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a b s t r a c t 

Deep reinforcement learning (DRL) has been proven effective in learning policies of high-dimensional 

states and actions. Recently, a variety of robot manipulation tasks have been accomplished using end-to- 

end DRL strategies. An end-to-end DRL strategy accomplishes a robot manipulation task as a black box. 

On the other hand, a robot manipulation task can be divided into multiple subtasks and accomplished 

by non-learning-based approaches. A hybrid DRL strategy integrates DRL with non-learning-based ap- 

proaches. The hybrid DRL strategy accomplishes some subtasks of a robot manipulation task by DRL and 

the rest subtasks by non-learning-based approaches. However, the effects of integrating DRL with non- 

learning-based approaches on the learning speed and the robustness of DRL to model uncertainties have 

not been discussed. In this study, an end-to-end DRL strategy and a hybrid DRL strategy are developed 

and compared in controlling a cable-driven parallel robot. This study shows that, by integrating DRL with 

non-learning-based approaches, the hybrid DRL strategy learns faster and is more robust to model un- 

certainties than the end-to-end DRL strategy. This study demonstrates that, by taking advantages of both 

learning and non-learning-based approaches, the hybrid DRL strategy provides an alternative to accom- 

plish a robot manipulation task. 

© 2019 Elsevier B.V. All rights reserved. 

1

 

w  

h  

a  

d  

D  

p  

(  

h  

f  

s  

t  

s  

d  

s  

i  

i  

b  

r  

l  

h  

r  

a  

w  

w  

t  

t  

a

 

p  

u  

a  

c  

i  

b  

t  

t  

a  

h

0

. Introduction 

Deep reinforcement learning (DRL) introduces deep neural net-

orks (DNNs) to solve reinforcement learning problems. With the

elp of DNNs, DRL can extract features from high-dimensional data

nd learn complex policies. DRL is especially suitable for sequential

ecision-making applications (e.g., robot manipulation) [1] . Many

RL algorithms, such as deep Q-network (DQN) [2] , trust region

olicy optimization (TRPO) [3] , mirror descent guided policy search

MDGPS) [4] , and deep deterministic policy gradient (DDPG) [5] ,

ave recently been developed into end-to-end DRL strategies used

or a variety of robot manipulation tasks [6–12] . An off-policy DRL

trategy based on DNNs and guided policy search (GPS) was used

o control a quadrotor to avoid obstacles in [6] . The off-policy DRL

trategy employs the pose and the velocity of the quadrotor and

ata from 30 laser rangefinders installed on the quadrotor as its

tates. High-dimensional states are challenging to be integrated

nto non-learning-based control strategies, such as proportional-

ntegral-derivative (PID) controllers, but can be easily processed

y DRL strategies. In [7] , TRPO was used to control bio-inspired
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obots in the MuJoCo simulator [13] . MDGPS was applied to the

ocomotion control of a tensegrity robot with 36 states in [8] . The

igh-dimension of states makes it hard to control the tensegrity

obot using non-learning-based control strategies. Moreover, in [9] ,

 DQN was applied to control a self-balancing robot with two

heels in the Gazebo simulator [14] . When these DRL strategies

ere used to control the robots in [6–12] , the tasks of controlling

he robots were treated as black boxes, without any knowledge of

he internal workings of the robots. Therefore, these DRL strategies

re regarded as end-to-end DRL strategies [15] . 

In practice, a task of controlling a robot is not always a com-

lete black box. Besides inputs and outputs of the black box, one

sually has certain knowledge about its internal workings. For ex-

mple, when manipulating a robot, the robot manipulation task

an be decomposed into multiple subtasks [16] . If one knows the

nternal workings of a subtask, this subtask may be accomplished

y a non-learning-based approach (e.g., an inverse dynamics equa-

ion or a PID algorithm). This raises the question of whether

here is any benefit of integrating DRL with non-learning-based

pproaches in a robot manipulation task. To the best knowledge

f the authors, the effects of integrating DRL with non-learning-

ased approaches on the learning speed and the robustness of DRL
o model uncertainties have not been discussed in the literature. 
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Table I 

Networks and policies of DDPG. 

Network Input Output Policy 

Actor Network s t a t = μ( s t | θμ) Behavior Policy 

Actor-Target Network s t+1 a ′ t = μ′ ( s t+1 | θμ′ 
) Target Policy 

Critic Network s t , ̃  a t Q = Q( s t , ̃  a t | θQ ) Behavior Policy 

Critic-Target Network s t+1 , a 
′ 
t Q ′ = Q ′ ( s t+1 , a 

′ 
t | θQ ′ ) Target Policy 
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To study the effects of integrating DRL with non-learning-

based approaches on the learning speed and the robustness of

DRL to model uncertainties, an end-to-end DRL strategy and a

hybrid DRL strategy are developed and compared in this study in

controlling a cable-driven parallel robot (CDPR). The end-to-end

DRL strategy, called the end-to-end DDPG strategy, is developed

based on a DDPG algorithm. With the end-to-end DDPG strategy,

the task of controlling the CDPR is accomplished entirely by the

DDPG algorithm. The hybrid DRL strategy, called the hybrid DDPG

strategy, is developed by integrating a DDPG algorithm and the

inverse dynamics equation of the CDPR. With the hybrid DDPG

strategy, some subtasks of the task of controlling the CDPR are

accomplished by the DDPG algorithm, while the other subtasks

are accomplished by the inverse dynamics equation of the CDPR. 

This study has the following two major contributions. Firstly,

this study develops and compares the end-to-end DDPG strategy

and the hybrid DDPG strategy in controlling CDPRs. It is shown

that, the hybrid DDPG strategy learns faster and is more robust to

model uncertainties than the end-to-end DDPG strategy. This sug-

gests that, if some subtasks of a robot manipulation task can be

accomplished by non-learning-based approaches, the hybrid DDPG

strategy provides an alternative to accomplish a robot manipula-

tion task. Secondly, this study shows that the end-to-end DDPG

strategy can learn the optimal tension distribution of a CDPR as

well as the hybrid DDPG strategy calculates the optimal tension

distribution of a CDPR based on the inverse dynamics equation of

the CDPR. 

The rest of the paper is organized as follows. Section 2 intro-

duces preliminaries of DDPG as well as the kinematics and dy-

namics of a CDPR. In Section 3 , the hybrid DDPG strategy and the

end-to-end DDPG strategy are proposed for controlling CDPRs. The

training of DDPG in the proposed strategies is demonstrated in

Section 4 . The ability of the end-to-end DDPG strategy to learn the

optimal tension distribution of a CDPR is studied in Section 5 . In

Section 6 , the robustness of the proposed strategies to model un-

certainties is discussed. Finally, Section 7 summarizes this paper. 

2. Preliminaries 

In this section, DDPG [5] is introduced to provide a basis for

the development of the hybrid DDPG strategy and the end-to-end

DDPG strategy in Section 3 . Moreover, the kinematics and dynam-

ics of a CDPR are presented. The hybrid DDPG strategy relies on

the inverse dynamics equation of the CDPR to calculate the opti-

mal tension distribution of cables. The end-to-end DDPG strategy

relies on the DDPG algorithm to learn the optimal tension distri-

bution of cables from trial-and-error. 

2.1. Deep deterministic policy gradient 

As a model-free DRL algorithm, DDPG aims to solve rein-

forcement learning problems with continuous state and action

[5] . DDPG has an actor-critic architecture that combines the DQN

[17] and the deterministic policy gradient (DPG) [18] . DDPG utilizes

four DNNs (i.e., actor network, actor-target network, critic network,

and critic-target network) to approximate two policies (i.e., behav-

ior policy and target policy), as shown in Table I . 

The actor network of DDPG approximates a behavior policy, de-

noted by μ. The output of the actor network parameterized by θμ

is 

a t = μ( s t | θμ) (1)

where t represents a specific time step. s t represents the state of

the actor network at time step t . The behavior policy function uses

a deterministic policy instead of a stochastic policy. The critic net-
ork parameterized by θQ approximates a value function as 

 = Q( s t , ̃  a t | θQ ) (2)

here ˜ a t can be expressed as 

˜  t = a t + N t (3)

here N t represents the exploration noise. 

The actor-target network approximates a target policy, denoted

y μ′ . The output of the actor-target network parameterized by θμ′ 

s 

 

′ 
t = μ′ ( s t+1 | θμ′ 

) (4)

here s t+1 represents the state of the actor-target network at time

tep t + 1 . The critic-target network parameterized by θQ ′ approx-

mates a value function 

 

′ = Q 

′ ( s t+1 , a 

′ 
t | θQ ′ ) (5)

Data of transitions (i.e., state s t , action a t , reward r t , and next

tate s t+1 ) are stored in an experience replay buffer. A random

ini-batch of N data of transitions ( a i , s i , r i , s i +1 ) is selected from

he experience replay buffer to train the four DNNs. The critic net-

ork is updated by minimizing the loss L which is defined as 

 = 

1 

N 

N ∑ 

i =1 

(
y i − Q 

(
s i , a i | θQ 

))2 
(6)

here y i can be expressed as 

 i = r i + γ Q 

′ ( s i +1 , μ
′ ( s i +1 | θμ′ 

) | θQ ′ ) (7)

here γ ∈ (0, 1) denotes a discount factor. The actor network is

pdated with respect to the gradient of the expected performance

bjective J as 

 θμ J ≈ 1 

N 

N ∑ 

i =1 

[∇ a Q 

(
s , a | θQ 

)| s i ,μ( s i ) ∇ θμμ( s | θμ) | s i 
]

(8)

fter updating the actor network and the critic network, the two

orresponding target networks are updated by 

μ′ ← τθμ + ( 1 − τ ) θμ′ 
(9)

Q ′ ← τθQ + ( 1 − τ ) θQ ′ (10)

here update rate τ � 1. 

.2. Kinematics and dynamics of a CDPR 

A CDPR is a robot driven by a set of cables in parallel. An ex-

mple CDPR for the rehabilitation of ankles is shown in Fig. 1 . The

nd-effector of the CDPR is a brace worn on the foot while

he base of the CDPR is a cuff on the shank. Four cables connect

he end-effector to the base. Anchor points are points where cables

onnect the base and the end-effector of the CDPR. The example

DPR has three degrees of freedom (DOFs). 

The kinematics architecture of a CDPR with n cables is shown

n Fig. 2 . The base frame F b is mounted on the base of the CDPR

nd the end-effector frame F e is mounted on the end-effector of

he CDPR. The positions of the attaching points A i and B i are rep-

esented by vectors a and b in the base frame, respectively. u is
i i i 



H. Xiong, T. Ma and L. Zhang et al. / Neurocomputing 377 (2020) 73–84 75 

Fig. 1. A CDPR for the rehabilitation of ankles. 

Fig. 2. Kinematics notations of a CDPR. 
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s  
he unit vector along the i th cable. Based on the above kinematics

otations, the Jacobian of the CDPR can be expressed as [19] 

 = 

[
u 1 

b 1 × u 1 

u 2 

b 2 × u 2 

. . . 

. . . 

u n 

b n × u n 

]T 

(11) 

he equation of motion of the end-effector can be obtained using

he Newton–Euler Formulation as [20 , 21] 

 ( X ) ̈X + C 
(
X , ˙ X 

)
˙ X + G ( X ) + E ( X ) = w (12)

here X denotes the pose (i.e., both position and orientation) of

he end-effector. ˙ X denotes the twist of the end-effector. Ẍ repre-

ents the acceleration of the end-effector. M ( X ) is the mass matrix.

( X, ˙ X ) is the Coriolis and centripetal matrix. G ( X ) represents the

ravity matrix. E ( X ) represents the external wrench matrix. w is

he wrench vector applied on the end-effector by cables. Assuming

here is no collision among cables and the end-effector, one has

he inverse dynamics equation of the CDPR 

 = −J T τ (13) 

here τ represents the vector of cable tensions. CDPRs are com-

only classified as either fully-constrained or under-constrained

nes [22] . For a fully-constrained CDPR in its force-closure

orkspace [23] , τ can be decomposed into two parts [24–26] ,

amely, 

= τe + τa (14) 

here τe is the elastic cable tension vector that generates the

rench w acting on the end-effector. τa is the antagonistic cable

ension vector that creates a zero wrench on the end-effector 

J T τa = 0 (15) 
hen a fully-constrained CDPR works within its force-closure

orkspace, an infinite number of feasible tension distributions ex-

st [27 , 28] . The tension distribution with the minimal Euclidean

orm of τ is the optimal tension distribution of cables [29–31] . 

. Control strategies 

Fig. 3 a illustrates how a CDPR is controlled to move to a target

ose. Given the target pose, the controller of the CDPR needs to

alculate a set of target cable tensions. Actuators are used to phys-

cally deliver the set of target cable tensions to drive the CDPR to

he target pose. The task of the controller of the CDPR, calculat-

ng a set of target cable tensions from a given target pose, can be

ivided into two subtasks. The first subtask is to calculate the tar-

et wrench in the task space to drive the CDPR to the target pose.

ince cables can be pulled only, the target wrench in the task space

as to be converted to a set of target cable tensions in the joint

pace, which is the second subtask. Only when such a set of tar-

et cable tensions is available can actuators reel cables in or out to

rive the CDPR to the target pose. In this section, a hybrid DDPG

trategy and an end-to-end DDPG strategy are developed to control

he CDPR. The hybrid DDPG strategy accomplishes the first subtask

y DDPG and the second subtask by the inverse dynamics equation

f the CDPR in (13) . The end-to-end DDPG strategy accomplishes

he whole task (i.e., both the first and the second subtasks) of the

ontroller of the CDPR using DDPG. 

The flow diagram of the hybrid DDPG strategy is shown in

ig. 3 b. The hybrid DDPG strategy integrates DDPG and the inverse

ynamics equation of a CDPR. The hybrid DDPG strategy accom-

lishes the first subtask of the controller of the CDPR by DDPG. To

ccomplish the first subtask, the DDPG in the hybrid DDPG strat-

gy employs the following state variables: the pose of the CDPR at

 certain time step, the difference between the target pose and the

ose of the CDPR at a certain time step, and the velocity of

he CDPR at a certain time step. Action variables of the DDPG in

he hybrid DDPG strategy is the target wrench in the task space

hat is expected to drive the CDPR to the target pose. Once the first

ubtask is accomplished, the DDPG of the hybrid DDPG strategy

utputs the target wrench in the task space. The second subtask

akes such a target wrench in the task space and converts it to a

et of target cable tensions. The second subtask is accomplished by

olving the inverse dynamics equation of the CDPR in (13) . When

onverting the target wrench in the task space to a set of target ca-

le tensions of a fully-constrained CDPR by solving (13) , there is an

nfinite number of feasible tension distributions. The optimal ten-

ion distribution is calculated using the pseudo-inverse of Jacobian

32] . Once the optimal tension distribution is obtained, actuators

hysically deliver the set of target cable tensions. Algorithm 1 il-

ustrates the implementation of the hybrid DDPG strategy. 

The flow diagram of the end-to-end DDPG strategy is shown in

ig. 3 c. The end-to-end DDPG strategy accomplishes the whole task

i.e., both the first and the second subtasks) of the controller of the

DPR using DDPG. State variables of the DDPG in this strategy con-

ist of the pose of the CDPR at a certain time step, the difference

etween the target pose and the pose of the CDPR at a certain

ime step, and the velocity of the CDPR at a certain time step as

ell. However, action variables of the DDPG in this strategy are a

et of target cable tensions in the joint space, rather than a target

rench in the task space. The set of target cable tensions is derived

ased on the behavior policy of the DDPG. Algorithm 2 illustrates

he implementation of the end-to-end DDPG strategy. 

. Training of DDPG in control strategies 

DDPG in the hybrid DDPG strategy and the end-to-end DDPG

trategy has to be trained before they can be used to control a
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Fig. 3. (a) The task of the controller of a CDPR in controlling the CDPR to a target pose; (b) The flow diagram of the hybrid DDPG strategy; and (c) The flow diagram of the 

end-to-end DDPG strategy. 

Algorithm 1 

Implementation of the hybrid DDPG strategy in controlling a CDPR. 

1: Randomly initialize the actor network and the critic network 

2: Initialize the actor-target network and the critic-target network with the weights of the actor network and the critic network, respectively 

3: Initialize an experience replay buffer 

4: for number of episodes do 

5: Reset the CDPR 

6: Randomly set a target pose 

7: Record the s t 
8: for maximum number of time steps do 

9: Calculate a t (target wrench) according to the current policy and exploration noise 

10: Calculate the optimal tension distribution based on the inverse dynamics equation of the CDPR according to (13) 

11: Execute the optimal tension distribution and observe reward and s t+1 

12: if the CDPR is out of the training workspace then 

13: Break; 

14: if the CDPR reaches the target pose then 

15: Break; 

16: Stack the data (i.e., states, actions, reward, and next states) in the experience replay buffer 

17: Select a mini-batch of data from the experience replay buffer 

18: Update the critic network via minimizing the training loss 

19: Update the actor network using the sampled policy gradient 

20: Update the actor- and critic-target networks 

21: end for 

22: end for 

Algorithm 2 

Implementation of the end-to-end DDPG strategy in controlling a CDPR. 

1: Randomly initialize the actor network and the critic network 

2: Initialize the actor-target network and the critic-target network with the weights of the actor network and the critic network, respectively 

3: Initialize an experience replay buffer 

4: for number of episodes do 

5: Reset the CDPR 

6: Randomly set a target pose 

7: Record the s t 
8: for maximum number of time steps do 

9: Calculate a t (target cable tensions) according to the current policy and exploration noise 

10: Execute a t and observe reward and s t+1 

11: if the CDPR is out of the training workspace then 

12: Break; 

13: if the CDPR reaches the target pose then 

14: Break; 

15: Stack the data (i.e., states, actions, reward, and next states) in the experience replay buffer 

16: Select a mini-batch of data from the experience replay buffer 

17: Update the critic network via minimizing the training loss 

18: Update the actor network using the sampled policy gradient 

19: Update the actor- and critic-target networks 

20: end for 

21: end for 
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Fig. 4. Notations of the example CDPR. 

Fig. 5. The model of the CDPR in the Gazebo simulator. 
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Table II 

Parameters of the CDPR. 

Parameter Value 

Mass of the end-effector 3 kg 

Moment of inertia of end-effector about x axis of F e 0.02 kg · m 

2 

Moment of inertia of end-effector about y axis of F e 0.02 kg · m 

2 

Moment of inertia of end-effector about z axis of F e 0.02 kg · m 

2 
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DPR. Training a DRL algorithm on a real robot may damage the

obot, especially when the DRL strategy has not been well-trained

n the initial stage. Thus, a robot model in a simulator, rather than

 real robot, is highly desirable as simulations are always safe for

he real robot [16] . Moreover, a simulator is also helpful in devel-

ping and fine-tuning the DRL strategy because the iteration of

imulations is much faster than that of real experiments [16] . In

his section, DDPG in the proposed strategies is trained to control

n example CDPR using the Gazebo simulator. 

As shown in Fig. 4 , the example CDPR has three rotational DOFs

nd four cables. F b represents the base frame and F e represents the

nd-effector frame. The pose of the end-effector with respect to

he base (i.e., the pose of the CDPR) is described by a vector of

hree Euler angles [ φ θ ψ ] with a ψ − θ − φ (i.e., yaw-pitch-roll)

equence [33] . DDPG in the proposed strategies is trained within

 workspace, called training workspace, of the CDPR. The training

orkspace in this study is the set of poses that the CDPR can reach

ith the roll, pitch, and yaw of the CDPR within [ −20 , 20 ] (unit:

eg). Gravity is neglected in this study to simplify the analysis. 

A model of the example CDPR is created in the Gazebo simula-

or, as shown in Fig. 5 . The four cables of the CDPR are not shown

n Fig. 5 . Cable tension is applied between a pair of anchor points

f the CDPR. The parameters and the positions of the anchor points

f the CDPR are shown in Tables II and III , respectively. 
.1. Training setup 

.1.1. State setup 

In this study, the state variables of the hybrid DDPG strategy

re the same as those of the end-to-end DDPG strategy. The state

ariables of the proposed strategies at time step t can be expressed

s 

 t = 

[
X 

˙ X �X 

]
(16) 

here X = [ φ θ ψ ] is the pose of the CDPR at time step

 . ˙ X = [ ˙ φ ˙ θ ˙ ψ 

] is the angular velocity of the CDPR at time

tep t . �X is the difference between the target pose of the CDPR,

enoted as X 

∗, and the pose of the CDPR at time step t . Thus, �X

an be expressed as 

X = X 

∗ − X (17) 

t should be noted that s t is a vector having nine scalar elements

n this study. 

.1.2. Action setup 

The action variables of the hybrid DDPG strategy are different

rom those of the end-to-end DDPG strategy. The action variables

f the hybrid DDPG strategy at time step t can be expressed as 

 

w 

t = 

[
w x w y w z 

]
(18) 

here w x , w y , and w z represent the target torques about the x, y ,

nd z axes of F e , respectively. The action variables of the end-to-

nd DDPG strategy at time step t can be expressed as 

 

τ
t = 

[
τ1 τ2 τ3 τ4 

]
(19) 

here τi ( i = 1 , 2 , 3 , 4 ) is the target cable tension in the i th ca-

le. 

.1.3. Reward setup 

Rewards of the hybrid DDPG strategy and the end-to-end DDPG

trategy used in this study are defined below. For the hybrid DDPG

trategy, the reward is designed as 

 

w 

t = −2 ‖ 

�X ‖ 

−
∥∥ ˙ X 

∥∥ (20) 

here ‖ ∗‖ represents the Euclidean norm of ∗. r w 

t has two terms.

he first term is defined by the difference between the target pose

nd the pose of the CDPR at time step t . The second term is de-

ned by the velocity of the CDPR at time step t . In this way, a

arger reward is granted if the CDPR is closer to the target pose or

he velocity of the CDPR is smaller. If the CDPR reaches the target

ose with a full stop, the maximum reward (i.e., r w 

t = 0 ) is granted.

For the end-to-end DDPG strategy, whether the strategy can

earn the optimal tension distribution of cables or not depends on

he reward. Thus, two rewards are designed and tested, aiming to

nd a reward with which the end-to-end DDPG strategy can learn

he optimal tension distribution of cables. The two rewards of the

nd-to-end DDPG strategy are designed as 

 

τ1 
t = −2 ‖ 

�X ‖ 

−
∥∥ ˙ X 

∥∥ (21) 

 

τ2 
t = −2 ‖ 

�X ‖ 

−
∥∥ ˙ X 

∥∥ − 0 . 2 ‖ 

a 

τ
t ‖ 

(22)
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Table III 

Positions of anchor points of the CDPR (unit: m). 

Pair of anchor points Positions of anchor points on the base Positions of anchor points on the end-effector 

1 A 1 : [ 0 . 1 , 0 . 0 , −0 . 15 ] T B 1 : [ 0 . 0707 , −0 . 0707 , 0 . 05 ] T 

2 A 2 : [ 0 . 1 , 0 . 0 , −0 . 15 ] T B 2 : [0.0707, 0.0707, 0.05] T 

3 A 3 : [ −0 . 1 , 0 . 0 , −0 . 15 ] T B 3 : [ −0 . 0707 , 0 . 0707 , 0 . 05 ] T 

4 A 4 : [ −0 . 1 , 0 . 0 , −0 . 15 ] T B 4 : [ −0 . 0707 , −0 . 0707 , 0 . 05 ] T 

Table IV 

Architecture of the four networks of the DDPG. 

Actor and actor-target networks Critic and critic-target networks 

Number of inputs 9 9 + N a 
Activation function 1 ReLU ReLU 

Number of units in layer 1 90 150 

Activation function 2 ReLU ReLU 

Number of units in layer 2 60 120 

Activation function 3 tanh None 

Number of outputs N a 1 

Table V 

Hyper-parameters used to train the DDPG. 

Hyper-Parameter Value 

Maximum number of time steps for each episode 1000 

Learning rate of the actor and actor-target networks 0.001 

Learning rate of the critic and critic-target networks 0.0001 → 0.00005 

Discount factor γ 0.95 

Update rate (target) τ 0.001 

Size of the experience replay buffer 10,000 

Size of mini-batch 1024 

Maximum magnitude of random exploration noise (i.e., an element of N t ) 
range of an action 

number of episodes +2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

D  

s  

d  

m  

o

4

 

i  

o  

F  

u  

i  

t  

s  

a  

t  

e  

a  

e  

t

 

i  

h  

w  

j  

t  

c  

s  

T  

e  

t  

t  

i  

f

where r τ1 
t is the same as r w 

t . Compared to r τ1 
t , r τ2 

t has a third

term, namely, the Euclidean norm of the vector of cable tensions

or the action variables of the end-to-end DDPG strategy defined

in (19) . Such a cable tension term gives higher rewards to actions

producing smaller tensions. The design of r τ2 
t is inspired by the

reward consisting of both balancing and goal-oriented terms for a

simulated bicycle riding task in [34] . With r τ2 
t , a larger reward is

granted if the CDPR is closer to the target pose; the velocity of

the CDPR is smaller; or the Euclidean norm of the vector of ca-

ble tensions is smaller. In this manner, the end-to-end-DDPG strat-

egy’s goal is not only to accomplish the task of controlling a CDPR,

but also achieve the optimal tension distribution of cables. r w 

t , r τ1 
t ,

and r τ2 
t are possible to be further optimized according to studies

of multi-objective reinforcement learning that aims to find com-

promising solutions balancing different objectives to RL problems

[35] . Multi-objective reinforcement learning has been successfully

applied to control variable speed wind turbines achieving the opti-

mal balance of power generation stability and rotor angular speed

in [36] . 

4.1.4. Networks and hyper-parameters setup 

In this study, the four networks of the DDPG used by both pro-

posed strategies are fully connected neural networks with two hid-

den layers. The architecture of the four DNNs is shown in Table IV

and the hyper-parameters used to train the DDPG are shown in

Table V . The architecture of the four DNNs of the DDPG and the

hyper-parameters used by both proposed strategies are the same

except the number of outputs of the actor network and the actor-

target network and the number of inputs of the critic network

and the critic-target network. N a in Table IV represents the num-

ber of actions. In this study, N a = 3 for the hybrid DDPG strategy

and N a = 4 for the end-to-end DDPG strategy. In Table V , the learn-

ing rates of the critic network and the critic-target network change

from 0.0 0 01 to 0.0 0 0 05 if the training loss is less than 0.001. The

data (i.e., states, actions, reward, and next states) used to train
DPG in both proposed strategies are collected from the Gazebo

imulator. For each episode, the CDPR starts at X = [ 0 0 0 ] (unit:

eg). An episode ends if the CDPR reaches a target pose, the maxi-

um number of 10 0 0 time steps is reached, or the CDPR goes out

f the training workspace. 

.2. Training 

In this study, it is assumed that elements of a 

τ
t in (19) (i.e., the

ndividual cable tensions) are within [0, 1] (unit: N) and elements

f a 

w 

t in (18) (i.e., the target wrenches about the x, y , and z axes of

 e ) are within [ −0 . 1 , 0 . 1 ] (unit: Nm). The Adam optimizer [37] is

tilized in training. With the training setup in Section 4.1 , DDPG

n the proposed strategies is trained based on a CDPR model in

he Gazebo simulator. The frequency of the Gazebo simulator is

et to 100 Hz and the time step of the DDPG is 0.1 s. The aver-

ge rewards in every episode are shown in Fig. 6 . It is shown that

he hybrid DDPG strategy converges within 70 episodes, while the

nd-to-end DDPG strategy with r τ1 
t and r τ2 

t converges within 100

nd 400 episodes, respectively. Therefore, the hybrid DDPG strat-

gy learns faster than the end-to-end DDPG strategy even when

hey use the same reward. 

According to [16] , a complicated task becomes easier to learn

f some of its subtasks have already been accomplished. For the

ybrid DDPG strategy, the second subtask of converting the target

rench in the task space to a set of target cable tensions in the

oint space is accomplished by solving the inverse dynamics equa-

ion in (13) . Thus, the DDPG of the hybrid DDPG strategy can fo-

us on the first subtask while the DDPG of the end-to-end DDPG

trategy has to deal with both the first and the second subtasks.

his explains why the hybrid DDPG strategy learns faster than the

nd-to-end DDPG strategy. Moreover, the number of actions of

he DDPG in the end-to-end DDPG strategy is four while that in

he hybrid DDPG strategy is three. The reduced number of actions

s another possible reason that the hybrid DDPG strategy learns

aster than the end-to-end DDPG strategy. 
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Fig. 6. Average rewards of DDPG in the proposed strategies. 
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Fig. 7. Cable tensions of the CDPR controlled by the end-to-end DDPG strategy with 

r τ1 
t . 

Fig. 8. Cable tensions of the CDPR controlled by the end-to-end DDPG strategy with 

r τ2 
t . 
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. Optimal tension distribution of cables 

The example CDPR concerned in this study is a fully-

onstrained CDPR. A fully-constrained CDPR in its force-closure

orkspace has an infinite number of feasible tension distribu-

ions. Therefore, how to obtain the optimal tension distribution

29–31] of cables is studied for the example CDPR in this section. 

he hybrid DDPG strategy calculates the optimal tension distribu-

ion of cables by solving the inverse dynamics equation in (13) . The

nd-to-end DDPG strategy has to learn the optimal tension distri-

ution of cables on its own. This section demonstrates that, with a

roper reward, the end-to-end DDPRG strategy can learn the op-

imal tension distribution of cables as well as the hybrid DDPG

trategy obtains the optimal tension distribution of cables using a

on-learning-based approach. 

The tension distributions of the CDPR controlled by the end-to-

nd DDPG strategy with r τ1 
t and r τ2 

t in reaching a randomly se-

ected target pose X = [ 9 12 15 ] (unit: deg) is studied. The end-

o-end DDPG strategy with r τ2 
t whose third term is about cable

ensions is expected to be able to learn the optimal tension distri-

ution of cables. The tension distributions of the end-to-end DDPG

trategy with r τ1 
t and r τ2 

t are shown in Figs. 7 and 8 , respectively.

he optimal tension distribution (i.e., the dash lines in Figs. 7 and

 ) is obtained by solving the inverse dynamics equation in (13) . It

s shown that the end-to-end DDPG strategy with r τ2 
t is able to

earn the optimal tension distribution, while the end-to-end DDPG

trategy with r τ1 
t cannot. Therefore, with a proper reward (e.g.,

 

τ2 
t ), the end-to-end DDPG strategy can learn the optimal tension

istribution of a fully-constrained CDPR. 

. Robustness to model uncertainty 

The model of a robot used to train a DRL algorithm may not

apture all the details of the real robot in practice [16] . For exam-

le, positions of anchor points of the CDPR in Fig. 1 may change

rom setup to setup due to the wearing inconsistency of the cuff

nd the brace. As a result, the models of the CDPR for different

etups may be slightly different due to the wearing inconsistency.

 setup or model of the CDPR to be controlled by the proposed

trategies may be slightly different from the setup or model of the

ame CDPR based on which DDPG in the proposed strategies is

rained. It would be ideal if the proposed strategies whose DDPG

s trained using one model of the CDPR can be used to control the
DPR whose model has slightly changed. Such an adaptive capabil-

ty requires the proposed strategies to be robust to model uncer-

ainties [16] . 

The robustness of the proposed strategies to model uncertain-

ies is investigated in this section based on a pose-tracking test and

 trajectory-tracking test. The proposed strategies whose DDPG is

rained using one of the models of the CDPR in the Gazebo sim-

lator are first used to control the CDPR with the same model. In

his case, there is no model uncertainty or difference between the

odel based on which DDPG is trained and the model to be con-

rolled by DDPG. This works as the baseline for the study of the

obustness of the proposed strategies to model uncertainties. Then,

he proposed strategies are used to control the CDPR whose model

as been slightly changed to test the robustness of the proposed

trategies to model uncertainties. 
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Table VI 

Outcomes of the pose-tracking test. 

Strategy Number of target poses the 

CDPR reaches successfully 

Number of target poses the 

CDPR fails to reach 

Success rate 

Hybrid DDPG strategy with the reward of r w t 993 7 99.3% 

End-to-end DDPG strategy with the reward of r τ1 
t 978 22 97.8% 

End-to-end DDPG strategy with the reward of r τ2 
t 995 5 99.5% 

Fig. 9. Randomly selected target poses. 

 

 

 

 

 

 

 

 

 

Fig. 11. Trajectories of the CDPR without model uncertainty. 
In the pose-tracking test, the CDPR is controlled by the pro-

posed strategies to move from X = [ 0 0 0 ] (unit: deg) to 10 0 0

randomly selected target poses within the training workspace, as

shown in Fig. 9 . A pose-tracking test is considered successful if the

CDPR is able to reach a target pose (i.e., the Euclidean norm of the

tracking error defined by ‖ �X ‖ is less than 1.8 °) and it takes no

more than 150 time steps (i.e., 15 s). Otherwise, the pose-tracking

test is considered failed. 

In the trajectory-tracking test, the target trajectory to be tracked

is designed as { 

φ = 45 sin ( 0 . 01 π j ) /π
θ = 22 . 5 cos ( 0 . 01 π j ) /π − 22 . 5 /π
ψ = 45 sin ( 0 . 02 π j ) /π

(23)
Fig. 10. Target poses of the CDPR fails to be reached using the proposed strategies in controlling the CDPR without model uncertainty: (a) the hybrid DDPG strategy; (b) the 

end-to-end DDPG strategy with the reward of r τ1 
t ; and (c) the end-to-end DDPG strategy with the reward of r τ2 

t . 
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Fig. 12. Tracking error of the CDPR without model uncertainty. 
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Fig. 13. Position errors of anchor points of the CDPR: a) top view; and b) side view. 

C  

g  

a  

t  

i  

i  

t  

s  

t  

t  

T  

w

 

p  

T  

t  

i  

t  

w  

t  

o  

F

e

here j = 0 , 1 , . . . , 599 and j is updated in every 15 time steps (i.e.,

.5 s). 

.1. Evaluate control strategies on a CDPR without model uncertainty 

The proposed strategies whose DDPG is trained using a model

f the CDPR in the Gazebo simulator are used to control the

DPR with the same model. For the proposed strategies, the model

f the CDPR based on which DDPG in the strategies is trained is re-

arded as the model of the CDPR without model uncertainty. The

utcomes of the pose-tracking test are shown in Table VI . The hy-

rid DDPG strategy and the end-to-end DDPG strategy with the re-

ard of r τ2 
t perform well in the pose-tracking test. The success rate

f the end-to-end DDPG strategy with the reward of r τ1 
t is slightly

ower than those of the hybrid DDPG strategy and the end-to-end

DPG strategy with the reward of r τ2 
t . To investigate why the pro-

osed strategies cannot control the CDPR to reach a target pose,

he target poses that the proposed strategies cannot control the
ig. 14. Target poses of the CDPR fails to be reached using the proposed strategies in con

nd-to-end DDPG strategy with the reward of r τ1 
t ; and (c) the end-to-end DDPG strategy 
DPR to reach are plotted in Fig. 10 . It turns out that all these tar-

et poses are close to the boundary of the training workspace. If

 target pose is close to the boundary of the training workspace,

he CDPR may move out of the training workspace when mov-

ng towards such a target pose. If the CDPR is out of the train-

ng workspace, it is very likely that the CDPR cannot move back

o the training workspace because the training of DDPG in the

trategies is limited to the training workspace. Thus, poses close

o the boundary of the training workspace are more challenging

o track than those close to the center of the training workspace.

his suggests that the training workspace should be larger than the

orkspace used in a control task in practice. 

Fig. 11 shows the trajectories of the CDPR controlled by the

roposed strategies to track the target trajectory defined in (23) .

he proposed strategies can control the CDPR to track the target

rajectory indeed. Fig. 12 shows the Euclidean norm of the track-

ng error when the CDPR is controlled to track the target trajec-

ory. The hybrid DDPG strategy and the end-to-end DDPG strategy

ith the reward of r τ1 
t have smaller tracking error than the end-

o-end DDPG strategy with the reward of r τ2 
t . Since the magnitude

f cable tensions is included in the reward of r τ2 , the end-to-end
t 

trolling the CDPR with model uncertainties: (a) the hybrid DDPG strategy; (b) the 

with the reward of r τ2 
t . 
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Table VII 

Positions of anchor points of the CDPR with model uncertainties (Unit: m). 

Pair of anchor points Positions of anchor points on the base Positions of anchor points on the end-effector 

1 ′ A ′ 1 : [ 0 . 1 , 0 . 0 , −0 . 15 ] T B ′ 1 : [ 0 . 0774 , −0 . 0633 , 0 . 04 ] T 

2 ′ A ′ 2 : [ 0 . 1 , 0 . 0 , −0 . 15 ] T B ′ 2 : [ 0 . 0633 , 0 . 0774 , 0 . 04 ] T 

3 ′ A ′ 3 : [ −0 . 1 , 0 . 0 , −0 . 15 ] T B ′ 3 : [ −0 . 0774 , 0 . 0633 , 0 . 04 ] T 

4 ′ A ′ 4 : [ −0 . 1 , 0 . 0 , −0 . 15 ] T B ′ 4 : [ −0 . 0633 , −0 . 0774 , 0 . 04 ] T 

Fig. 15. Trajectories of the CDPR with model uncertainties. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 16. Tracking errors of the CDPR with model uncertainties. 
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DDPG strategy with the reward of r τ2 
t tends to achieve not only

smaller tracking error and velocity, but also smaller cable tensions.

It makes sense that the end-to-end DDPG strategy with the reward

of r τ2 
t leads to a larger tracking error than the end-to-end DDPG

strategy with the reward of r τ1 
t and the hybrid DDPG strategy with

the reward of r w 

t . 

6.2. Evaluate control strategies on a CDPR with model uncertainties 

In this subsection, the proposed strategies are used to control

the CDPR with model uncertainties. In other words, the model of

the CDPR to be controlled is slightly different from the model of

the CDPR based on which DDPG in the strategies is trained. 

In this study, the model uncertainties are supposed to be

caused by position errors of anchor points of the CDPR, as shown

in Fig. 13 . The positions of anchor points of the CDPR without

model uncertainty are shown in Table III , while the positions of

anchor points of the CDPR with model uncertainties are shown in

Table VII . The anchor points on the end-effector of the CDPR with

model uncertainties are supposed to rotate 5.73 ° about the z axis

of F e and slide 0.01 m along the z axis of F e , compared to those

of the CDPR without model uncertainty. Moreover, the moment of
nertias and the mass of the CDPR with model uncertainties are

ssumed the same as those of the CDPR without model uncer-

ainty, as shown in Table II . It should be noticed that the Jacobian

f the CDPR used in the inverse dynamics equation in the hybrid

DPG strategy is calculated based on the CDPR without model un-

ertainty. Thus, the inverse dynamics equation of the CDPR is no

onger accurate in controlling the CDPR with model uncertainties

ue to the position errors of anchor points. 

The pose-tracking test and the trajectory-tracking test are con-

ucted on a CDPR with model uncertainties in this subsection.

n the pose-tracking test, the target poses are the poses shown

n Fig. 9 . The outcomes of the pose-tracking test are shown in

able VIII . According to Table VIII , the control performance of the

nd-to-end DDPG strategy is affected by the model uncertainties.

owever, the control performance of the hybrid DDPG strategy is

ot affected much, even though the inverse dynamics equation of

he CDPR is not accurate in this case. Therefore, the hybrid DDPG

trategy is more robust to model uncertainties than the end-to-

nd DDPG strategy. Target poses that the CDPR fail to reach are

hown in Fig. 14 . These target poses are close to the boundary of

he training workspace. 

In the trajectory-tracking test, the CDPR with model uncertain-

ies is controlled by the proposed strategies to track the target tra-

ectory defined in (23) . The trajectories and tracking errors of the

DPR with model uncertainties are shown in Figs. 15 and 16 , re-

pectively. According to Fig. 15 , the CDPR with model uncertainties

an still be controlled by the proposed strategies to track the tar-

et trajectory. In other words, the proposed strategies are robust

o certain model uncertainties. However, comparing Figs. 12 and

6 , one can see that, controlled by the end-to-end DDPG strategy

ith the reward of r τ1 
t , the CDPR with model uncertainties has

arger tracking errors (about 2.7 °) than the CDPR without model
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Table VIII 

Outcomes of the pose-tracking test conducted on a CDPR with model uncertainties. 

Strategy Number of target poses the 

CDPR reaches successfully 

Number of target poses the 

CDPR fails to reach 

Success rate 

Hybrid DDPG strategy with the reward of r w t 992 8 99.2% 

End-to-end DDPG strategy with the reward of r τ1 
t 921 79 92.1% 

End-to-end DDPG strategy with the reward of r τ2 
t 981 19 98.1% 
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ncertainty (about 2.2 °). It means a decrease in control perfor-

ance. Moreover, controlled by the hybrid DDPG strategy and the

nd-to-end DDPG strategy with the reward of r τ2 
t , the CDPR with

odel uncertainties has almost the same tracking errors as the

DPR without model uncertainty. 

. Conclusion 

In this paper, an end-to-end DDPG strategy and a hybrid DDPG

trategy are developed and compared in controlling a CDPR. The

ybrid DDPG strategy integrates DDPG and the inverse dynamics

quation of a CDPR. Given a target pose of a CDPR, DDPG outputs

he target wrench in the task space based on the behavior pol-

cy. The inverse dynamics equation takes the target wrench in the

ask space and solves the optimal tension distribution of cables in

he joint space. The end-to-end DDPG strategy accomplishes the

ntire control task of a CDPR by DDPG. This study shows that

he hybrid DDPG strategy learns faster than the end-to-end DDPG

trategy in training. Both the hybrid DDPG strategy and the end-

o-end DDPG strategy are robust to certain model uncertainties.

owever, the hybrid DDPG strategy is more robust to model un-

ertainties than the end-to-end DDPG strategy. Moreover, the end-

o-end DDPG strategy can learn the optimal tension distribution of

ables as well as the hybrid DDPG strategy calculates it from the

nverse dynamics equation of the CDPR. This study demonstrates

hat, by taking advantages of both learning and non-learning-based

pproaches, the hybrid DDPG strategy provides an alternative to

ccomplish a robot manipulation task. 

To control a CDPR in practice, the state variables of the pro-

osed strategies can be measured and the action variables can

e implemented. State variables (i.e., the pose and velocity of the

DPR) can be measured by instruments such as inertial measure-

ent units [38] . Action variables (i.e., cable tensions of the CDPR)

an be delivered by direct-current motors with proper voltage in-

uts [39] . One should note that controlling a robot with DRL strate-

ies may have safety issues in practice. For example, although

ontrolling a robot with DRL strategies is feasible for non-safety-

ritical applications such as robotic palletizing, regulations may

revent the implementation of DRL strategies for safety-critical ap-

lications such as robotic surgery. 

In the future, the authors plan to build a CDPR prototype such

hat DRL strategies can be applied on the real CDPR. Besides the

DPG algorithm, more DRL algorithms will be used and compared

ased on both end-to-end and hybrid strategies. The DRL algo-

ithms will be trained based on a model of the real CDPR and then

sed to control the real CDPR. 
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