Neurocomputing 393 (2020) 83-90

journal homepage: www.elsevier.com/locate/neucom

Contents lists available at ScienceDirect

Neurocomputing

Principled reward shaping for reinforcement learning via lyapunov)

stability theory™

Yunlong Dong, Xiuchuan Tang, Ye Yuan*

Check for
updates

The Key Laboratory of Imaging Processing and Intelligent Control, School of Artificial Intelligence and Automation, State Key Laboratory of Digital
Manufacturing Equipments and Technology, Huazhong University of Science and Technology, Wuhan 430074, China

ARTICLE INFO ABSTRACT

Article history:

Received 21 October 2019
Revised 20 January 2020
Accepted 4 February 2020
Available online 6 February 2020

Communicated by Dr. Tie-Yan Liu

Keywords:

Reinforcement learning
Principled reward shaping
Lyapunov stability theory
Stochastic approximation

reward.

Reinforcement learning (RL) suffers from the designation in reward function and the large computational
iterating steps until convergence. How to accelerate the training process in RL plays a vital role. In this
paper, we proposed a Lyapunov function based approach to shape the reward function which can effec-
tively accelerate the training. Furthermore, the shaped reward function leads to convergence guarantee
via stochastic approximation, an invariant optimality condition using Bellman Equation and an asymp-
totical unbiased policy. Moreover, sufficient RL benchmarks have been experimented to demonstrate the
effectiveness of our proposed method. It has been verified that our proposed method substantially accel-
erates the convergence process as well as improves the performance in terms of a higher accumulated

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

Reinforcement learning (RL), especially when coupled with
deep learning [20], has gained great success in beyond-human
level in Atari games [25], Go game [32], cooperative agents [9],
dexterous robotic manipulation [2] and multi-agent RL [6], among
others. However, despite its advanced capabilities, RL suffers se-
vere drawbacks, related to the requirement of enormous training
data size, long convergence iterations and the problem of repro-
ducibility [15]. A large number of works [13,24,31,33] have dedi-
cated to make RL efficient and available in various scenarios. Theo-
retical analysis about how to indeed accelerate the training process
in RL remains necessary discussions.

In deep learning, predominant optimization methodologies in-
clude Momentum [34], Adam [18], Powerball [41] and many inves-
tigations [21,28,29,42] have been devoted to the stability analysis
of the optimization in real applications. In terms of the RL, reward
shaping [26] has been proved can accelerate the convergence pro-
cess by adding a potential function term which shall be initialized
to the value function. However this kind of acceleration is implica-
tive, cause the value function is very hard to estimate at first, es-
pecially in high dimensional and complex RL tasks. Further reward
shaping and Q-value initialization are shown to be equivalent in

* This work is supported by the National Natural Science Foundation of China
under Grant 91748112.
* Corresponding author.
E-mail address: yye@hust.edu.cn (Y. Yuan).

https://doi.org/10.1016/j.neucom.2020.02.008
0925-2312/© 2020 Elsevier B.V. All rights reserved.

[39]. Later based on reward shaping, [7,12,39] have extended the
results, which are still limited by the weakness of reward shaping
in searching the potential function. It should also be noted that
the acceleration in the RL process of reward shaping has not been
guaranteed theoretically.

In this paper, we apply Lyapunov stability theory [22] to tempt
the RL process into maximal reward region by driving the reward
to make the Lyapunov function descend in time domain. There
is certainly a concern whether the shaped reward will cause the
variance in optimality or the biased greedy policy in [39]. It has
been proved that our proposed shaped reward function leads to
convergence guarantee via stochastic approximation, an invariant
optimality condition using Bellman Equation and an asymptotical
unbiased policy.

Reward shaping has produced a great long-term impact on the
development of RL. And reward shaping has been extended to par-
tially observed cases [10] and model-based RL [3] to enlarge the
application scope. Furthermore, [23] has proved that reward shap-
ing has an invariant optimal policy in multi-objective RL when
the vectorized reward function exists, demonstrating that reward
shaping is not limited in scalar reward function further promoting
the generalization ability of reward shaping. Reward shaping also
plays a vital role in multi-agent RL [8]. derives a potential-based
difference reward to improve the joint policy learnt by differ-
ent agents. [16] combines reward shaping and hierarchies scheme
to largely scale the multi-agent reinforcement systems. There are
recent works focusing on the application of reward shaping in
[7] and [12]. In order to achieve desirable performance, poten-

https://doi.org/10.1016/j.neucom.2020.02.008
http://www.ScienceDirect.com
http://www.elsevier.com/locate/neucom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2020.02.008&domain=pdf
https://doi.org/10.13039/501100001809
mailto:yye@hust.edu.cn
https://doi.org/10.1016/j.neucom.2020.02.008

84 Y. Dong, X. Tang and Y. Yuan/Neurocomputing 393 (2020) 83-90

tial function needs to be carefully chosen by hand-craft. Recently
[11] uses natural language to guide the reward shaping for bet-
ter performance. Therefore, how to choose or design the potential
function in a more principled way poses a key problem in acceler-
ating RL convergence speed.

At the beginning, the original choice of potential function is
limited in the function of the state in RL leaving along the action.
To overcome the limitation above, [39] incorporates action into the
potential function and proves its equivalent invariant optimality
in terms of Bellman equation, resulting in a biased greedy pol-
icy through involving another action term. Yet, these two methods,
[26] and [39] require a good estimation of state value function or
state-action value function respectively. The ‘curse of dimensional-
ity’ [4] refers to various phenomena that arise when analyzing and
organizing data in high-dimensional spaces. Therefore in high di-
mensional and complex environments, accurate estimation of the
value functions can not be guaranteed.

Lyapunov stability analysis [22] has been widely used in both
linear and nonlinear dynamical systems analysis, as well as con-
troller design for dynamical systems. [27] employs Lyapunov sta-
bility theory to explore safe RL. Xu et al. [40] applies Lyapunov
theory to design an adaptive controller as an actor model in the
actor-critic RL architecture for nonlinear feedback tracking control.

We make our contributions as follows:

« We leverage Lyapunov stability theory rather than handcraft
engineering to guide the reward shaping in RL.

- We prove the convergence guarantee through stochastic ap-
proximation theory.

« We conduct extensive experimental results to demonstrate the
effectiveness of our proposed method.

In what follows, we introduce the background and formulate
the problem in Section 2. Next, we propose the Lyapunov function
based method in Section 3 and demonstrate its effectiveness on
benchmark examples in Section 4, and finally conclude this paper
in Section 5. And the code is attached in the supplementary codes.

2. Problem formulation
2.1. Preliminaries

According to [35], RL can be modeled as a Markov Decision Pro-
cess (MDP), which is denoted as a tuple M = (S, A, T, R, ¥), where
S is the set of states, A is the set of actions, T(s'|s, a) represents
the transition probability to state s’ € S starting from state s € S
with action a € A, R(s, a, s’) is the reward function received and y
is the discount rate that gives more weights to short term reward.
The goal of RL is to find an optimal policy: 7* : S — A which max-
imizes the accumulated reward: Y 72, y'R:(s,a,s’), where R¢(s, q,
s’ is the reward received on the t; time-step in MDP.

It is noted that E(-;e) stands for the conditional expectation
given -. Then given a policy : S — A, the value function V7(s)
is defined by:

V7™ (s) 2E[R; + YRy + y?Rs +...; 7, 5], (1)

which indicates the expected accumulated reward from a given ini-
tial state s with executing policy 7. And the optimal value function
can be defined as:

V*(s) 2 supV7” (s). (2)
T

In order to obtain optimal policy, an important conception Q-value
under policy 7 [38]:

Qﬂ (S, a) £ IEs’~T(s’\s.a)[R(5v a, S/) + VV” (S/)]. (3)
Also the optimal Q-value is defined by:

Q*(s,a) = supQ7 (s, a). (4)

4

It is known that optimal Q-value satisfies the Bellman equation de-
tails in [35]:

QW&M=Ewmmmh@ﬂdﬁ+7%§QWibﬂ- (5)

Generally the policy can be obtained by greedy strategy which
takes the corresponding action with maximum Q-value given a cer-
tain state. In some cases [1,14] the greedy strategy may not be op-
timal. The greedy policy can be defined by:

7 (s) = argmax(Q*(s. a)). (6)

In RL the optimal Q-value Q*(s, a) is the key to solve the optimal
policy which maximizes accumulated reward. Q-learning [38] is a
milestone which formalizes finding the optimal Q-value in an iter-
ative scheme by:

Q™(s.a) « (1-a)Q'(s.a)

+ o(R+y max@'cs' b)), (7)
where Qi(s, a) is the estimated optimal Q-value at ith update time-
step proved to converge on Q*(s, a) with probability 1 as i — oo

and «; presents the updating rate in the learning procedure. The
learning procedure of Q-learning is listed in Algorithm 1.

Algorithm 1 Q-learning.

Vse S, Vae A,00,a) < 0. For any
(s,a,R(s,a),s'):i«<0
while not convergence do
QH1(s,a) « (1 —)Q'(s, @) + {R(s, @) + y max,e, Q'(s',)},
i<—i+1
end while

transition tuple

As a matter of fact in complex and high dimensional cases Q-
learning is indeed difficult to converge due to the ‘curse of dimen-
sionality’ [4], which is the main reason of slow convergence speed
in RL. While reward shaping is a well developed theory which can
speed up the convergence.

2.2. Reward shaping

The slow convergence speed commonly seen in RL has been a
bottleneck especially when coupled with deep learning models. Ef-
forts have been made to find a general principled method to accel-
erate the convergence in RL. Ng et al. [26] proves that a potential-
based reward shaping can lead to substantial reductions in learn-
ing time and do not change the optimality of the original optimal
policy, which can be stated as follows:

R(s,a,s') 2R(s,a,8) +y®D(s') — D(s), (8)

where ® : S — R is a to-be-defined potential function. By conduct-
ing the Bellman equation one can show that reward shaping pre-
serves the optimality as well as invariant optimal policy. Further-
more, if ®(s) is initialized to the optimal value function V*(s), it
then can accelerate the training procedure. Yet note that V*(s) is
difficult to be estimated especially in complex and high dimen-
sional cases.

Another drawback of reward shaping in [26] is that the poten-
tial function only involves with state s without action a, which
largely limits the scope of reward shaping. Wiewiora et al. [39] ex-
tends the potential function to W : S x A — R which involves the
action a as well to have:

R(s,a,s,d)2R(s,a,8)+y¥(s,d)—W(s, a), (9)

where @’ is the action taken at next time. The optimality is pre-
served through Bellman equation. But issue raised is the biased

Y. Dong, X. Tang and Y. Yuan/Neurocomputing 393 (2020) 83-90 85

greedy policy (i.e., w0(s) # m*(s)):
wb(s) £ arg max Q* (s,a) + ¥ (s, a), (10)

in which the greedy policy is biased by W(s, a) compared with
Eq. (6).

3. Lyapunov function based reward shaping

Motivated by these pioneering works, In this paper, we shall
propose a principled design of W(s, a), which has the following
properties: (a) guaranteed convergence; (b) preserved optimality;
and (c) unbiased optimal greedy policy.

We propose the Lyapunov Function Based Reward Shaping
method as follows:

RY® = R(s,a) + A(yR(s', ') — R(s, @), (11)

where A is a tuning parameter that weights the shaped term
yR(s',d’) — R(s, a).

From the perspective of stability analysis, we consider the MDP
RL problem as an optimal control problem. The control scheme is
to minimize a cost (negative reward) function L(s,a) £ —R(s, a).
We make the following assumptions:

Assumption 1. The MDP RL problem is assumed to have a maxi-
mal point (s*, a*) which makes the reward maximal.

Remark 1. This assumption is reasonable because when designing
the cost function, the goal of any agent is defined as its achievable
maximal reward.

Assumption 2. y in MDP is assumed to be equal to 1 as ¥y ~ 1 in
real applications.

Remark 2. Although the experimental results do not rely on this
assumption, this is a standard assumption for theoretical develop-
ments [26].

Theorem 1. Let L(s,a) be the Lyapunov function and assume that
Assumption 1 holds. If ¥(s', @), the following inequality holds

L£(s',d)—L(s,a) <0, (12)

then the state and action tuple (s, a) will converge to maximal point
(s*, a*) asymptotically.

Proof. Due to the descent property of the Lyapunov function
L(s,a), and the existence of a maximal point (s*, a*) (therefore
L(s,a) is lower bounded), then the state and action tuple (s, a)
will converge to maximal point (s*, a*) finally due to Lyapunov
stability. O

Based on Theorem 1, we encourage the agent in MDP to
make Eq. (12) hold by rewarding the shaped term defined in
Eq. (11) cause maximizing R(s’,a’) — R(s, a) equals to minimizing
L(s',a") — L(s,a) which can make Eq. (12) hold as much as possi-
ble. Indeed we can prove the convergence of the Q-learning proce-
dure with Lyapunov Function Based Reward Shaping.

Proposition 1 (Convergence guarantee). Considering a MDP based
RL problem, given the Lyapunov function based reward shaping term
defined in Eq. (11), and the updating procedure given in Procedure 2,

Algorithm 2 Updating procedure.

Vse S, Vae A,Q%s,a) <« 0. For any
(s,a,R(s,a),s’,a',R(s’,a")), i< 0
while not convergence do
Qit1(s,a) « (1 —ay)Qi(s.a) + a;j{R(s,a) + L(R(s'. ') —
R(s,a)) + y maxy. 4, Q/(s',b)}, i < i+1
end while

transition tuple

and assume that Assumptions 1 and 2 hold, then for any state action
pair (s, a), the estimated state action value Qi(s, a) will converge to
Q*(s, a) with probability 1 as i — oo following the assumptions in
stochastic approximation [17].

Proof. Lyapunov function based shaping reward RY® will lead to
a new MDP tuple denoted as M’ £ (S, A, T,RY% y). In order to
complete a more convenient proof, we define an operator H on
state action value function Q(s, a) over any transition tuple (s, q,
R(s, a), s’, ', R(s/, a’)) under M’ by:

(HQ)(5. @) = Eg-rs o Baea { R + ¥ maxQ(s'). (13)

It should be noted that (HQ*)(s,a) = Q*(s,a), which can be con-
ducted from Eq. (5). Here we proof that operator H is a contraction
operator by:

”HQ] - HQZ ”oo = Mmdx | I[‘:sWT(s.a)IEa’eA(J/ max Q] (S/, bl)
s,5'eS bieA
_ /
Y maxQa(s, by) |

< VEy160) | max Qs (s',by) - gl;lgi(Qz(S/, by) |
< VEy 1.0 | T&x(Ql (S/, b) — QZ(S/v b)) |
<y max [Qi(s’,b) — Qs b) |

s'eS.beA
=y11Q - Qll.. (14)

where Q(s, a) and Qy(s, a) is two different estimated state action
value function under M'.

Combine the proof in [17] and the contraction operator H,
Qi(s, a) will converge to Q*(s, a) with probability 1 as i — oo if

1. The state space S and action space A are finite;

2. Yja;=00and Y ; ozl? < 0o, where «; is the updating rate in
Procedure 2;

3. the variance of {R;} is bounded.

The details
Theorem 2. O

about proof is attached in the Appendix

Moreover, we disccuss the optimality and asymptotical unbi-
ased property of our proposed method.

Proposition 2 (Optimality preserving). Given RY% in Eq. (11) and
assume Assumption 2 holds, then the reward shaping preserves opti-
mality.

Proof. For the original MDP M (with y = 1), the Bellman equation
can be written by:

QIT/I(& Cl) = I['Is’~T(s’|s,a)[R(5, a) + VI\’;I(S/)]v (15)

where Qj(s,a),V;;(s') denote the optimal Q-value function and
value function respectively under MDP M.

With similar idea to the proof of Section 4.1 in [39], we can
derive

Qi (s, a) = Qy(s,a) — AR(s, a), (16)
where Qf, (s, a) satisfies the Bellman equation as well. O

Proposition 3 (Unbiased greedy policy). Given RY% in Eq. (11) and
assume Assumption 2 holds, then it will lead to an asymptotically un-
biased optimal greedy policy as in Eq. (6).

Proof. The greedy policy in M’ is stated as follows:

arg TeaAX(QM’ (s,a))

arg max(Q;(,,(s, a) — AR(s,a)). 17)
ae

T (S)

86 Y. Dong, X. Tang and Y. Yuan/Neurocomputing 393 (2020) 83-90

Table 1

Details of the reward functions and experimented environments in discrete cases. The reward representation in continuous cases is
complicated and not intuitive, here we illustrate our modification compared with official reward detail in OpenAl gym [5]. The specific
meaning of parameters in reward functions can be found in the official reward function. And ReLU(*) stands for the rectified linear
unit which is max (0, *).

Env / Reward function A function B function C

MountainCar -0.6 + position 20 x e« (velocity)? (10 x velocity)?

CartPole cos(0)? 16| cos(6)

Acrobot ReLU(1-position) x -0.25 ReLU(l-position)? x -0.1 ReLU(l-position)® x -0.02
Table 2

Performance of the proposed method for both continuous and discrete cases. All the metrics in terms
of accumulated reward here are sampled from ten repetitive experiments. In total, five different envi-
ronments experimented among three different type of reward functions within discrete cases (denoted
as A, B, C respectively) are listed below. The % before min, avg, max stand for the metrics in the last
% episode. The large margin over averaged reward and last % episode averaged reward metrics have
demonstrated that Lyapunov function based reward shaping can consistently improve the convergence
and performance. In terms of max and % max metrics, our proposed method can substantially improve

the maximum margin among different environments and reward functions.

Env [Reward min avg max 1 min 1avg 1 max
CartPole/A (w/ Lyapunov) 7.88 168.88 199.97 86.12 18970 199.97
CartPole/A (w/o Lyapunov) 8.84 13649 199.96 12249 187.76 199.95
CartPole/B (w/ Lyapunov) 11.68 257.23 31297 16711 29721 312.97
CartPole/5 (w/o Lyapunov) 11.66 221.03 31240 209.87 30078 312.40
CartPole/C (w/ Lyapunov) 8.93 170.00 199.99 14649 198.13 199.99
CartPole/C (w/o Lyapunov) 7.94 134.85 199.98 116.67 190.39 199.97

MountainCar/A (w/ Lyapunov) -240.64 -167.47 -82.98 -232.51 -139.40 -83.21
MountainCar/A (w/o Lyapunov) -248.00 -212.45 -88.35 -237.38 -201.42 -88.35

MountainCar/B (w/ Lyapunov) 0.02 6.76 14.55 0.03 8.61 14.55
MountainCar/B (w/o Lyapunov) 0.02 0.41 2.47 0.02 0.40 2.05
MountainCar/C (w/ Lyapunov) 0.00 19.47 28.66 5.19 21.83 28.25
MountainCar/C (w/o Lyapunov) 0.05 1.01 7.01 0.07 0.99 6.84
Acrobot/A (w/ Lyapunov) -147.68 -75.56 -41.15 -112.27 -62.89 -41.15
Acrobot/A (w/o Lyapunov) -149.14 -113.15 -65.56 -141.54 -109.58 -65.56
Acrobot/B (w/ Lyapunov) -177.18 -67.60 -41.10 -95.62 -55.50 -41.10
Acrobot/B (w/o Lyapunov) -176.50 -104.22 -56.81 -143.18 -98.14 -64.63
Acrobot/C (w/ Lyapunov) -103.96 -41.40 -24.01 -55.42 -34.11 -24.01
Acrobot/C (w/o Lyapunov) -104.76 -70.25 -39.52 -96.48 -67.88 -39.52
Ant (w/ Lyapunov) 0.091 0.646 0.851 0.788 0.825 0.851
Ant (w/o Lyapunov) 0.094 0.573 0.799 0.671 0.758 0.799
Hopper (w/ Lyapunov) 0.009 0.274 0.584 0.520 0.548 0.584
Hopper (w/o Lyapunov) 0.008 0.169 0.389 0.313 0.339 0.389
HalfCheetah (w/ Lyapunov) 0.000 0.285 0.751 0.489 0.639 0.751
HalfCheetah (w/o Lyapunov) 0.000 0.206 0.444 0.352 0.415 0.444

Substitute Eq. (15) into Eq. (17) and for simplification noting two state-of-the-art methods, DQN [25] for discrete cases and

Eg 1(s'|s,a) 3 E we will have PPO2 [31] for continuous cases respectively. In discrete cases

the action space is discrete in a certain countable set such as

T () =arg1}]1;34xIE[(1—)\)R(s, a)+V,(;,(s’)]. (18) ae{1,0,—1}, while continuous cases make the action space
€

continuous and uncountable in a range such as a € (-1, 1). Both
To be convenient, s, a, s” are all implicit with time-step t. Combine DQN' and PPO22 codes are imported from public online repository
Egs. (18) and (6), successively we obtain (based on Theorem 1 and to insure the proposed method’s independence in implemental
the convergence fact that lim;_..s = 5') specification. The environments experimented are from OpenAl
. B m [5]. The continuous cases are used from Mujoco [37]. In order
lime oo 775, (5) = arg rgleaAX]E[(] —MR(s, a) +VM(S)] fg remove the randomness introduced during tl{e initialization of
. . network parameters in DQN, PPO2 and other random factors, each
limy. o0 77 (s) = arg r},&XE[R(S’ a) +VM(S)]' experiment is repeated 10 times. We visualize average curves in
figures and use the discounted accumulated reward as metric. The
reward functions and environments during the experiments are
listed in details in Table 1.

As Vi (s) is independent of action a, we then prove the asymptoti-
cal unbiased policy:

tlim (7T (8) =y (s)) = 0. O
4. Experiments

The proposed method can be applied to RL by only substi- 1 https://github.com/keras-rl/keras-rl.
tuting the reward function. Here we evaluate our method on 2 https://github.com/openai/baselines.

https://github.com/keras-rl/keras-rl
https://github.com/openai/baselines

Y. Dong, X. Tang and Y. Yuan/Neurocomputing 393 (2020) 83-90

87

10 1.0 1.0
o 08 o 08 T 08
= = =
© © @©
= = 2
[(3] 3]
S o T o S o
2 2 _)
o Q Q
© o2 L o2 o2
— w/ lyapunov — w/ lyapunov — w/ lyapunov
00 — w/o lyapunov 00 — w/o lyapunov 00 — w/o lyapunov
o 20 40 60 80 100 120 140] 20 40 60 80 100 120 140 o 20 40 60 80 100 120 140 160
episode episode episode
CartPole/ A. CartPole/B. CartPole/C.
1.0 10 10
o 08 T 08 T 08
A — —
© © ©
= g g
[[} [
-g 04 -g 04 -g 04
) D D
o Q. Q
L 02 D o2 D o2
— w/ lyapunov — w/ lyapunov — w/ lyapunov
- — w/o lyapunov P — w/o lyapunov ~ — w/o lyapunov
0 20 40 60 80 o 20 40 60 80 100 o 20 40 60 80
episode episode episode
Acrobot/A. Acrobot/B. Acrobot/C.
11 — w/ lyapunov 11— w/ lyapunov 11— w/ lyapunov
— w/o lyapunov — w/o lyapunov — w/o lyapunov
o 08 o< 08 T 08
= < 2
© © ©
% 0.6 % 0.6 5 0.6
2 et 2
% [%] (]
-8 04 -g 0.4 -g 0.4
2 7] .7
o Q. Q
o2 L o2 Q o2
00 00 00

o 500 1000 1500 2000 2500 3000 0 10

episode

MountainCar/A.

20

episode

MountainCar/B.

30 a0 50

°

20 a0 60 80 100 120

episode

MountainCar/C.

Fig. 1. Experimental results on different discrete environments with different reward functions. All the figures here are sampled from 10 repetitive experiments to eliminate
the impact imposed by random factors. The name under each figure stands for environment name | reward function, details in supplementary codes. We use DQN [25] as
the general solver for discrete cases. Red line and blue line indicate the performance w/ (with) Lyapunov function based reward shaping and w/o (without) respectively. The

episode reward is normalized.

4.1. Discrete case

We apply DQN as a general solver in discrete cases. DQN uses
a neural network function iteratively to approximate Q-value for
each state and action pair which is designed for discrete case. The
extensive experimental results are shown in Fig. 1 and listed sta-
tistically in Table 2. The figures and numerical results demonstrate
that Lyapunov function based reward shaping can accelerate the
convergence speed of RL and improve the performance under dif-
ferent environments and reward functions.

4.2. Continuous case

PPO2 is adopted as the general solver for continuous cases. Be-
cause in continuous cases the action space A is uncountable, the
brute search of greedy policy is infeasible and time-consuming
to loop over all the actions inside .A. PPO2 is a policy gradi-
ent [36] and actor-critic [19] based method which uses gradient
method to optimize the parametric policy. And also PPO2 has ben-
efited a lot from previous method TRPO [30] to punish explor-
ing new updated policy far away from current policy via K£ di-
vergence. In practice PPO2 has been demonstrated state-of-the-art
method in solving continuous RL cases.

Here we apply PPO2 along with our proposed Lyapunov func-
tion based reward shaping to verify the effectiveness. The exten-
sive experimental results are shown in Fig. 2 and listed statisti-
cally in Table 2. The results strongly demonstrate the effectiveness
of our proposed Lyapunov function based reward shaping in differ-
ent continuous RL cases which has more satisfying learning speed
and performance.

4.3. Effectiveness of parameter A

Here we further explore the effectiveness of tuning parameter A
in Eq. (11) to investigate the sensitivity of A which can be of great
essential in conducting Lyapunov function based reward shaping.
We vary the parameter A in a certain range to conduct the experi-
ments.

The results are summarized in Fig. 3. A reflects the extent of
impact of Lyapunov function based reward shaping term. When
setting A to O, it does not change anything of the original MDP.
Experiments are conducted in CartPole, Acrobot and MountainCar
environments by only varying A to different values with setting
other configurations unchanged. The results strongly reveal that
the performance can be guaranteed within a wide range of A,
which means the efforts in tuning parameters can be liberated.

88 Y. Dong, X. Tang and Y. Yuan/Neurocomputing 393 (2020) 83-90

1 — w/ lyapunov 11— w/ lyapunov 1 — w/ lyapunov
— wj/o lyapunov — w/o lyapunov — wj/o lyapunov
T os T 08 o 08
2 2 2
= - =
O o6 o os D oo
3 3 3
O a4 Q %4 o o4
K] Rl k)
o Q. o
[L o2 W 02
02
0.0 0.0
0 200 400) 600 800 1000 o 200 40? 600 800 [200 40? 600 800
episode episode episode
Ant Hopper HalfCheetah.

Fig. 2. Experimental results on three different continuous environments. All the figures here are sampled from 10 repetitive experiments to eliminate the impact imposed
by random factors. We use PPO2 [31] as the general solver for continuous cases. Red line and blue line indicate the performance w/ (with) Lyapunov function based reward

shaping and w/o (without) respectively. The episode reward is normalized.

04 — A=0.0
— A=0.2
— A=0.4
— A=0.6
— A=0.8

episode reward
episode reward

episode reward

0 20 0 60 80 100 0 20 a0

episode

(a) 4 in CartPole

episode

(b) A in Acrobot

80 100 120 140 0 200 400 600 800 1000 1200

episode

(c) 4 in MountainCar

Fig. 3. The effectiveness of tuning parameter A in the Lyapunov function based reward shaping is tested in CartPole, Acrobot and MountainCar environments with different

value of A, while keeping other configurations the same.

E 125 E -80
© ©
% 100 q;) 160
o 5 -4
120
» — 0=0.001
2 — 0=0.005 ~140
— 0=0.01

B

©

z

I3

.

— 0=0.001 > — 0=0.001
— 0=0.005 — 0=0.005
— 0=001 é — 0=0.01

0 25 50 75 00 125 150 175 0 25 50 75

Episode
(a) Robustness test in CartPole

Episode
(b) Robustness test in Acrobot

125 150 175 0 200 400 600 800 1000 1200 1400

Episode
(c) Robustness test in MountainCar

Fig. 4. The robustness test of the proposed method in three different environments. The noise is generated from a zero-mean Gaussian distribution with different standard

variations o.

4.4. Robustness to noise

Next we consider the robustness of the proposed method, as
the reward received can be very noisy in real applications. We
manually generate additive gaussian noise with different standard
variations to the reward received in the environments as follows:

Rnoise = R—l—N(0,0’),

where R is the original reward, A indicates zero mean Gaussian
noise with standard variance o and R, stands for the noisy re-
ward used in the training process. In real applications, noise is un-
avoidable which will mislead and confuse the communication of
agent with environments. It is essential to analyze the proposed
method’s resistivity to noise of varying degrees. In experiments, we
vary o within a certain range while keeping other configurations
unchanged. The results are shown in Fig. 4. The experimental re-
sults demonstrated that Lyapunov function based reward shaping
is robust to noise in a certain satisfying range, which promotes its
application in real noisy circumstances.

4.5. Limitations

The proposed method guarantees the convergence but lacks the
theoretical analysis about the convergence speed. Without the the-
oretical analysis on the convergence speed, the choice of parameter
A in Eq. (11) would be tricky, which could introduce some other
uncertainties. Our future work will focus on how to provide con-
vergence speed of our proposed method.

5. Conclusion

In this paper, we proposed a novel reward shaping method
based on Lyapunov stability analysis by encouraging the agent to
reach the region of maximal reward as far as possible. The pro-
posed method is guaranteed to be invariant in optimality and
asymptotically unbiased greedy policy. And we give theoretical
convergence proof of our proposed method via the early estab-
lished stochastic approximation theorem. Our proposed Lyapunov
function based reward shaping effectively liberates the efforts in
searching well-defined potential function because potential func-

Y. Dong, X. Tang and Y. Yuan/Neurocomputing 393 (2020) 83-90 89

tion here is exactly chosen to be the reward function. Also we have
conducted extensive experiments for both discrete and continuous
RL public benchmarks to verify our proposed method. Both the-
oretical proof and experimental results strongly demonstrate the
effectiveness of our proposed method, which can substantially fas-
ten the convergence speed and promote the performance in RL. In
the future work, theoretical analysis about the convergence speed
shall be carefully discussed to further guide the designation of re-
ward shaping.

Declaration of Competing Interests

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

CRediT authorship contribution statement

Ye Yuan: Supervision.

Acknowledgment

We would like to thank Cheng for useful discussions and help
with the paper revision.

Appendix A

Lemma 1. Define a random process {A;(x)} taking values in x € R"
as:

A1 () < (1 — o) Aj(%) + oF (%),

Where {F;(x)} is also a random process over x. A;(x) converges to zero
with probability 1 as i — oo under following assumptions:

1L Yo =o00and Y ;a? < oo;
2. [EEE) lw = v 1Ai®) lw, with y < 1;
3. var{F(x)} <C(1+ ||A,-(x)||‘2,‘,, for some constant value C > 0.

It should be noted that ||+||y defines the maximum norm weighted
by W.

Proof. The details about the proof can be seen in [17]. O

Theorem 2. Given the MDP with Lyapunov Function Based Reward
Shaping denoted as M’ £ (S, A, T, RY%, y) where RIYP is defined in
Eq. (11). Given the following update rule

G*1(s,a) < (1-a)Gi(s, a)
+a{M&®+XmGﬂ@*M&®) (19)

Rlyap

Nife!
4w%ngm}

where i indicates the updating ith step along the learning procedure.
Q'(s, a) will converge to the optimal state action value function Q*(s,
a) with probability 1 as i — oo under following assumptions:

1. The state space S and action space A are finite;

2. Y ja;=00 and Y ; ozl.z < oo, where «; is the updating rate in
Algorithm 2;

3. the variance of {RY%} is bounded.

Proof. Subtract optimal state action value function Q*(s, a) from
both sides of Eq. (19) and define A;(s,a) £ Qi(s,a) — Q*(s,a) to
yield

Aipi(s.a) < (1 —ap)A(s, a)

+o¢i[R(s, @) + A(R(s'. @) — R(s. a)) (20)

Rlyap

4w%g@&m—@@m]

Then we define
F(s.a) £ R(s,a) + A(R(s",a’) —R(s, a))
Rlvap

+7/r;3§‘xQ'(s,b) - Q*(s, a).

Combining the operator H defined in Eq. (13) we can derive the
expectation of F(s, a) as follows:

E(F(s,a)) = Es’»vT(s,u)Ea’eAI:R(s: a) + A(R(s', ') = R(s, a))
Rlyap
+y maxQ'(s', b) - Q' s, a)]
= (HQ")(s,a) — Q* (s, a).
Based on the fact that (HQ*)(s, a) = Q*(s, a) we will have
E(F (s, a)) = (HQ')(s, a) — (HQ*)(s, a).
Using the contraction property of H in Eq. (14), we can easily get
IEE(S, a)lly = V1A, @) || -

Moreover consider the variance of F;(s, a),

var[F,-(s, a)] = E[(R(S, a) + A(R(s',d’) —R(s,a))

Rlvap

+y T&X@(s/’ b) —Q*(s,a) — E(F(s, a))>2]

_ E[(R(s, @)+ AR(s. d) — R(s, a))

Rlyap

+y max Qi(s',b) — (HQ) (s, a))z]

= var[R(s, a) + A(R(s',d') —R(s,a))

Rlyap

ANi(o!
+y maxQics'b) |

As long as the assumption that var(RY?) is bounded holds, it can
be clearly verified that

var[(F,-(s, a)] = var[R’y‘”’ +y max Qi(s, b)]

< C(1+ A5, D)ly)

for some constant value C > 0 and weighted matrix W, which is in
agreement with [17].

Finally, combining Lemma 1 and Theorem 2 on the condition
that their assumptions hold, A;(s, a) will converge to zero with
probability 1 as i — oo, i.e., Qi(s, a) will converge to the optimal
state action value Q*(s, a) with probability 1 asi — co. O

Supplementary material

Supplementary material associated with this article can be
found, in the online version, at doi:10.1016/j.neucom.2020.02.008.

References

[1] B.H. Abed-alguni, M.A. Ottom, Double delayed g-learning, Int. J. Artif. Intell. 16
(2) (2018) 41-509.

https://doi.org/10.1016/j.neucom.2020.02.008
http://refhub.elsevier.com/S0925-2312(20)30183-1/sbref0001
http://refhub.elsevier.com/S0925-2312(20)30183-1/sbref0001
http://refhub.elsevier.com/S0925-2312(20)30183-1/sbref0001

90 Y. Dong, X. Tang and Y. Yuan/Neurocomputing 393 (2020) 83-90

[2] M. Andrychowicz, B. Baker, M. Chociej, et al., Learning Dexterous In-hand Ma-
nipulation, International Journal of Robotics Research 39 (1) (2020) 3-20.

[3] J. Asmuth, M.L. Littman, R. Zinkov, Potential-based shaping in model-based re-
inforcement learning., in: Proceedings of the AAAI, 2008, pp. 604-609.

[4] R. Bellman, Dynamic Programming, Courier Corporation, 2013.

[5] G. Brockman, V. Cheung, L. Pettersson, et al., Openai Gym, arXiv preprint
arXiv:1606.01540 (2016).

[6] Z. Cao, C. Lin, Hierarchical Critics Assignment for Multi-agent Reinforcement
Learning, arXiv preprint arXiv:1902.03079 (2019).

[7] S. Devlin, D. Kudenko, Dynamic potential-based reward shaping, in: Proceed-
ings of the 11th International Conference on Autonomous Agents and MultiA-
gent Systems, 2012, pp. 433-440.

[8] S. Devlin, L. Yliniemi, D. Kudenko, K. Tumer, Potential-based difference re-
wards for multiagent reinforcement learning, in: Proceedings of the 13th In-
ternational Conference on Autonomous Agents and Multi Agent Systems, 2014,
pp. 165-172.

[9] E.A.O. Diallo, A. Sugiyama, T. Sugawara, Coordinated behavior of cooperative
agents using deep reinforcement learning, Neurocomputing (2019).

[10] A. Eck, L-K. Soh, S. Devlin, D. Kudenko, Potential-based reward shaping for
pomdps, in: Proceedings of the 12th International Conference on Autonomous
Agents and MultiAgent Systems, 2013, pp. 1123-1124.

[11] P. Goyal, S. Niekum, R.J. Mooney, Using natural language for reward shaping in
reinforcement learning, arXiv preprint arXiv:1903.02020 (2019).

[12] M. Grze$, Reward shaping in episodic reinforcement learning, in: Proceedings
of the 16th International Conference on Autonomous Agents and MultiAgent
Systems, 2017, pp. 565-573.

[13] T. Haarnoja, A. Zhou, P. Abbeel, S. Levine, Soft actor-critic: off-policy maximum
entropy deep reinforcement learning with a stochastic actor, arXiv:1801.01290
(2018).

[14] H.V. Hasselt, Double g-learning, in: Proceedings of the Advances in Neural In-
formation Processing Systems, 2010, pp. 2613-2621.

[15] P. Henderson, R. Islam, P. Bachman,]J. Pineau, D. Precup, D. Meger, Deep re-
inforcement learning that matters, in: Proceedings of the Thirty-Second AAAI
Conference on Artificial Intelligence, 2018.

[16] C. HolmesParker, A.K. Agogino, K. Tumer, Combining reward shaping and hier-
archies for scaling to large multiagent systems, Knowl. Eng. Rev. 31 (1) (2016)
3-18.

[17] T. Jaakkola, M.I. Jordan, S.P. Singh, Convergence of stochastic iterative dynamic
programming algorithms, in: Proceedings of the Advances in Neural Informa-
tion Processing Systems, 1994, pp. 703-710.

[18] D.P. Kingma, J. Ba, Adam: A Method for Stochastic Optimization, arXiv preprint
arXiv:1412.6980 (2014).

[19] V.R. Konda,].N. Tsitsiklis, Actor-critic algorithms, in: Proceedings of the Ad-
vances in Neural Information Processing Systems, 2000, pp. 1008-1014.

[20] W. Liu, Z. Wang, X. Liu, N. Zeng, Y. Liu, EE. Alsaadi, A survey of deep neu-
ral network architectures and their applications, Neurocomputing 234 (2017)
11-26.

[21] L. Luo, Y. Xiong, Y. Liu, X. Sun, Adaptive gradient methods with dynamic bound
of learning rate, arXiv preprint arXiv:1902.09843 (2019).

[22] A.M. Lyapunov, The general problem of the stability of motion, Int.]J. Control
55 (3) (1992) 531-534.

[23] P. Mannion, S. Devlin, K. Mason, J. Duggan, E. Howley, Policy invariance under
reward transformations for multi-objective reinforcement learning, Neurocom-
puting 263 (2017) 60-73.

[24] V. Mnih, A.P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley, D. Sil-
ver, K. Kavukcuoglu, Asynchronous methods for deep reinforcement learning,
in: Proceedings of the International Conference on Machine Learning, 2016,
pp. 1928-1937.

[25] V. Mnih, K. Kavukcuoglu, D. Silver, et al, Human-level control through deep
reinforcement learning, Nature 518 (7540) (2015) 529.

[26] A.Y. Ng, D. Harada, S. Russell, Policy invariance under reward transformations:
Theory and application to reward shaping, in: Proceedings of the ICML, 1999.

[27] TJ. Perkins, A.G. Barto, Lyapunov design for safe reinforcement learning, J.
Mach. Learn. Res. 3 (Dec) (2002) 803-832.

[28] S.J. Reddi, S. Kale, S. Kumar, On the convergence of adam and beyond, in: Pro-
ceedings of the ICLR, 2018.

[29] S. Ruder, An Overview of Gradient Descent Optimization Algorithms, arXiv
preprint arXiv:1609.04747 (2016).

[30] J. Schulman, S. Levine, P. Abbeel, M. Jordan, P. Moritz, Trust region policy opti-
mization, in: Proceedings of the International Conference on Machine Learning,
2015, pp. 1889-1897.

[31] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, O. Klimov, Proximal policy op-
timization algorithms, arXiv preprint arXiv:1707.06347 (2017).

[32] D. Silver, A. Huang, CJ. Maddison, et al., Mastering the game of go with deep
neural networks and tree search, Nature 529 (7587) (2016) 484.

[33] D. Silver, G. Lever, N. Heess, et al., Deterministic policy gradient algorithms, in:
Proceedings of the ICML, 2014.

[34] 1. Sutskever,]J. Martens, G. Dahl, G. Hinton, On the importance of initialization
and momentum in deep learning, in: Proceedings of the ICML, 2013.

[35] RS. Sutton, A.G. Barto, Introduction to reinforcement learning, 135, MIT press
Cambridge, 1998.

[36] RS. Sutton, D.A. McAllester, S.P. Singh, Y. Mansour, Policy gradient methods
for reinforcement learning with function approximation, in: Proceedings of the
Advances in neural information processing systems, 2000, pp. 1057-1063.

[37] E. Todorov, T. Erez, Y. Tassa, Mujoco: A physics engine for model-based control,
in: Proceedings of the IEEE/RS] International Conference on Intelligent Robots
and Systems (IROS), 2012, pp. 5026-5033.

[38] CJ. Watkins, P. Dayan, Q-Learning, Mach. Learn. 8 (3-4) (1992) 279-292.

[39] E. Wiewiora, G.W. Cottrell, C. Elkan, Principled methods for advising reinforce-
ment learning agents, in: Proceedings of the ICML, 2003.

[40] B. Xu, C. Yang, Z. Shi, Reinforcement learning output feedback nn control using
deterministic learning technique, IEEE Trans. Neural Netw. Learn Syst. 25 (3)
(2014) 635-641.

[41] Y. Yuan, M. Lj,]. Liu, C. Tomlin, On the powerball method: variants of descent
methods for accelerated optimization, IEEE Control Syst. Lett. 3 (3) (2019) 601-
606, doi:10.1109/LCSYS.2019.2913770.

[42] Y. Yuan, X. Tang, W. Zhou, W. Pan, X. Li, H.-T. Zhang, H. Ding,]. Goncalves, Data
driven discovery of cyber physical systems, Nat. Commun. 10 (1) (2019) 4894,
doi:10.1038/s41467-019-12490-1.

Yunlong Dong received the B.E degree from the School
of Automation, Huazhong University of Science and Tech-
nology, Wuhan, China, in 2017. He is currently working
towards the Ph.D. degree at School of Artificial Intelli-
gence and Automation, Huazhong University of Science
and Technology, Wuhan, China. His research interests in-
clude RL, control theory and robotics.

Xiuchuan Tang received the B.E degree from the school
of Artificial Intelligence and Automation, Huazhong Uni-
versity of Science and Technology, Wuhan, China, in 2016.
He is currently working towards the Ph.D. degree at
School of Mechanical Science and Engineering, Huazhong
University of Science and Technology, Wuhan, China. His
research interests include Machine Learning and Smart
Manufacturing.

Ye Yuan received the B.Eng. degree in automation (Vale-
dictorian) from the Department of Automation, Shanghai
Jiao Tong University, Shanghai, China, in September 2008,
and the M.Phil. and Ph.D. degrees in control science and
engineering from the Department of Engineering, Univer-
sity of Cambridge, Cambridge, UK., in October 2009 and
February 2012, respectively. He is currently a Full Pro-
fessor at the Huazhong University of Science and Tech-
nology, Wuhan, China. He was a Postdoctoral Researcher
at UC Berkeley, a Junior Research Fellow at Darwin Col-
lege, University of Cambridge. His research interests in-
clude system identification and control with applications
to cyber-physical systems.

http://refhub.elsevier.com/S0925-2312(20)30183-1/sbref0001a
http://refhub.elsevier.com/S0925-2312(20)30183-1/sbref0001a
http://refhub.elsevier.com/S0925-2312(20)30183-1/sbref0001a
http://refhub.elsevier.com/S0925-2312(20)30183-1/sbref0001a
http://refhub.elsevier.com/S0925-2312(20)30183-1/sbref0001a
http://refhub.elsevier.com/S0925-2312(20)30183-1/sbref0002
http://refhub.elsevier.com/S0925-2312(20)30183-1/sbref0002
http://refhub.elsevier.com/S0925-2312(20)30183-1/sbref0002
http://refhub.elsevier.com/S0925-2312(20)30183-1/sbref0002
http://refhub.elsevier.com/S0925-2312(20)30183-1/sbref0003
http://refhub.elsevier.com/S0925-2312(20)30183-1/sbref0003
http://arxiv.org/abs/1606.01540
http://arxiv.org/abs/1902.03079
http://refhub.elsevier.com/S0925-2312(20)30183-1/sbref0004
http://refhub.elsevier.com/S0925-2312(20)30183-1/sbref0004
http://refhub.elsevier.com/S0925-2312(20)30183-1/sbref0004
http://refhub.elsevier.com/S0925-2312(20)30183-1/sbref0005
http://refhub.elsevier.com/S0925-2312(20)30183-1/sbref0005
http://refhub.elsevier.com/S0925-2312(20)30183-1/sbref0005
http://refhub.elsevier.com/S0925-2312(20)30183-1/sbref0005
http://refhub.elsevier.com/S0925-2312(20)30183-1/sbref0005
http://refhub.elsevier.com/S0925-2312(20)30183-1/sbref0006
http://refhub.elsevier.com/S0925-2312(20)30183-1/sbref0006
http://refhub.elsevier.com/S0925-2312(20)30183-1/sbref0006
http://refhub.elsevier.com/S0925-2312(20)30183-1/sbref0006
http://refhub.elsevier.com/S0925-2312(20)30183-1/sbref0007
http://refhub.elsevier.com/S0925-2312(20)30183-1/sbref0007
http://refhub.elsevier.com/S0925-2312(20)30183-1/sbref0007
http://refhub.elsevier.com/S0925-2312(20)30183-1/sbref0007
http://refhub.elsevier.com/S0925-2312(20)30183-1/sbref0007
http://arxiv.org/abs/1903.02020
http://refhub.elsevier.com/S0925-2312(20)30183-1/sbref0008
http://refhub.elsevier.com/S0925-2312(20)30183-1/sbref0008
http://arxiv.org/abs/1801.01290
http://refhub.elsevier.com/S0925-2312(20)30183-1/sbref0009
http://refhub.elsevier.com/S0925-2312(20)30183-1/sbref0009
http://refhub.elsevier.com/S0925-2312(20)30183-1/sbref0010
http://refhub.elsevier.com/S0925-2312(20)30183-1/sbref0010
http://refhub.elsevier.com/S0925-2312(20)30183-1/sbref0010
http://refhub.elsevier.com/S0925-2312(20)30183-1/sbref0010
http://refhub.elsevier.com/S0925-2312(20)30183-1/sbref0010
http://refhub.elsevier.com/S0925-2312(20)30183-1/sbref0010
http://refhub.elsevier.com/S0925-2312(20)30183-1/sbref0010
http://refhub.elsevier.com/S0925-2312(20)30183-1/sbref0011
http://refhub.elsevier.com/S0925-2312(20)30183-1/sbref0011
http://refhub.elsevier.com/S0925-2312(20)30183-1/sbref0011
http://refhub.elsevier.com/S0925-2312(20)30183-1/sbref0011
http://refhub.elsevier.com/S0925-2312(20)30183-1/sbref0012
http://refhub.elsevier.com/S0925-2312(20)30183-1/sbref0012
http://refhub.elsevier.com/S0925-2312(20)30183-1/sbref0012
http://refhub.elsevier.com/S0925-2312(20)30183-1/sbref0012
http://arxiv.org/abs/1412.6980
http://refhub.elsevier.com/S0925-2312(20)30183-1/sbref0013
http://refhub.elsevier.com/S0925-2312(20)30183-1/sbref0013
http://refhub.elsevier.com/S0925-2312(20)30183-1/sbref0013
http://refhub.elsevier.com/S0925-2312(20)30183-1/sbref0014
http://refhub.elsevier.com/S0925-2312(20)30183-1/sbref0014
http://refhub.elsevier.com/S0925-2312(20)30183-1/sbref0014
http://refhub.elsevier.com/S0925-2312(20)30183-1/sbref0014
http://refhub.elsevier.com/S0925-2312(20)30183-1/sbref0014
http://refhub.elsevier.com/S0925-2312(20)30183-1/sbref0014
http://refhub.elsevier.com/S0925-2312(20)30183-1/sbref0014
http://arxiv.org/abs/1902.09843
http://refhub.elsevier.com/S0925-2312(20)30183-1/sbref0015
http://refhub.elsevier.com/S0925-2312(20)30183-1/sbref0015
http://refhub.elsevier.com/S0925-2312(20)30183-1/sbref0016
http://refhub.elsevier.com/S0925-2312(20)30183-1/sbref0016
http://refhub.elsevier.com/S0925-2312(20)30183-1/sbref0016
http://refhub.elsevier.com/S0925-2312(20)30183-1/sbref0016
http://refhub.elsevier.com/S0925-2312(20)30183-1/sbref0016
http://refhub.elsevier.com/S0925-2312(20)30183-1/sbref0016
http://refhub.elsevier.com/S0925-2312(20)30183-1/sbref0017
http://refhub.elsevier.com/S0925-2312(20)30183-1/sbref0017
http://refhub.elsevier.com/S0925-2312(20)30183-1/sbref0017
http://refhub.elsevier.com/S0925-2312(20)30183-1/sbref0017
http://refhub.elsevier.com/S0925-2312(20)30183-1/sbref0017
http://refhub.elsevier.com/S0925-2312(20)30183-1/sbref0017
http://refhub.elsevier.com/S0925-2312(20)30183-1/sbref0017
http://refhub.elsevier.com/S0925-2312(20)30183-1/sbref0017
http://refhub.elsevier.com/S0925-2312(20)30183-1/sbref0017
http://refhub.elsevier.com/S0925-2312(20)30183-1/sbref0018
http://refhub.elsevier.com/S0925-2312(20)30183-1/sbref0018
http://refhub.elsevier.com/S0925-2312(20)30183-1/sbref0018
http://refhub.elsevier.com/S0925-2312(20)30183-1/sbref0018
http://refhub.elsevier.com/S0925-2312(20)30183-1/sbref0018
http://refhub.elsevier.com/S0925-2312(20)30183-1/sbref0019
http://refhub.elsevier.com/S0925-2312(20)30183-1/sbref0019
http://refhub.elsevier.com/S0925-2312(20)30183-1/sbref0019
http://refhub.elsevier.com/S0925-2312(20)30183-1/sbref0019
http://refhub.elsevier.com/S0925-2312(20)30183-1/sbref0020
http://refhub.elsevier.com/S0925-2312(20)30183-1/sbref0020
http://refhub.elsevier.com/S0925-2312(20)30183-1/sbref0020
http://refhub.elsevier.com/S0925-2312(20)30183-1/sbref0021
http://refhub.elsevier.com/S0925-2312(20)30183-1/sbref0021
http://refhub.elsevier.com/S0925-2312(20)30183-1/sbref0021
http://refhub.elsevier.com/S0925-2312(20)30183-1/sbref0021
http://arxiv.org/abs/1609.04747
http://refhub.elsevier.com/S0925-2312(20)30183-1/sbref0022
http://refhub.elsevier.com/S0925-2312(20)30183-1/sbref0022
http://refhub.elsevier.com/S0925-2312(20)30183-1/sbref0022
http://refhub.elsevier.com/S0925-2312(20)30183-1/sbref0022
http://refhub.elsevier.com/S0925-2312(20)30183-1/sbref0022
http://refhub.elsevier.com/S0925-2312(20)30183-1/sbref0022
http://arxiv.org/abs/1707.06347
http://refhub.elsevier.com/S0925-2312(20)30183-1/sbref0023
http://refhub.elsevier.com/S0925-2312(20)30183-1/sbref0023
http://refhub.elsevier.com/S0925-2312(20)30183-1/sbref0023
http://refhub.elsevier.com/S0925-2312(20)30183-1/sbref0023
http://refhub.elsevier.com/S0925-2312(20)30183-1/sbref0023
http://refhub.elsevier.com/S0925-2312(20)30183-1/sbref0024
http://refhub.elsevier.com/S0925-2312(20)30183-1/sbref0024
http://refhub.elsevier.com/S0925-2312(20)30183-1/sbref0024
http://refhub.elsevier.com/S0925-2312(20)30183-1/sbref0024
http://refhub.elsevier.com/S0925-2312(20)30183-1/sbref0024
http://refhub.elsevier.com/S0925-2312(20)30183-1/sbref0025
http://refhub.elsevier.com/S0925-2312(20)30183-1/sbref0025
http://refhub.elsevier.com/S0925-2312(20)30183-1/sbref0025
http://refhub.elsevier.com/S0925-2312(20)30183-1/sbref0025
http://refhub.elsevier.com/S0925-2312(20)30183-1/sbref0025
http://refhub.elsevier.com/S0925-2312(20)30183-1/sbref0026
http://refhub.elsevier.com/S0925-2312(20)30183-1/sbref0026
http://refhub.elsevier.com/S0925-2312(20)30183-1/sbref0026
http://refhub.elsevier.com/S0925-2312(20)30183-1/sbref0027
http://refhub.elsevier.com/S0925-2312(20)30183-1/sbref0027
http://refhub.elsevier.com/S0925-2312(20)30183-1/sbref0027
http://refhub.elsevier.com/S0925-2312(20)30183-1/sbref0027
http://refhub.elsevier.com/S0925-2312(20)30183-1/sbref0027
http://refhub.elsevier.com/S0925-2312(20)30183-1/sbref0028
http://refhub.elsevier.com/S0925-2312(20)30183-1/sbref0028
http://refhub.elsevier.com/S0925-2312(20)30183-1/sbref0028
http://refhub.elsevier.com/S0925-2312(20)30183-1/sbref0028
http://refhub.elsevier.com/S0925-2312(20)30183-1/sbref0029
http://refhub.elsevier.com/S0925-2312(20)30183-1/sbref0029
http://refhub.elsevier.com/S0925-2312(20)30183-1/sbref0029
http://refhub.elsevier.com/S0925-2312(20)30183-1/sbref0030
http://refhub.elsevier.com/S0925-2312(20)30183-1/sbref0030
http://refhub.elsevier.com/S0925-2312(20)30183-1/sbref0030
http://refhub.elsevier.com/S0925-2312(20)30183-1/sbref0030
http://refhub.elsevier.com/S0925-2312(20)30183-1/sbref0031
http://refhub.elsevier.com/S0925-2312(20)30183-1/sbref0031
http://refhub.elsevier.com/S0925-2312(20)30183-1/sbref0031
http://refhub.elsevier.com/S0925-2312(20)30183-1/sbref0031
https://doi.org/10.1109/LCSYS.2019.2913770
https://doi.org/10.1038/s41467-019-12490-1

	Principled reward shaping for reinforcement learning via lyapunov stability theory
	1 Introduction
	2 Problem formulation
	2.1 Preliminaries
	2.2 Reward shaping

	3 Lyapunov function based reward shaping
	4 Experiments
	4.1 Discrete case
	4.2 Continuous case
	4.3 Effectiveness of parameter λ
	4.4 Robustness to noise
	4.5 Limitations

	5 Conclusion
	Declaration of Competing Interests
	CRediT authorship contribution statement
	Acknowledgment
	Appendix A
	Supplementary material
	References

