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A B S T R A C T

For power grid operations, a large body of research focuses on using generation redispatching, load shedding or
demand side management flexibilities. However, a less costly and potentially more flexible option would be grid
topology reconfiguration, as already partially exploited by Coreso (European RSC) and RTE (French TSO) op-
erations. Beyond previous work on branch switching, bus reconfigurations are a broader class of actions and
could provide some substantial benefits to route electricity and optimize the grid capacity to keep it within safety
margins. Because of its non-linear and combinatorial nature, no existing optimal power flow solver can yet tackle
this problem. We here propose a new framework to learn topology controllers through imitation and re-
inforcement learning. We present the design and the results of the first “Learning to Run a Power Network”
challenge released with this framework. We finally develop a method providing performance upper-bounds
(oracle), which highlights remaining unsolved challenges and suggests future directions of improvement.

1. Introduction

Grid operators are in charge of ensuring that a reliable supply of
electricity is provided everywhere, at all times. However, their task is
becoming increasingly difficult under the current steep energy transi-
tion. On one hand, we observe the advent of intermittent renewable
energies on the production side and of prosumers on the demand side,
coupled to the globalization of energy markets over a more and more
interconnected European grid. This brings a whole new set of actors to
the power system, adding lots of uncertainties to it. On the other hand,
recent improvements in terms of energy efficiency have put an end to
the total consumption growth, and de facto to the growth in revenues,
thus limiting new costly investments. Public acceptance with regard to
the installation of new infrastructure is also a growing issue. This shifts
the way we traditionally develop the grid, from expanding its capacity
by building new power lines, to optimizing the existing one as it is,
closer to its limits, with rather digital means and every flexibilities at
our disposal.

Currently, operators must analyze massive amounts of data to take
complex coordinated decisions over time with higher reactivity, to
operate under an ever more constrained environment with greater
control. An under-exploited flexibility, which could alleviate in part the
problem, is the grid topology, as already pointed out by early work

[1]. This avenue is explored in the present paper. As of today, it is still
beyond the state-of-the-art to control optimally such grid topology “at
scale”, beyond the level of “branch switching” [2] (e.g. considering
more complex actions such as “bus splitting”), because of the non-linear
and combinatorial nature of the problem. Lately, we demonstrated an
augmented expert system ability [3] to discover steady-state tactical
solutions to unsafe grid states by relying on bus splitting. Its acceptable
computational time opens new perspectives for a revival of such class of
actions. In addition, novel and more flexible actions should also be
considered today, intervening not only instantaneously as a tactic rather
independently of other decisions, but over a time horizon as a strategy to
manage more numerous overlapping and interfering decisions. To ex-
ploit such a complex array of actions, optimal control methods [5] have
been explored but are hard to deploy in control rooms because of
limited computing budget constraints.

With the latest breakthroughs in Artificial Intelligence (AI) from
AlphaGo at Go [4] and Libratus at Poker [5], Deep Reinforcement
Learning (RL) seems a promising avenue to develop a control algo-
rithm, a.k.a. an artificial agent, able to operate a complex power system
at scale near real-time and over time, assisted by existing advanced
physical grid simulators. Recent work [6] has already shown the value
of Deep Learning for accelerating power flow computation and im-
proving risk assessment applications for power systems, demonstrating
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its ability to model such system behavior, adding more credit to the
Deep RL potential. RL formulations have already been applied to spe-
cific power system related problems (see [7] for a review), but not for
continuous power system real-time operations, a problem for which no
test cases existed today, probably limiting any subsequent develop-
ment. Related applications concern the unit commitment problem with
an interesting multi-stage formulation [8], but on an intra-day time-
frame with rather simplistic assessment of intra-day real time opera-
tion. These authors also promote leveraging the capabilities of Deep RL
as a catalyst for successful future works. They finally insist on the real-
world challenge of Safe-RL to manage for instance a power system for
which contingencies, and related overloads, rarely occur but need to be
closely managed, to avoid cascading failures and subsequent blackouts.
More broadly, Safe-RL is a hot research topic in the whole RL com-
munity to eventually address real-world challenges for critical systems
[9].

In line with those recent developments and in order to foster further
advances both within the power system and RL communities, we open-
sourced a new platform to build and run power system synthetic en-
vironments to further develop and benchmark new controllers for
continuous near-real time operations. We indeed built and released a
first IEEE14 environment test case upon which we organized a com-
petition ‘Learning to run a Power Network’ (L2RPN) with an emphasis
on the challenging use of topological flexibilities and the safety ro-
bustness requirement. The L2RPN competition which we will present
and analyze here, takes some inspiration from the ‘Learning to run’ [10]
competition, whose goal was to learn a controller of a human body to
walk and run. This was an opportunity for bio mechanical researchers
to successfully address their problem together with the RL community.

The following paper is organized as follows: first we present an
overview of the objective and results of this first L2RPN competition.
We further review the design and modeling of the related test en-
vironment. We then propose a conceptual Markov Decision Process
framework to analyze the nature of the problem for a given test en-
vironment. Finally we describe the results through a comparative
analysis of the best submitted agents and other baselines, and give
conclusions.

2. The L2RPN competition

Challenge overview
This first L2RPN competition ran over 6 weeks starting on May 2019

over the Codalab challenge platform. It was based on the pypownet
[11] open-sourced framework1 relying on openGym RL framework. 100
participants signed in, 15 of which were particularly active with many
submissions every week. Fig. 1a shows the 7 best participants who all
achieved interesting and successful scores, with a mix of RL, other
Machine Learning (ML), expert system and tree search approaches we
comment in Section 5. They all succeeded in beating simple baselines
used to design the challenge, and RL approaches achieved the best re-
sults.

The goal of the competition was to operate the power grid in real-
time over several days at a 5 minute time-resolution. More precisely,
the aim was to manage the powerflows i (in Amperes) at every time-
step t, given injections x, aka production and loads, and grid topology
denoted by τ. The score function gave incentives to optimize the mar-
gins through all lines, in order to maximize the overall residual grid
capacity ΔCg, given power lines capacities imaxl, aka thermal limits:

⎜ ⎟= ⎛
⎝

− ⎞
⎠

∀ ∈Margin t i t
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l L( ) max 0, 1 ( ) ,l
l
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To manage the grid, an agent could solely use topological actions in
Aτ, on both lines L and substations Sub, during that challenge, while

meeting further operational constraints on actions and overloads. Some
actions could be illegal, violating some operational rules further de-
scribed in Section 3, or result in a diverging powerflow computation,
most likely due to some voltage issues. Choosing an illegal action re-
sulted in a null score at that time-step. To assess an agent performance,
the following score at time-step t was used as a proxy for ΔCg :
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Every line somewhat contributes to the real-time power grid capa-
city, represented by the sum in the score. But already loaded lines
should affect more the residual capacity of the grid as they soon become
bottlenecks to transmit more power over the grid. This is why more
value should be given on increasing the margins of already loaded lines,
while increasing the margin of a line not very loaded does not add up to
the overall capacity. We chose = − −f x x( ) 1 (1 ) 2 shown in Fig. 1b in
that prospect. Optimizing ΔCg eventually contributes to minimizing
power losses on the grid, smoothing the power line usage to avoid
materials aging too quickly, and maximizing the grid flexibility which
are all today’s challenges for power grids in most developed countries.

Finally, and most importantly, overload Ovl (that happen when
> =i imaxl l) had to be solved dynamically to avoid line disconnection

and further cascading failures. Any cascading failure resulted in a game
over and a null score for a scenario s, putting a strong penalty on not
being secure:
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T
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Formalizing the score objective as a maximization problem of positive
gains allows us to easily define a penalty as a null score if some rules of
the environment are violated.

Evaluation
Along the competition, participants could submit their agent on the

Codalab platform2 to be tested on unseen validation scenarios. A score
was computed for each scenario and revealed to the participants, in
addition to the time-step of game over if one occurred. At the end of the
competition, participants were assessed on new 10 secret test scenarios
similarly chosen, as described in Section 5, with no other information
than their cumulative score. Finally, to reflect one main characteristic
of real-time operations for which time is limited, resulting in a trade-off
between exploration and exploitation, participants would only get a
score if they managed to finish their scenario within an allocated 20-
minute time budget as shown on Fig. 1a. It was calibrated as being 10
times the running time of the most simple baseline: a do-nothing (DN)
agent. Expert Systems and tree-search approaches appeared to be slow,
since they relied more extensively on simulations, and had to limit their
exploration to meet the time constraint.

Benefits of a Challenge
While reproducibility is a hot issue for scientific research and fur-

ther model deployment, a challenge format looks appealing to avoid
some pitfalls. Indeed, a challenge acts as a benchmark whose goal is to
decouple the problem modeling from a solver implementation.
Compared to the fine-tuning of ones own method, a challenge aims at
giving equal chance to every field expert to tune its solution in a given
time slot and compare against one another. Its success also depends on
the clarity of the submitted problem, on the ergonomy and robustness
of its platform, on the transparency of its results, with an intrinsic need
of reproducibility to faithfully deliver ones score and reliably announce
the winners. Finally, winners had to open-source their code3 to obtain

1 GitHub for pypownet framework: https://github.com/MarvinLer/pypownet

2 The challenge has been re-enacted and is open for post-challenge submis-
sions at https://competitions.codalab.org/competitions/20767

3 Benchmark competition & video plus github of winning approaches at l2rpn.
chalearn.org
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the price, further enforcing reproducibility.

3. Challenge design

The difficulty of setting up this kind of challenge lies in the fact that
one has to design a whole synthetic and interactive environment to test
controllers (like a video game), and not just release fixed dataset. We
designed it following 3 guiding principles:

1. Realism : the environment should represent real-world power
system operational constraints and distributions.

2. Feasibility : solutions should exist to finish scenarios under the
available actions given game over conditions.

3. Interest : harder scenarios should be challenging to finish and most
scenarios should be complex to optimize.

There is a natural trade-off in making a game interesting and fea-
sible: a most interesting game will more likely be more difficult with
potential feasibility issues arising.

Now a Grid World, aka an environment for a power grid, is the
combination of the following components:

• A power grid (with substations and powerlines of different char-
acteristics) and a grid topology τ

• Real-time injections x(t), next time-step forecasts x(̂t+1)

• Lines Capacities imaxl and additional operational rules

• Events such as maintenance and contingencies

The power flows il(t) are computed by a power-flow simulator. The
platform then allows some interactions for an agent with that en-
vironment through actions aτ(t). Participants had the option to simulate
the effect of their action before choosing one, but using some compu-
tation time budget. To assess how feasible and interesting an environ-
ment is for agents, we defined the following simple baseline agents :

• a “do nothing” (DN) agent that remains in the reference topology τref
and which is already robust most of the time, much better actually
than taking random, and mostly stupid, actions.

• a single topology agent (DNτ), which is a DN agent running in a
constant topology τ distinct from τref.

• a greedy (GR) agent that simulate do-nothing and all unitary actions
at a given time-step, and take the most immediately beneficial one.

These agents can finish all together most scenarios, while

highlighting hard to complete ones. Let’s now describe in more details
the different steps of the challenge design.

Choosing a Power Grid and define topology τ
To be realistic, we first chose a grid among common IEEE power

grids. For that first challenge, we chose a minimalist grid to better
ensure feasibility and help analysis, but yet a grid for which topological
actions could still be useful to manage it. Such a grid needed to be
meshed with several electrical paths. We hence chose the IEEE14 grid
as it is a meshed grid with 2 West and East corridors between a meshed
South Transmission Grid and a meshed North Distribution Grid. Even
with only 14 substations, the number of potential overall configura-
tions, hence the combination of discrete actions, is tremendous: this is a
true curse of dimensionality. For such a size, we however did not
consider the occurrence of contingencies and maintenance since it will
most often lead to infeasibilities. Overloads were only the result of peak
productions or peak loads in certain areas of the grid.

The reference topology τref is the base case topology, fully meshed,
with every line in service and single electrical node per substations.
However, up to two electrical nodes are possible per substation, mod-
eled as a 2-bus bar.

The topology can be changed by actions aτ(t) ∈ Aτ, that can be of
two kinds :

• Binary Line switching al (220 possible actions)

• Bus bar switching of elements at a substation abusi ( +2 *20 2 16) for 20
lines and 16 injections

There are as many actions as there are topology configurations.
Eventually, the number of reachable configurations at a given time is
limited by considering some operational rules.

Generating Injections x(t) and Forecasts x̂(t+1)
While the IEEE 14 grid only had initially thermal production, we

introduced renewable wind and solar plants as depicted on Fig. 2 to
better represents today’s energy mix and dynamics, to consider mana-
ging related issues. The total load consumption profile follows the
French consumption one and individual loads are computed given a
constant key factor from the original IEEE case on Fig. 3. Solar and
wind power also follow French related distribution with correlations
between wind and solar. The nuclear power plant is a baseload, slowly
varying and the thermal power plant compensates for the remaining
production required for balancing (see Fig. 3). For this challenge, we
restricted the distribution of injections to be representative of winter
months over which we observe peak loads. Next time frame forecast
were also provided for injections x with 5% gaussian noise uncertainty.

Fig. 1. 1a Final leaderboard of the L2RPN competition with cumulated scores and computation time. 1b Instantaneous line margin score function.
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Line capacities imax and operational rules:
The second part of the game design was about setting up the right

thermal limits (no thermal limits are given for the IEEE14 case) so that
some overloads appear, not all being easily solvable, but many of being
solvable by at least a baseline to remain feasible. From the grid struc-
ture perspective, only 2 electrical corridors exist as illustrated on Fig. 2.
We cannot allow both of them being overloaded at the same time, since
there will not exist any more path to reroute electricity with topology to
relieve all overloads. We hence chose to preferably constrain line ca-
pacities on the West Corridor (buses 2 → 5 → 6 → 13), while keeping
spatial consistency for line capacities overall from a grid development
perspective. Overloads eventually appear 3% of the time over those
lines in the scenarios running DN agent. Other lines had their capacities
rated above the max power flow observe in the reference topology.

To make the game more interesting, we also want to have a spread
distribution on the time of occurrence of overloads as shown on Fig. 4.
Running an ensemble of expertly selected DNτ baselines (see Table 1)
solves 85% of the overloads. This demonstrates that our game is both
feasible, and has some difficult interesting situations (following our
guiding principles). Also, the GR baseline does not perform well on all
scenarios : this agent tends to get stuck in bad local configurations.

Finally, real-world problems get complex because of operational
constraints. We chose to model the following ones:

• reaction time – time to react to an overload before the line get
disconnected by protections, 2 time-steps here.

• activation time – there is a maximum number of actions that a
human or a technology can perform in a given time period, one
action per substation here.

• recovery time (cooldown) – due to physical properties of the assets,
there is some time after activation before a flexibility can be

reactivated, set to 3 time-steps here.

You can look at flexibilities as a kind of budget. When you use one,
you consume part of your budget before recovering it some time after.
This induces some credit assignment problem. Let’s now formalize the
whole problem under those settings with the generic framework of
Markov Decision Processes.

4. Problem formalization

Markov Decision Processes (MDPs) [12] are useful and general ab-
stractions to solve a number of problems in optimization and control.
Please refer to the RL introduction book for all concepts in this section
[12]. We decide to formalize our problem here using this MDP frame-
work, which will help determine the nature of the problem under dif-
ferent settings. An MDP is generally represented by a tuple ⟨S, A, P, r, γ⟩
with:

Fig. 2. a) IEEE14 Grid and production localizations. b) Two existing electrical corridors between Transmission and Distribution Grids.

Fig. 3. a) Production, thermal and renewable, profiles over a typical month of January. b) Load profiles, all similar modulo a proportionality factor.

Fig. 4. Number of overloads per day and hours over 50 monthly representative
scenarios. Overloads mainly appear on weekdays at peak load hours or under
peak solar production around noon on the distribution grid.
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• S the state space of observations from the environment.

• A the action space, the potential agent interactions with the en-
vironment.

• P the stochastic transition function +p s t s t a t( ( 1)| ( ), ( )) which
computes the system dynamics. It defines a Markovian assumption.

• =r t r s t a t( ) ( ( ), ( )) the immediate reward function.

The policy determines the next action +a t( 1) as a function of s(t)
and r(t). The policy can adapt itself (by reinforcement learning) to
maximize the expectation (over all possible trajectories) of this func-
tion:

∑=
= +

− −G t γ r k( ) ( )
k t

T
k t

1

1

(4)

where γ ∈ [0, 1] is the discount rate.
Our L2RPN problem is actually a two-factor MDP (Fig. 5), a special

case of MDP in which the state S is a quadruplet:

• ϵ: unobserved influences on inputs x.

• x: observed inputs of the system, not influenced by the actions of the

agent.

• τ: other observed inputs of the system, influenced by the actions of
the agent.

• y: observed outputs of the system, =y x τF ( , ).

Function F specifies the system of interest and y is essentially here
powerflows il and overloads Ovl. F is a function of two factors x and τ
(continuous injections and discrete topology in our case). The ‘ob-
served inputs’ x may or may not be organized in a time series. In our
case they are. Injections are continuous time-series. For τ, it is only
changing under limited agent actions and some rare events such as
contingencies and maintenance.

The agent’s actions only influence τ. Although there are many ways
in which τ(t); x(t); y(t) could influence (t+1) variables, we only con-
sidered the following :

• x → x: injections are continuous time series.

• τ → τ : agent’s ”position” +τ t( 1) is constrained by past positions
τ(t) given the limited action rule, de facto limiting the freedom of the
agent to influence y.

• y→ τ: overloaded flows can lead to line disconnections, or cascading
failure, hence influencing the topology.

• τ → a: recovery time constrains future actions.

Without operational constraints and robustness consideration of
cascading failures, the problem is mostly an instance of the contextual
bandit more specific case on Fig. 5 (only → +x t x t( ) ( 1)) under which
more specific algorithms than RL can be preferred and perform quite
well. Adding τ → τ by limiting instantaneous actions makes it a regular
RL problem. Our platform could actually run this latter setting as an
easy mode to make an agent’s training easier at first. However the
problem we proposed in this first challenge, our hard mode, already
involved some more complexity as depicted on Fig. 5. Successful ap-
proaches in the easy mode would not necessarily work in the hard
mode, especially since it involves robustness issues in the latter case.

These causal diagrams are hence useful for understanding the pro-
blem proposed. It helps the designer anticipate if modeling a new
constraint will change the nature and complexity of the problem and it
helps the participant select the appropriate class of methods to solve it.
In particular, RL and other ML methods indeed appeared suited for this
first challenge as expected.

Table 1
(a) Selected unitary actions at subs and lines for oracle. In bold, the ones used
previsously for thermal limit design (b)bNormalized scores for SD and LB
agents, compared to an oracle with 100 points. There still exists an optimization
gap to improve on.

Felxibility id Target config. Scenario SD LB

Sub 6 1 [0, 0, 0, 0, 1, 1] 1 72,5 61,5
2 [0, 1, 0, 0, 1, 1] 2 -10,5 90,2

Sub 5 1 [0, 1, 0, 0, 1] 3 53 82,5
2 [0, 0, 1, 0, 1] 4 49,5 81,5

Sub 4 1 [0, 0, 1, 0, 1, 0] 5 47,5 70,0
2 [0, 0, 0, 1, 1, 0] 6 48 47
3 [1, 0, 1, 0, 1, 1] 7 19,5 63
4 [1, 0, 1, 0, 1, 0] 8 39,5 77,5

Sub 9 1 [1, 0, 1, 0, 1] 9 52,5 93
2 [0, 0, 1, 0, 1] 10 56,5 56,5
3 [1, 1, 0, 1, 1]

Sub 2 1 [1, 1, 0, 1, 0, 1]
2 [1, 1, 0, 1, 0, 0]

Lines 2–4, 5–6 0 [0]
10–11, 13–14 1 [1]

Fig. 5. a) Contextual Bandit framework. b) L2RPN MDP formalization.
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5. Result analysis

We now review the challenge results, by first describing the prop-
erties of the scenarios on which participants were tested, and giving a
description of the best agents. Then we analyze the agents behavior on
these. We eventually present a post-analysis of their performance.
Finally we propose an oracle approach to derive a near upper-bound for
the scores, to better assess the optimization gap of the agents.

Validation and test scenarios
In order to select interesting scenarios, we tried to combine multiple

criteria that were identically set for both validation and test scenarios :

• Difficulty levels : difficulty ranges from easy (no overload at all for
the DN agent) to hard (no known solution has been found using our
ensemble of DNτ agent baseline). It reduces the likeliness of having
tie contestants.

• Diverse tasks : some scenarios focus on handling overloads in the
morning, while others test evening peak consumption management.
In a scenario, no overload appears, to test agents does not react
randomly. In others, overloads vanish naturally, to test agents do
not overreact.

• Diverse context : we include variability by changing the day of the
week of the scenarios, to make sure the powergrid can be handled
for all days of the week, and not only at some very restrictive times.

• Diverse horizons : we finally have scenarios of different length,
varying from 1 day (288 time-steps) to 3 days (864 time-steps), to
test agents in different kind of settings : longer scenarios favor stable
agents with longer horizon, shorter scenarios favor greedy agents.

Those scenarios were mainly selected to test the robustness of
agents, that is their ability to finish a given scenario. However, besides
being robust, participants still had to continuously optimize the grid
margins. Let’s now describe the best agents and examine their behavior
on the test scenarios.

Agent Description
From Fig. 1a, we can see that only the groups called “Lebron James”

(LB), “LearningRL” (LR) and “Stephan Curry” (2nd team from Geirina,
so we only consider LB) managed to finish all test scenarios, with ML +
RL approaches. Both codes are open-source and referenced on the
challenge website3. “Kamikaze” (KM, ML approach) and “Smart Dis-
patcher” (SD, Expert system + greedy validation) each failed on one,
whereas they previously managed all validation scenarios. “Menardpr”
(MD, greedy tree search approach) failed on one, on both test and va-
lidation scenarios. Winners were less computationally intensive at test
time, thanks to Machine Learning, while also being more effcicient,
making them relevant in a setting of real-time decision-making.

Comparing LB and LR from a code analysis, LR appeared to be the
only participant to never query the simulate function to validate or
explore additional actions at test time: this is quite an achievement to
only rely on what the agent learnt, and trust it. Its model was based on
the actor critic (A3C) algorithm [13]. This is an architecture with two
main components, a policy network (actor) and a value network
(critic). A3C aims at learning a policy function directly, through the
actor module. The critic module then criticizes the actor given the new
state value after taking an action, to adjust and improve its behavior.
Actor and critic modules are learnt asynchronously by pooling multiple
workers that learn independently and improve a global agent.

LB agent on the other hand combined an RL model based on a
dueling DQN algorithm [14], coupled to a set of actions selected
through extended prior analysis and imitation learning. Dueling DQN is
most similar to DQN [15] except that the neural network architecture
explicitly tries to encode separately at its core a state value function and
an action advantage function, later combined to better estimate the Q-
value.

In addition, LB uses few expert rules, especially ”don’t do anything
if all your margins are good enough, below a threshold of 80%”, and

make extensive use of the simulate function when deciding on taking an
action, to strongly validate a set of suggested actions. This is re-
presentative on how operators have been doing until today. Their ap-
proach is closer to an assistant: an RL model suggests some actions and
an expert model make a cautious choice among them and the ones he
knows, validating with a simulator.

Agents action space
All participants tried with different strategies to reduce the action

space to explore at first. SD relied on its operator’s expertise to identify
relevant substations and lines to test on, still using a diverse set of assets
with selected topologies. MD only focused on line switching to meet the
time constraint with a tree search approach. However, most partici-
pants let aside line switching, sometimes an interesting option when no
overloads exist to reroute some flows, but often detrimental when the
grid is overloaded.

LR also used some domain knowledge over the symmetries in a
substation to reduce the number of true actions. More interestingly,
they started their exploration from scratch and learnt robust actions
automatically through a curriculum learning. They indeed started to
learn in an easy mode (no game over), upsampling the scenarios to
quickly see more diverse situations. They somehow already learnt what
the useless actions were and potentially useful actions to route the
flows. They then switched to the hard mode with the appropriate time
resolution to learn managing overloads and being robust to them. They
used their own reward function when learning to penalize strongly on
overloads when occurring, different from our score in (2). Our score is
not a good reward function to learn from in that prospect, as its gra-
dient, and hence the learning signal, is null in the overload regime.
They eventually converged to only act on two substations, a bit re-
strictive. This might be changed by relaxing their reward function.

LB team on the other hand did an extensive analysis on influential
topologies on a batch of sampled grid states to initialize their learning.
At the end, they used quite a diverse set of assets. Fig. 6 summarizes the
number and diversity of actions agents used on test scenarios.

Behavior analysis
Looking at agent actions in real-time from Fig. 7 on a test scenario,

we can detect different kinds of behavior. SD is indeed doing lots of
actions, trying to optimize the score continuously, but somehow going
back and forth erratically when the grid is loaded: overloads might be
occurring due to its actions. LB is a pretty stable agent, anticipating
soon enough potential overloads through its expert rule. However its
topology seems to always be drifting from the reference topology which
might be detrimental on long scenarios. Finally, LR is also quite stable
due to its small action space but has the ability to go back and forth.
Extended AI agent behavior analysis will be conducted in future works,
as it is an emerging field [16] with new tools being released [17].

We eventually ran an additional post analysis experiment on larger
batch of monthly scenarios given for training. It showed that all agents
are still failing on several scenarios (LB: 5 fails, LR: 11 fails, SD: 9 fails),
highlighting some instabilities on the long term. Scenario 37 appeared
especially difficult with no agent succeeding. We should hence apos-
teriori adjust or augment our selection criteria to develop a more
comprehensive benchmark of this task. Also, beyond robustness, the
challenge was also about continuously optimizing the flows on the grid.

Revised scores with oracle baseline
In the short duration of the competition, participants mainly fo-

cused on their agent robustness, as a single gameover prevented them
from winning. From the behavior analysis, agents do not appear to take
many actions over a scenario, except from SD agent, which might in-
dicate that agents did not try to optimize the flows beside avoiding
overloads. To assess how good they did on this second task, we need to
define an upper-bound baseline to get a better idea of what a good score
should be. Our GR greedy agent even without computation limit is not
good enough as it only considers the next time-step and not a time
horizon. It has proven not very successful and another approach was
needed.
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While imperfect information is given to the participants along the
game as they don’t know yet the future, as organizers we can make use
of the full scenario information to compute an oracle baseline, our
upper-bound that a perfect agent could achieve. For our method, we
rely on the connection there exists between topology configuration and
topological action: given one action we can deduce the topology con-
figuration we reach, and conversely knowing which configuration to

reach to get some reward we can deduce the necessary action. We
decided to run test scenarios under thousands of topology configura-
tions in parallel (not all, which is too hard computationally) to later
identify what would have been very good topologies at a given time and
infer the preferred course of actions. Ultimately, it is framed as a
longest path problem as on Fig. 8. This is in the spirit of a brute force
approach, but using a graph formulation to leverage computation. It has
to be noted that similarly to Go game, the state configuration space is
too large to be fully explored in human lifetime. We devise our method
in 5 steps:

1. Define a dictionary of interesting unitary actions Da from n unitary
selected assets as on Table 1.

2. Identify all combinations of Da actions to create the oracle action
space Aoracle and related topology configuration space S(τ)oracle when
Aoracle is applied to τref. A topology can be n action away from the
reference one.

3. Apply all τ ∈ S(τ)oracle independently and run them in parallel on
scenarios to compute the reward of each configuration τ at each
time-step t. This results in directed chains τ� with edges

=e t reward τ t( ) ( , )Gτ .
4. From all { τ� }, build the overall connected graph � of possible to-

pology trajectories, given allowed topology transitions from opera-
tional rule. Add edges between reachable configurations (τa, τb):

=e t reward τ t( ) ( , )τ τ b( , )a b .
5. Compute the best score through the longest path on the directed

acyclic graph � and determine the related course of actions
∈=a t A{ ( )}t T oracle0. .

Our score is always greater than all agents while respecting the
operational rules, effectively defining on upper-bound. To determine
how good other agents did, we define a revised score taking DN as a
zero-reference score (computed in easy mode considering the optimi-
zation task only), oracle as a max:

=
−
−

Score
Score Score
Score ScoreNormalized

agent DN

oracle DN (5)

The revised scores in Table 1 suggest that there still exists a gap be-
tween our oracle upper-bound and the best submitted agents. Fig. 6
highlights that our oracle continuously took some actions, every 2 to 3
time-steps on average, as opposed to other agents. This confirms that
agents did not do quite well on this optimizing task, solely focusing on

Fig. 6. Number of actions used at different substations (red) or lines (blue), ordered by indices, for different agents and our oracle over test scenarios. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 7. Agent behavior over validation scenario 3 showing the depth of agent
actions at a given time-step, 0 meaning the agent is in the reference topology.

Fig. 8. reward graph � for several topology configurations τ and allowed
transitions in dashed green. The oracle optimal path (in red) misses a max
immediate reward at t3 as no direct transition is allowed between τ1 and τ3. (For
interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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the robustness to blackouts for the duration of the competition. Thus we
reopened the challenge test case as a benchmark3. This highlights that
controlling the topology still remains a hard problem given a huge
action space requiring lots of exploration. It also challenges us as or-
ganizers to offer more representative scores that will give more in-
centives to the participants to perform better on a related task.

6. Conclusions

The challenge was successful in addressing safety considerations
and was necessary to open a new research avenue for a broad com-
munity, extended to Machine Learning researchers. It demonstrated
that developing topological controllers for real-time decision-making is
indeed possible, especially when using reinforcement learning. Framing
the problem as a two-factor MDP allowed us to also expose the diffi-
culties faced by reinforcement learning solutions to such control pro-
blems. The diversity of submissions and behaviors helped us appreciate
the pros and cons of each approach. Evaluating the participants’ per-
formance pushed us to define new interesting baselines and scoring
metrics for future research and challenge designs. Our post-challenge
analysis revealed both the feasibility of such approaches, but yet the
important gap to optimality, particularly in continuous power flow op-
timization. This gives us an incentive to take the design of a new
benchmark to the next level, including scaling up the dimensions of the
grid.
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