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tVNS; When facing decisions to approach rewards or to avoid punishments, we often figuratively go
Reinforcement with our gut, and the impact of metabolic states such as hunger on motivation are well doc-
learning; umented. However, whether and how vagal feedback signals from the gut influence instru-
Computational mental actions is unknown. Here, we investigated the effect of non-invasive transcutaneous
modeling; auricular vagus nerve stimulation (taVNS) vs. sham (randomized cross-over design) on approach
Metabolic state; and avoidance behavior using an established go/no-go reinforcement learning paradigm in 39
Instrumental action healthy human participants (23 female) after an overnight fast. First, mixed-effects logistic

regression analysis of choice accuracy showed that taVNS acutely impaired decision-making,
p = .041. Computational reinforcement learning models identified the cause of this as a re-
duction in the learning rate through taVNS (A« = —0.092, ppoor = -002), particularly after
punishment (Aapy, = —0.081, ppoot = .012 vs. Aagew =—0.031, ppoor = .22). However, taVNS
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had no effect on go biases, Pavlovian response biases or response time. Hence, taVNS appeared
to influence learning rather than action execution. These results highlight a novel role of vagal
afferent input in modulating reinforcement learning by tuning the learning rate according to

homeostatic needs.

© 2020 Elsevier B.V. and ECNP. All rights reserved.

1. Introduction

To survive, organisms must procure energy by approaching
options that pay off while avoiding costly options potentially
incurring punishments. Fundamental learning mechanisms
have evolved to support this vital optimization of instru-
mental actions (Beeler, 2012; Keramati and Gutkin, 2014;
Korn and Bach, 2015; Kroemer and Small, 2016). One key
challenge is to balance short-term and long-term goals of
reward-related behavior. For example, patiently resisting
temptation to receive bigger returns later is often benefi-
cial in the longer term. However, in certain bodily states,
forfeiting immediate rewards can have negative long-term
consequences as missing out on food in a hungry state
(Skrynka and Vincent, 2017) can increase the risk of starva-
tion (Keramati and Gutkin, 2014). Despite its evolutionary
importance, little is known about how homeostatic needs
shape decision-making in humans. One plausible candidate
for modulatory input onto circuits involved in reward learn-
ing would be a caloric feedback signal (Veldhuizen et al.,
2017) originating from the gut.

Signals about bodily states are largely transmitted via
the vagus nerve which connects peripheral organs such as
the gut and heart with the brain. For example, the vagal
nerve is an important part in the autonomous nervous sys-
tem and responds to stress (Porges, 1995; Zagon, 2001; Lee
et al., 2018; Gurel et al., 2020). Regarding metabolic state,
circulating hormones such as cholecystokinin (CCK), GLP-1,
and ghrelin provide feedback on food intake via stimulation
of vagal afferents (Simonian et al., 2005; Dockray, 2009;
Date, 2012; Tellez et al., 2013; Breit et al., 2018). More-
over, the vagus nerve also transmits other feedback sig-
nals from the gut and intestines such as stomach dilation
and changes in microbiota (Waise et al., 2018). Notably, gut
microbiota can also modulate neurotransmission contribut-
ing to interoceptive communication via the gut-brain axis
(Strandwitz, 2018). Vagal afferents terminate in the nucleus
tractus solitarii, NTS (Lartigue, 2016), a hub further relaying
metabolic information to the mid- and forebrain (Grill and
Hayes, 2012; Lartigue, 2016) including to dopaminergic
neurons in the substantia nigra. Along that pathway, va-
gal afferents have been shown to modulate dopaminer-
gic (Tellez et al., 2013; Han et al., 2018), noradrenergic
(Roosevelt et al., 2006; Raedt et al., 2011), GABAergic (Ben-
Menachem et al., 1995; Capone et al., 2015), and choliner-
gic signaling (Hulsey et al., 2016). Accordingly, endogenous
stimulation of the gut with nutrients evokes dopamine re-
sponses in the dorsal striatum tracking energy (de Araujo
et al., 2012; Ferreira et al., 2012). These dopamine signals
are critical for appetitive conditioned learning (Davis et al.,
2008; Tellez et al., 2013; de Lartigue et al., 2014) and moti-
vated behavior (Palmiter, 2007, 2008). Additional cognitive
functions such as memory (Pena et al., 2013; Suarez et al.,

2018) that are highly relevant for reward seeking are af-
fected by vagal signaling, but are primarily modulated by
other neurotransmitter systems. Collectively, these results
suggest that vagal signals may shape reward seeking accord-
ing to bodily states, via alterations in multiple neurotrans-
mitter systems including dopamine.

Whereas a dopaminergic modulation by vagal input has
been conclusively shown in animals, research in humans
has been limited by the invasive nature of cervical va-
gus nerve stimulation (VNS). Lately, non-invasive transcuta-
neous auricular VNS (taVNS) has become feasible targeting
the auricular branch of the vagus nerve at the ear. This has
been shown to affect projections to the NTS in preclinical
studies (He et al., 2013). Studies using taVNS with concur-
rent fMRI have revealed enhanced activity in the NTS and
other interconnected brain regions including the dopamin-
ergic midbrain and nucleus accumbens (Kraus et al., 2013;
Frangos et al., 2015). Previous studies showed behavioral
effects of taVNS on memory retention (Jacobs et al., 2015;
Burger et al., 2016), cognitive performance (Sellaro et al.,
2015; Steenbergen et al., 2015), and response inhibition
(Beste et al., 2016) that are predominantly associated with
the noradrenergic or GABAergic (Quetscher et al., 2015)
system. Recently, we have shown that taVNS elicits effer-
ent effects on energy metabolism leading to a reduced gas-
tric frequency (Teckentrup et al., 2020). Since vagal signals
also modulate the dopaminergic system (Tellez et al., 2013;
Han et al., 2018), taVNS may provide a promising approach
to investigate the link between interoceptive signals trans-
mitted via the vagus nerve and reward-related behavior in
humans.

To test the effects of taVNS on reward learning, we ap-
plied taVNS (vs. sham) mimicking interoceptive signaling
via vagal afferents in a sample of overnight fasted partici-
pants. Increases in dopamine tone would be expected to in-
crease vigor (Niv et al., 2007) while learning via reward pre-
diction errors (RPE) would be attenuated as the signal-to-
noise ratio is reduced (Hamid et al., 2016; Kroemer et al.,
2019). We probed reward learning with an established
valence-dependent go/no-go learning paradigm (Guitart-
Masip et al., 2012). To investigate which specific reinforce-
ment learning process is altered by taVNS, we used compu-
tational modeling. In addition, we explored effects of taVNS
on go response rates or response time, which would indicate
heightened vigor.

2. Experimental procedure

2.1. Participants

In total, 44 individuals participated in the study. Initially, we es-
timated that about 40 participants would be necessary to assess
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medium-sized effects (Cohen’s f = .20, dz".40) with sufficiently
high power (1-8 = .79), given a moderate test-retest reliability of
behavioral measures (r{; = .60), and tested more participants to
account for dropouts or exclusion (10%). All participants were phys-
ically and mentally healthy, German speaking, and right-handed,
as determined by a telephone interview. For the current analysis,
five participants had to be excluded (n=4: did not complete both
task sessions, n=1: did not make any go response). Thus, we in-
cluded 39 participants (23 female, Mgge= 25.5 4.0 years; Mpy=
23.0 +3.0 kg/m?2). The institutional review boards of the University
of Tubingen approved the study and we obtained informed consent
from all participants prior to taking part in the experiment.

2.2. Experimental procedure

Participants were required to fast overnight (i.e., >8h) before both
experimental sessions. Sessions were conducted in a randomized,
single-blind manner as the experimenter was not blind to the stim-
ulation condition. Participants were close to chance in guessing
the correct condition (60%; Ppinomiat = -041) and their subjective
belief about which stimulation they received was not associated
with the effects induced by the stimulation (all ps > .1) suggest-
ing that blinding was effective. Sessions started between 7.00 am
and 11:00 am and lasted about 2.5h each. After participants ar-
rived for the first session, they provided written informed consent.
Next, we collected anthropometric and state-related information
before the taVNS electrode was placed on the left ear targeting
the auricular branch of the vagus nerve. In line with the stimu-
lation procedure by Frangos et al. (2015), the electrode was lo-
cated at the left cymba conchae for taVNS and at the left earlobe
for sham stimulation. Stripes of surgical tape served to secure the
electrode in place. We determined individual stimulation strength
for every session separately using pain VAS ratings (“How intensely
do you feel pain induced by the stimulation?” ranging from 0 (“no
sensation”) to 10 (“strongest sensation imaginable”)). Stimulation
was initiated at an amplitude of 0.1 mA and increased by the ex-
perimenter in 0.1-0.2 mA steps. Participants rated the sensation
after every increment until ratings settled around 5 correspond-
ing to “mild prickling”. Then, the stimulation continued throughout
the task block according to the stimulation protocol of the device
(i.e., alternating blocks of stimulation on and off for 30 s each).
Within this block, participants completed a food-cue reactivity task
("20 min) and an effort allocation task ("40 min) before the learn-
ing task. As participants had received stimulation for "1 h before
the learning task and stimulation-induced changes in brain activa-
tion last for minutes after turning stimulation off (Frangos et al.,
2015), we did not expect differences due to the ON and OFF cycles
of the stimulation protocol.

After completing state-related questions, participants received
rewards according to task performance and compensation (either
as 32€ or partial course credit). Both visits followed the same stan-
dardized protocol.

2.3. taVNS device

To stimulate the auricular branch of the vagus nerve, we used
the NEMOS® stimulation device (cerbomed GmbH, Erlangen, Ger-
many). These devices have been previously employed in clinical tri-
als (Kreuzer et al., 2012; Bauer et al., 2016) and proof-of-principle
neuroimaging studies (Frangos et al., 2015). The stimulation pro-
tocol for the NEMOS® is preset to a biphasic impulse frequency
of 25 Hz with a stimulation duration of 30 s, followed by a 30 s
stimulation pause. The electrical current is transmitted by a tita-
nium electrode placed at the cymba conchae (taVNS; Badran et al.,
2018; Burger and Verkuil, 2018) or earlobe (sham; Fig. 1A) of the

left ear (Frangos et al., 2015). To match the subjective experi-
ence of the stimulation, intensity was determined for each partic-
ipant and each condition individually to correspond to mild prick-
ing (taVNS: M¢gyns = 1.21 £0.43; 0.2-1.9 mA; sham: Mgpgm = 1.92
+0.67; 0.5-3.1 mA). We decided to match the subjective experi-
ence of the stimulation to reduce the risk of confounding behavior
due to individual differences in sensitivity. To verify that taVNS-
induced changes were not dependent on different objective ampli-
tudes of the stimulation, we tested if taVNS-induced changes were
associated with the amplitude.

2.4. Paradigm

Due to the reported behavioral and neuromodulatory effects of
taVNS, we hypothesized that taVNS affects reinforcement learn-
ing. More precisely, we expected reward learning to be reduced
in the active stimulation condition as taVNS might translate to an
increased dopamine tone that, in turn, decreases the signal-to-
noise ratio of RPEs and thus impairs learning (Hamid et al., 2016).
Due to the well-known characteristics of the dopaminergic circuit
(Frank et al., 2004; Cox et al., 2015), we sought to disentangle ef-
fects of taVNS on action- or valence-dependent learning (Guitart-
Masip et al., 2012, 2014; Mkrtchian et al., 2017). Specifically, we
expected that taVNS-induced changes in the go bias or differen-
tial learning from rewards versus punishments would be indicative
of differential modulation of direct (D1 receptor dependent) ver-
sus indirect pathways (D2 receptor dependent) (Frank et al., 2004,
2007; Frank and O’Reilly, 2006). Moreover, a potential GABAer-
gic modulation would likely be reflected in an alteration of no-
go learning due to the well-established role in behavioral inhibi-
tion (Quetscher et al., 2015; Cheng et al., 2017). Instead, non-
specific taVNS-induced changes could be indicative of differences in
dopamine tone within the dopaminergic circuit. Relatedly, Guitart-
Masip et al. (2014) reported a decrease in Pavlovian bias by in-
creased dopamine levels after L-DOPA administration, leading to
improved performance in incongruent action-valence (e.g. go-to-
avoid-punishment) combinations while reducing performance in
congruent action-valence combinations (e.g. go-to-win). Alterna-
tively, and not mutually exclusive, increases in noradrenalinergic
tone might also have non-specific effects on behavior by altering
learning via unsigned prediction errors tracking surprise (Dayan and
Yu, 2006; Payzan-LeNestour et al., 2013).

In this task, participants learn state-action contingencies and re-
ceive rewards or punishments. Each trial consisted of three stages
(Fig. 1B). First, participants saw a fractal cue (state) out of a set of
four different fractals per session. These fractals were initially ran-
domized to one of the four possible combinations of the go x win
two-factorial design of the task. Second, participants had to com-
plete a target detection task and either respond by pressing a but-
ton (go) or withhold their response (no-go). Third, they saw the
outcome of the state-action combination, which was either a win (5
cents), punishment (-5 cents), or an omission (no win/punishment,
0 cents). Using trial and error, participants had to learn which ac-
tion following each fractal was best in terms of maximizing wins or
minimizing losses.

Outcomes were presented probabilistically. Thus, participants
had 80% chances to win after correct state-action sequences, 20%
chances to win after incorrect sequences for rewarded trials as well
as 80% chances to avoid losses after correct, and 20% chances to
avoid losses after incorrect sequences for punished trials. Partici-
pants were instructed about the probabilistic nature of the task and
that either go or no-go responses could be correct for a given frac-
tal. There was no change in the contingencies over time. To ensure
that participants understood the task, they were queried before
starting the task. In total, the task included 240 trials, 120 go trials
and 120 no-go trials with 60 trials for each condition (e.g win or
avoid loss), and took 15min to be completed.
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Schematic summary of the experimental design. A: Placement of the electrodes for taVNS (image 3) and sham conditions

(image 4). B: Participants completed taVNS or sham sessions in a randomized crossover design. The stimulation lasted for the
duration of the experiment and included alternating blocks of 30s on vs. 30s off stimulation. To maximize the total payoff in
the go/no-go reinforcement learning task, participants had to learn which action (go vs. no-go) during the target detection stage
following a given fractal was associated with the best possible outcome (i.e., receiving reward or avoiding impending punishment).
These contingencies were randomly assigned and had to be learned by trial and error. Insets illustrate that different fractals were

used in Session 2 (S2).

2.5. Data analysis

2.5.1. Full mixed-effects analysis of the go/no-go
reinforcement learning task

To estimate the effects of taVNS on choice accuracy (go vs. no-go),
we defined a full mixed-effects analysis as implemented in HLM
(Raudenbush et al., 2011). Effects of the conditions were modeled
by predicting if a given choice (Bernoulli distribution) was correct
based on the regressors go (dummy coded), win (dummy coded),
and the interaction term go x win in a generalized linear model.
To assess taVNS effects, the model included terms for the stimu-
lation condition (dummy coded, O=sham, 1=taVNS) and interac-
tions of the stimulation term with the condition regressors (i.e.,

stimulation x win, stimulation x go, stimulation x go x win). Fur-
thermore, we included a log-transformed trial regressor capturing
improvements in accuracy across trials. At the participant level,
we calculated two models that included random effects for all in-
tercepts and slopes: model 1 controlled only for order, whereas
model 2 additionally controlled for sex (coded as -0.5 and 0.5)
and body mass index (BMI, grand-mean centered). We also tested
an additional interaction term stimulation x trial but found that
the coefficient estimate was highly correlated with the stimulation
main effect. Thus, we excluded this term to avoid redundancy. All
other random effects were complementary and showed significant
between-subject variance (p<.001). Analogous to using expecta-
tion maximization in the computational model, we obtained em-
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pirical Bayes estimates, which take group-level distributions into
account, as individual estimates of taVNS effects.

2.5.2. Reinforcement learning model
To dissociate which facet of instrumental action learning was al-
tered by taVNS, we fit reinforcement learning models to partici-
pant’s behavior starting with the winning model detailed in Guitart-
Masip et al. (2012, 2014) as standard model.

Participants learn stimulus (s) specific action (a) values (Q) that
are updated at each trial t according to the Rescorla-Wagner rule
as follows:

Qe (st ar) = Qe_q(se.a) +a(pre — Qe—1(st.ar)),

with learning rate alpha (« ¢ [0,1]), reward sensitivity p, a pos-
itive free parameter quantifying the individual importance of re-
ward and obtained rewards r¢ coded as -1 in case of punishment, 1
in case of reward and 0 if participants received neither reward nor
punishment. Further, agents learn action-independent values (V) of
each state updated after the same rule indicating if a stimulus is
associated with punishments or rewards.

Vi(st) = Ve_a(se) +alpre — Viq(st)),

Action values (Q) and stimulus values (V) at each trial are used
to compute action weights as follows:

Q:(a,s) +b + wVi(s),
Q:(a,s), else

We(a,s) = { a=s0

where b is a free parameter that reflects a constant bias to choose
the go option. The influence of Pavlovian tendencies (e.g. increased
go behavior in potentially rewarding situations and avoidance in
aversive situations) is parameterized by , a positive free param-
eter. The Pavlovian parameter inhibits the go tendency in condi-
tions that are associated with punishments and thus have nega-
tive learned state-values (V), while it increases go tendencies in
conditions associated with reward and positive state-values. Con-
sequently, this leads to impaired learning in incongruent (e.g. go-
to-avoid punishment) trials.

The action at each trial is selected based on action probabilities
that are estimated by passing action weights (W) through a softmax
function and adding a noise parameter (lapse, & € [0, 1]) modulat-
ing the influence of learned expectations on subsequent decisions.

exp (W(alst))

&
Y aexp(W(ad'|s; 2

P(thst)=[ ](1—5)4-

Subsequently, we fit three further models to disentangle possible
effects depending on reward valence by estimating either learning
rate, learning rate and reward sensitivity, or learning rate, reward
sensitivity and Pavlovian bias for reward and punishment conditions
separately.

Models were fit using hierarchical expectation maximization
as described by Huys et al. (2011). To fit models with expecta-
tion maximization, individual parameters as well as the underlying
group distribution parameters are estimated iteratively. The cur-
rent group distributions are used as priors to estimate individual
level parameters using Laplace approximation in the E-step. Conse-
quently, in the M-step, group-level distributions are updated based
on the new individual parameter estimates and their uncertainty.
Model fit was assessed using group-level integrated Bayesian in-
formation criterion (iBIC, Huys et al., 2011) where model fit and
model complexity across all measurements are taken into account.
As better group-level fit may be driven by large improvements in

few participants, we additionally used likelihood-ratio tests to de-
termine the best fitting model for each session. To ensure stabil-
ity of individual estimates, we repeated the fitting procedure 10
times. In each repetition, we used the complete data, but used
different initializations of the algorithm. We calculated the mean
and the coefficient of variation of the parameters for each session
and participant. Repeated sessions (sham and taVNS) were treated
as independent measurements and one underlying distribution was
fit over all participants and measurements. Reward sensitivity and
Pavlovian bias parameters were log transformed and learning rate
and noise parameters were transformed using the inverse sigmoid
function to ensure theoretical parameter constraints. Furthermore,
we assessed recovery of observed behavior based on simulations
with estimated parameters. To this end, we simulated 100 runs
of the experiment with individual parameter estimates from each
session.

2.5.3. Statistical analysis and software

We assessed all taVNS effects using a significance threshold of
p < .05 (two-tailed) and corrected for multiple comparisons across
the five parameters in the computational model analysis using Bon-
ferroni correction. We also planned correction across condition-
specific interaction terms in the mixed-effects model, but they
did not reach uncorrected significance. To account for non-normal
distributions of parameters from the computational model, differ-
ences in parameter estimates between the taVNS and sham con-
dition were tested using bootstrapping (1000 resamples). We per-
formed data analyses with Matlab v2016a (computational model) or
HLM v7 (mixed-effects models) and data visualization with R v3.5.1
(R Core Team, 2018) and Deducer (Fellows, 2012).

3. Results

3.1. taVNS reduces choice accuracy across
conditions

We first analyzed the performance of participants by es-
timating effects of reward valence, required action, and
stimulation on accuracy in a full mixed-effects model. In
line with previous studies, accuracy was higher in conditions
requiring a go response (t = 5.93, p < .001), whereas reward
valence only influenced accuracy in interaction with the re-
quired action (valence: t = 0.83, p = .41, valence x ac-
tion: t = 7.198, p < .001). In other words, participants
performed worse in the go-punishment and no-go-win con-
ditions in which Pavlovian biases (approach reward; avoid
punishment) and instrumental behavior were incongruent.

Next, we assessed main and interaction effects of taVNS
vs. sham stimulation on choice accuracy. Across conditions,
taVNS reduced accuracy (t = -2.13, p = .041; model un-
corrected for BMI and sex: t = -1.98, p = .055). How-
ever, we observed no interaction effects with action (t = -
0.35, p = .73) or valence (t = 1.08, p = .29). As task-
dependent improvement across sessions is common in re-
inforcement learning tasks, we controlled for stimulation
order (sham/taVNS first) in the analyses. Order of stimu-
lation modulated stimulation slopes (t = -3.60, p < .001)
with stronger impairments in overall performance if taVNS
was applied first. Notably, acute taVNS-induced reductions
in performance did not lead to deficits in the second ses-
sion with higher day-to-day improvements in the group that
received taVNS first (t = 2.05, p = .048) (Fig. 2).
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Fig. 2 Choice accuracy is reduced in the taVNS condition compared to sham stimulation. A: Mean choice accuracy for taVNS and
sham stimulation in each session and condition. Error bars depict 95% confidence intervals. B: Choice accuracy for taVNS and sham
stimulation over all trials separated by session averaged across conditions indicate stronger taVNS-induced reduction of choice
accuracy in session 1. C: Choice accuracy for taVNS and sham stimulation over trials separated by condition do not suggest action-

or valence-specific effects of taVNS.

3.2, taVNS reduces the learning rate in a
computational model of behavior

To further characterize which learning processes were af-
fected by taVNS leading to impaired performance, we
fitted a computational reward-learning model (Guitart-
Masip et al., 2012) using an expectation maximization al-
gorithm to empirically regularize parameter estimates. We
estimated five parameters controlling choices over time:
learning rate, reward sensitivity, go bias, Pavlovian bias,
and noisiness of choices for each session and calculated dif-
ferences between taVNS and sham sessions. Simulated data
based on individually estimated parameters corresponded
well with observed data (Fig. 3A-C). Parameter estimates
were sufficiently stable across the 10 repeated initializa-
tions of the expectation maximization algorithm with me-
dian coefficients of variation between .002 and .030 for the
five parameters.

Impaired performance during taVNS was mainly reflected
in a reduced learning rate alpha (Fig. 4A-C; Aa= -0.092,
p = .009, ppoot = -002, corrected for stimulation order: t = -
2.741, p = .009; Bonferroni corrected alpha level = .01).
Additionally, participant’s choices in the taVNS condition
were ‘noisier’ and less dependent on learned action values

(A& = 0.035, p = .086, ppoot = -050), although only nomi-
nally significant before correction for multiple testing. Cru-
cially, the taVNS-induced changes in « were independent of
the stimulation type participants thought they had received
in a given session (p = .80) as well as of the taVNS ampli-
tude (r = .10, p = .56, Bayes factor (BF) = 0.23), also if it
was tested separately for wins (r = .20, p = .23, BF = 0.39)
and losses (r = .04, p = .79, BF = 0.21).

Valence-specific effects of taVNS may be captured by
modeling separate parameters for rewards and punish-
ments. Therefore, we also built an extended 6-parameter
model assuming separate learning rates. While the 6-
parameter model provided a more parsimonious account at
the group level (AiBIC = 263), it did not improve individual
model fits for 51 out of 78 sessions. Nonetheless, stability of
individual parameter estimates was sufficient (median co-
efficient of variation in the range between 0.004 - 0.074
for the six parameters). Subsequent estimation of taVNS ef-
fects revealed that the slower learning rate during taVNS
stimulation was predominantly driven by a decrease of the
learning rate in the punishment condition (Aapyn = -0.081,
p = .019, ppoot = .012, corrected for order: t = -2.516,
p = .016) while decreases of alpha in reward conditions
were less pronounced and non-significant (Aarew = -0.031,
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P = .22 ppoot = .21, corrected for order: t =-1.244, p = .21).
However, the interaction between stimulation x valence
for the learning rate was not significant, F(1,37) = 1.975,
p = .168, indicating only weak specificity of the taVNS ef-
fect on punishment learning. In contrast to the 5-parameter
model, taVNS did not affect choice stochasticity in the ex-
tended model (A§ = -0.0031, p = .86, ppoot = -94). Again,
stimulation effects on performance were recovered in the
averaged simulated data.

We also explored more complex models by addi-
tionally separating reward sensitivity and/or Pavlovian
bias for reward and punishment as previously described
(Mkrtchian et al., 2017). However, these models did not pro-
vide a more parsimonious account at the individual level
compared to the simpler models and individual estimates
became increasingly unstable across iterations precluding
their use to reliably estimate within-subject stimulation ef-
fects. An additional model including an exponential decay
parameter for the learning rate revealed a comparable re-
duction in initial learning rates by taVNS, but simulated data
did not recover the empirical data as well. Modeling taVNS
effects as within-participant change in one specific param-
eter (Swart et al., 2017) showed worse model fit, indicating
that taVNS leads to changes in multiple aspects of reward
learning that are dominated by a decreased learning rate.

3.3. taVNS effects on the learning rate are
associated with body weight

Since changes in body weight have been linked to alter-
ations in the sensitivity to interoceptive feedback signals
(Herbert and Pollatos, 2014; Simmons and DeVille, 2017),
it is possible that behavioral effects of taVNS might be de-
pendent on BMI as well. In line with this expectation, taVNS
effects on general accuracy (t = 2.000, p = .053), as well
as on learning rate (t = 2.351, p = .024) depended partly
on participants’ BMI. More specifically, taVNS reduced the
speed of acquisition more strongly in participants with a low
(healthy) BMI. However, as the association with accuracy
was not significant in our sample, our results for a poten-
tial modulation by BMI should be regarded as preliminary.

3.4. taVNS does not affect response time

Lastly, we estimated effects of taVNS on response time as an
indicator of alterations in response vigor. However, no sig-
nificant changes in response time were observed (t = 0.826,
p = .41, Fig. 5). This further corroborates that impaired
performance was mediated by slowed learning and not by
altered action selection.
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4. Discussion

The vagus nerve rapidly transmits interoceptive signals to
the brain. It thereby confers interoceptive information such
as metabolic state and modulates neurotransmission includ-
ing within the dopamine system. Here, we investigated
changes in instrumental reinforcement learning, which is
critically dependent on dopamine, after emulating vagal
feedback signals using taVNS. Importantly, we found that
taVNS reduced overall accuracy of choices driven by a
slowed acquisition of action contingencies, predominantly
for punishments. In contrast, action- or valence-specific bi-
ases were unaffected by taVNS. Thus, using the novel non-
invasive stimulation of the vagus nerve, our results provide
evidence that interoceptive feedback signals may alter re-
ward learning by tuning the speed of acquisition according
to interoceptive signals.

Vagal feedback signals evoked by taVNS acutely impaired
choice accuracy and reduced learning rates in valenced
g0-/no-go learning. These results provide further evidence
on the crucial modulatory role of vagal efferent signals in
the control of motivated behavior. For example, preclin-

ical studies have shown that vagal sensory signaling pro-
motes hippocampal memory function via the NTS which is
important for food-seeking behavior (Suarez et al., 2018).
Capitalizing on vagal afferent signals via an implanted va-
gal stimulation device has also been shown to provide a
powerful means to restrict food intake and control body
weight in rodents (Yao et al., 2018). Notably, the ef-
fects of bariatric surgery on fat appetite are also partly
modulated via afferent vagal feedback signals leading to
changes in dorsal striatal dopamine signaling (Hankir et al.,
2017). Moreover, flavor-nutrient conditioning in humans
is dependent on metabolic states and peripheral energy
metabolism (Yeomans et al., 2008; de Araujo et al., 2013;
Veldhuizen et al., 2017) demonstrating the coupling be-
tween homeostatic signals and reward learning. By show-
ing a modulation of reinforcement learning for non-food re-
wards in humans, our study adds an important insight to
the growing literature on vagally-mediated aspects of moti-
vated behavior.

The observed changes in choice accuracy and the learning
rate are in agreement with the value theory of dopamine
and with studies showing that the impact of phasic RPE
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signals on actions depends on dopamine tone (Hamid et al.,
2016; Kroemer et al., 2019). In short, increased dopamine
tone leads to a comparably smaller signal-to-noise ratio
if phasic signals are unaffected and to reduced action
control via phasic outcome signals. Accordingly, reduced
learning after L-DOPA administration has been reported in
patients with Parkinson’s disease (Cools et al., 2007; Vo et
al., 2014) as well as healthy participants (Vo et al., 2016).
Impaired performance may also be caused by increased
choice stochasticity (Beeler, 2012; Eisenegger et al., 2014),
but taVNS-induced increases in decision noise were not
significant after correction for multiple testing and not
consistent across models suggesting limited effects at best.
Collectively, these results suggest that taVNS primarily
affects action-contingency learning and not solely noise in
value-based decisions. In line with animal work showing
increased dopamine signaling after endogenous stimulation
of the vagus nerve (de Araujo et al., 2012; Ferreira et al.,
2012) and subsequent modulations of appetitive learning
(Davis et al., 2008; Lartigue, 2016) and motivated behavior
(Palmiter, 2008), this may indicate that reduced learning
rates during taVNS could be a consequence of increases in
dopamine tone.

Alternatively, changes in noradrenergic transmission may
explain general alterations in reward learning as well, possi-
bly via a comparable decrease in the phasic signal-to-noise
ratio. Administration of taVNS has also been associated with
heightened noradrenergic signaling via the locus coeruleus
leading to improved memory performance by increasing
arousal and attention (Burger et al., 2016). Nonetheless,
phasic noradrenaline signals have also been shown to track
unsigned prediction errors (“surprise”) (Dayan and Yu, 2006;
Payzan-LeNestour et al., 2013). Surprise signals are criti-

cal for learning and, accordingly, treatment with an nora-
drenaline reuptake inhibitor was associated with compara-
ble changes in learning rates (Jepma et al., 2016). Since
action contingencies are fixed throughout the task, it is
not possible to dissociate dopaminergic and noradrenergic
processes acting via signed (reward) or unsigned (surprise)
prediction errors, respectively. Moreover, as dopamine is
the precursor of noradrenaline, future studies disentangling
both systems are necessary. Notwithstanding, behavioral ef-
fects consistent with taVNS-induced increases in monoamin-
ergic tone provide only indirect evidence in humans and
studies further elucidating mechanisms of taVNS, for exam-
ple, by PET or pharmacological imaging are necessary.

In contrast to our hypothesis, taVNS did neither af-
fect response-specific biases such as Pavlovian or go bi-
ases nor response times in any condition. In previous stud-
ies, pharmacologically-induced increases in tonic dopamine
modulated Pavlovian (Guitart-Masip et al., 2014) or motiva-
tional biases (Swart et al., 2017) and differentially affected
learning from rewards versus punishments (Frank, 2005;
Cools et al., 2006). Although we observed that punish-
ment learning, but not reward learning was significantly
reduced, there was no significant interaction between
valence-dependent learning rates and taVNS effects. Thus,
taVNS-induced effects were generally independent of va-
lence or the required action. One plausible explanation is
that taVNS affects multiple transmitter systems and their
interplay might lead to mixed behavioral alterations com-
pared to pharmacological interventions. However, many
common drugs such as L-DOPA also act on other transmis-
sion systems (De Deurwaerdere et al., 2017) suggesting that
this is an insufficient explanation. Another possibility is that
modulatory effects of taVNS are more confined within the
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motivational circuit compared to systemic drug administra-
tion. For example, it is conceivable that taVNS could al-
ter the balance between fast reinforcement learning, pri-
marily linked to the amygdala, and slow reinforcement
learning, primarily linked to the striatum (Averbeck and
Costa, 2017). It has been shown that chronic taVNS in-
creases functional connectivity between the amygdala and
the prefrontal cortex in depressed patients (Liu et al.,
2016) whereas VNS acutely reduces amygdala-evoked re-
sponses in the prefrontal cortex of rats (Lyubashina and Pan-
teleev, 2009). Thus, future research may help to resolve
these questions by detailing corresponding alterations in
motivational circuits as our study leads to testable predic-
tions about shifting the balance more towards slow striatal
reinforcement learning (Averbeck and Costa, 2017). More-
over, a potential modulation of GABA would have likely led
to specific changes in response inhibition versus execution
(Quetscher et al., 2015; Cheng et al., 2017) and our results
provide little support for changes in inhibitory control. To
conclude, taVNS appears to primarily reduce the speed of
reinforcement learning, but more research is needed to es-
tablish corresponding changes in neurotransmission in hu-
mans.

While we initially hypothesized that behavioral effects of
taVNS in the reinforcement learning task could be caused
by modulations of dopamine, our study has the major limi-
tation of lacking a direct dopaminergic readout. Although
we focused on dopamine, taVNS is arguably not specif-
ically targeting one neurotransmitter system. Additional
PET or pharmacological fMRI studies investigating precisely
which targets and neuromodulators are affected by taVNS
in humans may shed light on the pathway driving reduc-
tions in learning. Furthermore, the within-subject cross-
over design offers increased statistical power to detect
stimulation effects, especially considering baseline depen-
dence. Nonetheless, repeated completion of the task may
have affected performance and modulated taVNS effects.
We accounted for order effects in the statistical analy-
ses, but replication in independent groups would be prefer-
able. Lastly, we investigated the effects of taVNS after an
overnight fast only. In future studies, it would be desirable
to test taVNS-induced effects also in a sated or a neither
hungry, nor full condition. This would help to directly com-
pare taVNS-induced effects to differences induced by cer-
tain homeostatic states.

To summarize, we showed that vagal signals impair choice
accuracy by acutely reducing learning speed in a reinforce-
ment learning task. Slower acquisition may be due to a re-
duced signal-to-noise ratio of evoked phasic dopamine ac-
cording to the value theory of dopamine. Our findings are
in accordance with the hypothesis that vagal afferents may
modulate dopamine tone, but this remains to be confirmed
in humans with markers of dopaminergic transmission. We
conclude that how much we learn from rewards and pun-
ishments may depend on interoceptive signals forwarded by
the vagus nerve. Thereby, rapid learning which actions in
a given environment lead to future reward or punishment
could be facilitated during a hungry state compared to a less
deprived state. Critically, this behavioral flexibility with re-
spect to the current metabolic state was less pronounced
in overweight participants, which is in line with the re-
ported reduced sensitivity to peripheral metabolic feedback

(Klok et al., 2007). Furthermore, reported anti-depressant
effects of taVNS may partly rely on reduced learning, es-
pecially from punishments, as this may compensate for
the reported increased punishment sensitivity in depressed
patients (Hevey et al., 2017; Mkrtchian et al., 2017).
More broadly, reduced dependence on learned contingen-
cies may also offer the possibility to prevent over-reliance
on learned action-outcome combinations and encourage ex-
ploration. In turn, this could lead to greater behavioral
flexibility that may be advantageous in many naturalistic
environments.
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