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a b s t r a c t 

This paper develops an integral reinforcement learning (IRL)-based adaptive control method for the multi- 

player non-zero-sum (NZS) games of the nonlinear continuous-time systems with partially unknown dy- 

namics, in the context of event-triggered mechanism. With the principle of IRL method, the requirement 

for the system drift dynamics is relaxed in the controller design. Moreover, different from the conven- 

tional iteration computation methods, the algorithm developed in this work is implemented in an online 

adaptive fashion, which provides a new way to combine the IRL algorithm and the event-triggered con- 

trol framework in solving the NZS game issues. In the event-based algorithm, a state-dependent trigger- 

ing condition is presented, which not only guarantees the closed-loop system stability, but also reduces 

the computation and communication loads of the controlled plant. By means of Lyapunov theorem, the 

uniform ultimate boundedness (UUB) properties of the system states and the critic weight estimation 

errors have been proved. Finally, two numerical examples are utilized to demonstrate the efficacy of the 

proposed method. 

© 2019 Elsevier B.V. All rights reserved. 
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. Introduction 

In the conventional digital control systems, most of the con-

roller devices are aroused by the periodical sampling signals to

xecute the computing and updating tasks [1,2] . Generally, a higher

ampling frequency of the controlled plant means more informa-

ion can be collected to design the control inputs and the cor-

esponding control can work on the plants in time, which result

n better control performance. However, in some specific applica-

ions, such as the networked control systems with geographically

istributed sensors, controllers and actuators [3] , the transmission

andwidths and computational resources are always constrained.

n these instances, higher sampling rate may lead to congestions

n the communication networks and more task delays will be

aused. Therefore, the tradeoff between the control performance

nd the communication/computation loads has received intensive

ttentions by the researchers. 
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Event-triggered control (ETC) methods [4–6] are deemed as ef-

ective not only in reducing the system control loads but also in

uaranteeing the achievement of the desired control objectives.

ompared with the traditional time-triggered control systems, un-

er the ETC mechanism, the control inputs are recomputed and

pdated only at the triggering instants, which are determined by

ome predefined triggering conditions. The core idea of the ETC

chemes is that, by selecting proper triggering parameters, less

omputations and lower transmission frequency can be attained,

n the meanwhile the stability of the controlled system is also

uaranteed. That is, by applying the event-based control protocol,

he system energy consumption is reduced without compromising

he control performance, which has been shown qualitatively and

uantitatively in the literature [7–9] . 

The differential game theories [10] have been applied in the

elds including military [11,12] , industrial manufacturing [13] ,

usiness decision making [14,15] , power system controlling [16,17] ,

tc. In these issues, multiple players are involved to maximize the

ndividual or team-based goals in a cooperative or noncooperative

ashion. As for the two-player zero-sum differential game issue

18,19] , one’s gains are surely the other one’s losses, and the

ecision strategies are made by the players independently of each

ther. But for the multi-player non-zero-sum (NZS) games [18,20] ,

 balance between attaining the team goals cooperatively and
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optimising the individual performance indexes competitively, is

the exact objective to be captured. In these problems, the Nash

equilibrium can be obtained by solving the coupled Hamilton–

Jacobi (HJ) equations [21,22] , which are reduced to coupled

algebraic Riccati equations in the linear system cases. However,

due to the inherent nonlinearity properties and the existence

of the coupled terms, the analytic solutions to the coupled HJ

equations are nearly impossible to be got. 

In order to tackle the aforementioned problem, the adaptive

dynamic programming (ADP) methods [23,24] , developed from

adaptive control designs [25,26] and reinforcement learning (RL)

technologies [27] , have been utilized to approximate the optimal

solutions to the differential games [28–33] . Vamvoudakis and

Lewis [21] proposed a novel online adaptive control method to

solve the coupled HJ equations by resorting to the policy iteration

(PI) algorithm. Then in [32] , the authors established an identifier-

actor-critic architecture to investigate the NZS games of the

unknown nonlinear systems, where a neural network (NN)-based

identifier was employed to reconstruct the system dynamics. By

means of the Q-learning method [34] , the NZS games for a class

of deterministic continuous-time linear systems were studied in

[31] , even though the system dynamics are completely unknown. 

As a variant of the RL algorithm, the integral RL (IRL) methods

were proposed in [35,36] . In the classical PI-based ADP methods,

the approximate optimal solutions of the Hamilton–Jacobi–Bellman

(HJB) equations are desired. However, in the IRL schemes, by intro-

ducing the integral Bellman equations which involve none of the

system dynamic knowledge, the requirement for the system drift

dynamics can be relaxed in the controller design process [35] . Con-

sidering that in the practical control instances, the system dynam-

ics is hard to be modelled or formulated, the IRL algorithms are

more applicable and feasible in dealing with the optimal control

problems. And the related studies can be found in [37–40] . 

Nowadays, the ADP algorithms and the event-triggered mech-

anism have been combined in addressing the optimal control is-

sues [41,42] , the optimal tracking control problems [39,43,44] and

the zero-sum differential games [8,45] . In addition, for the sys-

tems with unknown states or dynamics, event-based methods have

also been presented in [9,46,47] , where the observers or identi-

fiers were used to cope with these optimization issues. But to the

best of the authors’ knowledge, the NZS games under the event-

triggered mechanism have not been investigated by the IRL-based

algorithms up to now. 

In this work, an adaptive control scheme for the NZS games

of nonlinear systems subject to unknown drift dynamics is pro-

posed in the context of event-triggered framework. The IRL algo-

rithm is implemented in an online fashion, where the critic NN

is built to approximate the optimal value functions corresponding

to each of the players. A novel event-triggered condition is devel-

oped. In the meanwhile, the adaptive laws of the critic networks

are properly designed, which can guarantee the convergence of the

critic NN weights and the uniformly ultimately boundedness (UUB)

of the closed-loop system state. The contributions of this work are

three-fold: 

1. For the first time, the NZS differential game issues for the non-

linear systems with partially unknown dynamics are addressed

with the aid of the ADP scheme, under the event-triggered

mechanism. As the IRL method is used, the requirement for

the system drift dynamics is released. Moreover, in contract to

the existing event-based ADP algorithms [8,46,47] , where the

NN-based observers or identifiers were utilized to rebuild the

system dynamics, our method avoids introducing the model

estimation errors. 

2. Compared with the ADP-based methods [35,36] , where the of-

fline iteration procedure was applied to approximate the solu-
tions to the optimization problems, the IRL algorithm proposed

in this paper is implemented in an online fashion. It provides

a new channel to combine the IRL scheme and the ETC mecha-

nism, in consideration that the computing of the triggering con-

ditions and the triggering of the events must be executed in an

online control process. 

3. In the traditional event-triggered ADP algorithms [45,47,48] ,

the control inputs were involved in the triggering conditions,

which means that the communication channels are needed to

be established between the triggering derives and the con-

trollers. However, in our design, the triggering condition is

state-dependent. That is to say, no controller output signals

are transmitted to the triggering determining devices, which

will surely save more system computation and communication

resources. 

The rest of this paper is organized as follows. In Section 2 ,

he unknown nonlinear system is formulated and the knowledge

f the multi-player NZS games is introduced. The IRL-based on-

ine adaptive control method is proposed in Section 3 . The UUB

roperties of the closed-loop system states and the convergence

f the critic NN weight estimation errors are also proved. Two

imulation examples are given in Section 4 , thereby substantiating

he effectiveness and applicability of the developed method. The

onclusions are drawn in Section 5 , where the future expectation

s also presented. 

Notations : In this work, R denotes the set that includes all the

eal numbers, R 

n represents the n -dimensional Euclidean space,

nd herein we define R 

n ×m as the set of all real matrices. N 

+ 

s the set that contains all the positive integers, including a sub-

et of N = { 1 , . . . , N} . Throughout this paper, t stands for a spe-

ific time instant, and any function f ( x ( t )) with regard to t can be

imply denoted as f, f ( x ) or f ( t ). Matrix I n × n is the n -dimensional

dentity matrix and 0 m × n is a zero-valued matrix with appropri-

te dimensions. λmax ( · ) is the maximal eigenvalue of a matrix,

nd λmin ( · ) is the minimal eigenvalue, correspondingly. The func-

ion f ( x ) ∈ C 1 ( ψ) means that on the compact set ψ , f ( x ) is first-

rder continuously differentiable. tr (·) is the trace operation of

atrices. Moreover, the left-limit operator is defined as x ( t −) =
im �t→ 0 + x (t − �t) . 

. Problem formulation and preliminaries 

First of all, the NZS games of the nonlinear systems are formu-

ated in this section, and the time-triggered coupled HJ equations

re also derived. 

.1. Time-triggered NZS games 

Consider the NZS differential games of the affine nonlinear sys-

em with N controllers, which is in the form of 

˙ 
 = F (x ) + 

N ∑ 

j=1 

g j (x ) u j (x ) (1)

here x ∈ � ⊂ R 

n is the system state with � a compact set that

ontains the origin. In the NZS games, the j th controller is also

eferred to as the j th player with the corresponding control pol-

cy u j ∈ R 

n , j ∈ N . The smooth function F (x ) : R 

n → R 

n and g j (x ) :

 

n → R 

n ×n are the drift dynamics and the control input dynamics,

espectively. Assume that the function F ( x ) is unknown. The follow-

ng assumptions [11,12,41,49,50] are needed throughout this work. 

ssumption 1. System (1) is controllable, that is, there exists at

east a control policy pair { u 1 , . . . , u N } can asymptotically stabilize

ystem (1) , and x = 0 is the only equilibrium point on the compact

et �. The system states are all detectable. 
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ssumption 2. ∀ j ∈ N , the functions F ( x ) and g j ( x ) are all locally

ipschitz on the compact set � with F (0) = 0 . 

ssumption 3. For any x ∈ �, the input coefficient matrix g j ( x ) has

ull rank and is norm-bounded, i.e., ∀ j ∈ N , the inverse matrix g −
j 

lways exists and there are positive constants g j and ḡ j such that

 < g 
j 
≤ || g j (x ) || ≤ ḡ j . 

With the initial state x (0), ∀ i ∈ N , the infinite-horizon perfor-

ance index corresponding to the i th player is denoted as 

 i (x (0)) = 

∫ ∞ 

0 

(
x T M i x + 

N ∑ 

j=1 

u 

T 
j R i j u j 

)
ds ≡

∫ ∞ 

0 

ρi (x, u 1 , . . . , u N ) ds . 

(2) 

ere ρi (x, u 1 , . . . , u N ) is the utility function with the parameter

atrices M i 
0 and R ij 
0 for all i, j ∈ N . Before proceeding, the

efinition of the admissible control policies should be provided: 

efinition 1 [28,38] . For system (1) , the control policy pair u =
 u 1 (x ) , . . . , u N (x ) } is named as an admissible control policy pair on

he compact set �, if ∀ i ∈ N , the control policy u i ( x ) is continuous

n � with u i (0) = 0 , u can stabilize system (1) and the perfor-

ance index (2) is finite for any x (0) ∈ �. 

As for the NZS game of system (1) , the objective is to find the

ash equilibrium point solution, which is defined by 

efinition 2 [18,21,38] . Consider the addressed nonlinear system

1) , an N -tuple admissible control policy pair u ∗ = { u ∗
1 
, . . . , u ∗

N 
} is

aid to build a Nash equilibrium point solution for the N -player

ZS game of system (1) , if ∀ i ∈ N , it holds that 

 

∗
i ≡ J i (x, u 

∗
1 , . . . , u 

∗
i , . . . , u 

∗
N ) ≤ J i (x, u 

∗
1 , . . . , u i , . . . , u 

∗
N ) . 

For any given admissible control policy pair u = { u 1 , . . . , u N } ,
he value function (also named as the cost function) is formulated

s 

 i (x (t)) = 

∫ ∞ 

t 

( 

x T M i x + 

N ∑ 

j=1 

u 

T 
j R i j u j 

) 

ds . (3) 

ssume that the value function (3) satisfies that V i ∈ C 1 ( �), then

 i ∈ N , the differential equivalent form of (3) is converted into the

ollowing equation: 

 = ρi (x, u 1 , . . . , u N ) + (∇V i ) 
T 

( 

F (x ) + 

N ∑ 

j=1 

g j u j 

) 

, V i (0) = 0 (4) 

here ∇V i = 

∂V i 
∂x 

. Here we define the Hamiltonian function as 

 i (x, u 1 , . . . , u N ) = ρi (x, u 1 , . . . , u N ) + (∇V i ) 
T 

( 

F (x ) + 

N ∑ 

j=1 

g j u j 

) 

. 

(5) 

And furthermore, the optimal value function is defined as 

 

∗
i = min 

u i 

{ ∫ ∞ 

t 

( 

x T M i x + 

N ∑ 

j=1 

u 

T 
j R i j u j 

) 

ds 

} 

. (6) 

ue to the stationarity conditions at the equilibrium point, the op-

imal control policy of the i th player is obtained as 

 

∗
i = −1 

2 

R 

−1 
ii 

g T i (x ) ∇V 

∗
i , ∀ i ∈ N . (7) 
ence, the time-triggered coupled HJ equations can be got as 

 i (x, u 

∗
1 , . . . , u 

∗
N , V 

∗
i ) 

= x T M i x + 

N ∑ 

j=1 

u 

∗T 
j R i j u 

∗
j + (∇V 

∗
i ) 

T 

( 

F (x ) + 

N ∑ 

j=1 

g j (x ) u 

∗
j 

) 

= x T M i x + 

1 

4 

N ∑ 

j=1 

(∇V 

∗
j ) 

T g j (x ) R 

−1 
j j 

R i j R 

−1 
j j 

g T j (x ) ∇V 

∗
j 

+ (∇V 

∗
i ) 

T 

( 

F (x ) − 1 

2 

N ∑ 

j=1 

g j (x ) R 

−1 
j j 

g T j (x ) ∇V 

∗
j 

) 

= 0 , V 

∗
i (0) = 0 . (8) 

n (8) , for the sake of simplification, the notation (u ∗
j 
) T is rewritten

s u ∗T 
j 

, and the similar terms are also denoted in the same way. 

Before ending this section, an important lemma is presented

erein, which provides the existence condition of the Nash equi-

ibrium points: 

emma 1. Suppose that ∀ i ∈ N , there exists a positive definite func-

ion V ∗
i 

that satisfies the coupled HJ equation (8) , then the optimal

ontrol policies expressed by (7) can asymptotically stabilize system

1) , and the control policy pair { u ∗
1 
, . . . , u ∗

N 
} is the Nash equilibrium

olution to the NZS game of system (1) . 

Lemma 1 has been given in the references of [18,19] , and the

roof can also be found therein. To avoid the repetition, the proof

f Lemma 1 is omitted in this work. 

As the drift dynamics F ( x ) in the Eq. (8) is unknown, it is im-

ossible to solve the coupled HJ equations directly. Therefore, in

he subsequent analysis, the adaptive critic designs are employed

o get the approximate optimal solutions in an online manner. 

. IRL-based adaptive ETC design for the NZS games 

In this section, by integrating the IRL algorithm and the event-

riggered framework, a new online adaptive control method is de-

eloped to solve the NZS game of system (1) , where the critic

etwork is established to approximate the optimal value function.

lthough the system drift dynamics is unknown, by using our

ethod, the closed-loop system state is proved to be UUB with

he help of Lyapunov’s theorem. 

.1. Formulation of IRL algorithm 

In the classical PI method, the complete system dynamics in-

ormation is needed in the iteration process. Therefore, to solve

he NZS game of nonlinear systems with unknown dynamics, a

N-based identifier was utilized in [32] to reconstruct the system

ynamics. Developed from the RL technologies, the IRL algorithm

ossesses the advantage that the requirement for the knowledge

f the system drift dynamics is relaxed in the analysis process. And

y the virtue of IRL scheme, the Nash equilibrium solutions were

pproximated in [37] , both in offline and online manners. 

As the drift dynamics F ( x ) in system (1) is unknown, the IRL

lgorithm is applied in analyzing the NZS game of the addressed

ystem in this work. According to Bellman’s principle of optimal-

ty [19] , for any T ∈ (0, t ), the optimal value function V ∗
i 

satisfies

he following equation (also known as the integral Bellman equa-

ion): 

 

∗
i (x (t − T )) = V 

∗
i (x (t)) + 

∫ t 

t−T 

( x T M i x + 

N ∑ 

j=1 

u 

∗T 
j R i j u 

∗
j ) ds , ∀ i ∈ N . 

(9) 
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When any admissible control policy pair u = { u 1 , . . . , u N } is consid-

ered, the performance index functions satisfy that 

 i (x (t − T )) = V i (x (t)) + 

∫ t 

t−T 

( x T M i x + 

N ∑ 

j=1 

u 

T 
j R i j u j ) ds , ∀ i ∈ N . 

(10)

And the corresponding Lyapunov equation is defined as 

LE(V i (x (t))) = V i (x (t)) − V i (x (t − T )) 

+ 

∫ t 

t−T 

( 

x T M i x + 

N ∑ 

j=1 

u 

T 
j R i j u j 

) 

ds , ∀ i ∈ N . (11)

This equation will be used in the following adaptive critic design

process. 

Remark 1. In the conventional PI algorithm, the Eqs. (7) and

(8) are used in the iteration process to get the approximate Nash

equilibrium point solutions. It has been proved that the IRL al-

gorithm is equivalent to the PI algorithm in solving the coupled

HJ equations, and the details can be found in [37] . However, in

the IRL algorithm, the integral Bellman equation (9) is solved in-

stead of the coupled HJ equation (8) . It should be noticed that the

Eq. (9) doesn’t involve any explicit terms of the system dynamics.

Only the input dynamic function g i ( x ) is needed in updating the

control policy u i with the help of Eq. (7) . And it’s the reason why

the requirement for the drift dynamics is obviated in the imple-

mentation process of the IRL algorithm. 

3.2. Optimal event-triggered controller design 

To save the system computation and communication resources,

the event-triggered mechanism is introduced in this work, which

is characterized by a monotonically increasing sequence { t l }. Here

t l represents the l th triggering instant with l ∈ N 

+ and satisfies

that 0 = t 0 < t 1 < · · · < t l < · · · . A predefined triggering condition

is employed to determine the triggering instants (that is, the ex-

act instant when the gap between the real-time system state and

the system sampled state exceeds a pre-set threshold). In this

sampled-data system, the system state is sampled only at the trig-

gering instants, and the sampled state stays the same during the

inter-event period, which is formulated as 

x̆ l (t) = x (t l ) , t l ≤ t < t l+1 . (12)

Furthermore, the control input signals are recomputed only at the

triggering instants and hold unchanged until the next triggering: 

ŭ j (t) = u j ( ̆x l , t) , t l ≤ t < t l+1 . (13)

Assuming that there exist no task delays during the ETC process,

that is, the recomputation and transmission of the control input

signals are executed immediately with no time delays. 

To simplify the expression, in the following discussions, the

event-triggered error is defined as 

πl (t) = x (t) − x̆ l (t) , t l ≤ t < t l+1 . (14)

According to (7) , when the event-triggered framework is uti-

lized, the optimal control policy is converted into the following

form: 

ŭ 

∗
i (t) = −1 

2 

R 

−1 
ii 

g T i ( ̆x l ) ∇ ̆V 

∗
i , t l ≤ t < t l+1 (15)

where ∇ ̆V ∗
i 

= 

∂ V ∗
i 

∂x 

∣∣∣∣
t= t l 

with i ∈ N . And in the meanwhile, the time-

triggered HJ equations (8) are transformed into the event-triggered

versions: 
 i (x, ŭ 

∗
1 , . . . , ŭ 

∗
N , V 

∗
i ) 

= x T M i x + 

N ∑ 

j=1 

ŭ 

∗T 
j R i j ̆u 

∗
j + (∇V 

∗
i ) 

T 

( 

F (x ) + 

N ∑ 

j=1 

g j (x ) ̆u 

∗
j 

) 

= x T M i x + 

1 

4 

N ∑ 

j=1 

(∇ ̆V 

∗
j ) 

T g j ( ̆x l ) R 

−1 
j j 

R i j R 

−1 
j j 

g T j ( ̆x l ) ∇ ̆V 

∗
j 

+ (∇V 

∗
i ) 

T 

( 

F (x ) − 1 

2 

N ∑ 

j=1 

g j (x ) R 

−1 
j j 

g T j ( ̆x l ) ∇ ̆V 

∗
j 

) 

, t l ≤ t ≤ t l+1 . 

(16)

oting that compared with the time-triggered coupled HJ equa-

ions (8) , as the event-triggered error π l ( t ) is introduced in (16) ,

he event-triggered Hamiltonian function H i (x, ̆u ∗1 , . . . , ̆u 
∗
N , V 

∗
i 
) is

ot equal to 0. 

Before proceeding on the analysis, the following assumption is

ecessary, which has been mentioned in the previous works of

8,45] and [48] : 

ssumption 4. (Lipschitz continuous condition of the optimal con-

rol policies). All the optimal control policies u ∗
i 

are locally Lips-

hitz with respect to the event-triggered error π l . That is, ∀ i ∈ N ,

 ∈ N 

+ and t l ≤ t < t l+1 , there is always a constant k i > 0 satisfying

hat || u ∗
i 

− ŭ ∗
i 
|| 2 = || u ∗

i 
(x ) − u ∗

i 
( ̆x l ) || 2 ≤ k i || x − x̆ l || 2 = k i || πl || 2 . 

The following theorem shows that, when a proper triggering

ondition is applied, the event-triggered optimal control policies

˘ ∗
i 

can asymptotically stabilize system (1) . 

heorem 1. Consider the addressed system (1) , suppose that

ssumptions 1–4 all hold. Assume that for all i ∈ N , there exists a

mooth function V ∗
i 

satisfying Eq.(8) and u ∗
i 

is formulated as (7) .

hen the triggering condition 

| πl || ≤
√ 

σλmin (M) 

2 Kλmax (
) 
|| x || (17)

s applied, the event-triggered optimal control policies (15) can stabi-

ize system (1) asymptotically. Noting that the definitions of the pa-

ameter matrices M , 
 and K are provided in (20) and (21) . In ad-

ition, the threshold adjusting parameter σ ∈ [0, 1) is selected by the

esigner. 

roof. The Lyapunov function is selected as L = 

∑ N 
i =1 V 

∗
i 
(x (t)) ,

ere the definition of V ∗
i 

has been given in the expression of

heorem 1 . 

When the event-based optimal control policies (15) are applied,

he orbital derivative of L along the corresponding closed-loop sys-

em is 

˙ 
 = 

N ∑ 

i =1 

(∇V 

∗
i ) 

T × ˙ x = 

N ∑ 

i =1 

(∇V 

∗
i ) 

T F (x ) + 

N ∑ 

i =1 

(∇V 

∗
i ) 

T 
N ∑ 

j=1 

g j (x ) ̆u 

∗
j . 

(18)

ecalling the coupled HJ equation (8) , it holds that 

N ∑ 

i =1 

(∇V ∗i ) 
T 

F (x ) = −
N ∑ 

i =1 

( 

x T M i x + 

N ∑ 

j=1 

u ∗T 
j R i j u 

∗
j + (∇V ∗i ) 

T 
N ∑ 

j=1 

g j (x ) u ∗j 

) 

. 

(19)

ere we denote the augmented optimal control signal vector as

 

∗ = [ u ∗T 
1 

, . . . , u ∗T 
N 

] 
T 

and the augmented control error vector as

¯ ∗ = [ ( ̆u ∗1 − u ∗1 ) 
T 
, . . . , ( ̆u ∗N − u ∗N ) 

T 
] 
T 

. By substituting (19) into (18) ,

e have that 

˙ 
 = −

N ∑ 

i =1 

x T M i x −
N ∑ 

i =1 

N ∑ 

j=1 

u 

∗T 
j R i j u 

∗
j −

N ∑ 

i =1 

(∇V 

∗
i ) 

T 
N ∑ 

j=1 

g j (x ) 
(
u 

∗
j − ŭ 

∗
j 

)
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h i i i i 
= − x T Mx − u 

∗T R u 

∗ − 2 u 

∗T Y ū 

∗

≤ − x T Mx − u 

∗T R u 

∗ + u 

∗T R u 

∗ + ū 

∗T Y T R 

−1 Y ū 

∗

= − x T Mx + ū 

∗T 
ū 

∗ (20) 

here M = 

∑ N 
i =1 M i , R = diag { ∑ N 

i =1 R i 1 , . . . , 
∑ N 

i =1 R iN } ,

 = 

⎡ 

⎢ ⎣ 

R 11 g 
−1 
1 

g 1 R 11 g 
−1 
1 

g 2 ··· R 11 g 
−1 
1 

g N 

. 

. 

. 
. 
. 
. 

R NN g 
−1 
N 

g 1 R NN g 
−1 
N 

g 2 ··· R NN g 
−1 
N 

g N 

⎤ 

⎥ ⎦ 

and 
 = Y T R −1 Y . It’s

bvious that the matrices M and R are both positive definite. And

urthermore, as R −1 is positive definite, we can easily get that the

aximal eigenvalue of 
 is positive, considering that the matrix Y

s not a zero matrix. That is to say, it holds that λmin ( M ) > 0 and

max ( 
) > 0. Based on this analysis, we have the following result 

˙ 
 ≤ − (1 − 1 

2 
σ ) x T Mx − 1 

2 
σλmin (M) || x || 2 + λmax (
) 

N ∑ 

j=1 

|| ̆u ∗j − u ∗j || 2 

≤ − (1 − 1 

2 
σ ) x T Mx − 1 

2 
σλmin (M) || x || 2 + λmax (
) K|| πl || 2 (21) 

here K = 

∑ N 
j=1 k j . When the triggering condition (17) is satisfied,

t yields that − 1 
2 σλmin (M) || x || 2 + λmax (
) K|| πl || 2 ≤ 0 . Thus we

ave that ˙ L ≤ −(1 − 1 
2 σ ) x T Mx < 0 . According to Lyapunov’s theo-

em, it indicates that when the closed-loop control policies (15) are

tilized, system (1) is asymptotically stable. 

This completes the proof. �

emark 2. In the analysis of the derivative function 

˙ L , it is the

oupled term 2 u ∗T Y ū ∗ that is intractable to be dealt with, consid-

ring that u ∗ is unknown. By using Young’s inequality, the amplifi-

ation operation is introduced in line 3 of (20) , that is, −2 u ∗T Y ū ∗ ≤
 

∗T R u ∗ + ū ∗T Y T R −1 Y ū ∗. As a result, the unknown term u ∗T Ru ∗ is

liminated. And furthermore, by using this operation, the control

nput information is no more needed in the calculating process of

he triggering conditions, and meanwhile the system stability can

lso be guaranteed. Therefore, in contrast to the existing event-

ased ADP references of [8,45,48] , our method can save more sys-

em resources in terms of computation and communication. 

.3. Event-based adaptive critic design 

In this section, motivated by the excellent works of [36,37] , the

RL algorithm is applied in solving the coupled HJ equations, thus

n online adaptive control method is proposed, under the event-

riggered mechanism. 

First of all, due to the universal approximation of the NNs, on

he compact set �, the optimal value function V ∗
i 

can be repre-

ented in the NN form: 

 

∗
i = η∗T 

i ϕ i (x ) + ε i , i ∈ N (22) 

here η∗
i 

∈ R 

q i is the ideal weight vector, ϕ i (x ) : R 

n → R 

q i is the

N activation function and ε i ∈ R is the NN approximation error,

espectively. As the ideal weight η∗
i 

is unknown, a critic NN is de-

igned herein to approximate the optimal value function V ∗
i 

: 

ˆ 
 i = ˆ ηT 

i ϕ i (x ) (23) 

nd ˆ ηi ∈ R 

q i is the estimated critic weight vector. Considering the

bove Eqs. (7) and (22) , the time-based optimal control policies

an be formulated as 

 

∗
i = −1 

2 

R 

−1 
ii 

g T i (x ) 
(
(∇ϕ i (x )) T η∗

i + ∇ε i 
)
, i ∈ N (24) 
here ∇ϕ i = 

∂ ϕ i 
∂x 

and ∇ε i = 

∂ ε i 
∂x 

. Correspondingly, the event-based

ptimal control policies (15) are expressed as 

˘
 

∗
i = −1 

2 

R 

−1 
ii 

g T i ( ̆x l ) 
(
(∇ϕ i ( ̆x l )) 

T η∗
i + ∇ε i ( ̆x l ) 

)
, t l ≤ t < t l+1 . (25) 

hen based on (23) , the applied closed-loop control policies under

he event-triggered mechanism are formulated as 

˘
 i = −1 

2 

R 

−1 
ii 

g T i ( ̆x l ) 
(∇ϕ i ( ̆x l ) 

)T 
ˆ ηi (t l ) , t l ≤ t < t l+1 . (26) 

When the control policies (26) are utilized, the corresponding

yapunov equations (11) , i.e. the integral versions of the event-

riggered Hamiltonian functions over the interval [ t − T , t] , are re-

erred to as the temporal difference (TD) errors [36] and are pre-

ented as 

E(x, ŭ 1 , . . . , ŭ N , ̂  V i ) 

= 

ˆ V i (x (t)) − ˆ V i (x (t − T )) + 

∫ t 

t−T 

( 

x T M i x + 

N ∑ 

j=1 

ŭ 

T 
j R i j ̆u j 

) 

ds 

= ˆ ηT 
i 

(
ϕ i (x (t)) − ϕ i (x (t − T )) 

)
+ �i (x, ŭ 1 , . . . , ŭ N ) 

= ˆ ηT 
i ϑ i (x ) + �i (x, ŭ 1 , . . . , ŭ N ) 

≡ e c,i , ∀ i ∈ N (27) 

here ϑ i (x ) ≡ ϕ i (x (t)) − ϕ i (x (t − T )) and �i (x, ̆u 1 , . . . , ̆u N ) ≡
 t 
t−T ( x 

T M i x + 

∑ N 
j=1 ŭ 

T 
j 
R i j ̆u j ) ds . In addition, an auxiliary term is

efined as e i ≡ η∗T 
i 

ϑ i + �i . Therefore, it holds that e c,i = e i − ˜ ηT 
i 
ϑ i ,

here ˜ ηi = η∗
i 

− ˆ ηi is the critic weight estimation error. 

The objective of the critic learning phase is to find the weight ˆ ηi 

o minimize the TD error e c,i . Here we define the global error func-

ion E = 

∑ N 
i =1 E i ≡ 1 

2 

∑ N 
i =1 e 

2 
c,i 

. By using the gradient descent algo-

ithm [51,52] , the tuning laws of the critic weight ˆ ηi are designed

s 

˙ ˆ i = −αi 

1 

(ϑ 

T 
i 
ϑ i + 1) 2 

∂E 

∂ ̂  ηi 

= −αi 

1 

(ϑ 

T 
i 
ϑ i + 1) 2 

∂ E i 
∂ ̂  ηi 

= −αi 

ϑ i e c,i 

(ϑ 

T 
i 
ϑ i + 1) 2 

= − αi ϑ i e i 

(ϑ 

T 
i 
ϑ i + 1) 2 

+ 

αi ϑ i ϑ 

T 
i 

˜ ηi 

(ϑ 

T 
i 
ϑ i + 1) 2 

(28) 

ith the positive learning rate of αi . Here we define that ϑ i =
ϑ i 

ϑ T 
i 
ϑ i +1 

∈ R 

q i . 

As the time derivative of the ideal critic weight satisfies that

˙ ∗
i 

= 0 , it leads that 

˙ ˜ i = − ˙ ˆ ηi = αi 

ϑ i e c,i 

(ϑ 

T 
i 
ϑ i + 1) 2 

= 

αi ϑ i e i 

(ϑ 

T 
i 
ϑ i + 1) 2 

− αi ϑ i ϑ 

T 
i 

˜ ηi 

(ϑ 

T 
i 
ϑ i + 1) 2 

. (29) 

To proceed on, the following assumptions are needed, which

ave been mentioned by the existing works of [8,21,53] : 

ssumption 5. Consider the controlled system (1) , for any i ∈ N 

nd t ∈ [0 , + ∞ ) , the signal ϑi is persistently excited, i.e., there ex-

st positive constants ζ i ,1 , ζ i ,2 and T 1 ≤ t , such that the following

nequality 

i, 1 I q i ×q i ≤
∫ t 

t−T 1 

ϑ i ϑ 

T 
i ds ≤ ζi, 2 I q i ×q i (30) 

olds for any i ∈ N . 

ssumption 6. For the i th critic NN with i ∈ N , the ideal weight

ector η∗
i 
, the gradient of the activation function ϕi , the gradient

f the NN approaching error εi , and the additional term e i are all

ounded. That is, || η∗
i 
|| ≤ η̄i , ||∇ϕ i || ≤ ϕ̄ i , ||∇ε i || ≤ ε̄ i and | e i | ≤ ē i ,

ere the constants η̄ , ϕ̄ , ε̄ and ē are all positive values. 
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Remark 3. Assumption 5 implies that 0 < λmin ( ϑ i ϑ 

T 
i ) . This con-

dition is also known as the persistence of excitation condition

(PE condition), which is usually employed in the adaptive con-

trol process to guarantee the convergence of the tuning parame-

ters [21,22,31,42] . In general, this condition is satisfied by adding

the probing noises into the system dynamics. This point will be

further explained in the simulation studies. 

As the event-triggered mechanism is utilized in this work, there

exist flow dynamics and jump dynamics of the sampled-data sys-

tem under this framework. Thus the stability analysis on the de-

signed event-based closed-loop control system is made with the

help of the impulsive dynamical system. When the augmented sys-

tem state is set as X = [ x T , ̆x T 
l 
, ˜ ηT 

1 , . . . , ˜ η
T 
N ] 

T , the corresponding dy-

namic model can be formulated as 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

˙ X = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

F (x ) + 

N ∑ 

j=1 

g j ̆u j 

0 n ×1 

α1 
ϑ 1 e c, 1 

( ϑ 

T 
1 
ϑ 1 + 1) 2 

. . . 

αN 
ϑ N e c,N 

( ϑ 

T 
N 
ϑ N + 1) 2 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

, t ∈ [ t l , t l+1 ) 

X (t) = X ( t −) + 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

0 n ×1 

x (t) − x̆ l 
0 q 1 ×1 

. . . 
0 q N ×1 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

, t = t l+1 

(31)

3.4. Stability proof of the online ETC system 

Inspired by the works of [31,51] , the critic weight ˆ ηi is proved

to be convergent to a small neighbourhood of the ideal weight vec-

tor in the following lemma: 

Lemma 2. ∀ i ∈ N , let the critic NN weight ˆ ηi be adjusted by the

adaptive tuning laws of (28) , and the initial weight vector is finite,

i.e., ˆ ηi (0) ∈ � ˆ ηi 
with � ˆ ηi 

a bounded compact set. Then there exists

an instant T c > 0 such that for all t > T c , it holds that the critic weight

estimation error ˜ ηi is UUB, provided that Assumptions 5 and 6 are

both satisfied. 

Proof. In this proof, we select the Lyapunov function as F =∑ N 
i =1 ˜ η

T 
i 

˜ ηi . Based on the system dynamics (31) , the time deriva-

tive of ˜ ηi is a flow dynamics. That is, throughout the adaptive con-

trol process, there exist no jumps in the value of the parameter ˜ ηi .

Moreover, as the signal ˜ ηi is continuous at the triggering instants,

it leads that at t = t l+1 , the first difference of F is �F = 0 . There-

fore in the following discussions, we only focus on the inter-event

interval. 

When Assumption 5 is satisfied, due to Remark 3 , during

the inter-event period (i.e., t l ≤ t ≤ t l+1 ), it holds that μi,l ≤
min 

 l ≤t<t l+1 

{ λmin ( ϑ i (t) ϑ 

T 
i (t)) } , here μi,l is a positive constant. Then

the orbital derivative of F is formulated as 

˙ F = 2 

N ∑ 

i =1 

˜ ηT 
i 

˙ ˜ ηi = 2 

N ∑ 

i =1 

(
αi ̃  ηT 

i 
ϑ i e i 

(ϑ 

T 
i 
ϑ i + 1) 2 

− αi ̃  ηT 
i 
ϑ i ϑ 

T 
i 

˜ ηi 

(ϑ 

T 
i 
ϑ i + 1) 2 

)

≤
N ∑ 

i =1 

αi 

e 2 
i 

− ˜ ηT 
i 
ϑ i ϑ 

T 
i 

˜ ηi 

(ϑ 

T 
i 
ϑ i + 1) 2 

≤ −
N ∑ 

i =1 

αi 

(
˜ ηT 

i ϑ i ϑ 

T 
i ˜ ηi − ē 2 i 

)

≤ −
N ∑ 

i =1 

αi λmin ( ϑ i ϑ 

T 
i ) || ̃  ηi || 2 + �

≤ −
N ∑ 

i =1 

αi μi,l || ̃  ηi || 2 + � (32)

here � = 

∑ N 
i =1 αi ̄e 

2 
i 
. Hence, when the weight error is on the out-

ide of the bounded set { ̃  ηi | ‖ ˜ ηi ‖≤
√ 

�
αi μi,l 

≡ ξ ˜ ηi 
} , it leads that

˙ 
 < 0 . Then according to the Lyapunov extension theorem, as the

ritic NN weight vector is initialized in a bounded set, there exists

 positive constant T c , such that as t > t l ≥ T c , the weight error ˜ ηi is

onvergent into a small neighbourhood around the origin, which is

ith the upper bound of ξ ˜ ηi 
. 

Thus the lemma is proved. �

Here comes the closed-loop stability proof of the controlled sys-

em with the proposed IRL-based ETC method: 

heorem 2. Consider the nonlinear system (1) to be addressed, sup-

ose that Assumptions 1–6 all hold. Assume that for all i ∈ N , there

xists a smooth function V ∗
i 

satisfying Eq. (8) and u ∗
i 

is formulated

s (7) . The augmented impulsive dynamical system is expressed by

31) , with the critic NN weights adjusted by the adaptive laws of (28) .

hen the triggering condition 

| πl || ≤
√ 

σλmin (M) 

2 Kλmax (
) 
|| x || ≡ Z T (t) , t l ≤ t < t l+1 (33)

s utilized, the system state x, the sampled state x̆ l , and the critic

eight estimation errors ˜ ηi are all UUB. 

roof. The candidate Lyapunov function is selected as 

 = ν1 W 1 + ν2 W 2 + ν3 W 3 (34)

here the function W 1 = L = 

∑ N 
i =1 V 

∗
i 
(x ) , W 2 = F =

 N 
i =1 ˜ η

T 
i 

˜ ηi has been utilized in Lemma 2 , and W 3 =
 N 
i =1 V 

∗
i 
( ̆x l ) + 

∑ N 
i =1 ˜ η

T 
i 
(t l ) ̃  ηi (t l ) with t l ≤ t < t l+1 . In (34) , the

arameters ν1 , ν2 and ν3 are all adjustable positive constants. 

Consider the impulsive system dynamics (31) , the analysis is

mplemented over the following two cases: 

ase 1. Between two consecutive triggering instants, i.e., t ∈
 t l , t l+1 ) . The time derivative of W 1 is formulated as 

˙ 
 1 = 

N ∑ 

i =1 

(∇V 

∗
i ) 

T F (x ) + 

N ∑ 

i =1 

(∇V 

∗
i ) 

T 
N ∑ 

j=1 

g j (x ) ̆u j . (35)

imilar to the formula (20) , when the practical event-based control

olicies (26) are employed, it holds that 

˙ 
 1 ≤ −x T Mx + ŭ 

T 
ŭ (36)

here ŭ = [( ̆u 1 − u ∗
1 
) T , . . . , ( ̆u N − u ∗

N 
) T ] T and the definitions of M

nd 
 have been provided by (20) . Furthermore, according to

emma 2 , when t > T c holds, (36) can be rewritten as 

˙ 
 1 ≤ − x T Mx + 2 λmax (
) 

N ∑ 

j=1 

∣∣∣∣u 

∗
j − ŭ 

∗
j 

∣∣∣∣2 

+ 2 λmax (
) 
N ∑ 

j=1 

∣∣∣∣ŭ 

∗
j − ŭ j 

∣∣∣∣2 

≤ − x T Mx + 2 λmax (
) K|| πl || 2 + 2 λmax (
) 
N ∑ 

j=1 

∣∣∣∣∣∣ − 1 

2 

R 

−1 
j j 

g j ( ̆x l )

×
(
(∇ϕ j ( ̆x l )) 

T ˜ η j (t l ) + ∇ε j ( ̆x l ) 
)∣∣∣∣∣∣2 
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h  
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d

E  

c

x

w  

R  

N  

s  

R

≤ − x T Mx + 2 λmax (
) K 

∣∣∣∣∣∣πl 

∣∣∣∣∣∣2 

+ λmax (
) 
N ∑ 

j=1 

∣∣∣∣∣∣R 

−1 
j j 

∣∣∣∣∣∣2 

ḡ 2 j ϕ̄ 

2 
j ξ

2 
˜ η j 

+ λmax (
) 
N ∑ 

j=1 

∣∣∣∣∣∣R 

−1 
j j 

∣∣∣∣∣∣2 

ḡ 2 j ε̄ 
2 
j . (37) 

hen recalling (32) , it yields that 

˙ 
 2 ≤ −

N ∑ 

i =1 

αi μi,l || ̃  ηi || 2 + �. (38) 

hat’s more, as the function W 3 ( t ) is unchanged during the in-

erval [ t l , t l+1 ) , the time derivative of W 3 satisfies that ˙ W 3 = 0 for

 ∈ [ t l , t l+1 ) . Combining (37) and (38) , the time derivative of W is

educed as 

˙ 
 ≤ν1 

( 

−x T Mx + 2 λmax (
) K|| πl || 2 + λmax (
) 
N ∑ 

j=1 

|| R 

−1 
j j 

|| 2 ḡ 2 j ϕ̄ 

2 
j ξ

2 
˜ η j

+ λmax (
) 
N ∑ 

j=1 

|| R 

−1 
j j 

|| 2 ḡ 2 j ε̄ 2 j 

) 

− ν2 

( 

N ∑ 

i =1 

αi μi,l || ̃  ηi || 2 − �

) 

≤ − ν1 (1 − σ ) λmin (M) || x || 2 − ν2 −
N ∑ 

i =1 

αi μi,l || ̃  ηi || 2 

+ ν1 

(
− σλmin (M) || x || 2 + 2 λmax (
) K|| πl || 2 

)
+ � (39) 

here � = ν1 

(
λmax (
) 

∑ N 
j=1 || R −1 

j j 
|| 2 ḡ 2 

j 
ϕ̄ 

2 
j 
ξ 2 

˜ η j 
+ λmax (
) 

∑ N 
j=1 

| R −1 
j j 

|| 2 ḡ 2 
j 
ε̄ 2 

j 

)
+ ν2 � > 0 . 

As the condition (33) holds, it leads that −σλmin (M) || x || 2 +
 λmax (
) K|| πl || 2 ≤ 0 . When at least one of the following condi-

ions is satisfied: 

| x || > 

√ 

�

ν1 (1 − σ ) λmin (M) 
≡ � x ; (40)

 ˜ ηi ‖ > 

√ 

�

ν2 αi μi,l 

≡ � ˜ ηi 
(41) 

t holds that ˙ W < 0 . That is, x and ˜ ηi are UUB. 

ase 2. Then the stability of the controlled system at the triggering

nstants is analyzed, i.e., t = t l+1 . As the functions W 1 and W 2 are

ll time-continuous over the interval [0 , + ∞ ) , the first differences

f the first two terms in (34) are �W 1 = �W 2 = 0 . And the first

ifference of W 3 is formulated as 

W 3 = 

N ∑ 

i =1 

V 

∗
i ( ̆x (t l+1 )) −

N ∑ 

i =1 

V 

∗
i ( ̆x (t −

l+1 
)) + 

N ∑ 

i =1 

˜ ηT 
i (t l+1 ) ̃  ηi (t l+1 ) 

−
N ∑ 

i =1 

˜ ηT 
i (t l ) ̃  ηi (t l ) 

= 

(
W 1 (t l+1 ) + W 2 (t l+1 ) 

)
−

(
W 1 (t l ) + W 2 (t l ) 

)
. (42) 

According to Case 1, and considering that W 1 (t) + W 2 (t) is con-

inuous at t = t l+1 , when the conditions (33), (40) and (41) are

atisfied, the function W 1 (t) + W 2 (t) is non-increasing when t ∈
 t l , t l+1 ] . As a result, W 1 (t l+1 ) + W 2 (t l+1 ) ≤ W 1 (t l ) + W 2 (t l ) holds.

hat is, �W 3 ≤ 0, and furthermore, it yields that �W = ν3 �W 3 ≤ 0

t t = t l+1 . In other words, the Lyapunov function (34) is still non-

ncreasing at the triggering instants. 

Thus the theorem is proved. �
emark 4. Theorem 2 indicates that, when the proposed event-

riggered control policies (26) are employed, the closed-loop stabil-

ty of the addressed system is guaranteed. The system state x and

he critic weight estimation errors ˜ ηi are all UUB with the corre-

ponding upper bounds of ϖx and � ˜ ηi 
, which are with respect to

he parameters σ and αi . It should be noticed that, by selecting

ore proper parameters of σ and αi , smaller ϖx and � ˜ ηi 
can be

btained. 

Based on the above analysis, the implementation procedure of

he proposed IRL-based ETC algorithm is presented in Algorithm 1 :

lgorithm 1 The IRL-based online adaptive ETC algorithm. 

nitialization: For any i, j ∈ N , selecting the cost function ma-

trixes of M i , R i j ;the integral time interval, T ;the maximum

adaptive control time, T max ;the threshold adjusting parameter,

σ ;the sum of the Lipschitz constants, K;the initial state vector,

x (0) ;the initial critic weight, ˆ ηi (0) ;the activation functions of

the critic NNs, ϕ i (x ) ;the learning rates of the critic weights, αi .

1: Set the initial event triggering index as l = 0 , and the sampled

state as x̆ l = x (0) ; 

2: Compute the event-based control policy ŭ j with (26) and trans-

mit it to the corresponding actuator; 

3: If t l ≥ T max , go to Step 6; if else, go on; 

4: Adjusting the critic weight ˆ ηi with (28); 

5: With the aid of the smart sensors, monitor the real-time sys-

tem state vector x (t) , and compute the triggering condition

(33) in the event generator device. If the triggering condition

is violated, reset l ← l + 1 , t l ← t and x̆ l ← x (t) , then go to Step

2; if not, go to Step 3; 

6: Return ˆ ηi . 

emark 5. Noting that the initial critic weight ˆ ηi (0) should

e carefully selected to get an initial admissible control policy

air { ̂  u 1 (0) , . . . , ̂  u N (0) } , which is required in the IRL algorithm

35,36,38] . However, for given nonlinear systems, how to find the

dmissible control policies is still an open problem. In the fol-

owing simulation studies, a great deal of exploration experiments

ave been conducted to find the proper initial weight of ˆ ηi (0) for

ny i ∈ N . 

. Simulation studies 

Two numerical examples are conducted in this section to

emonstrate the theoretical analysis provided above. 

xample 1. Consider a two-order nonlinear system [17] with two

ontrollers. The system dynamics is formulated as 

˙ 
 = 

[
−x 3 1 − 2 x 2 

x 1 + 0 . 5 cos (x 2 1 ) sin (x 3 2 ) 

]

+ 

[
0 . 5 − 0 . 25 sin (x 1 ) 0 

0 −1 + 0 . 5 sin (x 2 ) 

]
u 1 

+ 

[
0 . 45 − 0 . 15 sin (x 1 ) 0 

0 −0 . 45 + 0 . 3 sin (x 2 ) 

]
u 2 (43) 

here x = [ x 1 , x 2 ] 
T ∈ R 

2 is the system state, with u 1 ∈ R 

2 and u 2 ∈
 

2 are the outputs of two controllers (i.e., the players). As for the

ZS game of system (43) , the parameter matrices in the corre-

ponding performance index are selected as M 1 = 2 I 2 ×2 , M 2 = I 2 ×2 ,

 11 = 2 I 2 ×2 , R 12 = R 21 = I 2 ×2 and R 22 = 3 I 2 ×2 . 
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Fig. 1. The evolution of (a) the system state x ; (b) the players’ policies ŭ 1 and ŭ 2 ; (c) the critic weight ˆ η1 ; (d) the critic weight ˆ η2 . 
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In the critic learning phase, the integral time interval is

set as T = 1 s, while the sampling period is selected as

0.01 s. To guarantee that Assumption 6 is satisfied, the ac-

tivation functions in the critic NNs are selected as ϕ i =
[ cos (x 1 ) , cos (x 2 ) , sech (x 1 ) , sech (x 2 )] T with i = 1 , 2 . To get an ini-

tial admissible control policy pair { ̂  u 1 (0) , . . . , ̂  u N (0) } , numerous

of exploration experiments have been conducted. And the critic

NN weights are initialized as ˆ η1 (0) = [ −0 . 3587 , 0.2035, −1 . 2724 ,

−1 . 3381] T and ˆ η2 (0) = [0 . 0924 , 0.8375, 1.3020, −1 . 1103] T . The

learning rates are picked as α1 = α2 = 10 . 

Then the triggering-related parameters are given as σ = 0 . 5

and K = 2 . With the initial state of x (0) = [1 , −1] T , the IRL-based

online adaptive control method is applied on the addressed sys-

tem for 500 s, during which process the probing noises b e 1 =
[0 . 1 e −0 . 005 t 

(
sin 

2 (20 t) cos (20 t) + sin 

2 (12 t) cos (10 t) + sin 

2 (28 t) cos 

(25 t) + sin 

5 (20 t) + sin 

2 (12 t) + sin 

3 (2 . 5 t ) cos (3 . 5 t ) 
)
, 0 . 2 e −0 . 005 t (

sin 

2 (5 t) cos (30 t) + sin 

2 (1 . 2 t) cos (t) + sin 

2 (1 . 8 t) cos (2 . 5 t) + sin 

5 

(2 t) + sin 

2 (11 . 2 t) + sin 

3 (2 . 4 t ) cos (4 t ) 
)
] T are added to the system
ynamics to guarantee the PE condition. And the noises are

eleted at t = 250 s. The corresponding results are presented in

igs. 1 and 2 . 

From Fig. 1 , we can find that the system state x converges

o 0 sooner after the noises are removed, which proves that our

esigned method is effective. The control inputs ŭ i are shown

s piecewise continuous signals. The evolution trajectories of the

ritic weights ˆ η1 and ˆ η2 are given in Fig. 1 (c) and (d), which

re both convergent. And the final weights are ˆ η1 = [ −0 . 3626 ,

0 . 8233 , −1 . 0195 , −2 . 2128] T , ˆ η2 = [ −1 . 0206 , 0.2163, 0.5778,

1 . 6126] T . Then the two players’ event-based control policies can

e formulated by (26) . 

The triggering results are shown in Fig. 2 . The relationship

etween the event-triggered errors and the triggering thresholds

s shown in Fig. 2 (a), from which we can find that when the

orm of the error π l exceeds the threshold, the system state is

ampled and the error is reset to 0 immediately. The TD errors

hroughout the control process are presented in Fig. 2 (b), which

re both convergent to 0. It indicates that the objective of the critic
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Fig. 2. The evolution of (a) the triggering condition in the adaptive control process; (b) the TD errors; (c) the inter-event times; (d) the cumulative number of the events. 
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earning has been achieved and the approximate optimal control

olicies have been attained by our method. Then Fig. 2 (c) provides

he evolution of the time periods between two consecutive trigger-

ng instants. It’s emphasized that after t = 250 s, the inter-event

ntervals are all shorter than 0.08 s, which is much larger than the

ampling period. That is, a great deal of unnecessary samplings are

voided by using our method and the Zeno behaviour is also elim-

nated. What’s more, Fig. 2 (d) indicates that throughout the adap-

ive control process, 50 0 0 0 time-based samplings are needed, but

he proposed event-based method only needs 5147 events, which

eans our method reduces the communication and computation

urdens significantly. 

xample 2. In this example, the proposed event-based control

ethod is tested on the nonlinear system that has been provided

n [46] . To verify the effectiveness of our method, five players are

onsidered: 

˙ 
 = f (x ) + g 1 (x ) u 1 + g 2 (x ) u 2 + g 3 (x ) u 3 + g 4 (x ) u 4 + g 5 (x ) u 5 (44) 
N  
here 

f (x ) = 

[
x 2 

−4 . 905 sin ( x 1 ) − 0 . 5 x 2 

]
, g 1 = 

[
1 0 

0 −0 . 5 

]
, 

 2 = 

[
2 . 5 0 

0 −1 

]
, g 3 = 

[
0 . 5 0 

0 −1 . 5 

]
, g 4 = 

[
0 . 5 0 

0 1 

]
, 

 5 = 

[
1 0 

0 −0 . 5 

]
. 

he five players’ policies u i ∈ R 

2 with i = 1 , . . . , 5 . As for the NZS

ame of system (44) , the performance index matrices are set

s M 1 = 2 I 2 ×2 , M 2 = I 2 ×2 , M 3 = 1 . 5 I 2 ×2 , M 4 = 3 I 2 ×2 , M 5 = 2 . 5 I 2 ×2 ,

 11 = R 22 = 2 I 2 ×2 , R 33 = 3 I 2 ×2 , R 44 = 2 . 5 I 2 ×2 and R 55 = 2 I 2 ×2 . In

ddition, the other matrices satisfy that R i j = I 2 ×2 with i, j ∈ {1, 2,

, 4, 5} and i � = j . 

In the design of the adaptive controllers, the critic

N weights are initialized as ˆ η (0) = [ −0 . 1517 , 1.3906,
1 
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Fig. 3. The evolution of the system state x . 
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using our method. 
−1 . 3731 , 1.4189] T , ˆ η2 (0) = [ −0 . 9324 , 0.5014, 0.2593,

0.5253] T , ˆ η3 (0) = [ −0 . 4169 , 0 . 3608 , 0 . 9335 , −1 . 4422] T , ˆ η4 (0)

= [ −1 . 2484 , 1 . 4244 , 0 . 4540 , −0 . 8063] T , and ˆ η5 (0) = [ −0 . 2895 ,

−1 . 1339 , −0 . 6947 , −0 . 7265] T . The learning rates in this example

are αi = 5 with i ∈ {1, 2, 3, 4, 5}. The other parameters are set
Fig. 4. The evolution of (a) the players’ policies ŭ 1 , ŭ 2 , ŭ 3 , ŭ 4 , ŭ 5 ; (b) the critic weight η̂

critic weight ˆ η5 . 
s σ = 0 . 75 and K = 2 . By selecting the sampling period of

.01 s, system (44) is controlled by the proposed method

or 500 s and the corresponding exploration noises b e 2 =
0 . 5 e −0 . 001 t 

(
sin 

2 (20 t) cos (20 t) + sin 

2 (12 t) cos (10 t) + sin 

2 (28 t) 

os (25 t) + sin 

5 (1 . 2 t) + sin 

2 (12 t) + sin 

3 (25 t ) cos (35 t ) 
)
, 1 . 2 

 

−0 . 001 t 
(

sin 

2 (5 t) cos (30 t) + sin 

2 (37 t) cos (t) + sin 

2 (18 t) cos (6 . 5 t) +
in 

5 (7 . 2 t) + sin 

2 (2 t) + sin 

3 (25 t) cos (3 t ))] T work for the first 400 s.

he corresponding results are depicted in Figs. 3 –5 . 

The stability of the controlled system is shown in Fig. 3 . It

an be found that when the noises are deleted at t = 400 s, the

ystem state converges to 0 in a short time, which shows that

he obtained control policies are effective in stabilizing the con-

rolled plant. In Fig. 4 , the evolutions of the event-based control

olicies and the critic NN weights are presented, and the weight

ectors finally get to ˆ η1 = [ −0 . 0305 , −0 . 2747 , −1 . 2106 , 0.2621] T ,

ˆ 2 = [ −0 . 8947 , −0 . 1232 , 0.3200, 0.1179] T , ˆ η3 = [ −0 . 6845 , 0.8389,

.7203, −0 . 9069] T , ˆ η4 = [ −1 . 3579 , 0.8707, 0.4227, −0 . 9699] T , and

ˆ 5 = [ −0 . 2984 , −0 . 2112 , −0 . 6401 , 0.1983] T . 

The evolution of the triggering condition and the TD errors is

resented in Fig. 5 (a) and (b), respectively. Moreover, from Fig. 5 (c),

ne can find that the lower bound of the inter-event times is 0.03 s

fter t = 400 s. Therefore, the Zeno behaviour is also excluded in

his example. In the whole control process, totally 50 , 0 0 0 time-

ased samplings are needed, but in the meanwhile only 12 , 262

vents are triggered. That is, less recomputations and transmis-

ions of the control input signals are executed in the adaptive con-

rol process. Consequently, more system resources can be saved by
 1 ; (c) the critic weight ˆ η2 ; (d) the critic weight ˆ η3 ; (e) the critic weight ˆ η4 ; (f) the 
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Fig. 5. The evolution of (a) the triggering condition in the adaptive control process; (b) the TD errors; (c) the inter-event times; (d) the cumulative number of the events. 
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. Conclusion and future work 

In this work, to deal with the NZS games of nonlinear sys-

ems subject to unknown system drift dynamics, an IRL-based on-

ine adaptive ETC method was proposed. With the aid of the pre-

ented algorithm, the requirement for the system drift dynamics is

elaxed. In the adaptive control process, the critic NNs were em-

loyed to approximate the optimal value functions. The IRL algo-

ithm was implemented in an online manner, and thus made it

ossible to combine the adaptive critic design method and the ETC

echanism in solving the NZS games. As a novel state-dependent

riggering condition was provided, the computation and commu-

ication burdens of the whole control process were reduced and

he system stability was guaranteed in the meanwhile. Finally, the

ffectiveness of the proposed method was demonstrated by two

umerical examples. 

In this work, the affine nonlinear systems with multiple con-

rollers are addressed. But there are still other types of systems to

e further investigated. In our future studies, the developed ETC

ethod is expected to be expended to the control fields of more
omplex plants such as the nonlinear large-scale interconnected

ystems, the switched systems, and the stochastic systems with

nknown dynamics. Moreover, the NZS games of the systems with

ompletely unknown system dynamics, such as the Takagi–Sugeno

uzzy systems [54] and stochastic systems [55] , are also interesting

ssues to be solved. 
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