not evidently restricted except for the
Tehws, but it should not be a concern because T, is constantly
set to 10 °C (within the range of the training data) in the follow-
ing simulation case study.

Note that the system performance model is established only
for simulation of system operation. The knowledge of the system
performance is not embedded in the proposed model-free con-
troller. Only the system layout, weather data, and information on
the equipment name plates (Table 3) are embedded in the model-
free controller prior to simulated operation.

3.3. Realization details of proposed method and three comparative
control methods

In this study, three other control methods are simulated to-
gether with the proposed method to validate the performance of
the proposed method. The sequencing on-off control process of
these four control methods are the same as in Section 2.2, and
the frequencies of the cooling water pumps and cooling tower fans
are controlled in different ways by four controllers. The frequen-
cies of all running chilled water pumps are 50 Hz. The set point
of the chilled water supply temperature (Tcpys se¢) is 10 °C (nom-
inal value) under four controllers. Because the two cooling water
pumps are identical, their frequencies are set equal when they are
run simultaneously. The frequencies of two cooling tower fans are
set equally as well.

As mentioned in Section 2.3 and according to the management
engineer or equipment manuals, the frequencies of the variable
speed appliances should be limited to protect the hardware. In
this simulation, the frequency of a cooling water pump is limited
within 35-50 Hz, and the frequency of a cooling tower fan is lim-
ited within 30-50 Hz. Three comparative methods are described
below.

3.3.1. Basic control method

The frequencies of all running cooling tower fans and cooling
water pumps are set at 50 Hz. This control method is considered
as the baseline control method in this study.

Table 6
Initial Q-table (cooling tower) in the case study.

A\S 24 °C,530 kW ... 24 °C, 2120 Kw ... 28 °C, 2120 kW
30Hz 7 7 7
31Hz 7 7 7
50Hz 7 7 7

3.3.2. Local feedback control

The control strategy of the real system which is introduced
in Section 3.1 is partly adopted herein as a comparative control
method. Specifically, frequencies of cooling water pumps and cool-
ing towers are adjusted as introduced in Section 3.1 in every sim-
ulation time step. While the sequencing on-off control process is
the same as in Section 2.2, which differs from the real system.

3.3.3. Model-based control

Accurate performance models of all equipment (i.e., Egs. (5)-
(11)) are embedded in the model-based controller prior to the sim-
ulated operation. In every time step (i.e., every hour) of the sim-
ulation, the model-based controller goes through all of the poten-
tial operation plans (frequencies of pumps and fans) and predicts
the corresponding energy consumption of each operation plan with
the simulation process described in Section 3.2. The operation plan
with the maximum system COP (Eq. (1)) is selected and executed
on the system model. Note that the traversal step of the operation
plans is 1 Hz, which means in every time step, the model-based
controller attempts (pump: 35 Hz, tower: 30 Hz), (pump: 36 Hz,
tower: 30 Hz), ...... , (pump: 50 Hz, tower: 50 Hz) to find the opti-
mal pair of frequency sets.

In this case study, model-based control, local feedback control
and model-free control are referred to “variable-speed control”, in
contrast to the basic constant-speed control. Note, technically the
local feedback controller is also free of models, but the term of
“model-free controller” in this case study is only referred to the
proposed model-free controller.

For the Q-table in the case study, the states are specified ac-
cording to the measured weather data and system rated cooling
capacity. The real time wet bulb temperature is discretized to (24,
25, 26, 27, 28 °C). The discretized real time cooling load is (530,
636, ...... , 2014, 2120 kW). The action options are restricted as
mentioned. The initial values of the Q-table are set to 7, which
is slightly higher than the nominal system COP. Specifically, the
Q-table of the cooling tower in the case study is initialized as in
Table 6, the shape of which is 80 statesx21 actions. The Q-table
of the cooling water pump is similar to Table 6, but actions range
from 35 Hz to 50 Hz, the shape of pump Q-table is 80 statesx16
actions.

4. Results and discussion

The operation of the case system from 19th June to 18th
September is simulated on an hourly basis under the supervi-
sion of four control methods. The simulation results are discussed
from several aspects: energy consumption, learning process of
the model-free controller, control actions taken by different con-
trollers, system water temperature, randomness of the model-free
controller, performance evolution of the model-free controller in
a longer period. Because the decision-making procedure of the
model-free controller contains uncertainty and randomness, the
simulation under the model-free control is conducted five times
independently, details are given in Section 4.5.
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Table 7
Energy consumption of case system under four control methods.

Cooling tower

Cooling water

energy pump energy Chiller energy System energy
Direction consumption (kWh)  consumption (kWh)  consumption (kWh)  consumption (kWh)
Real system measurement 23 260 54 634 380 379 458 273
Basic control Forward/Reverse 28 235 72 964 362 995 464 194
Local feedback control Forward/Reverse 18 814 48 316 361 974 428 924
Model-based control Forward/Reverse 8 722 28 151 360 772 397 645
Model-free control Forward 13 068 34 551 362 231 409 850
(five- round average) Reverse 12 939 35 084 361 979 410 003

4.1. Energy consumption

The three-month energy consumptions of the system under
four control methods are listed in Table 7. Compared with the ba-
sic controller, the local feedback controller can conserve 7% of sys-
tem energy (summary of chillers, cooling water pumps and cooling
towers), the model-free controller can conserve 11% of the system
energy, and the model-based controller can conserve 14% of the
system energy.

Table 7 indicates that when controlled by the basic control
method, the case system requires the most energy, mainly due to
the unnecessary use of cooling water pumps and cooling towers.
Local feedback control performs better than basic control in terms
of energy conservation because this control method adjusts the
frequencies of the pumps and tower fans to maintain AT, and the
cooling tower approach at predefined set points. However, the en-
ergy conservation capability of the variable speed pumps and fans
is not fully utilized under this control method because (1) the set
points of AT, and the cooling tower approach are predefined at
a low level by the management engineer of the actual system, and
(2) these set points are constant instead of adaptive during system
operation.

Moreover, Table 7 shows that the chiller energy consumption is
slightly influenced by the control method. That is because accord-
ing to Fig. 9(e), chiller COP is slightly influenced by Tewr and Fey, ¢,
both of which vary with the control logic (Fig. 15).

The energy conservation performance of model-free control is
better than that of local feedback control but worse than that
of model-based control because (1) compared with local feedback
control, the model-free controller continues to learn and evolve by
searching for the optimal set points; (2) unlike the model-based
controller, the model-free controller is not embedded with the his-
torical operation data and equipment performance models, indi-
cating that the model-free controller must learn from square one
to build its own experience, which leads to the gap between the
model-free controller and model-based controller.

Fig. 10(a) illustrates the daily energy conservation amounts
(scatters) of the three variable-speed control strategies compared
with the basic control. The scatters indicate that in the beginning
of operation, the energy saving rates of all three variable speed
controllers are unstable because the cooling load data is variable
in the beginning. On the contrary, the scatters after 60 days are
closer to regressed lines because the working condition of the sys-
tem is more stable in this period.

Moreover, Fig. 10(a) shows that the model-free controller out-
performs the local feedback controller in the very beginning, when
the model-free controller is not sufficiently trained. That is because
in this study, the set points of two controlled variables (AT, and
cooling tower approach) are set at a low level, which makes the
local feedback controller in this study tends to keep equipment op-
erating at high frequencies (Fig. 14(c)). Hence, in many situations
(especially when the partial load ratio of running chiller(s) is high),
the control signals determined by the local feedback controller are

close to the ones by the basic controller. Besides, according to
Fig. 7, the real system controlled by a real local feedback controller
also kept the Fqy, at a high level on both sides of the investigated
period. The abovementioned is why an untrained model-free con-
troller could outperform the local feedback controller in the begin-
ning.

Three regression lines represent the daily energy conservation
trends of three variable-speed control methods, which all show up-
ward trends because the system cooling load is slightly decreased
after 30th July, and partial load working conditions are more suit-
able for variable-speed control methods in conservation of energy
in terms of pumps and tower fans.

In order to better expose the learning effectiveness of the pro-
posed model-free control method, simulations are conducted once
more in the reversed direction, from 18th September to 19th June,
under the supervision of four controllers. Still, five independent
simulations are conducted for the model-free controller in this re-
versed direction. The simulation results of basic controller, local
feedback controller and model-based controller do not change with
the simulation direction because (1) the system model is basically
independent of time sequence; (2) the control logic of these three
controllers are deterministic. As is shown in Fig. 10(b), without
the benefit of the input data, the regression line of the proposed
method is nearly horizontal, unlike the other two variable speed
controllers which go downwards due to the input data. This could
verify the effectiveness of the reinforcement learning process.

Parameters of regression lines are listed in Table 8. Slope values
could prove the improvement of the model-free controller due to
the learning process. Meanwhile, the standard deviations of slopes
suggest that the regression confidence of the model-free control
result is the best, which is also verified by the shade areas in
Fig. 10 (95% confidence intervals).

4.2. Learning process of the model-free controller

As is shown in Fig. 11, the reward (i.e., the comprehensive sys-
tem COP) of the model-free controller is accumulated almost lin-
early during the simulated operation. That is because (1) the com-
prehensive system COP is mainly determined by the chiller COP,
which is typically within the range of 7-9 according to Fig. 18; (2)
the chiller COP is not evidently influenced by the operation of the
cooling water system (Fig. 9(e)). Moreover, Fig. 11 indicate that the
direction of learning (from heating period to cooling period or on
the contrary) does not substantially influence the learning effec-
tiveness, which is also reflected in Table 7. Additionally, the re-
verse line is slightly above the forward line because the cooling
load after 30th July is lower, and the case system is more efficient
at partial-load working conditions.

Because the learning process is not evidently influenced by the
learning direction, the following content including Sections 4.2-4.4
will be discussed merely based on the results of simulations in for-
ward direction.

Fig. 12 shows trends of three variables: accumulated number
of updated pump Q-table entries, accumulated number of updated
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Table 8
Parameter of regression lines.

Forward simulation Reverse simulation

Slope value  Standard deviation of the slope  Slope value  Standard deviation of the slope

Local feedback control 1.620 0.514 -1.620 0.514
Model-free control (five- round average) 1.389 0.364 0.004 0.338
Model-based control 1.038 0.399 —1.038 0.399
Direction
L e Forward
12000 ~ —— Reverse
=
g 10000
o
B 8000
T
g 6000
3
g 4000
2000
0

0 500 1000 1500 2000
Simulation steps

Fig. 11. Accumulated rewards of learning processes in two directions.
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Fig. 13. Co-distribution of the system cooling load and Tye;.

tower Q-table entries, and accumulated number of occurred states.
These three lines indicate that (1) almost all possible states have
occurred at least once in the first month of system operation (0-
700 steps); (2) the exploration of two RL agents is most evident
in the first month of learning; (3) the accumulated number of
updated Q-table entries stabilizes between 400 and 500 for both
pump Q-table and tower Q-table, which is far from the total en-
try amount of the defined Q-table (tower Q-table: 1280, pump
Q-table: 1680). This gap exists because the state is normally dis-
tributed as Fig. 13 shows, and the control actions at rare states
could not be sufficiently explored without a long period. But that
would not affect the performance of the proposed controller be-
cause only the control decision at typical, regular states really mat-
ters to the controller’s performance (Pareto’s law), and the learning

at these states is always quickly accomplished because these states
occur frequently.

4.3. Frequency set points and system COP under three variable-speed
controllers

Fig. 14 shows the optimal frequency set points and maxi-
mum system COP values under three variable-speed controllers. It
should be noted that during the simulation, some states (such as
Twer = 24 °C and system cooling load = 2120 kW) did not occur
even once. Thus, in Fig. 14, the values at these states are blank.
Additionally, the results of the model-free controller represent the
policy after the learning of the first cooling season (from 19th June
to 18th September). The following are inferred from this figure.
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Fig. 14. Frequency set points and system COP of three variable-speed control methods, (a) Model-free control, (b) Model-based control, (c) Local feedback control.

Compared with model-free control and local feedback control, was embedded with accurate performance models for all equip-
model-based control sets lower frequencies for the pumps and ment, which means that it could accurately predict the outcome
cooling tower fans. The system COP values of the model-based con- energy consumption caused by each control action; (2) the model-
troller are higher than those of the other two. The excellent perfor- based controller is designed to search for the frequency set points
mance of the model-based controller is due to three aspects: (1) it to achieve the maximum system COP in each time step; and (3)
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out of upper and lower limits).

Table 3 suggests that the cooling water pumps and cooling towers
of the case system are actually oversized for the case chillers, thus
revealing additional potential for energy conservation [5].

Under local feedback control, the cooling water pump frequency
is highly correlated with the system cooling load because the heat
rejected by the chillers must be transferred by the cooling water
pumps to the ambient environment. The higher the cooling load,
the more heat that must be rejected. To maintain ATqy at the
constant set point, the local feedback controller must increase the
cooling water flowrate to cope with the increasing system cooling
load.

The heatmaps of the maximum system COP are similar un-
der three variable-speed controllers. The peak system COP appears
when Ty, is approximately 25 °C and the system cooling load is
approximately 1484 kW for the following reasons: (1) The chillers
in the case system are both screw chillers, and they reach peak
COP when the PLR (partial load ratio) is approximately 70-80%
[59]. When the system cooling load is approximately 1484 kW,
the cooling load on each chiller is 742 kW, and the PLRs on both
chillers are 70%, close to the optimal PLR, which leads to a high
system COP value; (2) The lower the value of Ty, the easier it is
for this system to reject heat to the outdoor environment [60].

4.4. System water temperature distribution under four control
methods

The simulation results of the system water temperature are il-
lustrated in Fig. 15, which indicates the following.

The system T.y does not change substantially with the con-
trollers, because Ty, is primarily influenced by Tye:, Which is
shown in Fig. 9(f). Under basic control, the values of AT, are gen-
erally smaller than those under variable-speed control because the
frequency of the cooling water pumps remains unchanged (50 Hz)
under basic control, which leads to high flowrate and low delta-T
in the cooling water loop [61].

Together with the energy consumption results in Section 4.1, it
is noted that ATq, is positively correlated with the energy con-
servation performance of a control method because the pump fre-
quency and pump power are negatively correlated with the ATqy,
[61]. When the system is operating at partial load conditions, re-
ducing the pump frequency could significantly reduce the pump
power with a limited sacrifice in chiller COP. In brief, when chiller
operation is not optimized, a controller that better optimizes pump
operation is more likely to conserve more energy for the entire
system.

4.5. Randomness of the proposed model-free controller

As is shown in Eq. (4), the optimization policy of the proposed
model-free controller contains uncertainty and randomness. Thus,
in this study, the simulations under the model-free control are all
repeated five times independently to cope with this issue. The en-
ergy consumption results are listed in Table 9. The standard de-
viations of chiller energy, pump energy, cooling tower energy and
system energy are all less than 2.5% of the corresponding average
values. The diversity of cooling tower energy is the largest because
the frequency of cooling tower fans is adjustable within 30-50 Hz
which is wider than the 35-50 Hz of cooling water pumps. And
the diversity of chiller energy is not evident because as is men-
tioned in Section 4.1, the control on the cooling water system does
not evidently influence the chiller COP.

4.6. Performance evolution of the proposed model-free controller in
longer period

To better investigate the evolution of the proposed model-free
controller, five independent rounds of ten-episode simulation are
conducted. A ten-episode simulation is realized by continuously
simulating the system operation under the model-free control for
ten times of the period from 19th June to 18th September, end to
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Table 9
Energy consumption of five independent runs.
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Cooling tower

Cooling water

energy pump energy Chiller energy System energy

Direction of simulation consumption (kWh)  consumption (kWh)  consumption (kWh)  consumption (kWh)

Forward Round 1 13 269 35179 361 972 410 420
Round 2 12 746 33 932 362 421 409 099
Round 3 12 698 34 383 362 100 409 181
Round 4 13 207 34 668 362 362 410 237
Round 5 13 419 34 592 362 301 410 312
Average 13 068 34 551 362 231 409 850
Standard deviation 325 453 188 651

Reverse Round 1 12 905 35 032 362 056 409 993
Round 2 12 644 34 807 361 903 409 354
Round 3 12 958 35 007 362 138 410 103
Round 4 13 159 35 059 362 055 410 273
Round 5 13 031 35 517 361 744 410 292
Average 12 939 35 084 361 979 410 003
Standard deviation 191 261 157 383
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Fig. 16. Evolution of the energy saving performance in ten episodes.

end. As is shown in Fig. 16, the energy saving rate of the model-
free controller improves evidently in the first two episodes; af-
terwards the performance gets stabilized between 12% and 13%.
Two reasons could account for this: (1) the p value is defined as
the number of total simulation steps in one episode, which results
in more exploitation instead of exploration after the first episode;
(2) the cooling load data and weather data do not change with
episodes, which limits the learning of the controller after the first
episode.

5. Conclusion and future work
5.1. Conclusion

A model-free optimal control method based on reinforcement
learning is proposed in this paper to control the building cool-
ing water system. In the proposed method, discretized wet bulb
temperature and system cooling load are the states, the frequen-
cies of the fans and pumps are the actions, and the rewards are
the comprehensive COP of the chillers, cooling water pumps, cool-
ing towers. A measured data-based simulation is conducted under
the supervision of four types of controllers: basic controller, local
feedback controller, model-based controller, and proposed model-
free controller. The three-month simulation results indicate that
the model-free controller was able to function and evolve simul-
taneously during the system operation period.

Compared with the basic controller, the model-free controller
could conserve 11% of the system energy, which is more than that
of the local feedback controller at 7% but less than that of the

model-based controller at 14%. Although the energy conservation
performance of the model-free controller is inferior to that of the
model-based controller, the model-free controller requires less a
priori knowledge and sensors to function, which makes it more ap-
plicable in the engineering practice.

For a central chilled water system with a scale is similar to that
of the case system, three month’s learning in the cooling season
is sufficient to develop a model-free controller with acceptable en-
ergy conservation performance. In this case study, simulations are
conducted on a laptop with 8G RAM, i7-8650U CPU. The hourly op-
timization by the model-free controller takes less than one second,
which is sufficient for engineering practice, and the model-based
controller takes ten seconds for one optimization.

Finally, the proposed model-free method is not intended to re-
place the model-based method, but to offer an alternative to the
buildings whose accurate system performance models are not ac-
cessible due to the lack of data or sensors.

5.2. Future work

The optimization of chillers and chilled water pumps are not
included in this study. Because the energy-saving performance of
the optimal chiller loading has been validated in many studies, it
is promising and meaningful to apply model-free control to op-
timization of the operation of chillers and even the entire cen-
tral chilled water system. Additionally, in this paper, the proposed
method is only validated on the system composed of identical
cooling units (identical chillers, identical cooling water pumps and
identical cooling towers). The performance of the proposed method
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on systems with multiple sized units is worth further investigation.
Furthermore, the optimization of cooling water pumps and cooling
towers are performed independently in this study, thus a better
cooperation mechanism is worth further investigation
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