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a b s t r a c t 

Reinforcement learning (RL) suffers from the designation in reward function and the large computational 

iterating steps until convergence. How to accelerate the training process in RL plays a vital role. In this 

paper, we proposed a Lyapunov function based approach to shape the reward function which can effec- 

tively accelerate the training. Furthermore, the shaped reward function leads to convergence guarantee 

via stochastic approximation, an invariant optimality condition using Bellman Equation and an asymp- 

totical unbiased policy. Moreover, sufficient RL benchmarks have been experimented to demonstrate the 

effectiveness of our proposed method. It has been verified that our proposed method substantially accel- 

erates the convergence process as well as improves the performance in terms of a higher accumulated 

reward. 

© 2020 Elsevier B.V. All rights reserved. 
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. Introduction 

Reinforcement learning (RL), especially when coupled with

eep learning [20] , has gained great success in beyond-human

evel in Atari games [25] , Go game [32] , cooperative agents [9] ,

exterous robotic manipulation [2] and multi-agent RL [6] , among

thers. However, despite its advanced capabilities, RL suffers se-

ere drawbacks, related to the requirement of enormous training

ata size, long convergence iterations and the problem of repro-

ucibility [15] . A large number of works [13,24,31,33] have dedi-

ated to make RL efficient and available in various scenarios. Theo-

etical analysis about how to indeed accelerate the training process

n RL remains necessary discussions. 

In deep learning, predominant optimization methodologies in-

lude Momentum [34] , Adam [18] , Powerball [41] and many inves-

igations [21,28,29,42] have been devoted to the stability analysis

f the optimization in real applications. In terms of the RL, reward

haping [26] has been proved can accelerate the convergence pro-

ess by adding a potential function term which shall be initialized

o the value function. However this kind of acceleration is implica-

ive, cause the value function is very hard to estimate at first, es-

ecially in high dimensional and complex RL tasks. Further reward

haping and Q-value initialization are shown to be equivalent in
� This work is supported by the National Natural Science Foundation of China 

nder Grant 91748112 . 
∗ Corresponding author. 

E-mail address: yye@hust.edu.cn (Y. Yuan). 

d  

e  

t  

r  

[

ttps://doi.org/10.1016/j.neucom.2020.02.008 

925-2312/© 2020 Elsevier B.V. All rights reserved. 
39] . Later based on reward shaping, [7,12,39] have extended the

esults, which are still limited by the weakness of reward shaping

n searching the potential function. It should also be noted that

he acceleration in the RL process of reward shaping has not been

uaranteed theoretically. 

In this paper, we apply Lyapunov stability theory [22] to tempt

he RL process into maximal reward region by driving the reward

o make the Lyapunov function descend in time domain. There

s certainly a concern whether the shaped reward will cause the

ariance in optimality or the biased greedy policy in [39] . It has

een proved that our proposed shaped reward function leads to

onvergence guarantee via stochastic approximation, an invariant

ptimality condition using Bellman Equation and an asymptotical

nbiased policy. 

Reward shaping has produced a great long-term impact on the

evelopment of RL. And reward shaping has been extended to par-

ially observed cases [10] and model-based RL [3] to enlarge the

pplication scope. Furthermore, [23] has proved that reward shap-

ng has an invariant optimal policy in multi-objective RL when

he vectorized reward function exists, demonstrating that reward

haping is not limited in scalar reward function further promoting

he generalization ability of reward shaping. Reward shaping also

lays a vital role in multi-agent RL [8] . derives a potential-based

ifference reward to improve the joint policy learnt by differ-

nt agents. [16] combines reward shaping and hierarchies scheme

o largely scale the multi-agent reinforcement systems. There are

ecent works focusing on the application of reward shaping in

7] and [12] . In order to achieve desirable performance, poten- 

https://doi.org/10.1016/j.neucom.2020.02.008
http://www.ScienceDirect.com
http://www.elsevier.com/locate/neucom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2020.02.008&domain=pdf
https://doi.org/10.13039/501100001809
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tial function needs to be carefully chosen by hand-craft. Recently

[11] uses natural language to guide the reward shaping for bet-

ter performance. Therefore, how to choose or design the potential

function in a more principled way poses a key problem in acceler-

ating RL convergence speed. 

At the beginning, the original choice of potential function is

limited in the function of the state in RL leaving along the action.

To overcome the limitation above, [39] incorporates action into the

potential function and proves its equivalent invariant optimality

in terms of Bellman equation, resulting in a biased greedy pol-

icy through involving another action term. Yet, these two methods,

[26] and [39] require a good estimation of state value function or

state-action value function respectively. The ‘curse of dimensional-

ity’ [4] refers to various phenomena that arise when analyzing and

organizing data in high-dimensional spaces. Therefore in high di-

mensional and complex environments, accurate estimation of the

value functions can not be guaranteed. 

Lyapunov stability analysis [22] has been widely used in both

linear and nonlinear dynamical systems analysis, as well as con-

troller design for dynamical systems. [27] employs Lyapunov sta-

bility theory to explore safe RL. Xu et al. [40] applies Lyapunov

theory to design an adaptive controller as an actor model in the

actor-critic RL architecture for nonlinear feedback tracking control. 

We make our contributions as follows: 

• We leverage Lyapunov stability theory rather than handcraft

engineering to guide the reward shaping in RL. 

• We prove the convergence guarantee through stochastic ap-

proximation theory. 

• We conduct extensive experimental results to demonstrate the

effectiveness of our proposed method. 

In what follows, we introduce the background and formulate

the problem in Section 2 . Next, we propose the Lyapunov function

based method in Section 3 and demonstrate its effectiveness on

benchmark examples in Section 4 , and finally conclude this paper

in Section 5 . And the code is attached in the supplementary codes.

2. Problem formulation 

2.1. Preliminaries 

According to [35] , RL can be modeled as a Markov Decision Pro-

cess (MDP), which is denoted as a tuple M � (S, A , T , R, γ ) , where

S is the set of states, A is the set of actions, T ( s ′ | s, a ) represents

the transition probability to state s ′ ∈ S starting from state s ∈ S
with action a ∈ A , R ( s, a, s ′ ) is the reward function received and γ
is the discount rate that gives more weights to short term reward.

The goal of RL is to find an optimal policy: π ∗ : S → A which max-

imizes the accumulated reward: 
∑ ∞ 

t=0 γ
t R t (s, a, s ′ ) , where R t ( s, a,

s ′ ) is the reward received on the t th time-step in MDP. 

It is noted that E (·; •) stands for the conditional expectation

given • . Then given a policy π : S → A , the value function V 

π ( s )

is defined by: 

 

π (s ) � E [ R 1 + γ R 2 + γ 2 R 3 + . . . ;π, s ] , (1)

which indicates the expected accumulated reward from a given ini-

tial state s with executing policy π . And the optimal value function

can be defined as: 

 

∗(s ) � sup 

π
V 

π (s ) . (2)

In order to obtain optimal policy, an important conception Q-value

under policy π [38] : 

Q 

π (s, a ) � E s ′ ∼T (s ′ | s,a ) [ R (s, a, s ′ ) + γV 

π (s ′ )] . (3)

Also the optimal Q-value is defined by: 

Q 

∗(s, a ) � sup 

π
Q 

π (s, a ) . (4)
t is known that optimal Q-value satisfies the Bellman equation de-

ails in [35] : 

 

∗(s, a ) = E s ′ ∼T (s ′ | s,a ) 
[ 

R (s, a, s ′ ) + γ max 
b∈A 

Q 

∗(s ′ , b) 
] 
. (5)

Generally the policy can be obtained by greedy strategy which

akes the corresponding action with maximum Q-value given a cer-

ain state. In some cases [1,14] the greedy strategy may not be op-

imal. The greedy policy can be defined by: 

∗(s ) = arg max 
a ∈A 

(Q 

∗(s, a )) . (6)

n RL the optimal Q-value Q 

∗( s, a ) is the key to solve the optimal

olicy which maximizes accumulated reward. Q-learning [38] is a

ilestone which formalizes finding the optimal Q-value in an iter-

tive scheme by: 

˜ 
 

i +1 (s, a ) ← (1 − αi ) ̃  Q 

i (s, a ) 

+ αi 

(
R + γ max 

b∈A 
˜ Q 

i (s ′ , b) 
)
, (7)

here ˜ Q 

i (s, a ) is the estimated optimal Q-value at i th update time-

tep proved to converge on Q 

∗( s, a ) with probability 1 as i → ∞
nd αi presents the updating rate in the learning procedure. The

earning procedure of Q-learning is listed in Algorithm 1 . 

lgorithm 1 Q-learning. 

∀ s ∈ S, ∀ a ∈ A , ˜ Q 

0 (s, a ) ← 0 . For any transition tuple

(s, a, R (s, a ) , s ′ ) : i ← 0 

while not convergence do 

˜ Q 

i +1 (s, a ) ← (1 − αi ) ̃  Q 

i (s, a ) + αi { R (s, a ) + γ max b∈A ˜ Q 

i (s ′ , b) } , 
i ← i + 1 

end while 

As a matter of fact in complex and high dimensional cases Q-

earning is indeed difficult to converge due to the ‘curse of dimen-

ionality’ [4] , which is the main reason of slow convergence speed

n RL. While reward shaping is a well developed theory which can

peed up the convergence. 

.2. Reward shaping 

The slow convergence speed commonly seen in RL has been a

ottleneck especially when coupled with deep learning models. Ef-

orts have been made to find a general principled method to accel-

rate the convergence in RL. Ng et al. [26] proves that a potential-

ased reward shaping can lead to substantial reductions in learn-

ng time and do not change the optimality of the original optimal

olicy, which can be stated as follows: 

 

′ (s, a, s ′ ) � R (s, a, s ′ ) + γ�(s ′ ) − �(s ) , (8)

here � : S → R is a to-be-defined potential function. By conduct-

ng the Bellman equation one can show that reward shaping pre-

erves the optimality as well as invariant optimal policy. Further-

ore, if �( s ) is initialized to the optimal value function V 

∗( s ), it

hen can accelerate the training procedure. Yet note that V 

∗( s ) is

ifficult to be estimated especially in complex and high dimen-

ional cases. 

Another drawback of reward shaping in [26] is that the poten-

ial function only involves with state s without action a , which

argely limits the scope of reward shaping. Wiewiora et al. [39] ex-

ends the potential function to � : S × A → R which involves the

ction a as well to have: 

 

′ (s, a, s ′ , a ′ ) � R (s, a, s ′ ) + γ�(s ′ , a ′ ) − �(s, a ) , (9)

here a ′ is the action taken at next time. The optimality is pre-

erved through Bellman equation. But issue raised is the biased
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reedy policy (i.e., πb ( s ) 
 = π ∗( s )): 

b (s ) � arg max 
a ∈A 

Q 

∗(s, a ) + �(s, a ) , (10)

n which the greedy policy is biased by �( s, a ) compared with

q. (6) . 

. Lyapunov function based reward shaping 

Motivated by these pioneering works, In this paper, we shall

ropose a principled design of �( s, a ), which has the following

roperties: (a) guaranteed convergence; (b) preserved optimality;

nd (c) unbiased optimal greedy policy. 

We propose the Lyapunov Function Based Reward Shaping

ethod as follows: 

 

lyap = R (s, a ) + λ
(
γ R (s ′ , a ′ ) − R (s, a ) 

)
, (11) 

here λ is a tuning parameter that weights the shaped term

R (s ′ , a ′ ) − R (s, a ) . 

From the perspective of stability analysis, we consider the MDP

L problem as an optimal control problem. The control scheme is

o minimize a cost (negative reward) function L (s, a ) � −R (s, a ) .

e make the following assumptions: 

ssumption 1. The MDP RL problem is assumed to have a maxi-

al point ( s ∗, a ∗) which makes the reward maximal. 

emark 1. This assumption is reasonable because when designing

he cost function, the goal of any agent is defined as its achievable

aximal reward. 

ssumption 2. γ in MDP is assumed to be equal to 1 as γ ≈ 1 in

eal applications. 

emark 2. Although the experimental results do not rely on this

ssumption, this is a standard assumption for theoretical develop-

ents [26] . 

heorem 1. Let L (s, a ) be the Lyapunov function and assume that

ssumption 1 holds. If ∀ ( s ′ , a ′ ), the following inequality holds 

 (s ′ , a ′ ) − L (s, a ) ≤ 0 , (12)

hen the state and action tuple ( s, a ) will converge to maximal point

 s ∗, a ∗) asymptotically. 

roof. Due to the descent property of the Lyapunov function

 (s, a ) , and the existence of a maximal point ( s ∗, a ∗) (therefore

 (s, a ) is lower bounded), then the state and action tuple ( s, a )

ill converge to maximal point ( s ∗, a ∗) finally due to Lyapunov

tability. �

Based on Theorem 1 , we encourage the agent in MDP to

ake Eq. (12) hold by rewarding the shaped term defined in

q. (11) cause maximizing R (s ′ , a ′ ) − R (s, a ) equals to minimizing

 (s ′ , a ′ ) − L (s, a ) which can make Eq. (12) hold as much as possi-

le. Indeed we can prove the convergence of the Q-learning proce-

ure with Lyapunov Function Based Reward Shaping. 

roposition 1 (Convergence guarantee) . Considering a MDP based

L problem, given the Lyapunov function based reward shaping term

efined in Eq. (11) , and the updating procedure given in Procedure 2 ,

lgorithm 2 Updating procedure. 

∀ s ∈ S, ∀ a ∈ A , ˜ Q 

0 (s, a ) ← 0 . For any transition tuple

(s, a, R (s, a ) , s ′ , a ′ , R (s ′ , a ′ )) , i ← 0 

while not convergence do 

˜ Q 

i +1 (s, a ) ← (1 − αi ) ̃  Q 

i (s, a ) + αi { R (s, a ) + λ(R (s ′ , a ′ ) −
R (s, a )) + γ max b∈A ˜ Q 

i (s ′ , b) } , i ← i + 1 

end while 
nd assume that Assumptions 1 and 2 hold, then for any state action

air ( s, a ), the estimated state action value ˜ Q 

i (s, a ) will converge to
˜ 
 

∗(s, a ) with probability 1 as i → ∞ following the assumptions in

tochastic approximation [17] . 

roof. Lyapunov function based shaping reward R lyap will lead to

 new MDP tuple denoted as M 

′ � (S, A , T , R lyap , γ ) . In order to

omplete a more convenient proof, we define an operator H on

tate action value function Q ( s, a ) over any transition tuple ( s, a,

 ( s, a ), s ′ , a ′ , R ( s ′ , a ′ )) under M 

′ by: 

(H Q )(s, a ) = E s ′ ∼T (s,a ) E a ′ ∈A 
{ 

R 

lyap + γ max 
b∈A 

Q(s ′ , b) 
} 

. (13)

t should be noted that (H Q 

∗)(s, a ) = Q 

∗(s, a ) , which can be con-

ucted from Eq. (5) . Here we proof that operator H is a contraction

perator by: 

 

H Q 1 − H Q 2 ‖ ∞ 

= max 
s,s ′ ∈S 

| E s ′ ∼T (s,a ) E a ′ ∈A (γ max 
b 1 ∈A 

Q 1 (s ′ , b 1 ) 

− γ max 
b 2 ∈A 

Q 2 (s ′ , b 2 ) | 
≤ γ E s ′ ∼T (s,a ) | max 

b 1 ∈A 
Q 1 (s ′ , b 1 ) − max 

b 2 ∈A 
Q 2 (s ′ , b 2 ) | 

≤ γ E s ′ ∼T (s,a ) | max 
b∈A 

(Q 1 (s ′ , b) − Q 2 (s ′ , b)) | 
≤ γ max 

s ′ ∈S,b∈A 
| Q 1 (s ′ , b) − Q 2 (s ′ , b) | 

= γ ‖ 

Q 1 − Q 2 ‖ ∞ 

, (14) 

here Q 1 ( s, a ) and Q 2 ( s, a ) is two different estimated state action

alue function under M 

′ . 
Combine the proof in [17] and the contraction operator H ,

˜ 
 

i (s, a ) will converge to ˜ Q 

∗(s, a ) with probability 1 as i → ∞ if 

1. The state space S and action space A are finite; 

2. 
∑ 

i αi = ∞ and 

∑ 

i α
2 
i 

< ∞ , where αi is the updating rate in

Procedure 2 ; 

3. the variance of { R t } is bounded. 

The details about proof is attached in the Appendix

heorem 2 . �

Moreover, we disccuss the optimality and asymptotical unbi-

sed property of our proposed method. 

roposition 2 (Optimality preserving) . Given R lyap in Eq. (11) and

ssume Assumption 2 holds, then the reward shaping preserves opti-

ality. 

roof. For the original MDP M (with γ = 1 ), the Bellman equation

an be written by: 

 

∗
M 

(s, a ) = E s ′ ∼T (s ′ | s,a ) 
[
R (s, a ) + V 

∗
M 

(s ′ ) 
]
, (15) 

here Q 

∗
M 

(s, a ) , V ∗
M 

(s ′ ) denote the optimal Q-value function and

alue function respectively under MDP M . 

With similar idea to the proof of Section 4.1 in [39] , we can

erive 

 

∗
M 

′ (s, a ) = Q 

∗
M 

(s, a ) − λR (s, a ) , (16)

here Q 

∗
M 

′ (s, a ) satisfies the Bellman equation as well. �

roposition 3 (Unbiased greedy policy) . Given R lyap in Eq. (11) and

ssume Assumption 2 holds, then it will lead to an asymptotically un-

iased optimal greedy policy as in Eq. (6) . 

roof. The greedy policy in M 

′ is stated as follows: 

∗
M 

′ (s ) = arg max 
a ∈A 

(Q 

∗
M 

′ (s, a )) 

= arg max 
a ∈A 

(Q 

∗
M 

(s, a ) − λR (s, a )) . (17) 
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Table 1 

Details of the reward functions and experimented environments in discrete cases. The reward representation in continuous cases is 

complicated and not intuitive, here we illustrate our modification compared with official reward detail in OpenAI gym [5] . The specific 

meaning of parameters in reward functions can be found in the official reward function. And ReLU( • ) stands for the rectified linear 

unit which is max(0, • ) . 

Env / Reward function A function B function C

MountainCar -0.6 + position 20 × e ( 
position + 2.1 

1.8 ) 2 × ( velocity ) 2 ( 10 × velocity ) 2 

CartPole cos( θ) 2 π
2 − | θ | cos( θ) 

Acrobot ReLU(1-position) × -0.25 ReLU(1-position) 2 × -0.1 ReLU(1-position) 3 × -0.02 

Table 2 

Performance of the proposed method for both continuous and discrete cases. All the metrics in terms 

of accumulated reward here are sampled from ten repetitive experiments. In total, five different envi- 

ronments experimented among three different type of reward functions within discrete cases (denoted 

as A , B, C respectively) are listed below. The 1 
5 

before min, avg, max stand for the metrics in the last 
1 
5 

episode. The large margin over averaged reward and last 1 
5 

episode averaged reward metrics have 

demonstrated that Lyapunov function based reward shaping can consistently improve the convergence 

and performance. In terms of max and 1 
5 

max metrics, our proposed method can substantially improve 

the maximum margin among different environments and reward functions. 

Env / Reward min avg max 1 
5 

min 1 
5 

avg 1 
5 

max 

CartPole/ A (w/ Lyapunov) 7.88 168.88 199.97 86.12 189.70 199.97 

CartPole/ A (w/o Lyapunov) 8.84 136.49 199.96 122.49 187.76 199.95 

CartPole/ B (w/ Lyapunov) 11.68 257.23 312.97 167.11 297.21 312.97 

CartPole/ B (w/o Lyapunov) 11.66 221.03 312.40 209.87 300.78 312.40 

CartPole/ C (w/ Lyapunov) 8.93 170.00 199.99 146.49 198.13 199.99 

CartPole/ C (w/o Lyapunov) 7.94 134.85 199.98 116.67 190.39 199.97 

MountainCar/ A (w/ Lyapunov) -240.64 -167.47 -82.98 -232.51 -139.40 -83.21 

MountainCar/ A (w/o Lyapunov) -248.00 -212.45 -88.35 -237.38 -201.42 -88.35 

MountainCar/ B (w/ Lyapunov) 0.02 6.76 14.55 0.03 8.61 14.55 

MountainCar/ B (w/o Lyapunov) 0.02 0.41 2.47 0.02 0.40 2.05 

MountainCar/ C (w/ Lyapunov) 0.00 19.47 28.66 5.19 21.83 28.25 

MountainCar/ C (w/o Lyapunov) 0.05 1.01 7.01 0.07 0.99 6.84 

Acrobot/ A (w/ Lyapunov) -147.68 -75.56 -41.15 -112.27 -62.89 -41.15 

Acrobot/ A (w/o Lyapunov) -149.14 -113.15 -65.56 -141.54 -109.58 -65.56 

Acrobot/ B (w/ Lyapunov) -177.18 -67.60 -41.10 -95.62 -55.50 -41.10 

Acrobot/ B (w/o Lyapunov) -176.50 -104.22 -56.81 -143.18 -98.14 -64.63 

Acrobot/ C (w/ Lyapunov) -103.96 -41.40 -24.01 -55.42 -34.11 -24.01 

Acrobot/ C (w/o Lyapunov) -104.76 -70.25 -39.52 -96.48 -67.88 -39.52 

Ant (w/ Lyapunov) 0.091 0.646 0.851 0.788 0.825 0.851 

Ant (w/o Lyapunov) 0.094 0.573 0.799 0.671 0.758 0.799 

Hopper (w/ Lyapunov) 0.009 0.274 0.584 0.520 0.548 0.584 

Hopper (w/o Lyapunov) 0.008 0.169 0.389 0.313 0.339 0.389 

HalfCheetah (w/ Lyapunov) 0.000 0.285 0.751 0.489 0.639 0.751 

HalfCheetah (w/o Lyapunov) 0.000 0.206 0.444 0.352 0.415 0.444 
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1 https://github.com/keras-rl/keras-rl . 
2 https://github.com/openai/baselines . 
Substitute Eq. (15) into Eq. (17) and for simplification noting

E s ′ ∼T (s ′ | s,a ) as E we will have 

π ∗
M 

′ (s ) = arg max 
a ∈A 

E 

[ 
(1 − λ) R (s, a ) + V 

∗
M 

(s ′ ) 
] 
. (18)

To be convenient, s, a, s ′ are all implicit with time-step t . Combine

Eqs. (18) and (6) , successively we obtain (based on Theorem 1 and

the convergence fact that lim t→∞ 

s = s ′ ) 

lim t→∞ 

π ∗
M 

′ (s ) = arg max 
a ∈A 

E 

[ 
(1 − λ) R (s, a ) + V 

∗
M 

(s ) 
] 

lim t→∞ 

π ∗
M 

(s ) = arg max 
a ∈A 

E 

[ 
R (s, a ) + V 

∗
M 

(s ) 
] 
. 

As V ∗
M 

(s ) is independent of action a , we then prove the asymptoti-

cal unbiased policy: 

lim 

→∞ 

(π ∗
M 

′ (s ) − π ∗
M 

(s )) = 0 . �

4. Experiments 

The proposed method can be applied to RL by only substi-

tuting the reward function. Here we evaluate our method on
wo state-of-the-art methods, DQN [25] for discrete cases and

PO2 [31] for continuous cases respectively. In discrete cases

he action space is discrete in a certain countable set such as

 ∈ { 1 , 0 , −1 } , while continuous cases make the action space

ontinuous and uncountable in a range such as a ∈ (−1 , 1) . Both

QN 

1 and PPO2 2 codes are imported from public online repository

o insure the proposed method’s independence in implemental

pecification. The environments experimented are from OpenAI

ym [5] . The continuous cases are used from Mujoco [37] . In order

o remove the randomness introduced during the initialization of

etwork parameters in DQN, PPO2 and other random factors, each

xperiment is repeated 10 times. We visualize average curves in

gures and use the discounted accumulated reward as metric. The

eward functions and environments during the experiments are

isted in details in Table 1 . 

https://github.com/keras-rl/keras-rl
https://github.com/openai/baselines
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Fig. 1. Experimental results on different discrete environments with different reward functions. All the figures here are sampled from 10 repetitive experiments to eliminate 

the impact imposed by random factors. The name under each figure stands for environment name / reward function, details in supplementary codes. We use DQN [25] as 

the general solver for discrete cases. Red line and blue line indicate the performance w/ (with) Lyapunov function based reward shaping and w/o (without) respectively. The 

episode reward is normalized. 
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.1. Discrete case 

We apply DQN as a general solver in discrete cases. DQN uses

 neural network function iteratively to approximate Q-value for

ach state and action pair which is designed for discrete case. The

xtensive experimental results are shown in Fig. 1 and listed sta-

istically in Table 2 . The figures and numerical results demonstrate

hat Lyapunov function based reward shaping can accelerate the

onvergence speed of RL and improve the performance under dif-

erent environments and reward functions. 

.2. Continuous case 

PPO2 is adopted as the general solver for continuous cases. Be-

ause in continuous cases the action space A is uncountable, the

rute search of greedy policy is infeasible and time-consuming

o loop over all the actions inside A . PPO2 is a policy gradi-

nt [36] and actor-critic [19] based method which uses gradient

ethod to optimize the parametric policy. And also PPO2 has ben-

fited a lot from previous method TRPO [30] to punish explor-

ng new updated policy far away from current policy via KL di-

ergence. In practice PPO2 has been demonstrated state-of-the-art

ethod in solving continuous RL cases. 
Here we apply PPO2 along with our proposed Lyapunov func-

ion based reward shaping to verify the effectiveness. The exten-

ive experimental results are shown in Fig. 2 and listed statisti-

ally in Table 2 . The results strongly demonstrate the effectiveness

f our proposed Lyapunov function based reward shaping in differ-

nt continuous RL cases which has more satisfying learning speed

nd performance. 

.3. Effectiveness of parameter λ

Here we further explore the effectiveness of tuning parameter λ
n Eq. (11) to investigate the sensitivity of λ which can be of great

ssential in conducting Lyapunov function based reward shaping.

e vary the parameter λ in a certain range to conduct the experi-

ents. 

The results are summarized in Fig. 3 . λ reflects the extent of

mpact of Lyapunov function based reward shaping term. When

etting λ to 0, it does not change anything of the original MDP.

xperiments are conducted in CartPole, Acrobot and MountainCar

nvironments by only varying λ to different values with setting

ther configurations unchanged. The results strongly reveal that

he performance can be guaranteed within a wide range of λ,

hich means the effort s in tuning parameters can be liberated. 
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Fig. 2. Experimental results on three different continuous environments. All the figures here are sampled from 10 repetitive experiments to eliminate the impact imposed 

by random factors. We use PPO2 [31] as the general solver for continuous cases. Red line and blue line indicate the performance w/ (with) Lyapunov function based reward 

shaping and w/o (without) respectively. The episode reward is normalized. 

Fig. 3. The effectiveness of tuning parameter λ in the Lyapunov function based reward shaping is tested in CartPole, Acrobot and MountainCar environments with different 

value of λ, while keeping other configurations the same. 

Fig. 4. The robustness test of the proposed method in three different environments. The noise is generated from a zero-mean Gaussian distribution with different standard 

variations σ . 
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4.4. Robustness to noise 

Next we consider the robustness of the proposed method, as

the reward received can be very noisy in real applications. We

manually generate additive gaussian noise with different standard

variations to the reward received in the environments as follows: 

R noise = R + N (0 , σ ) , 

where R is the original reward, N indicates zero mean Gaussian

noise with standard variance σ and R noise stands for the noisy re-

ward used in the training process. In real applications, noise is un-

avoidable which will mislead and confuse the communication of

agent with environments. It is essential to analyze the proposed

method’s resistivity to noise of varying degrees. In experiments, we

vary σ within a certain range while keeping other configurations

unchanged. The results are shown in Fig. 4 . The experimental re-

sults demonstrated that Lyapunov function based reward shaping

is robust to noise in a certain satisfying range, which promotes its

application in real noisy circumstances. 
.5. Limitations 

The proposed method guarantees the convergence but lacks the

heoretical analysis about the convergence speed. Without the the-

retical analysis on the convergence speed, the choice of parameter

in Eq. (11) would be tricky, which could introduce some other

ncertainties. Our future work will focus on how to provide con-

ergence speed of our proposed method. 

. Conclusion 

In this paper, we proposed a novel reward shaping method

ased on Lyapunov stability analysis by encouraging the agent to

each the region of maximal reward as far as possible. The pro-

osed method is guaranteed to be invariant in optimality and

symptotically unbiased greedy policy. And we give theoretical

onvergence proof of our proposed method via the early estab-

ished stochastic approximation theorem. Our proposed Lyapunov

unction based reward shaping effectively liberates the efforts in

earching well-defined potential function because potential func-
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ion here is exactly chosen to be the reward function. Also we have

onducted extensive experiments for both discrete and continuous

L public benchmarks to verify our proposed method. Both the-

retical proof and experimental results strongly demonstrate the

ffectiveness of our proposed method, which can substantially fas-

en the convergence speed and promote the performance in RL. In

he future work, theoretical analysis about the convergence speed

hall be carefully discussed to further guide the designation of re-

ard shaping. 
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ppendix A 

emma 1. Define a random process { 
i ( x )} taking values in x ∈ R 

n 

s: 

i +1 (x ) ← (1 − αi )
i (x ) + αi F i (x ) , 

here { F i ( x )} is also a random process over x. 
i ( x ) converges to zero

ith probability 1 as i → ∞ under following assumptions: 

1. 
∑ 

i αi = ∞ and 
∑ 

i α
2 
i 

< ∞ ; 

2. ‖ E (F i (x )) ‖ W 

≤ γ ‖ 
i (x ) ‖ W 

, with γ < 1 ; 

3. var { F i (x ) } ≤ C(1 + ‖ 
i (x ) ‖ 2 W 

, for some constant value C > 0. 

It should be noted that ‖ • ‖ W 

defines the maximum norm weighted

y W. 

roof. The details about the proof can be seen in [17] . �

heorem 2. Given the MDP with Lyapunov Function Based Reward

haping denoted as M 

′ � (S, A , T , R lyap , γ ) where R layp is defined in

q. (11) . Given the following update rule 

˜ 
 

i +1 (s, a ) ← (1 − αi ) ̃  Q 

i (s, a ) 

+ αi 

[ 
R (s, a ) + λ(R (s ′ , a ′ ) − R (s, a )) ︸ ︷︷ ︸ 

R lyap 

(19) 

+ γ max 
b∈A 

˜ Q 

i (s ′ , b) 
] 
, 

here i indicates the updating i th step along the learning procedure.
˜ 
 

i (s, a ) will converge to the optimal state action value function Q 

∗( s,

 ) with probability 1 as i → ∞ under following assumptions: 

1. The state space S and action space A are finite; 

2. 
∑ 

i αi = ∞ and 
∑ 

i α
2 
i 

< ∞ , where αi is the updating rate in

Algorithm 2 ; 

3. the variance of { R lyap } is bounded. 

roof. Subtract optimal state action value function Q 

∗( s, a ) from

oth sides of Eq. (19) and define 
i (s, a ) � 

˜ Q 

i (s, a ) − Q 

∗(s, a ) to

ield 

i +1 (s, a ) ← (1 − αi )
i (s, a ) 
+ αi 

[ 
R (s, a ) + λ(R (s ′ , a ′ ) − R (s, a )) ︸ ︷︷ ︸ 

R lyap 

(20) 

+ γ max 
b∈A 

˜ Q 

i (s ′ , b) − Q 

∗(s, a ) 
] 
. 

hen we define 

 i (s, a ) � R (s, a ) + λ(R (s ′ , a ′ ) − R (s, a )) ︸ ︷︷ ︸ 
R lyap 

+ γ max 
b∈A 

˜ Q 

i (s ′ , b) − Q 

∗(s, a ) . 

ombining the operator H defined in Eq. (13) we can derive the

xpectation of F i ( s, a ) as follows: 

 (F i (s, a )) = E s ′ ∼T (s,a ) E a ′ ∈A 
[ 

R (s, a ) + λ(R (s ′ , a ′ ) − R (s, a )) ︸ ︷︷ ︸ 
R lyap 

+ γ max 
b∈A 

˜ Q 

i (s ′ , b) − Q 

∗(s, a ) 
] 

= (H ̃

 Q 

i )(s, a ) − Q 

∗(s, a ) . 

ased on the fact that (H Q 

∗)(s, a ) = Q 

∗(s, a ) we will have 

 (F i (s, a )) = (H ̃

 Q 

i )(s, a ) − (H Q 

∗)(s, a ) . 

sing the contraction property of H in Eq. (14) , we can easily get 

 

E (F i (s, a )) ‖ ∞ 

≤ γ ‖ 


i (s, a ) ‖ ∞ 

. 

oreover consider the variance of F i ( s, a ), 

ar 

[ 
F i (s, a ) 

] 
= E 

[ (
R (s, a ) + λ(R (s ′ , a ′ ) − R (s, a )) ︸ ︷︷ ︸ 

R lyap 

+ γ max 
b∈A 

˜ Q 

i (s ′ , b) − Q 

∗(s, a ) − E (F i (s, a )) 
)

2 
] 

= E 

[ (
R (s, a ) + λ(R (s ′ , a ′ ) − R (s, a )) ︸ ︷︷ ︸ 

R lyap 

+ γ max 
b∈A 

˜ Q 

i (s ′ , b) − (H ̃

 Q 

i )(s, a ) 
)

2 
] 

= var 

[ 
R (s, a ) + λ(R (s ′ , a ′ ) − R (s, a )) ︸ ︷︷ ︸ 

R lyap 

+ γ max 
b∈A 

˜ Q 

i (s ′ , b) 
] 
. 

s long as the assumption that var ( R lyap ) is bounded holds, it can

e clearly verified that 

ar 

[ 
(F i (s, a ) 

] 
= var 

[ 
R 

lyap + γ max 
b∈A 

˜ Q 

i (s ′ , b) 
] 

≤ C(1 + ‖ 


i (s, a ) ‖ 

2 
W 

) 

or some constant value C > 0 and weighted matrix W , which is in

greement with [17] . 

Finally, combining Lemma 1 and Theorem 2 on the condition

hat their assumptions hold, 
i ( s, a ) will converge to zero with

robability 1 as i → ∞ , i.e ., ˜ Q 

i (s, a ) will converge to the optimal

tate action value Q 

∗( s, a ) with probability 1 as i → ∞ . �

upplementary material 

Supplementary material associated with this article can be

ound, in the online version, at doi: 10.1016/j.neucom.2020.02.008 . 
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