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a b s t r a c t

For an animal to learn about its environment with limited motor and cognitive resources, it should
focus its resources on potentially important stimuli. However, too narrow focus is disadvantageous
for adaptation to environmental changes. Midbrain dopamine neurons are excited by potentially
important stimuli, such as reward-predicting or novel stimuli, and allocate resources to these stimuli
by modulating how an animal approaches, exploits, explores, and attends. The current study examined
the theoretical possibility that dopamine activity reflects the dynamic allocation of resources for
learning. Dopamine activity may transition between two patterns: (1) phasic responses to cues and
rewards, and (2) ramping activity arising as the agent approaches the reward. Phasic excitation has
been explained by prediction errors generated by experimentally inserted cues. However, when and
why dopamine activity transitions between the two patterns remain unknown. By parsimoniously
modifying a standard temporal difference (TD) learning model to accommodate a mixed presentation of
both experimental and environmental stimuli, we simulated dopamine transitions and compared them
with experimental data from four different studies. The results suggested that dopamine transitions
from ramping to phasic patterns as the agent focuses its resources on a small number of reward-
predicting stimuli, thus leading to task dimensionality reduction. The opposite occurs when the
agent re-distributes its resources to adapt to environmental changes, resulting in task dimensionality
expansion. This research elucidates the role of dopamine in a broader context, providing a potential
explanation for the diverse repertoire of dopamine activity that cannot be explained solely by
prediction error.

© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

The environment is full of diverse stimuli. Since animals have
a limited amount of motor and cognitive resources, they should
focus their resources on potentially important stimuli. However,
determining which environmental stimuli are relevant to a given
task a priori is difficult. As shown in the pigeon superstition
experiment by Skinner, animals can mistakenly associate reward
with a stimulus that does not predict the reward (Skinner, 1948).
Pseudo-conditioning also shows that animals may link a reward
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with environmental stimuli (e.g., wells, floors) that are less in-
formative of the reward than are experimentally inserted cues
(e.g., tones, lights) (Schultz, 2010; Sheafor & Gormezano, 1972;
Sheafor, 1975). Effective task dimensions, the task dimensions
to which an animal assigns resources by approaching, learning,
or paying attention to them, often differ from essential task
dimensions and change as learning proceeds (Fig. 1AB) (Leong,
Radulescu, Daniel, DeWoskin, & Niv, 2017; Nasser, Calu, Schoen-
baum, & Sharpe, 2017; Niv, et al., 2015). Thus, adjusting effective
task dimensions through appropriate resource allocation would
facilitate reinforcement learning (RL).

Previous studies have found that dopamine affects cognitive
and motor resource allocation by modulating animals’ approach-
ing, learning, exploiting, exploring, and attending. Dopamine
drives fear learning and reward learning by signaling prediction
error (Chang, et al., 2016; Eshel, et al., 2015; Eshel, Tian, Buk-
wich, & Uchida, 2016; Hart, Rutledge, Glimcher, & Phillips, 2014;
Jo, Heymann, & Zweifel, 2018; Salinas-Hernández, et al., 2018;
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Sharpe, et al., 2017; Steinberg, et al., 2013; Tian, et al., 2016).
Dopamine excitation increases locomotor responses (Da Silva,
Tecuapetla, Paixão, & Costa, 2018; du Hoffmann & Nicola, 2016;
Howard, Li, Geddes, & Jin, 2017; Howe & Dombeck, 2016) and
enhances the exploration of novel options (Beeler, Daw, Fra-
zier, & Zhuang, 2010; Costa, Tran, Turchi, & Averbeck, 2014;
Kayser, Mitchell, Weinstein, & Frank, 2015). Moreover, prefrontal
dopamine is involved in working memory maintenance and cog-
nitive effort (Durstewitz & Seamans, 2008; Jacob, Ott, & Nieder,
2013; Westbrook & Braver, 2016). Thus, compared to other stim-
uli in the environment, stimuli that excite dopamine neurons
would be assigned more cognitive and motor resources. Because
dopamine neurons are excited by potentially important stimuli,
such as reward-predicting, intense, or novel stimuli, dopamine
can allocate more resources to these stimuli, converting them into
effective task dimensions. This raises an interesting possibility
that dopamine activity during reinforcement learning reflects
effective task dimensions.

We modified an RL model so that stimuli eliciting considerable
dopamine activity, including those that are salient or generate
prediction error, constitute effective task dimension (Fig. 1CD).
Specifically, we incorporated environmental stimuli into a stan-
dard TD learning model to examine whether the prediction error
signal reflects changes occurring in the effective task dimension-
ality during RL. The role of dopamine in adjusting effective task
dimensionality through resource allocation has received scant
attention partly because most RL models have been configured
to learn conditioned and unconditioned stimuli (Huk & Hart,
2019) but not accommodate other environmental stimuli. With
these modifications, our model is expected to account for a broad
repertoire of dopamine activity, including ramping and phasic
patterns.

Motivated by previous findings indicating that dopamine ac-
tivity may transition between ramping and phasic patterns
(Collins, et al., 2016), we hypothesized that dopamine transition
from ramping to phasic reflects the narrowing down of candi-
date stimuli (reducing effective task dimensionality), whereas the
opposite transition mirrors the re-learning of candidate stim-
uli (increasing effective task dimensionality). The prediction er-
ror signals in RL models have well-simulated phasic dopamine
responses to experimentally inserted cues and rewards (Pan,
Schmidt, Wickens, & Hyl, 2005, 2008; Schultz, Dayan, & Mon-
tague, 1997; Starkweather, Babayan, Uchida, & Gershman, 2017).
Meanwhile, RL models have also explained the ramping dopamine
activity by assuming dopamine as a value signal or by con-
sidering internal spatial representation, the temporal decay of
dopamine-dependent synaptic potentiation, or the uncertainty of
action timing or discounted vigor (Gershman, 2014; Hamid, et al.,
2016; Kato & Morita, 2016; Lloyd & Dayan, 2015; Morita & Kato,
2014). However, the dopamine transitions between ramping and
phasic patterns have not been demonstrated. By comparing our
simulation results with ventral striatal dopamine concentration
and dopamine neuronal firing data from previous studies, we
demonstrated that resource allocation during RL can account for
the dopamine transition between ramping and phasic patterns,
thereby establishing a link between the dynamics of dopamine
activity and effective task dimensionality. In addition, our results
suggest that the ramping-to-phasic transition underlies habit
formation, providing a computational account for the necessity
of overtraining in a fixed environment for habit formation and
insensitivity of habitual responses to environmental changes.

2. Materials and methods

2.1. Model structure

To investigate whether dopamine adjusts effective task di-
mensionality during RL, we parsimoniously modified a standard

TD model with an eligibility trace in two ways (Fig. 1D). First,
we incorporated environmental stimuli in addition to the experi-
mental stimuli. Second, we inserted a saliency signal to simulate
the different levels of saliency between the experimental and
environmental stimuli. (The former is usually more salient than
the latter in experimental settings).

The TD model with an eligibility trace has been shown to well
account for dopamine activity during RL (Coddington & Dudman,
2018; Pan et al., 2005, 2008). The goal of a TD learning agent is to
maximize the expected amount of future reward. Stimulus value
estimation is performed by minimizing the prediction error δ:

δ (t) = r (t) + γ V̂ (t) − V̂ (t − 1) , (1)

Stimulus value estimation is performed by minimizing the pre-
diction error δ: where r(t) is the reward delivered at time t and
γ is a discounting factor (0 < γ < 1) that decreases the value of
delayed rewards. Here, γ was 0.9 in all simulations. (See Figs. S
1–5 in supplementary material for the justification of parameter
value selection). For the sake of biological plausibility (Pan et al.,
2005, Fig. S2), we inserted a lower bound of −0.01 for prediction
errors. We confirmed that although it slightly influences predic-
tion error trajectory, it does not at all alter overall predictions
about dopamine activity (see Fig. S1 in supplementary material).
We picked −0.01 as a lower bound because the magnitude of
dopamine suppression is about 4–6 times smaller than the size
of dopamine excitation, and positive prediction error was usually
less than 0.1 in our simulations. V(t) is a value function that
represents the expected value of the temporally discounted sum
of all future rewards:

V (t) = E
[
γ 0r (t) + γ 1r (t + 1) + γ 2r (t + 2) + · · ·

]
. (2)

Each stimulus k contributes to the estimate of V(t), and the future
reward estimated from each stimulus k is an inner product of the
respective state vector xk(t) and the weight vector wk(t):

V̂ (t) =

∑
k

xk(t) · wk(t). (3)

If stimulus k occurs at time n, (n + m)th element of xk(n + m) is
1 (where m = 0, 1, 2, 3. . . ) and all other elements of xk are 0.
The state vector xk enables the stimulus k that occurs at time n
to influence the estimate of V(n + m). The weights are updated
as follows:

∆wk (t) = αδ (t) ek (t) , (4)

where ek is the eligibility trace for stimulus k (Pan et al., 2005)
and α is the learning rate (0 < α ≤ 1). The eligibility trace is
associated with working memory capacity (Curtis & Lee, 2010;
Lloyd, Becker, Jones, & Bogacz, 2012; Todd, Niv, & Cohen, 2008).
It quantifies the degree of influence of a prediction error at time
t on the value updates in previous time steps and is defined as
follows:

ek(t + 1) = λek (t) + xk(t), (5)

where λ is the eligibility trace parameter (0 ≤ λ ≤ 1). λ = 1
indicates an infinite working memory capacity; the current pre-
diction error updates the values of all previous stimuli. A small λ

indicates a small working memory capacity. Thus, using a small λ
accommodates a situation in which effective task dimensionality
is relatively larger than the agent’s memory capacity (i.e. when
many stimuli are being considered for the task). To prevent the
prediction errors from carrying over to subsequent trials, the
eligibility trace was reset for each trial.

Although experimentally inserted cues (e.g. tones, light) are
usually more salient than others (e.g. wells, floor), pseudo-
conditioning or generalization indicates that animals also
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Fig. 1. By allocating resources dopamine optimizes effective task dimensionality. (A) In a stable environment, in which task dimensionality does not change,
effective task dimensionality (the number of stimuli to which the learning agent assigns cognitive or motor resources to perform a task) usually decreases as learning
proceeds and is lower-bounded by the number of essential task dimensions. (B) Illustration of the relationship between effective task dimensionality and resource
allocation. The height of each bar represents the amount of resource allocated to each stimulus. The purple horizontal line indicates the saliency threshold for
animals’ recognition. (C) Because dopamine modulates resource allocation, stimuli that excite dopamine neurons – such as prediction error-generating or intense
stimuli – constitute effective task dimensionality. (D) A modified TD model implementing dynamic resource allocation to environmental cues. Letters in blue show
modifications to the standard TD model used. Experimentally inserted cues (‘‘essential stimuli’’ in red) are usually more salient than environmental cues (‘‘stimuli’’ in
blue). Essential stimuli constitute an essential task dimension. Here, ‘‘time’’ refers to time points within trials. (E) Value distribution and effective task dimensionality
during early (left) and late (right) stages of learning. The bottom plot shows the weights of each stimulus over time. The top plot shows the prediction error and
the weight of each stimulus summed across time. The number of stimuli that generate a prediction error > 0.01 is considered as effective task dimensionality. Note
that the main results still hold for other threshold values, such as 0.03 and 0.05.

associate the latter with the reward (Schultz, 2010; Sheafor &
Gormezano, 1972; Sheafor, 1975). Previous studies have sug-
gested that the more salient a stimulus, the more readily it should
be learned (Li, Schiller, Schoenbaum, Phelps, & Daw, 2011; Nassar,
et al., 2012; Nasser et al., 2017). In the Pearce–Hall model, the
constant representing the intrinsic saliency (e.g. intensity) of the
cue controls the learning rate (Nasser et al., 2017; Pearce & Hall,
1980). To accommodate this in the current study, a saliency signal
was incorporated into Eq. (4) as follows:

∆wk (t) = αδ (t) ek (t) βk, (6)

where βk denotes the saliency of the cues. In all simulations,
β of experimental and non-experimental stimuli were 2 and 1,
respectively. The agent was assumed to complete training when
the value of the first experimental cue converged. To clearly
demonstrate how the shape of the prediction error signal changed
as learning proceeded, the 20th percentile of training – when the
prediction error peaked at the second cue – was defined as the
middle stage and the last 20th percentile was used to simulate
extended training. Accordingly, the halfth of the middle stage, the
first 10th percentile of training, was used to simulate the early
stage of learning. In all simulations, α and γ were fixed at 0.005
and 0.9, respectively. Only λ was modulated.

In order to simulate the unpublished data obtained from a
two-armed bandit task with reversal, we modified the above

model slightly. The animals’ choice (left or right) was imple-
mented with a softmax function as follows:

PC =
exp(τVC )

exp (τVL) + exp(τVR)
, where C = L or R. (7)

Here, τ (0 ≤ τ ) is the temperature parameter. As τ decreases
below 1, all actions become equally likely. When τ is very large,
the action with a higher value is almost always selected. Previ-
ous reversal studies have shown that the absolute value of the
prediction error is large at the beginning of each block, which
modulates the learning rate (Esber, et al., 2012; Li et al., 2011).
Based on these studies, we adjusted Eq. (4) as below:

∆wk (t) = αρnδ (t) ek (t) βk, (8)

where ρn is the surprise signal for trial n, which depends on the
previous trial’s prediction error as follows:

ρn+1 = η |δn| + (1 − η)ρn, (9)

where η determines the effect size of the previous trial’s pre-
diction error. As η increases, the learning rate of a trial is more
strongly influenced by the previous trial’s prediction error. Be-
cause the positive prediction error usually ranged between 0.1
and 1 while simulating a reversal task, we adjusted the lower
bound for the prediction error to −0.1. All the codes are available
at https://github.com/brain-machine-intelligence/dopamine-reso
urce-allocation/.
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2.2. Experimental design and analysis of the unpublished data

Four young male Sprague Dawley rats were used. The animals
were restricted to 30 min of access to water after finishing one
behavioral session per day. To maintain a stable level of water
deprivation, their body weights were maintained at 80%–85% of
their free-feeding weights.

The experiments were conducted in the dark phase of a 12
h light/dark cycle. The experimental protocol was approved by
KAIST IACUC.

The behavioral task described in Lee, Ghim, Kim, Lee, and
Jung (2012) was used. The animals were trained in a dynamic
two-armed bandit task in a modified T-maze (Fig. 5A). The re-
ward probability of one arm was higher than that of the other
(0.72/0.12 or 0.63/0.21), and these probability values remained
constant within a block of 17–72 trials (mean ± SD: 44.1 ± 12.0).
Each experiment consisted of 4 blocks (149–180 trials, mean ±

SD: 175.4 ± 5.9), and each animal underwent the experiment 11–
20 times (mean ± SD: 15.0 ± 3.9). The arm–reward relationship
was reversed across four blocks without any sensory cue indi-
cating this change. A connecting bridge was lowered 2 s after
the animal arrived at the entrance of the bridge (purple area in
Fig. 5A) to control the inter-trial interval. Therefore, the lowering
of the bridge functioned as the trial initiation cue. The maze (65 ×

60 cm, track width: 8 cm, wall height: 3 cm) was elevated 30 cm
from the floor and contained four photobeam sensors (red lines in
Fig. 5A) to monitor the animal’s position. The water reward was
delivered in the region marked with orange area in Fig. 5A.

Tetrodes targeting the ventral tegmental area were implanted
while the animals were anesthetized with isoflurane (1.5–2.0%
[vol/vol] in 100% oxygen). Putative single units were isolated us-
ing the software MClust (A.D. Redish). Only clusters with
L-ratio < 0.1, isolation distance > 19, and peak-to-peak ampli-
tude >150 µA were included in the analysis. The recorded units
were classified as putative dopamine neurons, putative GABA
neurons, and unidentified neurons on the basis of mean discharge
rates, coefficients of variation (CV) of their inter-spike intervals,
and half-valley widths of the filtered spike waveforms using a
Gaussian mixture model (Shin, Kim, & Jung, 2018; Stark, Rothe,
Wagner, & Scheich, 2004).

Cell firing rates in Figs. 5D–G and 6A–D were baseline cor-
rected by subtracting the mean firing rate between −1 and 0 s
before the entrance of the connecting bridge. Paired t-tests were
used in Figs. 5DE and 6AB and unpaired t-tests were used in
Figs. 5FG and 6CD.

3. Results

3.1. The pattern of prediction error transitions from ramping to
phasic as learning proceeds, reducing effective task dimensionality

Since dopamine has a resource allocating effect in its tar-
get regions, we assumed that the stimuli that evoke sufficient
dopamine excitation constitute effective task dimensions. In our
model, the prediction error signal simulates dopamine activ-
ity and the number of stimuli that generate a prediction error
signal larger than a threshold corresponds to effective task di-
mensionality. To test if effective task dimensionality decreases
as learning proceeds, we considered a situation in which both
environmental stimuli and experimental stimuli (essential stimuli
in Fig. 1D) were present. In this situation, frequent exposure to
stimuli would shorten the effective time window during which
previously experienced stimuli affect learning. To reflect this
effect, a medium λ of 0.5 was used during the simulation (Curtis
& Lee, 2010; Lloyd et al., 2012; Todd et al., 2008).

The simulation shows how the shape of the prediction error
signal changes over time. During the early stages of learning, val-
ues and prediction errors were widely distributed over different
stimuli (Fig. 1E left). In this condition, the effective task dimen-
sionality was high and the shape of prediction error resembled
the ramping pattern of dopamine activity. As learning continues,
experimental cues gained substantially higher values than other
environmental stimuli (Fig. 1E right). The prediction error signal
gradually propagated backward and was concentrated on the
initial experimental cue, exhibiting a pattern similar to the phasic
dopamine activity (Figs. 1E and 2C). As the shape of the pre-
diction error transitioned from ramping to phasic, effective task
dimensionality decreased (Figs. 1E and 2F). The simulation results
suggest that during the early stages of learning, when the learning
agent usually finds it difficult to identify the essential stimuli, the
agent temporarily exhibits ramping dopamine activity; this wide
distribution of dopamine activity favors broad distributions of
cognitive resources over multiple stimuli. As the agent gradually
learns to identify reward-predicting stimuli, however, dopamine
activity transitions from ramping to phasic, indicating that the
agent focuses its resources on learning about those essential
stimuli.

3.2. Limited resources and environmental stimuli account for the
smooth, ramping shape of the prediction error

Identifying essential task dimensions becomes increasingly
difficult as there are more non-essential stimuli in the environ-
ment. Exposure to non-essential stimuli interrupts learning of
the essential task dimensions, and non-essential stimuli them-
selves may affect dopamine activity (Schultz, 2010; Sheafor &
Gormezano, 1972; Sheafor, 1975). In our model, the former is im-
plemented by λ and the latter by prediction errors generated by
non-essential stimuli. To better understand the model behavior,
we first ran simulations while systematically changing λ.

A large λ accommodates a situation where effective task di-
mensionality is small compared to the learning agent’s capacity,
and the agent can quickly pinpoint the essential stimuli. Cor-
roborating this view, for a large λ, effective task dimensionality
rapidly decreases (Fig. 2F); as a result, the prediction error is
concentrated on the essential stimuli, which produces a phasic
pattern beginning in the early stages of learning (Fig. 2A). This
helps the agent quickly complete learning (Fig. 2F).

The situation that a large λ accommodates is similar to simple
classical conditioning experiments, such as that in Pan et al.
(2005). In that experiment, rats were placed in a small (floor area
25 × 16.5 cm), simple chamber, and two consecutive tone cues
deterministically predicted a liquid reward. Animals only had to
lick a spout to obtain the reward. The simulation result produced
using a large λ also resembled the typical phasic dopamine activ-
ity that has been observed in simple conditioning experiments
(Coddington & Dudman, 2018; Pan et al., 2005). In Pan et al.
(2005), dopamine neurons showed strong phasic excitation to
the reward during early training, whereas the strong dopamine
excitation was transferred to the initial cue after extended train-
ing (hundreds of trials; Fig. 2B left). Regardless of the learning
stage, the omission of the second experimental cue resulted in a
larger phasic response to the reward. When we used a large λ, our
model successfully simulated all the dopamine activity patterns
(Fig. 2B right). Note that although our model is designed to sim-
ulate dopamine concentration in the ventral striatum, previous
studies have shown that dopamine concentration kinetics in the
ventral striatum is comparable to that of electrophysiological
dopamine activity (Arbuthnott & Wickens, 2007; Stuber, et al.,
2008; Sugam, Day, Wightman, & Carelli, 2012). These simulation
results suggests that phasic dopamine activity occurs when task
dimensionality is smaller than the agent’s cognitive capacity.
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Fig. 2. The ramping prediction error is caused by both the limit of cognitive resources and the environmental stimuli. (A, C, E) Prediction error signal during
RL when λ is 0.1, 0.5, or 0.9, respectively. (B) The left plots show dopamine activity during early and extended training in a simple conditioning task with two
experimental cues. Two double arrows and a black triangle on top of each plot denote the timing of the two experimental cues and reward, respectively. The solid
and dotted lines indicate dopamine responses when both of the cues were presented and those when the second cue was omitted, respectively. Figures were adapted
from Pan et al. (2005) with permission (Copyright (2005) Society for Neuroscience). The right plots show simulation results of the model during early and extended
training. λ was 0.9. (D) The left plots show dopamine concentration in the ventral striatum during rewarded (blue) or unrewarded (red) trials. The right plots show
the prediction error signal throughout learning (top) or during the early stage of learning (bottom). The red box in the top plot marks early training during which the
prediction error exhibits a ramping trend. λ of 0.5 was used. We ran 100 simulations with different initial weights (random weights with a mean of 0.02). Shading
shows mean ± SD. The figure was adapted from Howe et al. (2013) with permission. (F) Effective task dimensionality during RL. Stimuli that generated a prediction
error larger than 0.01 were considered to constitute effective task dimension. Data until the agent completed learning is shown. The data were smoothed using a
moving average window of 20. (G) The prediction error signal during RL when environmental stimuli (‘‘stim’’ in blue in Fig. 1D) were removed from the model. λ

was 0.5.

A medium or small λ accommodates a situation in which cog-
nitive resources can be assigned to only a portion of effective task
dimensions. Reducing λ decreases the maximum size of effective
task dimensionality (Fig. 2F) and the width of the prediction error
signal (compare Fig. 2C and E). A wide and ramping prediction
error occurs when λ has an intermediate value. The simulation
results suggest that broad distributions of dopamine activity, such
as ramping dopamine activity patterns, occur when task dimen-
sionality is slightly smaller than the agent’s cognitive capacity.
This provides a potential explanation for why ramping dopamine

activity has been rarely observed in rather simple experiments
(Flagel, et al., 2011; Sugam et al., 2012) but has started being
reported in recent, more sophisticated experiments (Collins, et al.,
2016; Hamid, et al., 2016; Howe et al., 2013; Mohebi, et al., 2019).
For example, Howe et al. (2013) (Fig. 2D left) found a ramping
dopamine activity. In this study, rats were trained to travel more
than a meter through a large T-maze to earn a reward. The first
and the second tone cues indicated the start of each trial and
which arm to visit to receive the reward, respectively. A medium
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λ is suited to simulating this experiment because multiple non-
essential stimuli – such as approaching the corner of the T-maze –
can provide subsidiary information to guide the animal’s behavior
in a large maze, increasing the effective task dimensionality.
When λ was 0.5, our model replicated the observed dopamine
activity (Fig. 2D right).

Next, we tested the effect of prediction errors generated by
non-essential stimuli on the prediction error trajectory. Even
after the environmental stimuli are removed from the model,
the prediction error shows a ramping trend during early train-
ing if λ has an intermediate value (Fig. 2G). However, while
the model with environmental stimuli replicated the observed
dopamine activity (Fig. 2D right), the model without environmen-
tal stimuli contradicted the observed dopamine activity because
the prediction error inevitably peaked at the intermediate ex-
perimental cue (Fig. 2G). This finding supports our hypothesis
that, when the learning agent finds it difficult to identify essen-
tial task dimensions, dopamine ramps up, broadly distributing
resources to many candidate stimuli including experimental and
environmental cues.

3.3. Extended training in a fixed environment transforms dopamine
activity from ramping into phasic

Our simulation result shows that, even when a medium λ is
used, the prediction error trajectory transitions from ramping to
phasic patterns after extended training (Fig. 2C). After several
times more training than the amount the agent typically takes
until the ramping pattern appears, the first experimental cue
generates a large prediction error. This simulation result sug-
gests that extended training in a fixed environment transforms
dopamine activity from a ramping pattern to a phasic excitation
to the initial cue.

On the other hand, extended training diminished prediction
errors around the reward onset. This indicates a reduced sen-
sitivity to the change in the reward value. Fig. 3A shows that
the prediction error at the time of reward delivery is larger
when the size of the reward is doubled during early training
(when the prediction error signal exhibits a ramping pattern)
than extended training (when the prediction error signal exhibits
a phasic pattern). It is consistent with previous findings that
overtraining makes learned responses habitual and less sensitive
to outcome (Wickens, Horvitz, Costa, & Killcross, 2007; Yin &
Knowlton, 2006).

The ramping-to-phasic transition was not found in Howe et al.
(2013) (Fig. 2D left). We cannot rule out the possibility that rats
in Howe et al. (2013) might not have been over-trained enough
to convert learned responses into automatic and almost habitual
behavior. This is supported by the fact that the task performance
of the animals was not very high and did not reach an asymptote
(see Fig. 4E of Howe et al., 2013).

To further validate our claim, we compared the ramping-
to-phasic prediction error transition from our simulation with
previous experimental results. Unlike Howe et al. (2013), Collins,
et al. (2016) trained rats for two more days after their per-
formance reached an asymptote (Fig. 3B). In their study, the
animals were trained to press two different levers to collect
a reward, which was delivered deterministically; note that the
static reward environment makes it easy for rats to be habitual.
The rats were trained for two more days after the average time
between the initial level press and reward collection reached an
asymptote. The authors observed that dopamine activity ramped
up during early training but peaked at the first cue after ex-
tended training (Fig. 3C–E top). This finding is consistent with our
simulation result (Fig. 3C–E bottom). The reason why dopamine
activity after extended training in Collins, et al. (2016) is not

completely ‘‘phasic’’ is probably because the amount of training
was still not sufficient. Our model simulation suggests that un-
til dopamine activity finishes the ramping-to-phasic transition,
it exhibits transitive forms, including those shown in Collins,
et al. (2016) (Fig. 3C bottom). Overall, these results support our
claim that training extensive enough to make learned responses
automatic induces the ramping-to-phasic transition. So far, the
transition from ramping to phasic activity has been rarely re-
ported, probably because ramping activity is a relatively new
discovery, and few studies have examined the effect of over-
training in a fixed environment on the ramping pattern. Our
model provides a useful prediction for the further study of the
ramping-to-phasic transition.

Decreasing sequence time (Fig. 3B) is consistent with our
claim, too. Unlike the experimenter, animals do not know which
stimuli in the environment are essential task dimensions from
the start of training. During early training, they often allocate
cognitive and motor resources to non-essential task dimensions
(e.g., floor, walls) by sniffing, touching, or looking around in the
environment. Thus, non-experimental stimuli as well as essential
stimuli (here, the two levers) constitute effective task dimensions,
particularly during early training. As the animal learns that non-
experimental stimuli are not essential for the task, the set of
its effective task dimensions would gradually reduce to the set
of the essential task dimensions (Fig. 1A). Meanwhile, as the
animal pays less attention to non-essential stimuli, its responses
would become more efficient, thereby shortening response time,
as shown in Fig. 3B.

Collins, et al. (2016) observed that although extended train-
ing developed a fast, stereotypical sequence of actions, the rats
occasionally deviated from their typical performance. Nucleus
accumbens dopamine concentration during those trials was more
‘‘ramping’’ and significantly higher than that during typical per-
formance (Fig. 3F). This finding is consistent with our claim
that ramping activity reflects resource allocation to non-essential
stimuli, whereas phasic excitation to the initial cue after extended
training promotes the execution of inflexible, habitual action
sequences.

3.4. The transition from phasic to ramping patterns upon changes in
reward value

Since phasic activity locked to a particular stimulus is not
suitable for fast adaptation to environmental changes (Fig. 3A),
we predicted that, when there is a change in the reward structure,
the ramping pattern would reappear, facilitating re-identification
of reward-predicting stimuli. Indeed, dopamine activity is suited
to adjusting effective task dimensions in response to environ-
mental changes because dopamine neurons are excited by novel
stimuli (Lak, Stauffer, & Schultz, 2016; Menegas, Babayan, Uchida,
& Watabe-Uchida, 2017), changes to reward features (Chang,
Gardner, Di Tillio, & Schoenbaum, 2017; Takahashi, et al., 2017).
Both previous experimental results and our simulation results
support this prediction. Collins, et al. (2016) found that ramping
activity reappeared when the reward value was doubled after
extended training (Fig. 4A top). Because the prediction error dur-
ing the 30th percentile (Fig. 3C bottom) resembles the dopamine
activity after extended training in Fig. 4A top (gray), we doubled
the size of the reward at the 30th percentile of learning. After
the reward increased, the prediction error displayed a phasic-to-
ramping transition very similar to the transition shown in Fig. 3C
bottom (Fig. 4B). Collins, et al. (2016) conducted 15 trials after
the reward increase and averaged the dopamine response. The
recurrent ramping activity resembled the prediction error signal
during early training after the reward increase but not the signal
immediately after the reward increase (Fig. 4A bottom). Overall,
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Fig. 3. Dopamine transitions from ramping to phasic as learning proceeds. (A) Prediction error at reward delivery when the size of the reward was doubled
during early or late training. We ran 100 simulations with different initial weights (random weights with a mean of 0.02). The black asterisk indicates a significant
difference (unpaired t-test; p ≈ 1.9189e−158). (B) Average time between the initial lever press and reward collection across training in Collins, et al. (2016). In
(C–E), the top plots show the dopamine concentration in the ventral striatum observed in Collins, et al. (2016), and the bottom plots show the prediction error
signal of the model. The parameter values were the same as in Fig. 2D right. (C) A representative single trial. The bottom plot shows the shape of the prediction
error signal at 1th, 5th, 10th, 20th, 30th, 40th, 60th, and 80th percentiles of training. The agent was assumed to complete training when the value of the first
experimental cue converged. In (E), the 1st, 10th, 30th, and 40th percentiles were considered as the initial acquisition, pre-asymptote, at asymptote, and extended
training, respectively. (F) Average dopamine concentration during asymptotic performance (red), typical performance (black), and atypical performance (blue) after
extended training in Collins, et al. (2016). (B), (C–E) top plots and (D) were originally published in Collins, et al. (2016) under a CC-BY 4.0 license and adapted here
with permission.

our simulation results show that, whereas extensive training in
a fixed environment forms a habit and transforms dopamine
activity from ramping to phasic, the ramping activity occurs in
changing environments, increasing effective task dimensionality
and sensitivity to environmental changes. Supporting this result,
recent reversal studies (Hamid, et al., 2016; Mohebi, et al., 2019)
have found ramping dopamine activity.

3.5. Dopamine transition between phasic and ramping in extended
reversal training

Since Collins, et al. (2016) used a lever-press experiment while
Howe et al. (2013) utilized a maze paradigm, it is uncertain if

extended training in a maze paradigm would transform dopamine
activity from ramping into phasic. To investigate this possibility,
we tested predictions of our model using unpublished data col-
lected from a modified T-maze task (see Acknowledgment). In
this experiment, each trial begins as a rat entered the medial stem
(red arrow in Fig. 5A). Two seconds after the animal entered the
medial stem, a connecting bridge (purple in Fig. 5A) was lowered,
allowing the animal to cross it. Therefore, the lowering of the
bridge was considered as trial initiation. The animal freely chose
either the left or the right arm to earn a reward. The reward
probability of one arm was set to be higher than that of the
other (0.72/0.12 or 0.63/0.21), and these probability values re-
mained constant within a block. The arm–reward association was
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Fig. 4. Dopamine transitions from phasic to ramping upon value changes. (A)
The experimental results of Collins, et al. (2016) (top) and the model behavior
(bottom). The ramping activity disappeared after extended training (black) but
reappeared when the size of the reward was doubled (purple). The top plot
was originally published in Collins, et al. (2016) under a CC-BY 4.0 license.
The parameter values were the same as in Fig. 3. Among many prediction
error trajectories shown in Fig. 3C bottom, the prediction error during the 30th
percentile most resembles the dopamine activity after extended training shown
in Fig. 4B top (gray). The size of the reward was doubled following the 30th
percentile. The prediction error during the 10th percentile after the reward
increase is shown in purple. (B) The prediction error during the 1th, 5th, 10th,
and 30th percentiles after the reward increase (black).

reversed across four blocks without any sensory cues indicating
this change.

In order to simulate a reversal task, we modified our model
so that the model chose left or right action based on a softmax
function (Fig. 5B). In Fig. 5B, experimental (or essential) stimuli,
non-essential stimuli, and the reward are indicated by a red-,
blue-, or orange-colored number, respectively. Based on previous
reversal studies showing that large prediction errors occurring
at the beginning of each block enhance the learning rate (Es-
ber, et al., 2012; Li et al., 2011), we made the prediction error
generated by the previous outcome adjust the learning rate (see
Section 2.2).

In this reversal experiment, the environment remains constant
until the animal exits from the bridge, while the environment
after the animal making its choice changes across blocks (Fig. 5A).
Each animal was extensively trained (1959–3584 trials; 11–18
days) in the unpublished data. We predicted that dopamine activ-
ity during the constant part of the reversal task would gradually
transition from the ramping pattern to phasic excitation to the
initial cue through extended training (Fig. 3C bottom). We also
predicted that dopamine activity during the changing part of the
task would transition from phasic excitation by the reward to
the ramping pattern, and that the size of ramping activity would
gradually diminish as in Fig. 4B.

To test this hypothesis, we divided dopamine responses to
the bridge lowering into those obtained during the first 9 days
and the rest obtained during the last 9 days. In each set of data,
dopamine activity several hundred milliseconds after the bridge
lowering diminished as learning proceeded, resulting in a more
‘‘phasic’’ shape by the end of each block (Fig. 5DE left). When
the data from the first 9 days and the last 9 days were compared
(Fig. 5FG left), the transition from the ramping to phasic pattern
became more pronounced. Our model replicates these features of
the data (Fig. 5D–G right). In order to demonstrate how prediction
error changes during reversal learning, we gathered simulation
results from the first 400 rewarded trials in Fig. 5C. Fig. 5C shows
that the size of the prediction error generated by the first essen-
tial cue increases as learning proceeds, whereas the prediction

error between the first essential cue and the reward decreases.
Taken together, the experimental data and our simulation results
support our hypothesis that dopamine activity transitions from
the ramping pattern to phasic excitation to the initial essential
cue in a static environment.

We next examined the dopamine responses during the chang-
ing part of the task. As expected, dopamine activity before the
reward onset decreased as learning proceeded (Fig. 6A–D left).
Although not statistically significant, phasic excitation by the
reward also diminished during learning. Our model replicated
both features of the data (Fig. 6A–D right). These results are
consistent with our prediction that phasic excitation to a reward
that arises immediately after an environmental change gradually
transitions to the ramping pattern, and that the phasic excitation
and the ramping activity decrease as learning proceeds.

4. Discussion

In the present study, we tested the theoretical possibility
that dopamine transitions between ramping and phasic patterns
during RL reflect efficient resource allocation. Both the simulation
and experimental results support the view that dopamine activity
transitions from ramping to phasic as the RL agent narrows down
the candidate reward-predicting stimuli to decrease the effective
task dimensionality. The opposite occurred when the agent had
to re-identify task-relevant stimuli by increasing the effective
task dimensionality. These results suggest that dopamine deals
with the task dimensionality problem during RL through resource
allocation.

Previous studies have suggested that the saliency of a stimulus
is influenced by multiple factors including the stimulus’ value,
a sudden change in the value, uncertainty, or sensory intensity
(Dayan, Kakade, & Montague, 2000; Esber, et al., 2012; Gluth,
Spektor, & Rieskamp, 2018; Gottlieb, 2012; Li et al., 2011; Nasser
et al., 2017; Pearce & Hall, 1980). Multiple neural substrates,
including striatal acetylcholine, norepinephrine, the amygdala,
and dopamine, have been implicated in salience signaling (Cox &
Witten, 2019; Esber, et al., 2012; Likhtik & Johansen, 2019; Nasser
et al., 2017). However, interaction between the neural substrates
as well as how salience signaling changes during learning remain
elusive. To preclude confusion arising from the as of yet poorly
understood mechanism underlying this interaction, we fixed beta
in all of our simulation conditions. Note that without exploring
beta values for each simulation, we were able to replicate a
wide range of experimental data. Moreover, our model provides
a testable prediction that the prediction error at the intermediate
experimental cue would protrude accordingly as the saliency
contrast between experimental (essential) and non-experimental
(non-essential) cues increased (Fig. 7). This prediction provides a
potential explanation for why a salient but task-irrelevant stim-
ulus, such as the lever in the Skinner’s superstition experiment,
can be mistakenly associated with a reward (Skinner, 1948); the
more salient a stimulus is, the more strongly it excites dopamine
neurons, resulting in more resources assigned to the stimulus
(Steinberg, et al., 2013).

In our model, dopamine contributes to salience processing
in two ways. First, the dopaminergic prediction error signal is
affected by the cue saliency (β) due to its role in the value
updates. Second, dopamine activity can signal salience. Although
many dopamine neurons signal the reward prediction error (Cod-
dington & Dudman, 2019; Eshel et al., 2016; Tian, et al., 2016), in-
creasing evidence suggests that the response profiles of dopamine
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Fig. 5. Extensive reversal training turned dopamine response to the initial cue from ramping to phasic. (A) Experimental apparatus of the unpublished data. A
modified T-maze was used, and infra-red sensors detected the animals’ location. Red arrow marks the entrance of the medial stem. Two seconds after the animal
entered the medial stem, a connecting bridge (purple) was lowered. (B) Structure of the model for the reversal task. Red, blue, and orange numbers indicate the
time step when experimental (or essential) stimuli, non-essential stimuli, and the reward were presented, respectively. A left or right direction was chosen using
a softmax function, intended to implement stochastic value-based decision making. The length of each block was 100 trials, and the choice for the higher reward
probability was alternated across blocks. High and low reward probabilities were 100% and 0%, respectively. τ of 3 and η of 0.9 were used. The values of all other
parameters were the same as in Figs. 3 and 4. (C) Prediction error signal of the model during the first 400 rewarded trials. (D–G) Dopamine response to the bridge
lowering during the first 3 and last 3 rewarded trials in each block (N = 62) (left) and the model behavior (right). For (D–G) right, the first block when initial
acquisition occurred was excluded. Simulation results during the first 5 and next 5 blocks after the first block were used. (D) and (E) show dopamine activity during
the first 9 (N = 30) and last 9 days (N = 32), respectively. (F) and (G) were made from (D) and (E) to help compare dopamine activity during the first 9 days and
last 9 days. Red asterisks indicate significant differences between the two graphs in each plot (paired t-test; p < 0.05). Shading shows mean ± SEM.

neurons are not uniform (Cox & Witten, 2019; Engelhard, Finkel-
stein, Cox, Fleming, Jang, Ornelas, et al., 2019; Lammel, et al.,
2008; Lammel, Ion, Roeper, & Malenka, 2011). Previous studies
have shown that some dopamine neurons respond to potentially
important stimuli, such as intense, novel, or extinguished but
previously reward-associated stimuli (Fiorillo, Yun, & Song, 2013;
Kim, Ghazizadeh, & Hikosaka, 2015; Lak et al., 2016; Mene-
gas et al., 2017). Both the prediction error signal modulated
by salience and the sensitivity of dopamine to salient stimuli
would help allocate cognitive and motor resources to potentially
important stimuli. Recent empirical studies have found an in-
creasingly diverse repertoire of dopamine activity that cannot be
interpreted as a prediction error signal (Berke, 2018; Codding-
ton & Dudman, 2019; Howe et al., 2013; Lammel et al., 2011;
Lau, Monteiro, & Paton, 2017; Menegas et al., 2017; Pignatelli &
Bonci, 2015; Schultz, 2016). Our hypothesis, which examines the
role of dopamine in resource allocation, provides a framework

for understanding the diverse activities of dopamine; prediction
error is a major (but not the only) factor that determines resource
allocation, and dopamine response to intense, novel, or motor
response-related stimuli can be interpreted in terms of effective
task dimensionality.

In our study, a moderate level of eligibility trace (medium λ)
was a primary condition for the ramping pattern. The eligibility
trace matters because a biological agent has limited cognitive
capacity, and the environment contains many non-essential stim-
uli. A hypothetical agent with infinite cognitive capacity (λ =

1) would be able to quickly pinpoint the essential task dimen-
sions by taking into account all previously encountered stimuli
simultaneously regardless of the number and diversity of non-
essential stimuli during learning. However, every biological agent
has a limited cognitive capacity, and its learning can be retarded
by non-essential stimuli consuming cognitive resources. Previous
studies have shown that even in a simple RL task, working mem-
ory load influences model-free learning (Collins, Ciullo, Frank, &



104 M.R. Song and S.W. Lee / Neural Networks 126 (2020) 95–107

Fig. 6. Dopamine response to the reward gradually diminished during reversal training. (A–D) Dopamine response to the reward onset during the first 3 and
last 3 rewarded trials in each block (N = 62) (left) and the model behavior (right). Excluding the first block when initial acquisition occurs, simulation results during
the first 5 and next 5 block after the first block were used. The values of all parameters are same as Figs. 3–5. (A) and (B) show dopamine activity during the first
9 (N = 30) and last 9 days (N = 32), respectively. (C) and (D) were made from (A) and (B) to help comparing dopamine activity during the first 9 days and last 9
days. Red asterisks indicate significant differences between the two graphs in each plot (paired t-test; p < 0.05). Shading shows mean ± SEM.

Badre, 2017; Collins & Frank, 2012; Curtis & Lee, 2010; Lloyd
et al., 2012; Todd et al., 2008). In our model with non-essential,
environmental stimuli (Fig. 1D), λ allows the model to examine
the effect of non-essential stimuli on RL. The influence of non-
essential stimuli on learning has received scant attention in RL
research. The present study proposes that non-essential stimuli
are worth considering in RL models.

Non-essential stimuli in our model also helped us in simulat-
ing habit. A habit is an outcome-insensitive, chunked sequence of
actions, the initial action of which empowers the execution of the
full sequence (Smith & Graybiel, 2016). Converting a stimulus–
response association into a habit requires much more training
than just acquiring the association, and dopamine is involved in
this process (Graybiel, 2008; Yin, Zhuang, & Balleine, 2006). To
our knowledge, our model is the first to provide a computational
account for why habit formation necessitates overtraining and
why habitual responses are resistant to environmental changes.
Recent studies have found that dopamine activity is closely linked
to initiating a movement or a sequence of learned actions (Cod-
dington & Dudman, 2018; Da Silva et al., 2018; Eshel et al., 2016;
Howe & Dombeck, 2016; Jin & Costa, 2010; Steinberg, et al., 2013;

Syed, et al., 2016; Tian, et al., 2016; Westbrook & Frank, 2018).
Along with our simulation, these findings suggest that during
early training, when an animal is uncertain about the essential
stimuli for the given task, many effective task dimensions – each
generating a weak prediction error signal and affecting the ani-
mal’s behavior for a short while – guide the animal to complete
the task. However, after extended training converts dopamine
activity into a phasic pattern, the initial cue automatically triggers
the whole behavior sequence, which accompanies reduced sen-
sitivity to environmental changes (Balleine, Dezfouli, & Lingawi,
2014; Collins, et al., 2016).

Extensive evidence has linked dopamine with motivation
(Berke, 2018; Berridge, 2007; Bromberg-Martin, Matsumoto, &
Hikosaka, 2010; Coddington & Dudman, 2019; Da Silva et al.,
2018; Engelhard et al., 2019; Flagel, et al., 2011). Specifically, re-
cent studies have suggested that the ramping pattern is related to
motivation (Howe et al., 2013; Mohebi, et al., 2019). Because we
defined effective task dimension as task dimensions to which the
learning agent allocates cognitive and motor resources, effective
task dimensionality and motivation are not mutually exclusive.
The notion of effective task dimension includes motivation and
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Fig. 7. Model prediction. The model predicted that the magnitude of the
prediction error protrusion at the intermediate cue depends on the saliency
contrast between experimental and non-experimental cues. The saliency of
the experimental cues was 8, 4, and 2 for high, middle, and low contrast,
respectively, while the saliency of the non-experimental (environmental) cues
was 1. The values of the other parameters are the same as in Figs. 3–6. The
level of the protrusion of the prediction error at the intermediate experimental
cue was measured as the prediction error at the intermediate experimental cue
minus the average of the prediction error immediately before and after the
experimental cue. The inset shows the prediction error trajectory during early
training.

therefore has a broader application. For instance, Fig. 3F displays
dopamine activity during typical and atypical performance of
the animal after extended training. Dopamine concentration was
higher and more ‘‘ramping’’ during atypical than typical action se-
quences. Since atypical behaviors are less efficient at earning the
reward than fast, stereotypical performance, this suggests that
the animals were less motivated during atypical performance.
Although this finding does not fit the idea that ramping activity
signals motivation to earn a reward, it is consistent with our
claim that ramping activity reflects resource allocation to non-
essential stimuli. Dissociating the effect of motivation on ramping
activity from effective task dimensionality in computational mod-
els requires a more precise definition of task dimension and
motivation, respectively. We think that this limitation affords
opportunities for future work that is aimed at dissociating the
effect of motivation on ramping activity from task dimensionality.

Ramping dopamine also has been proposed to signal state
value (Hamid, et al., 2016). In our study, task dimensionality is
claimed to be tightly linked to reward prediction error, and it
is the signal that drives value updates. So it would be tricky to
separate out the effective task dimensionality from value state
changes. To fully address this issue, future research should con-
sider recording dopamine activity with tasks that can separately
manipulate these two variables.

Because previous studies have shown that the kinetics of
dopamine concentration in the ventral striatum was comparable
to that of dopamine spiking activity (Arbuthnott & Wickens,
2007; Stuber, et al., 2008; Sugam et al., 2012), we applied our
model to both FSCV data obtained from the ventral striatum
and electrophysiological data. However, dopamine concentration
in a brain region is not determined solely by dopamine spiking
activity but rather by multiple factors, such as the density of
dopamine varicosities (Arbuthnott & Wickens, 2007), the mecha-
nism of dopamine clearance (Durstewitz & Seamans, 2008), and
region-specific modulation of dopamine release (Cox & Witten,
2019; Liu & Kaeser, 2019). Therefore, dopamine concentration in
a brain region and dopamine cell firing might exhibit different
patterns at the same time. For example, a recent study found that
the dopamine concentration in the nucleus accumbens ramps
while dopamine neurons fire phasically (Mohebi, et al., 2019).
Our model and dopamine firing in the unpublished data showed
phasic excitation to the reward immediately after environmental
changes but a ramping pattern by the end of each block (Figs. 4
and 6AB). On the other hand, Collins, et al. (2016) reported a

ramping dopamine concentration after the size of reward was
doubled (Fig. 4A gray). This warrants further research to de-
termine whether this discrepancy is ascribed to the effect of
averaging the first 15 trials after the reward increase or to the
difference between dopamine firing and its concentration. Specif-
ically, a recent study reported dopamine neurons whose spiking
activity was modulated by spatial distance from reward similar to
ramping dopamine concentration in the ventral striatum (Engel-
hard et al., 2019). We hope future studies on dopamine activity
heterogeneity and region-specific mechanisms of dopamine re-
lease would elucidate the distinction between dopamine firing
and release.

5. Conclusion

Overall, the present study provides a potential explanation for
how resource allocating dopamine deals with the task dimen-
sionality problem that RL. Further works should investigate more
fundamental problems, including the role of dopamine in re-
solving the tradeoff between reward maximization and resource
consumption minimization.

Acknowledgments

We thank Dr. Min Whan Jung and Dr. Sue-Hee Huh for their
generosity in allowing us to use their unpublished data for this
paper. We also thank Jung Hwan Shin for pre-processing the
unpublished data.

This work was supported by Institute for Information & Com-
munications Technology Promotion (IITP) grant funded by the
Korea government (No. 2017-0-00451), the National Research
Foundation of Korea (NRF) grant funded by the Korea government
(MSIT) (NRF-2019M3E5D2A01066267), Institute of Information &
Communications Technology Planning & Evaluation (IITP) grant
funded by the Korea government (MSIT) (No.2019-0-01371, De-
velopment of brain-inspired AI with human-like intelligence) and
Samsung Research Funding Center of Samsung Electronics under
Project Number SRFC-TC1603-06.

Supplementary material

Supplementary material related to this article can be found
online at https://doi.org/10.1016/j.neunet.2020.03.005.

References

Arbuthnott, G. W., & Wickens, J. (2007). Space, time and dopamine. Trends in
Neurosciences, 30, 62–69, Available at: http://www.ncbi.nlm.nih.gov/pubmed/
17173981. (Accessed 1 October 2013).

Balleine, B. W., Dezfouli, A., & Lingawi, N. W. (2014). Habits as action sequences:
hierarchical action control and changes in outcome value. Philosophical
Transactions of the Royal Society, Series B (Biological Sciences), Available at:
http://dx.doi.org/10.1098/rstb.2013.0482.

Beeler, J. a. J., Daw, N., Frazier, C. R. M., & Zhuang, X. (2010). Tonic dopamine
modulates exploitation of reward learning. Frontiers in Behavioral Neu-
roscience, 4, 1–14, Available at: http://www.ncbi.nlm.nih.gov/pmc/articles/
PMC2991243/. (Accessed 23 September 2013).

Berke, J. D. (2018). What does dopamine mean? Nature Neuroscience, 21,
787–793, Available at: http://dx.doi.org/10.1038/s41593-018-0152-y.

Berridge, K. C. (2007). The debate over dopamine’s role in reward: the case
for incentive salience. Psychopharmacology (Berl), 191, 391–431, Available
at: http://www.ncbi.nlm.nih.gov/pubmed/17072591. (Accessed 16 September
2013).

Bromberg-Martin, E. S., Matsumoto, M., & Hikosaka, O. (2010). Dopamine
in motivational control: rewarding, aversive, and alerting. Neuron, 68,
815–834, Available at: http://www.pubmedcentral.nih.gov/articlerender.fcgi?
artid=3032992&tool=pmcentrez&rendertype=abstract. (Accessed 17 Septem-
ber 2013).

https://doi.org/10.1016/j.neunet.2020.03.005
http://www.ncbi.nlm.nih.gov/pubmed/17173981
http://www.ncbi.nlm.nih.gov/pubmed/17173981
http://www.ncbi.nlm.nih.gov/pubmed/17173981
http://dx.doi.org/10.1098/rstb.2013.0482
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2991243/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2991243/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2991243/
http://dx.doi.org/10.1038/s41593-018-0152-y
http://www.ncbi.nlm.nih.gov/pubmed/17072591
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3032992&tool=pmcentrez&rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3032992&tool=pmcentrez&rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3032992&tool=pmcentrez&rendertype=abstract


106 M.R. Song and S.W. Lee / Neural Networks 126 (2020) 95–107

Chang, C. Y., Esber, G. R., Marrero-Garcia, Y., Yau, H.-J., Bonci, A., & Schoen-
baum, G. (2016). Brief optogenetic inhibition of dopamine neurons mimics
endogenous negative reward prediction errors. Nature Neuroscience, 19,
111–116, Available at: http://www.ncbi.nlm.nih.gov/pubmed/26642092. (Ac-
cessed 8 December 2015).

Chang, C. Y., Gardner, M., Di Tillio, M. G., & Schoenbaum, G. (2017). Optogenetic
blockade of dopamine transients prevents learning induced by changes in
reward features. Current Biology, 27, 3480–3486.e3. Available at: https://doi.
org/10.1016/j.cub.2017.09.049.

Coddington, L. T., & Dudman, J. T. (2018). The timing of action determines
reward prediction signals in identified midbrain dopamine neurons. Nature
Neuroscience, 21, 1563–1573, Available at: http://dx.doi.org/10.1038/s41593-
018-0245-7.

Coddington, L. T., & Dudman, J. T. (2019). Learning from action: Re-
considering movement signaling in midbrain dopamine neuron activity.
Neuron, 104, 63–77, Available at:https://linkinghub.elsevier.com/retrieve/pii/
S0896627319307421.

Collins, A. G. E., Ciullo, B., Frank, M. J., & Badre, D. (2017). Working memory load
strengthens reward prediction errors. Journal of Neuroscience, 37, 4332–4342,
Available at: http://www.jneurosci.org/lookup/doi/10.1523/JNEUROSCI.2700-
16.2017.

Collins, A. G. E., & Frank, M. J. (2012). How much of reinforcement learning is
working memory, not reinforcement learning? A behavioral, computational,
and neurogenetic analysis. European Journal of Neuroscience, 35, 1024–1035.

Collins, A. L., Greenfield, V. Y., Bye, J. K., Linker, K. E., Wang, A. S., & Wassum, K.
M. (2016). Dynamic mesolimbic dopamine signaling during action sequence
learning and expectation violation. Scientific Reports, 6, 1–15, Available at:
http://dx.doi.org/10.1038/srep20231.

Costa, V. D., Tran, V. L., Turchi, J., & Averbeck, B. B. (2014). Dopamine modulates
novelty seeking behavior during decision making. Behavioral Neuroscience,
128, 556–566.

Cox, J., & Witten, I. B. (2019). Striatal circuits for reward learning and decision-
making. Nature Reviews Neuroscience, 20, Available at:http://dx.doi.org/10.
1038/s41583-019-0189-2.

Curtis, C. E., & Lee, D. (2010). Beyond working memory: The role of persistent ac-
tivity in decision making. Trends in Cognitive Sciences, 14, 216–222, Available
at: http://dx.doi.org/10.1016/j.tics.2010.03.006.

Da Silva, J. A., Tecuapetla, F., Paixão, V., & Costa, R. M. (2018). Dopamine neuron
activity before action initiation gates and invigorates future movements.
Nature, 554, 244–248, Available at: http://dx.doi.org/10.1038/nature25457.

Dayan, P., Kakade, S., & Montague, P. R. (2000). Learning and selective attention.
Nature Neuroscience, 3, 1218–1223, Available at: http://papers3://publication/
uuid/19BE9471-AAC7-49D4-A3C5-5AC9A83645CF.

du Hoffmann, J., & Nicola, S. M. (2016). Activation of dopamine receptors in the
nucleus accumbens promotes sucrose-reinforced cued approach behavior.
Frontiers in Behavioral Neuroscience, 10, 1–19, Available at: http://journal.
frontiersin.org/Article/10.3389/fnbeh.2016.00144/abstract.

Durstewitz, D., & Seamans, J. K. (2008). The dual-state theory of prefrontal
cortex dopamine function with relevance to catechol-o-methyltransferase
genotypes and schizophrenia. Biological Psychiatry, 64, 739–749, Available
at: http://www.ncbi.nlm.nih.gov/pubmed/18620336 (Accessed 19 September
2013).

Engelhard, B., Finkelstein, J., Cox, J., Fleming, W., Jang, H. J., Ornelas, S., et al.
(2019). Specialized coding of sensory, motor and cognitive variables in VTA
dopamine neurons. Nature, 570, 509–513, Available at: http://dx.doi.org/10.
1038/s41586-019-1261-9.

Esber, G. R., Roesch, M. R., Bali, S., Trageser, J., Bissonette, G. B., Puche, A. C., et
al. (2012). Attention-related pearce-kaye-hall signals in basolateral amyg-
dala require the midbrain dopaminergic system. Biological Psychiatry, 72,
1012–1019, Available at: http://dx.doi.org/10.1016/j.biopsych.2012.05.023.

Eshel, N., Bukwich, M., Rao, V., Hemmelder, V., Tian, J., & Uchida, N. (2015).
Arithmetic and local circuitry underlying dopamine prediction errors. Na-
ture, 525, 243–246, Available at: http://www.nature.com/doifinder/10.1038/
nature14855.

Eshel, N., Tian, J., Bukwich, M., & Uchida, N. (2016). Dopamine neurons share
common response function for reward prediction error. Nature Neuro-
science, 19, 479–486, Available at: http://www.nature.com/doifinder/10.1038/
nn.4239.

Fiorillo, C. D., Yun, S. R., & Song, M. R. (2013). Diversity and homogeneity
in responses of midbrain dopamine neurons. Journal of Neuroscience, 33,
4693–4709, Available at: http://www.ncbi.nlm.nih.gov/pubmed/23486943.
(Accessed 1 October 2013).

Flagel, S. B., Clark, J. J., Robinson, T. E., Mayo, L., Czuj, A., Willuhn, I., et al. (2011).
A selective role for dopamine in stimulus-reward learning. Nature, 469,
53–57, Available at: http://www.pubmedcentral.nih.gov/articlerender.fcgi?
artid=3058375&tool=pmcentrez&rendertype=abstract. (Accessed 24 January
2014).

Gershman, S. J. (2014). Dopamine ramps are a consequence of reward prediction
errors. Neural Computation, 26, 467–471, Available at: http://www.ncbi.nlm.
nih.gov/pubmed/24320851. (Accessed 23 July 2015).

Gluth, S., Spektor, M. S., & Rieskamp, J. (2018). Value-based attentional capture
affects multi-alternative decision making. Elife, 7, 1–36.

Gottlieb, J. (2012). Attention, learning, and the value of information. Neuron, 76,
281–295, Available at: http://dx.doi.org/10.1016/j.neuron.2012.09.034.

Graybiel, A. M. (2008). Habits, rituals, and the evaluative brain. Annual Review
of Neuroscience, 31, 359–387, Available at: http://www.ncbi.nlm.nih.gov/
pubmed/18558860. (Accessed 17 September 2013).

Hamid, A. A., Pettibone, J. R., Mabrouk, O. S., Hetrick, V. L., Schmidt, R.,
Weele, C. M. Vander, et al. (2016). Mesolimbic dopamine signals the value
of work. Nature Neuroscience, 19, 117–126, Available at: http://www.nature.
com/doifinder/10.1038/nn.4173. (Accessed 23 November 2015).

Hart, A. S., Rutledge, R. B., Glimcher, P. W., & Phillips, P. E. M. (2014). Phasic
dopamine release in the rat nucleus accumbens symmetrically encodes a
reward prediction error term. Journal of Neuroscience, 34, 698–704, Avail-
able at: http://www.jneurosci.org/content/34/3/698.short. (Accessed 30 July
2015).

Howard, C. D., Li, H., Geddes, C. E., & Jin, X. (2017). Dynamic nigrostriatal
dopamine biases action selection. Neuron, 93, 1436–1450.e8. Available at:
http://dx.doi.org/10.1016/j.neuron.2017.02.029.

Howe, M. W., & Dombeck, D. A. (2016). Rapid signalling in distinct dopaminergic
axons during locomotion and reward. Nature, 535, 505–510, Available at:
http://dx.doi.org/10.1038/nature18942.

Howe, M. W., Tierney, P. L., Sandberg, S. G., Phillips, P. E. M., & Graybiel, A.
M. (2013). Prolonged dopamine signalling in striatum signals proximity and
value of distant rewards. Nature, 500, 575–579, Available at: http://www.
ncbi.nlm.nih.gov/pubmed/23913271. (Accessed 16 September 2013).

Huk, A. C., & Hart, E. (2019). Parsing signal and noise in the brain. Science, 364,
236–237, Available at: http://www.ncbi.nlm.nih.gov/pubmed/31000652.

Jacob, S. N., Ott, T., & Nieder, A. (2013). Dopamine regulates two classes
of primate prefrontal neurons that represent sensory signals. Journal of
Neuroscience, 33, 13724–13734, Available at: http://www.jneurosci.org/cgi/
doi/10.1523/JNEUROSCI.0210-13.2013.

Jin, X., & Costa, R. M. (2010). Start/stop signals emerge in nigrostriatal
circuits during sequence learning. Nature, 466, 457–462, Available at:
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3477867&tool=
pmcentrez&rendertype=abstract. (Accessed 27 September 2013).

Jo, Y. S., Heymann, G., & Zweifel, L. S. (2018). Dopamine neurons reflect the
uncertainty in fear generalization. Neuron, 100, 916–925.e3. Available at:
https://linkinghub.elsevier.com/retrieve/pii/S0896627318308304.

Kato, A., & Morita, K. (2016). Forgetting in reinforcement learning links sustained
dopamine signals to motivation. PLOS Computational Biology, 12, 1–41,
Available at: http://dx.doi.org/10.1371/journal.pcbi.1005145.

Kayser, A. S., Mitchell, J. M., Weinstein, D., & Frank, M. J. (2015). Dopamine,
locus of control, and the exploration-exploitation tradeoff. Neuropsychophar-
macology, 40, 454–462, Available at: http://dx.doi.org/10.1038/npp.2014.
193.

Kim, H. F., Ghazizadeh, A., & Hikosaka, O. (2015). Dopamine neurons encod-
ing long-term memory of object value for habitual behavior. Cell, 163,
1165–1175, Available at: http://dx.doi.org/10.1016/j.cell.2015.10.063.

Lak, A., Stauffer, W. R., & Schultz, W. (2016). Dopamine neurons learn relative
chosen value from probabilistic rewards. Elife, 5, 1–19.

Lammel, S., Hetzel, A., Häckel, O., Jones, I., Liss, B., & Roeper, J. (2008). Unique
properties of mesoprefrontal neurons within a dual mesocorticolimbic
dopamine system. Neuron, 57, 760–773, Available at: http://www.ncbi.nlm.
nih.gov/pubmed/18341995. (Accessed 17 September 2013).

Lammel, S., Ion, D. I., Roeper, J., & Malenka, R. C. (2011). Projection-specific
modulation of dopamine neuron synapses by aversive and rewarding stim-
uli. Neuron, 70, 855–862, Available at: http://www.pubmedcentral.nih.gov/
articlerender.fcgi?artid=3112473&tool=pmcentrez&rendertype=abstract. (Ac-
cessed 20 September 2013).

Lau, B., Monteiro, T., & Paton, J. J. (2017). The many worlds hypothesis of
dopamine prediction error: implications of a parallel circuit architecture in
the basal ganglia. Current Opinion in Neurobiology, 46, 241–247, Available at:
http://dx.doi.org/10.1016/j.conb.2017.08.015.

Lee, H., Ghim, J.-W., Kim, H., Lee, D., & Jung, M. (2012). Hippocampal neural
correlates for values of experienced events. Journal of Neuroscience, 32,
15053–15065.

Leong, Y. C., Radulescu, A., Daniel, R., DeWoskin, V., & Niv, Y. (2017). Dynamic in-
teraction between reinforcement learning and attention in multidimensional
environments. Neuron, 93, 451–463, Available at: http://dx.doi.org/10.1016/
j.neuron.2016.12.040.

Li, J., Schiller, D., Schoenbaum, G., Phelps, E. A., & Daw, N. D. (2011). Differential
roles of human striatum and amygdala in associative learning. Nature
Neuroscience, 14, 1250–1252, Available at: http://dx.doi.org/10.1038/nn.2904.
(Accessed 29 September 2013).

Likhtik, E., & Johansen, J. P. (2019). Neuromodulation in circuits of aversive
emotional learning. Nature Neuroscience, 22, 1586–1597, Available at: http:
//dx.doi.org/10.1038/s41593-019-0503-3.

Liu, C., & Kaeser, P. S. (2019). Mechanisms and regulation of dopamine release.
Current Opinion in Neurobiology, 57, 46–53, Available at: https://doi.org/10.
1016/j.conb.2019.01.001.

http://www.ncbi.nlm.nih.gov/pubmed/26642092
https://doi.org/10.1016/j.cub.2017.09.049
https://doi.org/10.1016/j.cub.2017.09.049
https://doi.org/10.1016/j.cub.2017.09.049
http://dx.doi.org/10.1038/s41593-018-0245-7
http://dx.doi.org/10.1038/s41593-018-0245-7
http://dx.doi.org/10.1038/s41593-018-0245-7
https://linkinghub.elsevier.com/retrieve/pii/S0896627319307421
https://linkinghub.elsevier.com/retrieve/pii/S0896627319307421
https://linkinghub.elsevier.com/retrieve/pii/S0896627319307421
http://www.jneurosci.org/lookup/doi/10.1523/JNEUROSCI.2700-16.2017
http://www.jneurosci.org/lookup/doi/10.1523/JNEUROSCI.2700-16.2017
http://www.jneurosci.org/lookup/doi/10.1523/JNEUROSCI.2700-16.2017
http://refhub.elsevier.com/S0893-6080(20)30082-4/sb12
http://refhub.elsevier.com/S0893-6080(20)30082-4/sb12
http://refhub.elsevier.com/S0893-6080(20)30082-4/sb12
http://refhub.elsevier.com/S0893-6080(20)30082-4/sb12
http://refhub.elsevier.com/S0893-6080(20)30082-4/sb12
http://dx.doi.org/10.1038/srep20231
http://refhub.elsevier.com/S0893-6080(20)30082-4/sb14
http://refhub.elsevier.com/S0893-6080(20)30082-4/sb14
http://refhub.elsevier.com/S0893-6080(20)30082-4/sb14
http://refhub.elsevier.com/S0893-6080(20)30082-4/sb14
http://refhub.elsevier.com/S0893-6080(20)30082-4/sb14
http://dx.doi.org/10.1038/s41583-019-0189-2
http://dx.doi.org/10.1038/s41583-019-0189-2
http://dx.doi.org/10.1038/s41583-019-0189-2
http://dx.doi.org/10.1016/j.tics.2010.03.006
http://dx.doi.org/10.1038/nature25457
http://papers3://publication/uuid/19BE9471-AAC7-49D4-A3C5-5AC9A83645CF
http://papers3://publication/uuid/19BE9471-AAC7-49D4-A3C5-5AC9A83645CF
http://papers3://publication/uuid/19BE9471-AAC7-49D4-A3C5-5AC9A83645CF
http://journal.frontiersin.org/Article/10.3389/fnbeh.2016.00144/abstract
http://journal.frontiersin.org/Article/10.3389/fnbeh.2016.00144/abstract
http://journal.frontiersin.org/Article/10.3389/fnbeh.2016.00144/abstract
http://www.ncbi.nlm.nih.gov/pubmed/18620336
http://dx.doi.org/10.1038/s41586-019-1261-9
http://dx.doi.org/10.1038/s41586-019-1261-9
http://dx.doi.org/10.1038/s41586-019-1261-9
http://dx.doi.org/10.1016/j.biopsych.2012.05.023
http://www.nature.com/doifinder/10.1038/nature14855
http://www.nature.com/doifinder/10.1038/nature14855
http://www.nature.com/doifinder/10.1038/nature14855
http://www.nature.com/doifinder/10.1038/nn.4239
http://www.nature.com/doifinder/10.1038/nn.4239
http://www.nature.com/doifinder/10.1038/nn.4239
http://www.ncbi.nlm.nih.gov/pubmed/23486943
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3058375&tool=pmcentrez&rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3058375&tool=pmcentrez&rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3058375&tool=pmcentrez&rendertype=abstract
http://www.ncbi.nlm.nih.gov/pubmed/24320851
http://www.ncbi.nlm.nih.gov/pubmed/24320851
http://www.ncbi.nlm.nih.gov/pubmed/24320851
http://refhub.elsevier.com/S0893-6080(20)30082-4/sb28
http://refhub.elsevier.com/S0893-6080(20)30082-4/sb28
http://refhub.elsevier.com/S0893-6080(20)30082-4/sb28
http://dx.doi.org/10.1016/j.neuron.2012.09.034
http://www.ncbi.nlm.nih.gov/pubmed/18558860
http://www.ncbi.nlm.nih.gov/pubmed/18558860
http://www.ncbi.nlm.nih.gov/pubmed/18558860
http://www.nature.com/doifinder/10.1038/nn.4173
http://www.nature.com/doifinder/10.1038/nn.4173
http://www.nature.com/doifinder/10.1038/nn.4173
http://www.jneurosci.org/content/34/3/698.short
http://dx.doi.org/10.1016/j.neuron.2017.02.029
http://dx.doi.org/10.1038/nature18942
http://www.ncbi.nlm.nih.gov/pubmed/23913271
http://www.ncbi.nlm.nih.gov/pubmed/23913271
http://www.ncbi.nlm.nih.gov/pubmed/23913271
http://www.ncbi.nlm.nih.gov/pubmed/31000652
http://www.jneurosci.org/cgi/doi/10.1523/JNEUROSCI.0210-13.2013
http://www.jneurosci.org/cgi/doi/10.1523/JNEUROSCI.0210-13.2013
http://www.jneurosci.org/cgi/doi/10.1523/JNEUROSCI.0210-13.2013
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3477867&tool=pmcentrez&rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3477867&tool=pmcentrez&rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3477867&tool=pmcentrez&rendertype=abstract
https://linkinghub.elsevier.com/retrieve/pii/S0896627318308304
http://dx.doi.org/10.1371/journal.pcbi.1005145
http://dx.doi.org/10.1038/npp.2014.193
http://dx.doi.org/10.1038/npp.2014.193
http://dx.doi.org/10.1038/npp.2014.193
http://dx.doi.org/10.1016/j.cell.2015.10.063
http://refhub.elsevier.com/S0893-6080(20)30082-4/sb43
http://refhub.elsevier.com/S0893-6080(20)30082-4/sb43
http://refhub.elsevier.com/S0893-6080(20)30082-4/sb43
http://www.ncbi.nlm.nih.gov/pubmed/18341995
http://www.ncbi.nlm.nih.gov/pubmed/18341995
http://www.ncbi.nlm.nih.gov/pubmed/18341995
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3112473&tool=pmcentrez&rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3112473&tool=pmcentrez&rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3112473&tool=pmcentrez&rendertype=abstract
http://dx.doi.org/10.1016/j.conb.2017.08.015
http://refhub.elsevier.com/S0893-6080(20)30082-4/sb47
http://refhub.elsevier.com/S0893-6080(20)30082-4/sb47
http://refhub.elsevier.com/S0893-6080(20)30082-4/sb47
http://refhub.elsevier.com/S0893-6080(20)30082-4/sb47
http://refhub.elsevier.com/S0893-6080(20)30082-4/sb47
http://dx.doi.org/10.1016/j.neuron.2016.12.040
http://dx.doi.org/10.1016/j.neuron.2016.12.040
http://dx.doi.org/10.1016/j.neuron.2016.12.040
http://dx.doi.org/10.1038/nn.2904
http://dx.doi.org/10.1038/s41593-019-0503-3
http://dx.doi.org/10.1038/s41593-019-0503-3
http://dx.doi.org/10.1038/s41593-019-0503-3
https://doi.org/10.1016/j.conb.2019.01.001
https://doi.org/10.1016/j.conb.2019.01.001
https://doi.org/10.1016/j.conb.2019.01.001


M.R. Song and S.W. Lee / Neural Networks 126 (2020) 95–107 107

Lloyd, K., Becker, N., Jones, M. W., & Bogacz, R. (2012). Learning to use working
memory: a reinforcement learning gating model of rule acquisition in rats.
Frontiers in Computational Neuroscience, 6, 1–10, Available at: http://journal.
frontiersin.org/article/10.3389/fncom.2012.00087/abstract.

Lloyd, K., & Dayan, P. (2015). Tamping ramping: Algorithmic, implementa-
tional, and computational explanations of phasic dopamine signals in the
accumbens. PLOS Computational Biology, 11, 1–34.

Menegas, W., Babayan, B. M., Uchida, N., & Watabe-Uchida, M. (2017). Opposite
initialization to novel cues in dopamine signaling in ventral and posterior
striatum in mice. Elife, 6, 1–26.

Mohebi, A., Pettibone, J. R., Hamid, A. A., Wong, J. M. T., Vinson, L. T., Patriarchi, T.,
et al. (2019). Dissociable dopamine dynamics for learning and motiva-
tion. Nature, 570, 65–70, Available at: http://dx.doi.org/10.1038/s41586-019-
1235-y.

Morita, K., & Kato, A. (2014). Striatal dopamine ramping may indicate
flexible reinforcement learning with forgetting in the cortico-basal
ganglia circuits. Frontiers in Neural Circuits, 8, 36, Available at:
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3988379&tool=
pmcentrez&rendertype=abstract.

Nassar, M. R., Rumsey, K. M., Wilson, R. C., Parikh, K., Heasly, B., & Gold, J.
I. (2012). Rational regulation of learning dynamics by pupil-linked arousal
systems. Nature Neuroscience, 15, 1040–1046.

Nasser, H. M., Calu, D. J., Schoenbaum, G., & Sharpe, M. J. (2017). The dopamine
prediction error: Contributions to associative models of reward learning.
Frontiers in Psychology, 8, 1–17.

Niv, Y., Daniel, R., Geana, A., Gershman, S. J., Leong, Y. C., Radulescu, A., et
al. (2015). Reinforcement learning in multidimensional environments relies
on attention mechanisms. Journal of Neuroscience, 35, 8145–8157, Available
at: http://www.ncbi.nlm.nih.gov/pubmed/26019331. (Accessed 26 October
2017).

Pan, W.-X., Schmidt, R., Wickens, J. R., & Hyl, B. I. (2005). Dopamine cells
respond to predicted events during classical conditioning: evidence for
eligibility traces in the reward-learning network. Journal of Neuroscience, 25,
6235–6242, Available at: http://www.ncbi.nlm.nih.gov/pubmed/15987953.
(Accessed 17 September 2013).

Pan, W.-X., Schmidt, R., Wickens, J. R., & Hyl, B. I. (2008). Tripartite mechanism of
extinction suggested by dopamine neuron activity and temporal difference
model. Journal of Neuroscience, 28, 9619–9631, Available at: http://www.ncbi.
nlm.nih.gov/pubmed/18815248. (Accessed 26 September 2013).

Pearce, J. M., & Hall, G. (1980). A model for pavlovian learning: Variations in
the effectiveness of conditioned but not of unconditioned stimuli. Psycholog-
ical Review, 87, 532–552, Available at: https://pdfs.semanticscholar.org/bfde/
4e5ddaa6a968df9984b557baccd7cb38fb82.pdf. (Accessed 15 July 2018).

Pignatelli, M., & Bonci, A. (2015). Role of dopamine neurons in re-
ward and aversion: A synaptic plasticity perspective. Neuron, 86,
1145–1157, Available at: https://www.sciencedirect.com/science/article/pii/
S0896627315003657. (Accessed 15 July 2018).

Salinas-Hernández, X. I., Vogel, P., Betz, S., Kalisch, R., Sigurdsson, T., & Duvarci, S.
(2018). Dopamine neurons drive fear extinction learning by signaling the
omission of expected aversive outcomes. Elife, 7, 1–25, Available at: https:
//elifesciences.org/articles/38818.

Schultz, W. (2010). Dopamine signals for reward value and risk: Basic
and recent data. Behavioral and Brain Functions, 6, 1–9, Available at:
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2876988&tool=
pmcentrez&rendertype=abstract. (Accessed 1 October 2013).

Schultz, W. (2016). Dopamine reward prediction-error signalling: a two-
component response. Nature Reviews Neuroscience.

Schultz, W., Dayan, P., & Montague, R. (1997). A neural substrate of pre-
diction and reward. Science (80-), 275, 1593–1599, Available at: http:
//www.sciencemag.org/cgi/doi/10.1126/science.275.5306.1593 Accessed 19
September 2013.

Sharpe, M. J., Chang, C. Y., Liu, M. A., Batchelor, H. M., Mueller, L. E., Jones, J. L., et
al. (2017). Dopamine transients are sufficient and necessary for acquisition
of model-based associations. Nature Neuroscience, 20, 735–742, Available at:
http://www.nature.com/doifinder/10.1038/nn.4538.

Sheafor, P. J., & Gormezano, I. (1972). Conditioning the rabbit’s (Oryctolagus
cuniculus) jaw-movement response: US magnitude effects on URs, CRs,
and pseudo-CRs. Journal of Comparative and Physiological Psychology, 81,
449–456, Available at: http://www.ncbi.nlm.nih.gov/pubmed/4649185. (Ac-
cessed 9 January 2016.

Sheafor, P. J. (1975). ‘‘Pseudoconditioned’’ jaw movements of the rabbit reflect
associations conditioned to contextual background cues. Journal of Experi-
mental Psychology Animal Behavior Processes, 1, 245–260, Available at: http:
//www.ncbi.nlm.nih.gov/pubmed/1185111. (Accessed 8 January 2016).

Shin, J. H., Kim, D., & Jung, M. W. (2018). Differential coding of reward
and movement information in the dorsomedial striatal direct and indirect
pathways. Nature Communications, 9.

Skinner, B. (1948). Superstition in the pigeon. Journal of Experimental Psychology,
38, 168–172, Available at: http://psycnet.apa.org/journals/xge/38/2/168/.

Smith, K. S., & Graybiel, A. M. (2016). Habit formation. Dialogues in Clinical
Neuroscience, 18, 33–43.

Stark, H., Rothe, T., Wagner, T., & Scheich, H. (2004). Learning a new behavioral
strategy in the shuttle-box increases prefrontal dopamine. Neuroscience,
126, 21–29, Available at: http://www.ncbi.nlm.nih.gov/pubmed/15145070.
(Accessed 1 October 2013).

Starkweather, C. K., Babayan, B. M., Uchida, N., & Gershman, S. J. (2017).
Dopamine reward prediction errors reflect hidden-state inference across
time. Nature Neuroscience, 20, 581–589, Available at:http://www.nature.com/
doifinder/10.1038/nn.4520.

Steinberg, E. E., Keiflin, R., Boivin, J. R., Witten, I. B., Deisseroth, K., & Janak, P.
H. (2013). A causal link between prediction errors, dopamine neurons and
learning. Nature Neuroscience, 16, 966–973, Available at: http://www.ncbi.
nlm.nih.gov/pubmed/23708143 (Accessed 19 September 2013).

Stuber, G. D., Klanker, M., De Ridder, B., Bowers, M. S., Joosten, R. N.,
Feenstra, M. G., et al. (2008). Reward-predictive cues enhance excitatory
synaptic strength onto midbrain dopamine neurons. Science (80-), 321,
1690–1692, Available at: http://www.pubmedcentral.nih.gov/articlerender.
fcgi?artid=2613864&tool=pmcentrez&rendertype=abstract. (Accessed 1 Octo-
ber 2013).

Sugam, J. A., Day, J. J., Wightman, R. M., & Carelli, R. M. (2012). Phasic
nucleus accumbens dopamine encodes risk-based decision-making behavior.
Biological Psychiatry, 71, 199–205, Available at: http://dx.doi.org/10.1016/j.
biopsych.2011.09.029.

Syed, E. C. J. J., Grima, L. L., Magill, P. J., Bogacz, R., Brown, P., & Walton, M. E.
(2016). Action initiation shapes mesolimbic dopamine encoding of future
rewards. Nature Neuroscience, 19, 34–36, Available at:http://www.nature.
com/doifinder/10.1038/nn.4187.

Takahashi, Y. K., Batchelor, H. M., Liu, B., Khanna, A., Morales, M., & Schoen-
baum, G. (2017). Dopamine neurons respond to errors in the prediction of
sensory features of expected rewards. Neuron, 95, 1395–1405.e3. Available
at: https://doi.org/10.1016/j.neuron.2017.08.025.

Tian, J., Huang, R., Cohen, J. Y., Osakada, F., Kobak, D., Machens, C. K., et al. (2016).
Distributed and mixed information in monosynaptic inputs to dopamine
neurons. Neuron, 91, 1374–1389, Available at: http://dx.doi.org/10.1016/j.
neuron.2016.08.018.

Todd, M. T., Niv, Y., & Cohen, J. D. (2008). Learning to use working memory in
partially observable environments through dopaminergic reinforcement. In
Advances in neural information processing systems (vol. 21) (pp. 1689–1696).
Available at: https://papers.nips.cc/paper/3508-learning-to-use-working-
memory-in-partially-observable-environments-through-dopaminergic-
reinforcement. (Accessed 25 October 2017).

Westbrook, A., & Braver, T. S. (2016). Dopamine does double duty in motivating
cognitive effort. Neuron, 89, 695–710.

Westbrook, A., & Frank, M. (2018). Dopamine and proximity in motivation and
cognitive control. Current Opinion in Behavioral Sciences, 22, 28–34, Available
at: https://doi.org/10.1016/j.cobeha.2017.12.011.

Wickens, J. R., Horvitz, J. C., Costa, R. M., & Killcross, S. (2007). Dopaminergic
mechanisms in actions and habits. Journal of Neuroscience, 27, 8181–8183,
Available at: http://www.jneurosci.org/cgi/doi/10.1523/JNEUROSCI.1671-07.
2007. (Accessed 15 July 2018).

Yin, H. H., & Knowlton, B. J. (2006). The role of the basal ganglia in habit
formation. Nature Reviews Neuroscience, 7, 464–476, Available at: http://
www.ncbi.nlm.nih.gov/pubmed/16715055. (Accessed 15 July 2018).

Yin, H. H., Zhuang, X., & Balleine, B. W. (2006). Instrumental learning in
hyperdopaminergic mice. Neurobiology of Learning and Memory, 85, 283–288,
Available at: http://www.ncbi.nlm.nih.gov/pubmed/16423542. (Accessed 17
September 2013).

http://journal.frontiersin.org/article/10.3389/fncom.2012.00087/abstract
http://journal.frontiersin.org/article/10.3389/fncom.2012.00087/abstract
http://journal.frontiersin.org/article/10.3389/fncom.2012.00087/abstract
http://refhub.elsevier.com/S0893-6080(20)30082-4/sb53
http://refhub.elsevier.com/S0893-6080(20)30082-4/sb53
http://refhub.elsevier.com/S0893-6080(20)30082-4/sb53
http://refhub.elsevier.com/S0893-6080(20)30082-4/sb53
http://refhub.elsevier.com/S0893-6080(20)30082-4/sb53
http://refhub.elsevier.com/S0893-6080(20)30082-4/sb54
http://refhub.elsevier.com/S0893-6080(20)30082-4/sb54
http://refhub.elsevier.com/S0893-6080(20)30082-4/sb54
http://refhub.elsevier.com/S0893-6080(20)30082-4/sb54
http://refhub.elsevier.com/S0893-6080(20)30082-4/sb54
http://dx.doi.org/10.1038/s41586-019-1235-y
http://dx.doi.org/10.1038/s41586-019-1235-y
http://dx.doi.org/10.1038/s41586-019-1235-y
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3988379&tool=pmcentrez&rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3988379&tool=pmcentrez&rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3988379&tool=pmcentrez&rendertype=abstract
http://refhub.elsevier.com/S0893-6080(20)30082-4/sb57
http://refhub.elsevier.com/S0893-6080(20)30082-4/sb57
http://refhub.elsevier.com/S0893-6080(20)30082-4/sb57
http://refhub.elsevier.com/S0893-6080(20)30082-4/sb57
http://refhub.elsevier.com/S0893-6080(20)30082-4/sb57
http://refhub.elsevier.com/S0893-6080(20)30082-4/sb58
http://refhub.elsevier.com/S0893-6080(20)30082-4/sb58
http://refhub.elsevier.com/S0893-6080(20)30082-4/sb58
http://refhub.elsevier.com/S0893-6080(20)30082-4/sb58
http://refhub.elsevier.com/S0893-6080(20)30082-4/sb58
http://www.ncbi.nlm.nih.gov/pubmed/26019331
http://www.ncbi.nlm.nih.gov/pubmed/15987953
http://www.ncbi.nlm.nih.gov/pubmed/18815248
http://www.ncbi.nlm.nih.gov/pubmed/18815248
http://www.ncbi.nlm.nih.gov/pubmed/18815248
https://pdfs.semanticscholar.org/bfde/4e5ddaa6a968df9984b557baccd7cb38fb82.pdf
https://pdfs.semanticscholar.org/bfde/4e5ddaa6a968df9984b557baccd7cb38fb82.pdf
https://pdfs.semanticscholar.org/bfde/4e5ddaa6a968df9984b557baccd7cb38fb82.pdf
https://www.sciencedirect.com/science/article/pii/S0896627315003657
https://www.sciencedirect.com/science/article/pii/S0896627315003657
https://www.sciencedirect.com/science/article/pii/S0896627315003657
https://elifesciences.org/articles/38818
https://elifesciences.org/articles/38818
https://elifesciences.org/articles/38818
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2876988&tool=pmcentrez&rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2876988&tool=pmcentrez&rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2876988&tool=pmcentrez&rendertype=abstract
http://refhub.elsevier.com/S0893-6080(20)30082-4/sb66
http://refhub.elsevier.com/S0893-6080(20)30082-4/sb66
http://refhub.elsevier.com/S0893-6080(20)30082-4/sb66
http://www.sciencemag.org/cgi/doi/10.1126/science.275.5306.1593
http://www.sciencemag.org/cgi/doi/10.1126/science.275.5306.1593
http://www.sciencemag.org/cgi/doi/10.1126/science.275.5306.1593
http://www.nature.com/doifinder/10.1038/nn.4538
http://www.ncbi.nlm.nih.gov/pubmed/4649185
http://www.ncbi.nlm.nih.gov/pubmed/1185111
http://www.ncbi.nlm.nih.gov/pubmed/1185111
http://www.ncbi.nlm.nih.gov/pubmed/1185111
http://refhub.elsevier.com/S0893-6080(20)30082-4/sb71
http://refhub.elsevier.com/S0893-6080(20)30082-4/sb71
http://refhub.elsevier.com/S0893-6080(20)30082-4/sb71
http://refhub.elsevier.com/S0893-6080(20)30082-4/sb71
http://refhub.elsevier.com/S0893-6080(20)30082-4/sb71
http://psycnet.apa.org/journals/xge/38/2/168/
http://refhub.elsevier.com/S0893-6080(20)30082-4/sb73
http://refhub.elsevier.com/S0893-6080(20)30082-4/sb73
http://refhub.elsevier.com/S0893-6080(20)30082-4/sb73
http://www.ncbi.nlm.nih.gov/pubmed/15145070
http://www.nature.com/doifinder/10.1038/nn.4520
http://www.nature.com/doifinder/10.1038/nn.4520
http://www.nature.com/doifinder/10.1038/nn.4520
http://www.ncbi.nlm.nih.gov/pubmed/23708143
http://www.ncbi.nlm.nih.gov/pubmed/23708143
http://www.ncbi.nlm.nih.gov/pubmed/23708143
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2613864&tool=pmcentrez&rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2613864&tool=pmcentrez&rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2613864&tool=pmcentrez&rendertype=abstract
http://dx.doi.org/10.1016/j.biopsych.2011.09.029
http://dx.doi.org/10.1016/j.biopsych.2011.09.029
http://dx.doi.org/10.1016/j.biopsych.2011.09.029
http://www.nature.com/doifinder/10.1038/nn.4187
http://www.nature.com/doifinder/10.1038/nn.4187
http://www.nature.com/doifinder/10.1038/nn.4187
https://doi.org/10.1016/j.neuron.2017.08.025
http://dx.doi.org/10.1016/j.neuron.2016.08.018
http://dx.doi.org/10.1016/j.neuron.2016.08.018
http://dx.doi.org/10.1016/j.neuron.2016.08.018
https://papers.nips.cc/paper/3508-learning-to-use-working-memory-in-partially-observable-environments-through-dopaminergic-reinforcement
https://papers.nips.cc/paper/3508-learning-to-use-working-memory-in-partially-observable-environments-through-dopaminergic-reinforcement
https://papers.nips.cc/paper/3508-learning-to-use-working-memory-in-partially-observable-environments-through-dopaminergic-reinforcement
https://papers.nips.cc/paper/3508-learning-to-use-working-memory-in-partially-observable-environments-through-dopaminergic-reinforcement
https://papers.nips.cc/paper/3508-learning-to-use-working-memory-in-partially-observable-environments-through-dopaminergic-reinforcement
http://refhub.elsevier.com/S0893-6080(20)30082-4/sb83
http://refhub.elsevier.com/S0893-6080(20)30082-4/sb83
http://refhub.elsevier.com/S0893-6080(20)30082-4/sb83
https://doi.org/10.1016/j.cobeha.2017.12.011
http://www.jneurosci.org/cgi/doi/10.1523/JNEUROSCI.1671-07.2007
http://www.jneurosci.org/cgi/doi/10.1523/JNEUROSCI.1671-07.2007
http://www.jneurosci.org/cgi/doi/10.1523/JNEUROSCI.1671-07.2007
http://www.ncbi.nlm.nih.gov/pubmed/16715055
http://www.ncbi.nlm.nih.gov/pubmed/16715055
http://www.ncbi.nlm.nih.gov/pubmed/16715055
http://www.ncbi.nlm.nih.gov/pubmed/16423542

	Dynamic resource allocation during reinforcement learning accounts for ramping and phasic dopamine activity
	Introduction
	Materials and methods
	Model structure
	Experimental design and analysis of the unpublished data

	Results
	The pattern of prediction error transitions from ramping to phasic as learning proceeds, reducing effective task dimensionality
	Limited resources and environmental stimuli account for the smooth, ramping shape of the prediction error
	Extended training in a fixed environment transforms dopamine activity from ramping into phasic
	The transition from phasic to ramping patterns upon changes in reward value
	Dopamine transition between phasic and ramping in extended reversal training

	Discussion
	Conclusion
	Acknowledgments
	. Supplementary material
	References


