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a b s t r a c t 

As a hot topic in the financial engineering, the portfolio optimization aims to increase investors’ wealth. 

In this paper, a portfolio management system based on deep-reinforcement learning is proposed. In con- 

trast to inflexible traditional methods, the proposed system achieves a better trading strategy through 

Reinforcement learning. The reward signal of Reinforcement learning is updated by action weights from 

Deep learning networks. Low price, high price and close price constitute the inputs, but the importance 

of these three features is quite different. Traditional methods and the classical CNN can’t deal with these 

three features separately, but in our method, a designed depth convolution is proposed to deal with these 

three features separately. In a virtual currency market, the price rise only occurs in a flash. Traditional 

methods and CNN networks can’t accurately judge the critical time. In order to solve this problem, a 

three-dimensional attention gating network is proposed and it gives higher weights on rising moments 

and assets. Under different market conditions, the proposed system achieves more substantial returns and 

greatly improves the Sharpe ratios. The short-term risk index of the proposed system is lower than those 

of the traditional algorithms. Simulation results show that the traditional algorithms (including Best, CRP, 

PAMR, CWMR and CNN) are unable to perform as well as our approach. 

© 2020 Elsevier B.V. All rights reserved. 
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. Introduction 

In financial engineering, portfolio optimization is a practical

ask. As an effective approach to investment, it restrains an in-

estor’s reckless investment behaviors to a certain extent. The

urpose of portfolio optimization is to allocate funds in a group

f assests in order to maximize returns. The research on portfo-

io can be divided into two categories: Mean–Variance-based ap-

roaches and Capital-based approaches [1] . The original Mean–

ariance model which aimed to minimize the risk (variance) for

he desired return was a single-objective model [2] . When a port-

olio was constructed by the original Mean–Variance model, cal-

ulating the mean and the covariance of assets was involved in

he process. If the sample size was too small, the mean and co-

ariance of these samples would be highly uncertain. However,

f the sample size was too large, computing the mean and co-

ariance would consume a lot of time. Another disadvantage of

he original Mean–Variance model was that when the final re-

urn was either too high or too low, the variance of the model
∗ Corresponding author. 
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ould be increased, as a result, investors might abandon the strat-

gy with the highest return. This action was against the origi-

al intention of portfolio optimization. Because of the difficulties

hat the Mean–Variance portfolio optimization encountered in the

eal world, multi-objective approaches were proposed. It may not

e possible to use multi-objective models to optimize all objec-

ive functions. Therefore, it is necessary to give priority to some

bjectives over others by using methods such as weighted sum

ethod or Pareto-based approaches. The weighted sum approach

s the most popular approach for Mean–Variance portfolio opti-

ization. In the weighted sum methods, a set of objectives were

ombined into a single objective. However, in spite of its simplic-

ty, there was difficulty in obtaining Pareto optimal solutions by

his approach because multi-objective optimization problems had

 non-convex Pareto-optimal front [3] . Therefore, the main disad-

antage of weighted sum approach is that it is unable to gener-

te all Pareto-optimal solutions with non-convex trade-off surfaces.

areto-based approaches are able to handle large search spaces and

ultiple alternative trade-offs. However, there is no single criterion

o assess the quality of a trade-off front and the quality measure-

ents are difficult to define [3] The Capital-Growth-based meth-

ds paid more attention to solve multi-stage or sequential port-

olio problems. Its purpose was to maximize the expected growth

https://doi.org/10.1016/j.neucom.2020.04.004
http://www.ScienceDirect.com
http://www.elsevier.com/locate/neucom
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rate or logarithmic return of the portfolio. Capital-Growth-based

methods still had some limitations, which made it difficult for

them to achieve good results in some special market situations.

Methods like Passive Aggressive Mean Reversion (PAMR) [4] and

Confidence weighted mean reversion (CWMR) [5] relied on the as-

sumption that mean reversion existed in a portfolio pool, that is,

buying worse performed stocks was profitable. Moreover, referring

to the PAMR, Li et al. only justified that the algorithm worked with

relatively low transaction costs, but the performance of the PAMR

may decline when transaction costs increase. 

Digital currency has become an innovative investment option

and a credible investment vehicle. The remarkable features of digi-

tal currency are its decentralization and openness. Digital currency

is a decentralized, peer-to-peer network that allows for ownership

transferring without a central regulating party. Decentralization al-

lows the digital currency to have better security and faster set-

tlement. Compared to other financial markets, the digital currency

market is more conducive in learning the market’s own behaviors.

Openness means that this market is more accessible and that data

from this market is richer. Exchanges in digital currency market

are carried out on the Internet, and hence the market is open all

day long. These non-stop markets are ideal for our system to learn

in shorter time-frames. However, most existing algorithms to dig-

ital currency market were limited to the study of its prices using

Bayesian neural networks [6] , long short-term memory neural net-

works [7] and so on. These studies just predicted the price of a

digital currency, but did not further implement portfolio manage-

ment. In addition, the above studies only focused on a single digi-

tal currency instead of multiple assets. Alessandretti et al. built in-

vestment portfolios based on the predictions [8] . However, authors

stressed that they did not consider any transaction fees which ap-

parently could affect the profits in real markets. Besides, the algo-

rithm proposed by Alessandretti first predicted the price of digi-

tal currencies and then built portfolios based on the predictions.

The goal of portfolio is to maximize the investment returns and

therefore it is different from prediction of asset prices. The perfor-

mance of this work highly depends on prediction accuracies, but it

is difficult for a network to predict prices in the digital currency

market. 

The Deep-reinforcement learning (DRL) has gradually emerged

in applications of video games, chess games and traffic manage-

ment since 2015 [9] . This is mainly because the DRL can learn in-

dependently according to the rules provided. The application of re-

inforcement learning(RL) in portfolio management began in 2001,

Dirk presented a kernel-based reinforcement learning method to

overcome the disadvantage of instability in reinforcement learn-

ing. They focused on learning in an average-cost framework and

on a practical application to the optimal portfolio choice prob-

lem [10] . Jiang et al. conducted portfolio using a combination of

convolutional neural networks(CNN) and reinforcement learning

in [11] . Saud et al. proposed a recurrent reinforcement learning

method with an adjusted objective function [12] . In 2019, Saud

et al. extended their recurrent reinforcement portfolio with a com-

bination of the recurrent reinforcement learning and a particle

swarm algorithm with Calmar ratio [13] . In recent years, the Deep-

reinforcement learning(DRL) has paved another way for portfolio

management in the virtual currency market. The DRL is an algo-

rithm that integrates the powerful feature representation of Deep

learning [14,15] and the efficient strategy search of Reinforcement

learning [16,17] . The DRL is not a simple superposition of the Deep

learning and the Reinforcement learning, but a fusion of the two

algorithms. Jiang et al. tried to manage portfolio in the virtual cur-

rency market with deep-reinforcement learning [11] . However, the

virtual currency market is not stable and price is always volatile.

The deep networks proposed by Jiang were only a simple superpo-

sition of convolution kernels. Their proposed method could only
xtract shallow data information but ignored potential relation-

hips between assets. 

In order to further solve the above issues, this paper proposed

 network based on the DRL in the virtual currency market. The

ain contributions of this paper were: 

(i) Firstly, the XGBoost is applied to quantify the importance of

historical data features and then our system takes the three

most important features as inputs. The existing research on

virtual currency tended to use all historical data features as

inputs including open price, close price, high price, low price

and volume [6,8] . In [11] Jiang et al. directly used close price,

high price and low price as inputs without theoretical expla-

nation. Our paper use the XGBoost to prove the rationality of

choosing close price, high price and low price as inputs. 

(ii) Secondly, a novel separable convolution and three-

dimensional attention gating networks are proposed to ex-

tract historical data features. The input is three-dimensional

and respectively represents the number of assets, the length

of time series and the corresponding features(features stand

for close price, high price and low price). The price changes

of the same asset in different periods have certain rules to

follow, and the growth rate of different assets at the same

time will have some potential relationships. Obviously, the

two relationships mentioned above are different concepts.

Classical Convolutional Neural Networks(CNN) are not able

to dependently deal with information from all channels and

the original depth convolutions Xception [18] only worked

on a single channel. Therefore, a novel separable convolution

is proposed in this paper to handle this issue. In addition,

our proposed three-dimensional attention gating networks

also act on all three dimensions, whereas other attention

networks usually act on one dimension only(like [19] ). 

(iii) Thirdly, our proposed system is an end-to-end model which

directly outputs the final trading action without predict-

ing asset prices. As shown in [8] , they established invest-

ment portfolios based on the predictions of virtual currency

prices. It is clear that building portfolios after prediction is

not an efficient method. Moreover, many existing attempts

to create portfolios are based on limited assets [12,13,20] . In

this paper, we build portfolios using a pool of 20 assets. 

. Methods 

.1. Selection of features 

The data used in this paper is from Poloniex Trading Platform.

oloniex founded in 2014 is one of the world’s leading virtual cur-

ency exchanges. Virtual currency market has the advantages of

igh transparency, low inflation and convenient trading. The ex-

stence of virtual currency market makes it easy for the public to

btain historical data, even minute-level historical data. 

The environment in Reinforcement learning is the virtual cur-

ency data, which is composed of close price, high price, low price,

pen price and volume. The historical data obviously contains a lot

f redundant information. If we study this useless information, we

ould waste a lot of computation, failing to meet the original in-

ention of this method. The first task of this paper is to pick out

he most important features from historical data. 

This paper uses XGBoost to evaluate the importance of all fea-

ures [21] . The inputs are close price, high price, low price, open

rice and volume and the outputs are importance scores of the

ve features. Hence input data X consists of x 1 , x 2 , ���, x 5 : 

 = (x 1 , x 2 , · · · , x 5 ) . (1)
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Table 1 

Feature importance scores in each currency. 

currency close(%) high(%) low(%) open(%) volume(%) 

xmr 66.4 10.9 17.4 2.5 2.8 

eth 66.1 9.5 12.6 5.9 5.9 

zec 39.8 24.7 15.8 10.5 9.2 

fct 63.9 9.5 18.9 7.7 0 

rusdt 83.3 2.5 9.2 5.0 0 

etc 66.6 12.3 19.3 1.8 0 

rep 62.8 15.9 17.1 2.5 1.7 

xrp 100 0 0 0 0 

dash 52.7 18.6 21.0 7.0 0.7 

maid 86.7 2.5 10.0 0.8 0 

ste 82.8 3.1 12.5 0 1.6 

lsk 88.6 5.7 5.7 0 0 

ltc 59.4 16.0 14.4 9.8 0.4 

gam 100 0 0 0 0 

xem 83.7 7.0 7.0 2.3 0 

nav 100 0 0 0 0 

bts 100 0 0 0 0 

dog 42.7 22.3 20.9 9.7 4.4 

sc 100 0 0 0 0 

xcp 76.3 23.7 0 0 0 
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Fig. 1. Final feature importance. 

Fig. 2. Interactive process of Reinforcement learning. 
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The core of XGBoost is to add decision trees continuously. The

utput score ˆ y is the sum of K trees. 

ˆ 
 = 

K ∑ 

k =1 

f k (x i ) . (2)

The objective function of XGBoost consists of a loss function

nd a regularization term. 

b j = 

5 ∑ 

i =1 

loss (y i , ̂  y i ) + 

K ∑ 

k =1 

λ( f k ) , (3)

here 
∑ 5 

i =1 loss (y i , ̂  y i ) is the loss between output score ˆ y i and real

rice y i and 

∑ K 
k =1 λ( f k ) is regularization term used for alleviating

verfitting. 
∑ K 

k =1 λ( f k ) is expressed as follows: 

( f k ) = γ T + 

α

2 

‖ 

ω ‖ 

2 
, (4)

here T is the number of leaf nodes and ω is the score of a leaf

ode. γ and α are hyperparameters. For the k-th tree, the pre-

icted price can be expressed as: 

ˆ 
 

(k ) = 

ˆ y (k −1) + f k (x i ) . (5)

So the objective function turns to: 

b j = 

5 ∑ 

i =1 

loss (y i , ̂  y (k −1) 
i 

+ f k (x i )) + 

K ∑ 

k =1 

λ( f k ) . (6)

The final selection is determined by each feature’s output score.

 higher score indicates a higher importance. Twenty kinds of vir-

ual currencies are chosen to compose the portfolio pool. As shown

n Table 1 , we calculated the scores of each feature importance in

ach virtual currency. The aim of feature selection is to pick out

hree most important features to avoid redundant information, and

ence we also calculate the final scores of the portfolio pool shown

n Fig. 1 . The final scores are the average of twenty assets. 

In Fig. 1 the close price gets the highest score, and the high

rice and the low price are respectively with the second and third

ighest scores. Therefore, the input data in this paper is chosen as

lose price, high price and low price. 

.2. Proposed method 

.2.1. Trade with reinforcement learning 

The Reinforcement learning focuses on goal-directed learning

rom interactions. Reinforcement learning is a process where the
ystem acts spontaneously to influence the environment [22] . Gen-

rally speaking, the Reinforcement learning builds models through

he Markov decision process(MDP), and hence the Reinforcement

earning could be represented by < S, A, T, R > , where S is the

tate space, A is the action space, T is the state transition function,

nd R is the reward function. As shown in Fig. 2 , the Reinforce-

ent learning includes five elements: environment, agent, action,

eward and state. Upon receiving the agent’s action, the environ-

ent’s state will immediately change and a reward signal will be

ent to the agent as a feedback. Afterwards the agent will take ac-

ion according to the reward and the state signals, and the agent

s able to learn from experience without priori knowledge. 

DRL updates parameters in each iteration by a policy gradient

lgorithm which is optimized by gradient descent [9] . It calculates

he expectation of the strategy repeatedly and reports the noise

stimation of the gradient. The policy is updated according to the

radient direction. The policy gradient algorithm is able to directly

ptimize the expectation of a reward, thus it is more advanced

han other reinforcement learning methods. In the portfolio prob-

em, the agent is the one who executes trading actions in the mar-

et. The market includes all historical transaction data. In deep-

einforcement learning, the transaction actions are outputs from a

eep network. The structure of the deep-reinforcement learning al-

orithm of the portfolio is shown in Fig. 3 . 

For a market with continuous data, the closing price at time t

s also the opening price at time t + 1 . The relative price vector at

ime t is defined as: 

 t = 

[
1 , 

v 1 ,t 
v 1 ,t−1 

, 
v 2 ,t 

v 2 ,t−1 

, . . . , 
v m,t 

v m,t−1 

]
, (7) 
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Fig. 3. Structure of deep-reinforcement learning. 
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J (π ) = R (s 1 , π (s 1 ) , · · · , s t , π (s t ) , s t +1 ) . (21) 
where y t is the quotient of the closing and opening prices of all

assets at time t , then it can be used to calculate relative changes of

the total portfolio value in a period. Assuming P t−1 is the portfolio

value at the beginning of time t , we have: 

P t = P t−1 y t · w t−1 , (8)

where w t−1 is a weight vector of each asset at the beginning of

time t . The dimension of the vector is m + 1 . The first dimension

stands for the remaining capital and m which is equaled to 20 rep-

resents the number of total assets. Therefore, the initial value of

the weight vector of each asset is set to w 0 = [1 , 0 , 0 , · · · , 0] T indi-

cating that no fund is allocated to any asset at the beginning. 

Transactions in a practical market are not free, and hence each

transaction will cost a certain commission. At the beginning time t ,

the portfolio’s action vector is w t−1 . Because of the price changes,

the action vector transforms to w t after time t : 

w t = 

y t × w t−1 

y t · w t−1 

, (9)

where × represents the elementwise production and the agent’s

task is to redistribute the weight vector w t by buying or selling

relevant assets. w t is composed of the asset weight and the cap-

ital weight. The capital weight represents the proportion of idle

funds to total funds. The asset weight represents the proportion of

each investment asset to total funds. Portfolio values with a factor

μt represent the practical values after deducting commission. The

practical portfolio values at time t is P ′ t = μt P t . The relative return

ρt at time t is: 

ρt = 

P ′ t − P ′ t−1 

P ′ 
t−1 

= 

P ′ t 

P ′ 
t−1 

− 1 = μt y t · w t−1 − 1 , (10)

where P ′ t−1 is the practical value at time t − 1 . The corresponding

logarithmic return is expressed as: 

r t = ln 

P ′ t 

P ′ 
t−1 

= ln (μt y t · w t−1 ) . (11)

The final value of the portfolio is expressed as: 

P f = P 0 exp 

( 

t f +1 ∑ 

t=1 

r t 

) 

= P 0 

t f +1 ∏ 

t=1 

(μt y t · w t−1 ) , (12)

where P 0 is the initial funds 1 BTC. The goal of deep-reinforcement

learning is to maximize P f . 

The Reinforcement learning aims at conducting appropriate

transactions between the market and the agent. An action is taken
y Reinforcement learning networks and whether to sell or to buy

elevant assets is determined by their weights. 

Specifically speaking, price data is sampled every 30 minutes

nd hence 30 minutes is defined as a time step. At the end of each

ime step, funds will be reallocated to all assets by Reinforcement

earning networks. We assume that the portfolio is composed of m

inds of assets and that the number of total time steps is t f . V t is

he close price vector composed of m elements, where t means the

-th time step. Particularly, V i,t stands for the close price of the i-th

sset at the t-th time step. V t is defined as follows: 

 t = (v 1 , t , . . . , v m , t ) . (13)

Close price, high price and low price constitute input data X t .

ssuming the length of input is n , the relative price V ′ t is defined

s: 

 

′ 
t = 

[ 
V t −n+1 

V t 
, 

V t −n+2 

V t 
, . . . , 

V t −1 

V t 
, 1 

] 
, (14)

here V ′ t is the relative change compared to V t and 1 stands for a

-dimension vector [1 , 1 , . . . , 1] T . Similarly, hV ′ t , lV 
′ 

t are defined as:

V 

′ 
t = 

[
hV t −n+1 

hV t 
, 

hV t −n+2 

hV t 
, . . . , 

hV t −1 

hV t 
, 1 

]
. (15)

 V 

′ 
t = 

[
l V t −n+1 

l V t 
, 

l V t −n+2 

l V t 
, . . . , 

l V t −1 

l V t 
, 1 

]
. (16)

So the practical input to Deep learning networks X t is: 

 t = [ V 

′ 
t , hV 

′ 
t , lV 

′ 
t ] 

T . (17)

The total volume of each virtual currency is high, but the in-

estors usually purchase in the volume of 0.001. Therefore the

ransactions are relatively small. In a virtual currency market, the

gent’s buying and selling behaviors will not affect the future

rice. But the trading action made at time t will affect the reward

alue at time t + 1 . The reward is a feedback signal which will af-

ect the fund allocation in the following tradings. The agent’s ac-

ion a t at time t can be expressed by portfolio vector w t : 

 t = w t . (18)

Previous action w t−1 affects the following reward signal and X t 

s considered as one part of the trading environment. Current state

 t consists of two parts: the external state and the internal state.

he external state is a three-dimensional price matrix X t and the

nternal state is the last portfolio action weight vector w t−1 .Thus

he state at time t can be expressed as: 

 t = (X t , w t−1 ) . (19)

The agent’s objective is to maximize the final portfolio value of

 f . Because the agent is not able to control the initial investment

alue and the time range of the whole portfolio process, the goal of

eep-reinforcement learning is just to maximize the average loga-

ithmic cumulative return R : 

 = 

1 

t f 
ln ( 

P f 

P 0 
) = 

1 

t f 

t f +1 ∑ 

t=1 

ln (μt y t · w t−1 ) = 

1 

t f 

t f +1 ∑ 

t=1 

r t , (20)

here R is a cumulative reward and 

1 
t f 

ensures the fairness of

he reward function with different lengths. The strategy is imple-

ented by a mapping function from state space to action space,

amely A = πθ (S) . Therefore, the reward function during [0, t f ] is:
[0 ,t f ] θ θ f θ f f 
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Fig. 4. Structure of Deep learning networks. 

Fig. 5. Structure of Deep learning networks. 
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.2.2. Reward optimization with deep learning 

As shown in Fig. 4 , the original inputs X are composed of x 1 ,

 2 , x 3 , x 4 and x 5 in formula (1). After feature selection, the three

ost important features will be chosen as the practical inputs to

ur networks. X t = [ V ′ t , hV ′ t , lV 
′ 

t ] 
T is the practical inputs to our net-

orks. Our networks will output the trading actions W t and then

he relevant actions and historical data will be recorded. Next, our

ystem will deduct transaction costs. The stop signal is the end of

ur transaction date. If the transaction date is not the deadline,

hen our network will continue to run. Our network will adjust

arameters according to the objective function in formula (20). If

he transaction date is the deadline, our solution will exit and start

 new training cycle. The whole process will be repeated 30 0,0 0 0

imes. 

The agent is responsible for the purchase and sale of assets.

his progress can be depicted by a mapping function π : S → A ,

hich maps state space to action space. In fact, the mapping func-

ion is just realized by Deep learning networks. In order to get the

est result, the gradient descent algorithm is used to adjust map-

ing function’s parameters θ . The cost function during [0, tf ] is de-

ned as follows: 

 [0 ,t f ] (πθ ) = −R (s 0 , πθ (s 1 , . . . , s t f , πθ (s t f , s t f+1 ))) . (22)

Our goal is to minimize −R and it is equivalent to maximize R .

he parameters θ are continuously updated with a learning rate α:

→ θ − α � θ C [0 ,t f ] (πθ ) . (23)

Our proposed Deep learning networks are illustrated in Fig. 5 .

he input X t composed of close price, high price and low price,

hich will be processed independently. The original CNN is pro-

osed by LeCun et al. to solve handwritten digit recognition [23] .

he algorithm of the CNN can be expressed as: 

on v K (X ) = X ∗ W. (24) 
In the above formula, X is the input of the CNN, and W rep-

esents weights. K represents the kernel size of the CNN. In this

aper, the above formula is used to express the CNN algorithm. 

The 1 × 1 convolution will be activated by the ReLU [24] which

an be expressed as: 

eLU(x ) = 

{
x, x > 0 

0 , x ≤ 0 

(25) 

Then the features will be processed by the proposed depth con-

olution, which combines 1 × 5 and 5 × 1 kernels. In the following

hree-dimensional attention gating module, the features are accu-

ately calibrated. w t−1 will be concatenated afterwards. The sub-

equent 1 × 1 convolution sorts out the channels and the net-

ork outputs action w t after being regulated by a softmax function

hich can be expressed as: 

 xi = 

e xi ∑ 

j e 
x j 

(26) 

On one hand, in feature selection it has been shown that the

mportance of each channel is not identical. On the other hand,

he inputs are 20 assets in a time series, each importance is dif-

erent both in time dimension and category dimension. Since the

mergence of convolution, many researchers have been continu-

usly improving and optimizing it. Xception proposed the idea of

epth separable convolutions [18] . Deep separable convolution is

n efficient and lightweight convolution structure, because it oper-

tes on the channels separately. Its characteristics motivated us to

ropose an unique depth separable convolution. 

As shown in Fig. 6 (a), the six-channel feature map is obtained

fter a 1 × 1 convolution. Each channel will be further processed

y a separate 5 × 5 convolution which helps distinguish channels

ith different importances. The height of inputs represents asset

ypes and the width represents the length of time series. In this

aper, the depthwise convolution is further decomposed, namely a

ombination of a 1 × 5 and a 5 × 1 convolutions is used to replace

 5 × 5 convolution. In Fig. 6 (b), six groups of a 1 × 5 and a 5 × 1

onvolution are used to handle the feature map. The 1 × 5 con-

olution integrates different time information and the 5 × 1 con-

olution integrates information of different currencies. Finally, the

utput is 12 channel feature maps. Features with the red chan-

el capture time dimension correlation and features with the blue

hannel capture different currency correlation. 

Portfolio is committed to maximizing the final return. In the fi-

ancial market, asset prices soar quickly and rarely. If investors fail

o seize these opportunities, the final investment returns will prob-

bly be greatly discounted. However, it is difficult to seize the op-

ortunity of price rise only with convolution networks. In dealing

ith financial time series data, more attention needs to be paid to

tages of price rise. Introducing an attention mechanism into Deep

earning has become an effective means to improve the network

erformance. Hu et al. proposed a SE module based on the gated

echanism [19] . As shown in Fig. 7 , the SE module assigns differ-

nt weights to each channel by squeeze and excitation operations

o recalibrate the features. 

The SE module is a computing unit, which is able to further

eal with feature channels. Assuming input X transfers to U after

revious convolutions: 

 = F tr (X ) , (27)

here U is composed of c-channel information. U =
(u 1 , u 2 , · · · , u c ) and X ∈ R H 

′ ×W 

′ ×C ′ , U ∈ R H×W ×C 

Squeeze operation is the aggregation of global spatial informa-

ion through global average pooling. In detail, it reduces the spatial

nformation of U to get the SE module z ∈ R C . The c-th element of
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Fig. 6. Xception and our designed depth convolution. 

Fig. 7. SE module. 
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Fig. 8. Three-dimensional attention gating network. 
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Z can be expressed as follows: 

Z c = F sq (u c ) = 

1 

H × W 

H ∑ 

i =1 

W ∑ 

j=1 

u c (i, j) . (28)

Then the SE module performs the excitation operation: 

s = F ex (Z, W ) = σ (g(Z, W )) = σ (W 2 δ(W 1 ,z )) , (29)

where s = (s 1 , s 2 , · · · , s c ) , δ represents a ReLu function and σ

represents a sigmoid function. Besides, W 1 ∈ R 
C 
r ×C , W 2 ∈ R C× C 

r , in

which r is the reduction ratio equivalent to 16. 

The final output of the SE module is: 

 

′ = [ U 

′ 
1 , U 

′ 
2 , · · · , U 

′ 
c ] , (30)

where U 

′ 
c = F scale (u c , s c ) = s c · u c and F scale ( u c , s c ) involves the mul-

tiplication of scalars and features. 

The SE module calibrates the weights of feature channels,

which is effective in processing image information. But the SE

module only compresses spatial information roughly without ac-

curate calibration. The importance of financial information varies

from time to time, especially when dealing with portfolio prob-

lems, where the rise and fall of assets always occur suddenly. In

addition, the proportion of the total fund allocated to an asset

needs careful consideration. Obviously, the classical Convolution

Neural Networks(CNN) and ordinary gated mechanism are not able

to effectively solve portfolio problems. 

To solve this dilemma, a three-dimensional attention gating

network is proposed. The structure of the three-dimensional at-

tention gating network is shown in Fig. 8 . The size of the feature

graph is W × H × C . Firstly, the network respectively performs
lobal average pooling on three dimensions and the correspond-

ng weight vectors are z W 

, z H and z C . Formulas (31) to (33) are as

ollows: 

 W 

= F sq (u W 

) = 

1 

H × C 

H ∑ 

i =1 

C ∑ 

k =1 

u W 

(i, k ) , (31)

 H = F sq (u H ) = 

1 

C × W 

C ∑ 

k =1 

W ∑ 

j=1 

u H (k, j) , (32)

 C = F sq (u C ) = 

1 

H × W 

H ∑ 

i =1 

W ∑ 

j=1 

u C (i, j) , (33)

here z W 

∈ R W , z H ∈ R H and z C ∈ R C . These three vectors rep-

esent information in each corresponding dimension. The three-

imensional attention gating network is similar to the gating

echanism in the recurrent neural networks, which is composed

f two fully connected layers. In the proposed attention gating net-

ork, the output number of the first fully connected layer is r

imes the number of inputs,and it is activated by the ReLu. The sec-

nd fully connected layer restores features to their previous sizes

nd assigns weights between (0,1) to them by a sigmoid activation

unction as: 

(x ) = 

1 

1 + e −x 
(34)

The specific process is shown in formula (35) to (37): 

 W 

= σ (W 2 δ(W 1 z W 

)) , W 1 ∈ R 

rW ×W , W 2 ∈ R 

W ×rW , (35)
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Fig. 9. Visualization of feature maps. 
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Table 2 

Details of time. 

Experiments Training time Testing time 

validation 1 14/02/01 to 15/12/04 15/12/05 to 16/02/01 

validation 2 16/03/01 to 18/01/04 18/01/05 to 18/03/01 

Back test 1 14/08/01 to 16/06/04 16/06/04 to 16/08/01 

Back test 2 15/02/01 to 16/12/04 16/12/05 to 17/02/01 

Back test 3 15/08/01 to 17/06/04 17/06/04 to 17/08/01 

Back test 4 16/02/01 to 17/12/04 17/12/05 to 18/02/01 

 

m  

m  

e  

r

 

t  

f

R

w

r  

r

 

p  

d  

e  

f

S

w  

e

 

i  

p  

l  

t  

a

m  

w  

t

3

m

 

m  

S  

m  

e  

w  

a  

fi  

v

 

r  

d  

b  

w  
 H = σ (W 4 δ(W 3 z H )) , W 3 ∈ R 

rH×H , W 4 ∈ R 

H×rH , (36)

 C = σ (W 6 δ(W 5 z C )) , W 5 ∈ R 

rC×C , W 6 ∈ R 

C×rC , (37)

here δ stands for a ReLU function and σ stands for a sigmoid

unction. r is the increasing ratio and the selection of r will be

iven in the following section. 

The last step of the three-dimensional attention gating net-

ork is the fusion of three vectors. Assuming that the weights

f the three vectors are respectively [ m 0 , m 1 , · · · , m w −1 ] , [ n 0 , n 1 ,

· · , n h −1 ] and [ k 0 , k 1 , · · · , k c−1 ] , the final weight vector will be: 

 opq = m o + n p + k q , (38)

here o ∈ [0 , w − 1] , p ∈ [0 , h − 1] and q ∈ [0 , c − 1] . Compared

ith the SE module, our three-dimensional attention gating net-

ork evaluates the importance of all three dimensions. The value

f W opq ranges from 0 to 3. When W opq belongs to (0,1), it sup-

resses corresponding features. And when the weight belongs to

1,3), it enhances the features. 

The original input, weight matrix W opq and the recalibrated

eatures are visualized in Fig. 9 . The input with 20 rows and 24

olumns is shown in Fig. 9 (a), and its features are not yet recal-

brated. For this messy input, we are not able to clearly identify

mportant features. After the proposed three-dimensional attention

ating network, the darker elements of the weight matrix indi-

ate that they have relatively larger values and the figure indicates

hat six moments of historical data and nine assets are enhanced.

s shown in Fig. 9 (c), the recalibrated figure directly shows those

ore important features. 

. Experiments & results 

Unlike traditional financial products, the virtual currency could

e influenced by a number of factors (including investors’ confi-

ence and relevant regulation policy). Based on this, this paper

hooses virtual currencies as the assets in a portfolio to demon-

trate the efficiency of our proposed method. The experimental

ata is obtained from Poloniex Trading Platform and the data is

ampled every 30 minutes. The portfolio is composed of 20 digital

urrencies, which are the most popular 20 digital currencies in the

arket. As an effective way to judge trading strategies, back test

xperiments will test the effectiveness of strategies with historical

ata. Four back test experiments and two validation experiments

re performed in this paper. The time ranges of these experiments

re shown in Table 2 . Virtual currencies soared sharply in the mar-

et of Back test1. The markets in Back test2 and Back test3 were

elatively stable. While the market environment in Back test4 was

ad because most virtual currencies declined sharply. In order to

djust network parameters in different market environments, we

otally set two validations, where validation1 is a stable market

nd validation2 is a recession market. In all experiments, shorting

s not allowed and 0.25% of transaction cost will be deducted for

ach transaction. The initial capital for all experiments is 1 BTC. 
Markowtiz held the view that an effective portfolio manage-

ent method can maximize returns under certain risks or mini-

ize risks when returns are consistent. Therefore, this paper will

valuate the portfolio from both perspectives of the return and the

isk. 

Assuming that the value of assets in the t -th time interval of

he i -th currency is P i,t , in order to evaluate the return of the port-

olio, we define the average return as: 

 a v e = 

m ∑ 

i =1 

t f ∑ 

t=1 

R i,t 

m 

, (39) 

here m is the number of assets( m equals to 20 in this paper). t f 
epresents the total length of the time series and R i,t represents the

eturn in the t -th time interval of the i -th asset. 

The Sharpe ratio is one of the indicators used to assess the

ortfolio risk, the index was created by Sharpe. It uses the stan-

ard deviation of returns as a measurement to evaluate the excess

arning per unit risk. The Sharp ratio is shown in the following

ormula: 

harperatio = 

E(R t ) − R f 

σ (R t ) 
, (40) 

here Rf is a risk-free return, E ( R t ) and σ ( R t ) respectively represent

xpectations and variances of returns. 

Another risk assessment is the maximum drawdown. The max-

mum drawdown is used to assess the relative risk of two adjacent

eriods, it measures the largest value decline rate in the portfo-

io. The smaller the maximum drawdown is, the smaller the short-

erm loss is. The definition of the maximum drawdown is defined

s follows: 

axd rawd own = max 
R t − R t+1 

R t 
, t ∈ (1 , t f ) , (41)

here R t and R t+1 represent the return in the t -th and the ( t + 1 )-

h periods respectively. 

.1. Experiments on structure of a three-dimensional attention gating 

odule 

Inspired by the SE module, we proposed an attention gating

odule. Although Hu et al. conducted a lot of experiments on the

E module structure [19] , the data used by Hu et al. is image infor-

ation only. To solve the portfolio problem, it needs to do further

xperimental verifications with digital currency data. In this part,

e carried out a series of experiments on the three-dimensional

ttention gating module. The purpose of these experiments is to

netune the module’s structure. All experimental data belongs to

alidation1 and validation2. 

In the proposed attention gating network, the hyperparameter

 is used to construct the fully connected layer. The selection of r

etermines the model size and memory consumption. In order to

alance the computational efficiency and the gating module size,

e perform relevant experiments on an increasing ratio r . The up-



178 L. Weng, X. Sun and M. Xia et al. / Neurocomputing 402 (2020) 171–182 

Table 3 

Results of different increasing ratio.Squeeze oper- 

ation is Average Pooling and the excitation opera- 

tion is Sigmoid function. Kernel size is 1 × 5&5 ×
1 . 

Ratio Return(BTC) SR MDD(%) 

4 5.828 × 10 10 0.2854 26.32 

8 6.046 × 10 6 0.2257 25.77 

16 2.136 × 10 11 0.3001 21.43 

32 1.336 × 10 10 0.2845 27.50 

4 0.253 0.0437 37.47 

8 0.487 0.0600 29.03 

16 1.258 0.0784 31.57 

32 0.105 0.0248 37.62 

Table 4 

Results of different squeeze operation with increas- 

ing ratio = 16. The excitation operation is Sigmoid 

function and kernel size is 1 × 5&5 × 1 . 

Squeeze Return(BTC) SR MDD(%) 

Max 5.745 × 10 8 0.2242 24.83 

Avg 2.136 × 10 11 0.3001 21.43 

Max 0.246 4.40 32.59 

Avg 1.258 0.0784 31.57 

Table 5 

Results of different excitations with increasing ratio 

r = 16. The squeeze operation is Average Pooling and 

kernel size is 1 × 5&5 × 1 . 

Excitation Return(BTC) SR MDD(%) 

ReLU 2.248 × 10 10 0.2887 21.76 

Tanh 2.248 × 10 10 0.2813 26.24 

Sigmoid 2.136 × 10 11 0.3001 21.43 

ReLU 0.213 0.0432 37.62 

Tanh 0.145 0.0322 39.13 

Sigmoid 1.258 0.0784 31.57 

Table 6 

Results of different kernel sizes with increasing ratio 

r = 16. The squeeze operation is Average Pooling and ex- 

citation operation is Sigmoid function. 

Kernel size Return(BTC) SR MDD(%) 

3 × 3 2.532 × 10 10 0.2925 27.25 

1 × 3&3 × 1 1.089 × 10 11 0.2996 27.09 

5 × 5 7.167 × 10 9 0.2645 26.69 

1 × 5&5 × 1 2.136 × 10 11 0.3001 21.43 

7 × 7 1.327 × 10 9 0.2661 22.69 

1 × 7&7 × 1 2.064 × 10 10 0.2764 26.71 

3 × 3 0.429 0.0575 32.68 

1 × 3&3 × 1 0.398 0.0526 37.71 

5 × 5 1.125 0.0756 34.75 

1 × 5&5 × 1 1.258 0.0784 31.57 

7 × 7 1.018 0.0734 32.72 

1 × 7&7 × 1 0.298 0.0463 37.07 
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per half of Table 3 1 shows the results of validation1, and the lower

half is the results of validation2. A portfolio generates the highest

return when r is equal to 16 in both validations. The Sharp ratio

is also the highest at this time, and it shows that under the same

risk, increasing ratio to 16 is the most reasonable choice. From the

perspective of short-term risk, r = 16 reduces the short-term risks

as much as possible. In validation2 r = 16 also effectively controls

the short-term risk. When the increasing ratio is 16, the goal of

maximizing benefits is achieved. 
1 Table 3–6 are divided into two parts, the upper part is the result of validation1 

and the lower part is the result of validation2. 

s  

s  

s  

a  
In squeeze operation, we need to compress a feature map

nto a real number. In squeeze operation, we actually have two

hoices which are global average pooling and global max pooling.

s shown in Table 4 , the effects of these two squeeze operations

re different. Average pooling is obviously superior to max pooling.

lthough they are very close in max drawdown index, global aver-

ge pooling is still better than global max pooling.Therefore, the

ost suitable squeeze operation is global average pooling. 

The excitation is realized by two fully connected layers. It is

ore reasonable to choose a non-linear activation function in the

ully connected layers. Scholars generally believed that the ReLU

s better than other non-linear activation functions, which is veri-

ed in the first fully connected layer. However, in the second fully

onnected layer, an unexpected situation occurres. As shown in

able 5 , the ReLU is almost the same as tanh, and even inferior to

anh in max drawdown index. Surprisingly, the sigmoid function

ot only greatly improves returns, but also significantly controls

he short-term risk. So the excitation in the second fully connected

ayer is the sigmoid function. 

.2. Experiments on structure of separable convolution 

Each channel of the feature maps will be calculated by separa-

le convolutions, and hence the size of convolution kernel has a

reat impact on the final return. Convolution kernels with the size

f 3 × 3, 5 × 5 and 7 × 7 are used. Smaller convolution kernels

re introduced in this paper: for example, a 3 × 3 convolution ker-

el is replaced by a combination of a 1 × 3 and a 3 × 1 kernel.

he experimental results are shown in Table 6 . In validation1, the

ombination of small convolutions is obviously better than ordi-

ary convolutions, especially the 1 × 5&5 × 1 convolution achieves

he best results. In validation2, the effects of the two methods are

ery close, but the results of the 1 × 5&5 × 1 are still the best. 

.3. Results of back test 

Several algorithmic models and two benchmarks are introduced

o test our model. The Best Stock (Best) is a benchmark widely

sed in portfolio selection, whose trading strategy is to invest in

ssets that have the best returns in the past [25] . The Uniform

onstant Rebalanced Portfolio(CRP) is a more challenging bench-

ark, which distributed the investor’s funds equally to each as-

et in each round [26,27] . Inspired by the mean reversion prin-

iple of financial algorithm and the confidence weighting tech-

iques in machine learning, the Confidence Weighted Mean Rever-

ion(CWMR) built a model on the basis of the Gauss distribution

nd updated the model according to the mean reversion trading

rinciple [5] . Unlike traditional trend tracking methods, the Pas-

ive Aggressive Mean Reversion(PAMR) built models on the mean

egression relationship of financial markets [4] . In addition, we also

arried out relevant experiments on classical Convolutional Neu-

al Networks(CNN) as comparisons. The structure of the classical

NN is shown in the Fig. 10 where the input X t is processed by a

 × 5 convolution separately. Without the proposed depth convo-

ution and three-dimensional attention networks, the model struc-

ure of the CNN is consistent with that of our proposed model. 

Four sets of Back tests are conducted in this paper. Back test1

ses the historical data from 2014.08.01 to 2016.08.01. At that time,

any currencies showed upward trends, therefore it was the so-

alled bull market. Markets in Back test2 and Back test3 were very

table and the currency trends were relatively steady. Back test4 is

rom 2016.02.01 to 2018.02.01, during which all currencies suffered

evere losses. The final experimental results of each algorithm are

hown in Fig. 11 and the specific evaluation indicators are also pre-

ented in Table 7–10 . In Back test 1, both the PAMR and the CWMR

re profitable trading strategies. Their final returns are high, but



L. Weng, X. Sun and M. Xia et al. / Neurocomputing 402 (2020) 171–182 179 

Fig. 10. Classical CNN model. 
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Table 7 

Back test 1. 

Algorithm Return(BTC) SR MDD(%) 

Best 0.170 0.0308 39.07 

CRP 0.078 0.0407 15.85 

PAMR 14.497 0.1031 35.13 

CWMR 13.397 0.1007 36.33 

CNN 0.050 -0.0008 10.01 

Ours 80.019 0.1369 24.79 

Table 8 

Back test 2. 

Algorithm Return(BTC) SR MDD(%) 

Best 0.094 0.0208 56.33 

CRP 0.060 0.0197 17.96 

PAMR 0.019 -0.0101 79.60 

CWMR 0.015 -0.0142 81.39 

CNN 0.490 0.0779 17.04 

Ours 2.069 0.0946 18.83 

i  

n  

i  

m  

t  

t  
heir maximum drawdown indices are 35.13% and 36.33% respec-

ively, which indicates that even in a promising market their short-

erm risks are quite high. In other three market conditions, the two

trategies suffer great loss. It seems that the PAMR and the CWMR

re not effective in stable or turbulent conditions. Traditional CNN

s profitable in Back test2 and Back test4. However, it suffers loss
Fig. 11. Results o
n Back test1 and Back test3 and it proves that the basic CNN is

ot able to utilize deep features of historical data. The Best profits

n all four experiments and the CRP also profits in three experi-

ents. However, due to their inflexible investment strategies, these

wo algorithms also have some limitations. On one hand, both of

hem can make profits, but their ultimate returns are negligible,
f backtests. 
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Table 9 

Back test 3. 

Algorithm Return(BTC) SR MDD(%) 

Best 0.071 0.0184 36.89 

CRP 0.042 -0.0078 44.67 

PAMR 0.018 -0.0125 90.00 

CWMR 0.015 -0.0166 91.68 

CNN 0.041 -0.0001 46.21 

Ours 5.102 0.0989 33.42 

Table 10 

Back test 4. 

Algorithm Return(BTC) SR MDD(%) 

Best 0.323 0.0425 49.25 

CRP 0.123 0.0405 37.81 

PAMR 0.003 -0.0298 96.67 

CWMR 0.002 -0.0327 97.01 

CNN 0.122 0.0409 36.68 

Ours 1.963 0.0696 50.81 

Table 11 

Extension 1. 

Algorithm Return(BTC) SR MDD(%) 

Best 1.992 0.0208 28.33 

CRP 0.984 0.0007 29.12 

PAMR 0.112 -0.0169 89.98 

CWMR 0.088 -0.0194 92.17 

CNN 0.890 -0.0206 15.13 

Ours 4944.069 0.1352 31.38 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 12 

Extension 2. 

Algorithm Return(BTC) SR MDD(%) 

Best 10.401 0.0306 58.54 

CRP 2.088 0.0209 51.62 

PAMR 0.001 -0.0466 99.87 

CWMR 0.001 -0.0495 99.91 

CNN 1.987 0.0200 51.46 

Ours 1445.633 0.0779 33.09 

Table 13 

Ablation study in validation 1. 

Algorithm Return(BTC) SR MDD(%) 

CNN 1.620 × 10 9 0.2430 21.83 

depth 1.329 × 10 11 0.2884 23.15 

depth + three 2.136 × 10 11 0.3001 21.43 

/depth + three 1.604 × 10 10 0.2401 33.15 

Xception + three 1.045 × 10 11 0.2693 25.31 

depth + SE 2.114 × 10 11 0.2778 21.40 

Table 14 

Ablation study in validation 2. 

Algorithm Return(BTC) SR MDD(%) 

CNN 0.875 -0.0056 25.53 

depth 1.037 0.0387 53.72 

depth + three 1.258 0.0784 31.57 

/depth + three 1.721 0.0402 52.18 

Xception + three 1.053 0.0434 36.78 

depth + SE 1.121 0.059983 31.8364 
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on the other hand, their extremely high maximum drawdown in-

dicators imply that investors may suddenly lose a huge amount of

wealth. Our proposed method makes profits in four experiments.

Compared with the Best and the CRP, the proposed system in this

paper earns the highest returns, especially in Back test 1. The ex-

perimental results show that our method profits in different mar-

ket environments. In the meanwhile, the maximum drawdown in-

dex of our method is quite low in the first three experiments. In

Back test4 with a bad market condition, its maximum drawdown

index is only 1.5% higher than that of the Best. This proves that

the short-term risk can be limited within a reasonable range by

the proposed system. 

3.4. Robustness in a more complicate market 

Digital currencies soared sharply in the market of Back test1.

The markets in Back test2 and Back test3 were relatively sta-

ble. The market environment in Back test4 was bad because most

digital currencies declined sharply. Although the four back tests

have different market conditions, they are in a single market en-

vironment and do not involve with more complex changes. Pro-

longing training time will complicate the situations of digital cur-

rency market. In order to verify the robustness of the model

in a more complex market environment, the time is extended

to three years(2014/02/01-2017/02/01) and four years(2014/02/01-

2018/02/01) respectively. 

Extension 1 ranges from 2014/02/01 to 2017/02/01, during

which the initially stable market gradually became prosperous and

went to stable finally. The results of extension 1 are shown in

Table 11 . Although all assets did not fall sharply during this pe-

riod, most of the algorithms still failed to achieve richprofits. Only

Best and our proposed system achieved profits. Obviously, com-

pared with the Best, the system in this paper achieved higher re-

turns. The main reason contributing to this result was that the pro-
osed system focused on the potential relationships between each

sset and its change rules in different time periods. 

Extension 2 is a more complicate market. During four years, the

arket gradually prospered after a stable period, and then went

hrough another stable period and finally entered the declining

ituation. As shown in Table 12 , algorithms of PAMR and CWMR

aused different degrees of loss and other algorithms achieved

rofits. Unlike in Extension 1, both CRP and CNN were ultimately

rofitable, but their five-year investment returns were very low.

fter five years of investment management, their returns were im-

roved. Unfortunately, the MDD indexes of CRP and CNN were fur-

her deteriorated, which indicated that the algorithm would suf-

er a huge loss in the short term. Our proposed system achieved

he highest profits (though slightly lower than extension 2). The

DD index of the proposed system was not deteriorated signifi-

antly even in a bad market. 

Two experiment groups with more complex market situations

ere added, the proposed system still achieved stable returns. The

ain reason is that the proposed model is not designed according

o a single investment strategy, instead,it studies the potential re-

ationship of each asset and its rules of price change at different

imes. 

. Ablation study 

The ablation studies were performed on validation 1 and val-

dation 2. As mentioned above, data of validation 1 came from

 bull market, and data of validation 2 came from a bear mar-

et. The metrics are Sharpe ratio, maximum drawdown and fi-

al return. The results are shown in Table 13 and 14 , respec-

ively. The CNN stands for the classical convolutional networks

hose concrete structure is shown in Fig. 10 . The depth and

hree respectively represent our proposed depth convolutions

nd three-dimensional attention networks. In addition, if feature
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election is not conducted, we will add a / before the algorithm.

he depth + three is our proposed model. 

.1. Feature selection 

The three most important features were picked out through the

GBoost. The model without feature selection was tested in both

alidations. In validation 1, our proposed model achieved attractive

rofits but the profit without feature selection was only one tenth

f that of the proposed model. Two risk indicators showed that

he model without feature selection was prone to make risky in-

estment. Although the model without feature selection achieved

igher returns in validation 2, its extremely high MDD index indi-

ated that this model seemed to be very dangerous in a recession

arket. It is effective to select important features to manage port-

olios in our model. 

.2. Depth convolutions 

Our designed depth proposal is able to work on three dimen-

ions of data. Original depth convolutions only recalibrated weights

n the channel dimension (the third dimension of data), and the

NN was unable to calibrate weights on data. When our proposed

epth convolution works alone, it beats CNN in both validation 1

nd validation 2. When comparing the depth convolution with the

ception, the depth model outperformed the Xception. Besides, the

ndexes of Sharp ratio and MDD showed that the risk of our model

as lower than that of the Xception in both validations. The com-

arisons showed that the convolution acting on all three dimen-

ions is indeed effective in a virtual currency market. 

.3. Three-dimension attention networks 

Three-dimension attention networks were dedicated to the

eight calibration of features emphasizing those moments when

rices rise. Results in both validations implied that the introduc-

ion of three-dimension attention networks increased the portfo-

ios profits (increased by 60% in validation 1 and 21% in valida-

ion 2). In terms of risk, the combination of depth convolution and

hree-dimension attention networks was better than a single depth

onvolutional model. The SE module in [19] was introduced as a

omparison. The SE module only affected the third dimension of

ata and it actually improved profits over a single depth convo-

utional model. Our proposed model made more profits than the

ombination of the SE module and a depth convolution. One possi-

le explanation was that the three-dimensional attention networks

ere prone to control the risk. Observing the change of Sharp ra-

io, we found that the model in this paper improved the index by

% to 3%. 

. Conclusion & conclusion 

Portfolio optimization is a hot topic in practical financial engi-

eering. Its purpose is to reasonably invest a group of assets to

aximize the investor’s return. In this paper, the XGBoost is used

o select the three most important features, which are close price,

igh price and low price. Obviously, the importance of each feature

s not the same, and the classical convolutional neural networks

an’t distinguish them. Therefore a depth convolution is proposed

n this paper. It processes each channel individually with a com-

ination of a 1 × 5&5 × 1 kernel, and this approach not only accu-

ately calculates the channel information, but also integrates the

nformation of time and currency category. A three-dimensional

ttention gating module is also proposed to seize opportunities

or asset growth. Finally, the Deep learning networks predict the

eights of all assets and then Reinforcement learning networks
uy and sell related assets according to the extracted features. The

xperimental results show that compared with the traditional al-

orithms, the proposed system in this paper can achieve higher

eturns in different market conditions and also controls the short-

erm risk within a reasonable range. In reality, the financial market

s a complex and volatile environment, thus it requires portfolio

anagement system to conduct real-time tranactions. In order to

mprove the transaction speed, it is necessary to minimize param-

ters of the network without compromising the performance. Be-

ides, the traditional algorithms still show guiding significance in

ortfolio. Therefore it is feasible to combine our method with the

raditional algorithms. 

isclosure statement 

No potential conflict of interest was reported by the authors 

eclaration of Competing Interest 

The authors declare that they have no known competing finan-

ial interests or personal relationships that could have appeared to

nfluence the work reported in this paper. 

RediT authorship contribution statement 

Liguo Weng: Conceptualization, Methodology. Xudong Sun: 

oftware, Writing - original draft. Min Xia: Data curation, Super-

ision. Jia Liu: Visualization, Investigation. Yiqing Xu: Validation,

riting - review & editing. 

cknowledgments 

This work is supported in part by the National Natural Science

oundation of PR China (61773219), the Natural Science Foundation

f Jiangsu Province ( BK20161533 ). 

eferences 

[1] B. Li , S.C. Hoi , Online portfolio selection: A survey, ACM Computing Surveys

(CSUR) 46 (3) (2014) 35 . 
[2] H. Markowitz , Portfolio selection, The journal of finance 7 (1) (1952) 77–91 . 

[3] C.B. Kalayci , O. Ertenlice , M.A. Akbay , A comprehensive review of determinis-
tic models and applications for mean-variance portfolio optimization, Expert

Systems with Applications 125 (2019) 345–368 . 
[4] B. Li , P. Zhao , S.C. Hoi , V. Gopalkrishnan , Pamr: Passive aggressive mean rever-

sion strategy for portfolio selection, Machine learning 87 (2) (2012) 221–258 . 

[5] B. Li , S.C. Hoi , P. Zhao , V. Gopalkrishnan , Confidence weighted mean reversion
strategy for online portfolio selection, ACM Transactions on Knowledge Discov-

ery from Data (TKDD) 7 (1) (2013) 4 . 
[6] H. Jang , J. Lee , An empirical study on modeling and prediction of bitcoin prices

with bayesian neural networks based on blockchain information, Ieee Access 6
(2017) 5427–5437 . 

[7] S. McNally , J. Roche , S. Caton , Predicting the price of bitcoin using machine

learning, in: 2018 26th Euromicro International Conference on Parallel, Dis-
tributed and Network-based Processing (PDP), IEEE, 2018, pp. 339–343 . 

[8] L. Alessandretti , A. ElBahrawy , L.M. Aiello , A. Baronchelli , Machine learning the
cryptocurrency market, Available at SSRN 3183792 (2018) . 

[9] V. Mnih , K. Kavukcuoglu , D. Silver , A .A . Rusu , J. Veness , M.G. Bellemare ,
A. Graves , M. Riedmiller , A.K. Fidjeland , G. Ostrovski , et al. , Human-level con-

trol through deep reinforcement learning, Nature 518 (7540) (2015) 529–533 . 

[10] D. Ormoneit , P. Glynn , Kernel-based reinforcement learning in average-cost
problems, IEEE Transactions on Automatic Control 47 (10) (2002) 1624–1636 . 

[11] Z. Jiang , J. Liang , Cryptocurrency portfolio management with deep reinforce-
ment learning, in: 2017 Intelligent Systems Conference (IntelliSys), IEEE, 2017,

pp. 905–913 . 
[12] S. Almahdi , S.Y. Yang , An adaptive portfolio trading system: A risk-return port-

folio optimization using recurrent reinforcement learning with expected max-
imum drawdown, Expert Systems with Applications 87 (2017) 267–279 . 

[13] S. Almahdi , S. Yang , A constrained portfolio trading system using particle

swarm algorithm and recurrent reinforcement learning, Expert Systems With
Applications 130 (2019) 145–156 . 

[14] M. Xia , K. Wang , X. Zhang , Y. Xu , et al. , Non-intrusive load disaggregation
based on deep dilated residual network, Electric Power Systems Research 170

(2019) 277–285 . 

https://doi.org/10.13039/501100004608
http://refhub.elsevier.com/S0925-2312(20)30542-7/sbref0001
http://refhub.elsevier.com/S0925-2312(20)30542-7/sbref0001
http://refhub.elsevier.com/S0925-2312(20)30542-7/sbref0001
http://refhub.elsevier.com/S0925-2312(20)30542-7/sbref0002
http://refhub.elsevier.com/S0925-2312(20)30542-7/sbref0002
http://refhub.elsevier.com/S0925-2312(20)30542-7/sbref0003
http://refhub.elsevier.com/S0925-2312(20)30542-7/sbref0003
http://refhub.elsevier.com/S0925-2312(20)30542-7/sbref0003
http://refhub.elsevier.com/S0925-2312(20)30542-7/sbref0003
http://refhub.elsevier.com/S0925-2312(20)30542-7/sbref0004
http://refhub.elsevier.com/S0925-2312(20)30542-7/sbref0004
http://refhub.elsevier.com/S0925-2312(20)30542-7/sbref0004
http://refhub.elsevier.com/S0925-2312(20)30542-7/sbref0004
http://refhub.elsevier.com/S0925-2312(20)30542-7/sbref0004
http://refhub.elsevier.com/S0925-2312(20)30542-7/sbref0005
http://refhub.elsevier.com/S0925-2312(20)30542-7/sbref0005
http://refhub.elsevier.com/S0925-2312(20)30542-7/sbref0005
http://refhub.elsevier.com/S0925-2312(20)30542-7/sbref0005
http://refhub.elsevier.com/S0925-2312(20)30542-7/sbref0005
http://refhub.elsevier.com/S0925-2312(20)30542-7/sbref0006
http://refhub.elsevier.com/S0925-2312(20)30542-7/sbref0006
http://refhub.elsevier.com/S0925-2312(20)30542-7/sbref0006
http://refhub.elsevier.com/S0925-2312(20)30542-7/sbref0007
http://refhub.elsevier.com/S0925-2312(20)30542-7/sbref0007
http://refhub.elsevier.com/S0925-2312(20)30542-7/sbref0007
http://refhub.elsevier.com/S0925-2312(20)30542-7/sbref0007
http://refhub.elsevier.com/S0925-2312(20)30542-7/sbref0008
http://refhub.elsevier.com/S0925-2312(20)30542-7/sbref0008
http://refhub.elsevier.com/S0925-2312(20)30542-7/sbref0008
http://refhub.elsevier.com/S0925-2312(20)30542-7/sbref0008
http://refhub.elsevier.com/S0925-2312(20)30542-7/sbref0008
http://refhub.elsevier.com/S0925-2312(20)30542-7/sbref0009
http://refhub.elsevier.com/S0925-2312(20)30542-7/sbref0009
http://refhub.elsevier.com/S0925-2312(20)30542-7/sbref0009
http://refhub.elsevier.com/S0925-2312(20)30542-7/sbref0009
http://refhub.elsevier.com/S0925-2312(20)30542-7/sbref0009
http://refhub.elsevier.com/S0925-2312(20)30542-7/sbref0009
http://refhub.elsevier.com/S0925-2312(20)30542-7/sbref0009
http://refhub.elsevier.com/S0925-2312(20)30542-7/sbref0009
http://refhub.elsevier.com/S0925-2312(20)30542-7/sbref0009
http://refhub.elsevier.com/S0925-2312(20)30542-7/sbref0009
http://refhub.elsevier.com/S0925-2312(20)30542-7/sbref0009
http://refhub.elsevier.com/S0925-2312(20)30542-7/sbref0009
http://refhub.elsevier.com/S0925-2312(20)30542-7/sbref0010
http://refhub.elsevier.com/S0925-2312(20)30542-7/sbref0010
http://refhub.elsevier.com/S0925-2312(20)30542-7/sbref0010
http://refhub.elsevier.com/S0925-2312(20)30542-7/sbref0011
http://refhub.elsevier.com/S0925-2312(20)30542-7/sbref0011
http://refhub.elsevier.com/S0925-2312(20)30542-7/sbref0011
http://refhub.elsevier.com/S0925-2312(20)30542-7/sbref0012
http://refhub.elsevier.com/S0925-2312(20)30542-7/sbref0012
http://refhub.elsevier.com/S0925-2312(20)30542-7/sbref0012
http://refhub.elsevier.com/S0925-2312(20)30542-7/sbref0013
http://refhub.elsevier.com/S0925-2312(20)30542-7/sbref0013
http://refhub.elsevier.com/S0925-2312(20)30542-7/sbref0013
http://refhub.elsevier.com/S0925-2312(20)30542-7/sbref0014
http://refhub.elsevier.com/S0925-2312(20)30542-7/sbref0014
http://refhub.elsevier.com/S0925-2312(20)30542-7/sbref0014
http://refhub.elsevier.com/S0925-2312(20)30542-7/sbref0014
http://refhub.elsevier.com/S0925-2312(20)30542-7/sbref0014
http://refhub.elsevier.com/S0925-2312(20)30542-7/sbref0014


182 L. Weng, X. Sun and M. Xia et al. / Neurocomputing 402 (2020) 171–182 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[15] M. Xia , W. Liu , B. Shi , L. Weng , J. Liu , Cloud/snow recognition for multispectral
satellite imagery based on a multidimensional deep residual network, Interna-

tional journal of remote sensing 40 (1) (2019) 156–170 . 
[16] M. Hessel , J. Modayil , H. Van Hasselt , T. Schaul , G. Ostrovski , W. Dabney ,

D. Horgan , B. Piot , M. Azar , D. Silver , Rainbow: Combining improvements in
deep reinforcement learning, in: Thirty-Second AAAI Conference on Artificial

Intelligence, 2018 . 
[17] M. Xia , W. Song , X. Sun , J. Liu , T. Ye , Y. Xu , Weighted densely connected convo-

lutional networks for reinforcement learning, International Journal of Pattern

Recognition and Artificial Intelligence 34 (4) (2020) . 
[18] F. Chollet , Xception: Deep learning with depthwise separable convolutions, in:

Proceedings of the IEEE conference on computer vision and pattern recogni-
tion, 2017, pp. 1251–1258 . 

[19] J. Hu , L. Shen , G. Sun , Squeeze-and-excitation networks, in: Proceedings
of the IEEE conference on computer vision and pattern recognition, 2018,

pp. 7132–7141 . 

[20] J. Cumming , D.D. Alrajeh , L. Dickens , An investigation into the use of reinforce-
ment learning techniques within the algorithmic trading domain, 2015 Ph.D.

thesis . 
[21] T. Chen , C. Guestrin , Xgboost: A scalable tree boosting system, in: Proceedings

of the 22nd acm sigkdd international conference on knowledge discovery and
data mining, ACM, 2016, pp. 785–794 . 

[22] R.S. Sutton , A.G. Barto , Reinforcement learning: An introduction, MIT press,

2018 . 
[23] Y. LeCun , L. Bottou , Y. Bengio , P. Haffner , Gradient-based learning applied to

document recognition, Proceedings of the IEEE 86 (11) (1998) 2278–2324 . 
[24] G.E. Hinton, Rectified linear units improve restricted boltzmann machines

vinod nair (2010). 
[25] A. Borodin , R. El-Yaniv , V. Gogan , Can we learn to beat the best stock, in: Ad-

vances in Neural Information Processing Systems, 2004, pp. 345–352 . 

[26] J.L. Kelly Jr , A new interpretation of information rate, in: The Kelly Capi-
tal Growth Investment Criterion: Theory and Practice, World Scientific, 2011,

pp. 25–34 . 
[27] T.M. Cover , Universal portfolios, in: The Kelly Capital Growth Investment Cri-

terion: Theory and Practice, World Scientific, 2011, pp. 181–209 . 

Liguo Weng , professor, he received his PhD degree from

North Carolina A&T State University, Greensboro, NC,

in 2010 and he also served as a research assistant at
the National Institute of Aerospace (NIA), Hampton, VA,

from2006 to 2010. He is currently a professor at the
School of Information and Control Engineering, Nanjing

University of Information Science and Technology, China.
His research interests include intelligent systems, naviga-

tion and control, bio-inspired adaptive and control sys-

tems, and machine learning methods. 
Xudong Sun , postgraduate student in Nanjing University

of Information Science and Technology. His research inter-
ests are machine learning, evolutionary computation and

its application. 

Min Xia , associate professor, he received the Ph.D. degree
in Cybernetics Control Engineering at Donghua Univer-

sity. He was the Assistant Researcher in Hongkong poly-
technic university from 2008.8 to 2010.4. Now, he is an

Associate Professor of Nanjing University of Information

Science and Technology. His principal research interests
are computational neuroscience and applications of ma-

chine learning methods. 

Jia Liu received the Ph.D. degree in measuring technology
and instrument in 2008 from Southeast University, Nan-

jing, P. R. China. She is currently an associate professor at
Nanjing University of Information Science and Technology.

Her research interests are machine learning and computa-
tional neuroscience. 

Yiqing Xu , Ph.D., Assistant professor of Nanjing Forestry
University, current research are Bioinformatics and Artifi-

cial Intelligence. 

http://refhub.elsevier.com/S0925-2312(20)30542-7/sbref0015
http://refhub.elsevier.com/S0925-2312(20)30542-7/sbref0015
http://refhub.elsevier.com/S0925-2312(20)30542-7/sbref0015
http://refhub.elsevier.com/S0925-2312(20)30542-7/sbref0015
http://refhub.elsevier.com/S0925-2312(20)30542-7/sbref0015
http://refhub.elsevier.com/S0925-2312(20)30542-7/sbref0015
http://refhub.elsevier.com/S0925-2312(20)30542-7/sbref0016
http://refhub.elsevier.com/S0925-2312(20)30542-7/sbref0016
http://refhub.elsevier.com/S0925-2312(20)30542-7/sbref0016
http://refhub.elsevier.com/S0925-2312(20)30542-7/sbref0016
http://refhub.elsevier.com/S0925-2312(20)30542-7/sbref0016
http://refhub.elsevier.com/S0925-2312(20)30542-7/sbref0016
http://refhub.elsevier.com/S0925-2312(20)30542-7/sbref0016
http://refhub.elsevier.com/S0925-2312(20)30542-7/sbref0016
http://refhub.elsevier.com/S0925-2312(20)30542-7/sbref0016
http://refhub.elsevier.com/S0925-2312(20)30542-7/sbref0016
http://refhub.elsevier.com/S0925-2312(20)30542-7/sbref0016
http://refhub.elsevier.com/S0925-2312(20)30542-7/sbref0017
http://refhub.elsevier.com/S0925-2312(20)30542-7/sbref0017
http://refhub.elsevier.com/S0925-2312(20)30542-7/sbref0017
http://refhub.elsevier.com/S0925-2312(20)30542-7/sbref0017
http://refhub.elsevier.com/S0925-2312(20)30542-7/sbref0017
http://refhub.elsevier.com/S0925-2312(20)30542-7/sbref0017
http://refhub.elsevier.com/S0925-2312(20)30542-7/sbref0017
http://refhub.elsevier.com/S0925-2312(20)30542-7/sbref0018
http://refhub.elsevier.com/S0925-2312(20)30542-7/sbref0018
http://refhub.elsevier.com/S0925-2312(20)30542-7/sbref0019
http://refhub.elsevier.com/S0925-2312(20)30542-7/sbref0019
http://refhub.elsevier.com/S0925-2312(20)30542-7/sbref0019
http://refhub.elsevier.com/S0925-2312(20)30542-7/sbref0019
http://refhub.elsevier.com/S0925-2312(20)30542-7/sbref0020
http://refhub.elsevier.com/S0925-2312(20)30542-7/sbref0020
http://refhub.elsevier.com/S0925-2312(20)30542-7/sbref0020
http://refhub.elsevier.com/S0925-2312(20)30542-7/sbref0020
http://refhub.elsevier.com/S0925-2312(20)30542-7/sbref0021
http://refhub.elsevier.com/S0925-2312(20)30542-7/sbref0021
http://refhub.elsevier.com/S0925-2312(20)30542-7/sbref0021
http://refhub.elsevier.com/S0925-2312(20)30542-7/sbref0022
http://refhub.elsevier.com/S0925-2312(20)30542-7/sbref0022
http://refhub.elsevier.com/S0925-2312(20)30542-7/sbref0022
http://refhub.elsevier.com/S0925-2312(20)30542-7/sbref0023
http://refhub.elsevier.com/S0925-2312(20)30542-7/sbref0023
http://refhub.elsevier.com/S0925-2312(20)30542-7/sbref0023
http://refhub.elsevier.com/S0925-2312(20)30542-7/sbref0023
http://refhub.elsevier.com/S0925-2312(20)30542-7/sbref0023
http://refhub.elsevier.com/S0925-2312(20)30542-7/sbref0024
http://refhub.elsevier.com/S0925-2312(20)30542-7/sbref0024
http://refhub.elsevier.com/S0925-2312(20)30542-7/sbref0024
http://refhub.elsevier.com/S0925-2312(20)30542-7/sbref0024
http://refhub.elsevier.com/S0925-2312(20)30542-7/sbref0025
http://refhub.elsevier.com/S0925-2312(20)30542-7/sbref0025
http://refhub.elsevier.com/S0925-2312(20)30542-7/sbref0026
http://refhub.elsevier.com/S0925-2312(20)30542-7/sbref0026

	Portfolio trading system of digital currencies: A deep reinforcement learning with multidimensional attention gating mechanism
	1 Introduction
	2 Methods
	2.1 Selection of features
	2.2 Proposed method
	2.2.1 Trade with reinforcement learning
	2.2.2 Reward optimization with deep learning


	3 Experiments & results
	3.1 Experiments on structure of a three-dimensional attention gating module
	3.2 Experiments on structure of separable convolution
	3.3 Results of back test
	3.4 Robustness in a more complicate market

	4 Ablation study
	4.1 Feature selection
	4.2 Depth convolutions
	4.3 Three-dimension attention networks

	5 Conclusion & conclusion
	Disclosure statement
	Declaration of Competing Interest
	CRediT authorship contribution statement
	Acknowledgments
	References


