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In this paper, a novel control scheme is developed to solve an optimal containment control problem of
unknown continuous-time multi-agent systems. Different from traditional adaptive dynamic program-
ming (ADP) algorithms, this paper proposes an internal reinforcement ADP algorithm (IR-ADP), in which
the internal reinforcement signals are added in order to facilitate the learning process. Then a distributed
containment control law is designed for each agent with the internal reinforcement signal. The conver-
gence of this IR-ADP algorithm and the stability of the closed-loop multi-agent system are analyzed the-
oretically. For the implementation of the optimal controllers, three neural networks (NNs), namely
internal reinforcement NNs, critic NNs and actor NNs, are utilized to approximate the internal reinforce-
ment signals, the performance indices and optimal control laws, respectively. Finally, some simulation
results are provided to demonstrate the effectiveness of the proposed algorithm.
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1. Introduction

In the past decades, distributed control of multi-agent system
(MAS) has attracted much attention by the communities of com-
puter science, control theory and energy engineering. A MAS con-
sists of a group of autonomous agents which interact with each
other under communication topologies [1] can be used to describe
a wide variety of complex systems such as power systems [2,3],
sensor networks [4], spacecraft systems [5,6] and robotic systems
[7,8]. Various interesting problems, including leader–follower
tracking problems [9,10] and consensus problems [11–14], have
been investigated extensively due to their practical applications.

Containment control has been a hot topic of MAS control in
recent years. In [15], a hybrid control algorithm based on partial
differential equations was applied to a mobile robotic network.
In [16], a containment control was proposed for a first-order
multi-agent system in a noisy environment. In [17] a distributed
containment control algorithm was investigated for autonomous
vehicles with switching communication topology. In [18], contain-
ment control of second-order MASs with time-varying delays was
studied. Till now, most existing results mainly focused on contain-
ment control of homogeneous MASs, in which all agents have the
same dynamics. Recently, a containment control problem was
investigated for heterogeneous MASs in [19]. However, there are
still few results on optimal containment control of heterogeneous
MASs.

It is well known that traditional optimal control algorithms
require to solve Bellman equation for discrete-time systems or
Hamilton–Jacobi-Bellman (HJB) equation for continuous-time sys-
tems, whose solution is normally impossible to obtain analytically
[20]. Moreover, traditional optimal control algorithms need accu-
rate system models. As an important branch of machine learning,
reinforcement learning (RL) is inspired by the fact that living crea-
tures will modify their actions based on their interactions with the
environment [22] and has its advantages in various fields. Among
reinforcement learning algorithms, adaptive dynamic program-
ming (ADP) is regarded as one of the core methodologies to solve
optimal control problems. In typical ADP algorithms, two networks
called actor network and critic network are utilized [23] where
critic network evaluates the performance of control policies by
approximating the performance indices and actor network approx-
imates the optimal control policies. Implemented by NNs, ADP
algorithms do not require analytical solutions of partial differential
equations and thus have been used in various of optimal control
problems including tracking control [24–26], graphical games
[27–29], optimal bipartite consensus control [30] and robust con-
trol [31,32,33]. ADP algorithms were also applied to solve contain-
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ment control problems. In [34,35], an ADP algorithm was imple-
mented to solve the containment control problem of a MAS with
unknown dynamics. In [36], an offline policy iteration based ADP
algorithm was developed to solve the containment control prob-
lem of heterogeneous MAS with disturbances.

In traditional ADP architectures, only one type of reinforcement
signals, the signals from environment named external reinforce-
ment signals, were used to provide information to the critic net-
work. However, in many practical applications which involve
more complex systems, it will be necessary to obtain more infor-
mative reinforcement signals. Thus, approaches have been investi-
gated in [37,38] in order to provide more information by modifying
the external reinforcement signal, while in [39,40], a different
scheme which uses another reinforcement signal to provide more
information was utilized. Different from external reinforcement
signals, the new reinforcement signals are generated by the con-
troller itself and are called internal reinforcement signals. Apart
from critic network and actor network, this ADP scheme contains
another network called reference network, which receives infor-
mation from environment and generate internal reinforcement sig-
nals. Then the internal reinforcement signals are provided to the
critic network to evaluate the performance of control policies.
Comparing with traditional two-network architecture, this three-
network architecture can provide more information and thus facil-
itate the learning process [41]. Therefore, this new scheme can
work more efficiently.

Motivated by the above observations and discussions, in this
paper an internal reinforce adaptive dynamic programming (IR-
ADP) method is proposed to solve the optimal containment control
problem of continuous-time MASs. The interaction between agents
is based on a communication topology and each agent only receive
information from its leaders and neighbors. To speed up the learn-
ing procedure and achieve better control performance, basing on
external reinforcement signals, the internal reinforcement signals
are introduced and corresponding local performance indices are
defined to evaluate the performance of control policies. Then an
ADP algorithm with internal reinforcement signals is used to
update the control policies until they reach optimum. Further,
three NNs including internal reinforcement NNs, critic NNs and
actor NNs are used to to implement the IR-ADP algorithm. The
main contributions of this paper are given as follows: Firstly, an
IR-ADP algorithm is proposed to solve the containment control
problem of continuous-time MAS. A new internal reinforcement
signals which contain more effective information and correspond-
ing performance indices are designed in terms of local information.
To the author’s best knowledge, it is the first time that an IR-ADP
algorithm is proposed to solve cooperative control problems for
continuous-time MAS. Secondly, the analysis of convergence of
the proposed IR-ADP algorithm is provided. It is proved that this
algorithm can ensure the performance indices converge to their
minimum and the control policies converge to their optimum.
Thirdly, three NNs based architecture is designed to implement
the proposed method. Since internal reinforcement signals are
more informative, which facilitate the learning process, our pro-
posed algorithm is more efficient. Additionally, numerical simula-
tion results demonstrate that the proposed algorithm can make the
MAS achieve containment control and the comparison between
traditional ADP algorithm and our method indicates that our algo-
rithm can facilitate the learning process and achieve the contain-
ment control with a higher convergence rate.

The rest of this paper is organized as follows: In Section 2 some
preliminaries are provided. The containment control problem is
formulated as well. In Section 3 the reinforcement signals and local
performance indices are defined and the equivalence of the opti-
mal control policies solved from the HJB equation and the internal
reinforcement signals is analyzed. In Section 4, the PI based IR-ADP
algorithm is proposed and the convergence of this algorithm is
analyzed. In Section 5, the proposed algorithm is implemented
by three NNs while in Section 6 some numerical simulation results
are provided to demonstrate the effectiveness of this algorithm.
Section 7 concludes this paper.

2. Preliminaries and problem formulation

2.1. Algebraic graph theory

Consider the communication topology between agents in a MAS
as a directed graph G ¼ V; E;Að Þ, where V ¼ v1;v2; . . . ;vnf g denotes
a nonempty set of n vertices, E ¼ v i;v j

� �jv i;v i 2 V� � 2 V � V
denotes the set of edges, and A ¼ aij

� �
is the weighted adjacency

matrix where aij P 0 are non-negative. Here, aij > 0 when
v i;v j
� � 2 E and aij ¼ 0 otherwise.

Let N i ¼ jj v i;v j
� � 2 E� �

be the neighbor set of node v i, then
aij > 0 for any j 2 N i. Define the in-degree matrix D ¼ diag dif g a
diagonal matrix where di ¼

P
j2N aij is the weighted in-degree of

node i, then the Laplacian matrix L can be defined as L ¼ D�A.
When there exists anodev0 whichhas adirectedpath toothernodes
in the graph, then we say that this graph has a spanning tree.

2.2. Definitions and notions

Consider a MAS which has n followers and m leaders, denoted
by the sets F ¼ 1;2;3; . . . ;nf g and L ¼ nþ 1;nþ 2; . . . ;nþmf g
respectively. The connection weight between the kth leader and
the ith follower is defined as gk

i . If there exists a direct connection
between follower i and leader k, then gk

i ¼ 1, otherwise, gk
i ¼ 0. The

weight matrix of the leader k is defined as Bk ¼ diag gk
i

� �
.

Let 1n 2 Rn be the all one column vector, In�n be the n-order
identity matrix and 0 be the zero matrix. Symbol � represents
the Kronecker product and the distance from x 2 RN to set C# is
denoted as dist x; Cð Þ ¼ infy2Ckx� yk2, where y 2 C and k � k repre-
sents Euclidean norm. r Mð Þ denotes the set of singular values of
matrix M. �r Mð Þ denotes the maximum singular value of M and
r Mð Þ denotes the minimum singular value of M, respectively.

2.3. Problem formulation

In this paper, we consider a leader–follower MAS with n follow-
ers and m leaders. The dynamics of the ith follower can be
expressed as:

_xi tð Þ ¼ Axi tð Þ þ Biui tð Þ; i 2 F; ð1Þ
where xi 2 RN is the state vector and ui 2 Rpi is the input vector, and
A 2 RN�N and Bi 2 RN�pi are system matrices with compatible
dimensions. The dynamics of the kth leader can be expressed as:

_x0k tð Þ ¼ Ax0k tð Þ; k 2 L; ð2Þ
where x0k 2 RN is the state vector of the kth leader. In this paper, we
assume that A and Bi are unknown but the pair A;Bið Þ is stabilizable.

Assumption 1. The network topology G associated with the
leader–follower system (1) and (2) is balanced (i.e.,P

j2N i
aij ¼

P
j2N i

aji) and every leader has a path to all the followers.
The definitions of convex set and containment control are
provided as follows.
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Definition 1. [42] (Convex set) A set C#RN is convex if for any
x; y 2 C and k 2 0;1½ �; 1� kð Þxþ ky 2 C. For a finite set
X ¼ x1; x2; . . . ; xmf g, its convex hull, i.e., Co Xð Þ, is represented as
Co Xð Þ ¼ Pm

i¼1aixijxi 2 X;ai 2 R;ai P 0;
Pm

i¼1ai ¼ 1
� �

.

Definition 2. (Containment control) Define D tð Þ ¼ Co x0k tð Þ;ðf
k 2 LÞg. The containment control of system (1–2) achieves when
all followers converge to the convex hull spanned by leaders under
a given control algorithm as t ! 1, i.e., for any i 2 F:

lim
t!1

dist xi tð Þ;D tð Þð Þ ¼ 0:

The local neighborhood error vector of the ith follower now can
be defined as

ei tð Þ ¼
X
j2N i

aij xi tð Þ � xj tð Þ� �þX
k2L

gk
i xi tð Þ � x0k tð Þð Þ: ð3Þ

Let e tð Þ ¼ eT1; e
T
2; . . . ; e

T
n

� �T 2 Rn�N and x tð Þ ¼ xT1; x
T
2; . . . ;

�
xTn�T 2 Rn�N denotes global error vector and global state vector
respectively. Thus, (3) can be further expressed by an impact form

e tð Þ ¼
Xnþm

k¼nþ1

Hk � INð Þf tð Þ;

where Hk ¼ 1
mL þ Bk 2 Rn�n and f tð Þ ¼ x tð Þ � �xk tð Þ; �xk tð Þ ¼

1n � x0k tð Þ.

Remark 1. In this paper, we say that the containment control of
MAS is achieved when limt!1e tð Þ ¼ 0. According to [19], Assump-
tion 1 can ensure that HT

k þHkis positive definite for the directed
network with spanning trees and thus is helpful to show that
limt!1e tð Þ ¼ 0 and all the followers can converge to the convex
hull spanned by the multiple leaders.

Using (1) and (3), the dynamics of the local neighborhood error
for the ith agent can be written as

_ei tð Þ ¼ Aei tð Þ þ di þ
X
k2L

gk
i

 !
Biui tð Þ �

X
j2N i

aijBjuj tð Þ: ð4Þ

It is noticed that the local neighborhood error of the ith agent is
decided by the control input of the agent itself and its neighbors.
Our goal in the next sections is to make e tð Þ ! 0 and thus achieve
the containment control.

3. Multi-agent containment control

In order to solve the optimal containment control problems, in
this section, an ADP algorithm with internal reinforcement signals
is designed. The external reinforcement signal and local perfor-
mance indices are defined based on the local neighborhood error
(3). Besides, the internal reinforcement signal is designed and uti-
lized to provide more information. Then the equivalence analysis
shows that the optimal solutions can minimize the internal rein-
forcement signals and also the local performance indices.

3.1. Performance indices with internal reinforcement signals

Define the external reinforcement signal of the ith agent as:

ri ei;ui;u�ið Þ ¼ 1
2

eTi Q iiei þ uT
i Riiui þ

X
j2N i

uT
j Rijuj

 !
; ð5Þ
where u�i ¼ ujjj 2 N i
� �

is the input of the ith agent’s neighbors,

Qii 2 RN;Rii;Rij 2 Rp. Qii > 0;Rii > 0are positive definite and Rij P 0.
Then the internal reinforcement signal of the ith agent is defined as

si ei tð Þ;ui tð Þ;u�i tð Þð Þ ¼
Z 1

t
ri ei sð Þ;ui sð Þ;u�i sð Þð Þds: ð6Þ

From (6) it can be seen that internal reinforcement signal si con-
tains the future performance of system, which can help to improve
the efficiency of decision-making and thus improve the perfor-
mance of control algorithm.

In order to evaluate the performance of the error dynamic sys-
tem (4), the local performance index for each agent is defined as
follows:

Ji ei tð Þ;ui tð Þ;u�i tð Þð Þ ¼
Z 1

t
si ei sð Þ;ui sð Þ; u�i sð Þð Þds: ð7Þ

For sake of simplicity, si ei tð Þð Þ and Ji ei tð Þð Þare used in sequel.
The definition of admissible control policy is provided as

follows:

Definition 3. [44] (Admissible control policy) The control policy
ui tð Þ is admissible if it can stabilize the system (4) and ensure that
the local performance index (7) is finite simultaneously.

For the error dynamic system (4), the Hamilton–Jacobi-Bellman
(HJB) equation is given by

Hi ei;
@Ji
@ei

;ui;u�i

� 	
� @Ji

@si

� 	
@si
@ei

� 	T
Aei þ di þ

X
k2L

gk
i

 ! 

�Biui �
X
j2N i

aijBjuj

!
þ si ei;ui;u�ið Þ ¼ 0:

ð8Þ

According to Bellman optimality principle, the optimal local
performance index J�i satisfies

J�i ei tð Þð Þ ¼ min
ui tð Þ

Z 1

t
si ei sð Þ;ui sð Þ;u�i sð Þð Þds


 �
: ð9Þ

Thus, the optimal control strategy of the ith agent can be given
by

u�
i tð Þ ¼ argmin

ui tð Þ

Z 1

t
si ei sð Þ;ui sð Þ;u�i sð Þð Þds


 �
: ð10Þ
3.2. Equivalence analysis

In this subsection, we show that the internal reinforcement sig-
nals and the local performance indices can reach their optimal val-
ues simultaneously, which means the optimal control policies can
minimize the internal reinforcement signals in (6) and also the
local performance indices in (7).

Lemma 1. [45] (Comparison Theorem): If both f xð Þ and g xð Þ are
integrable on A and if g xð Þ 6 f xð Þ for every x in A, then we haveZ
A
g xð Þdx 6

Z
A
f xð Þdx:

The equivalence relationship between the internal reinforce-
ment signals and the local performance indices is given by the fol-
lowing lemma.
Lemma 2. If the optimal internal reinforcement signal si is given by:
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s�i u�
i ;u

�
�i

� � ¼ min
ui tð Þ

Z 1

t
ri ei sð Þ;u�

i sð Þ;u�
�i sð Þ� �

ds

 �

;

then Ji and si reach their optimal values J�i and s�i simultaneously,
that is,

J�i u�
i ;u

�
�i

� � ¼ Z 1

t
s�i ei sð Þ;u�

i sð Þ; u�
�i sð Þ� �

ds:
Proof. Consider a sequence of optimal controllers u�
i ;u

�
�i

� �
which

satisfies

s�i , si u�
i ;u

�
�i

� �
6 si ui;u�ið Þ:

According to Lemma 1, we haveZ 1

t
si u�

i sð Þ;u�
�i sð Þ� �

ds 6
Z 1

t
si ui sð Þ; u�i sð Þð Þds;

which implies that

Ji ui;u�ið Þ P Ji u
�
i ;u

�
�i

� �
, J�i : ð11Þ

Thus, Ji and ei reach their optimal values J�i and s�i simultane-
ously, which completes the proof.
Remark 2. According to Lemma 2, since J�i and s�i reach their opti-
mum simultaneously, thus the optimal control policy which mini-
mizes the internal signal (6) is also an optimal solution of (9).

The Hamiltonian function of (6), which is its differential equiv-
alence, can be written as

Hsi ¼ @si
@ei

� 	T
Aei þ di þ

X
k2L

gk
i

 !
Biui �

X
j2N i

aijBjuj

 !

þ 1
2 eTi Q iiei þ uT

i Riiui þ
X
j2N i

uT
�iRiju�i

 !
:

Starting from admissible control laws with boundary condition
si 0ð Þ ¼ 0. Then according to the first-order necessary condition i.e.,
@H�

si=@ui
� � ¼ 0 in optimal control theory [46], we have

@Hsi

@u�
i

¼ @si
@ei

� 
T

di þ
X
k2L

gk
i

 !
Bi þ u�T

i Rii ¼ 0;

or equivalently,

u�T
i Rii ¼ � @si

@ei

� 
T

di þ
X
k2L

gk
i

 !
Bi; ð12Þ

Thus the optimal control law can be determined by

u�
i ¼ � di þ

X
k2L

gk
i

 !
R�1
ii BT

i
@si
@ei

: ð13Þ

From (13), the optimal control law depends on the internal rein-
forcement signal si tð Þ, and thus contains a long-term information
of future external reinforcement signal, which is helpful to evalu-
ate the performance of the control law.

4. IR-ADP algorithm for optimal containment control

In fact, the HJB Eq. (8) and the optimal control policy (13) are
always difficult to obtain, in this section, an iterative algorithm,
i.e., IR-ADP algorithm is firstly provided to evaluate the local per-
formance indices (7) as well as the optimal control algorithm
(13). Then, the theoretical analysis is given to prove the conver-
gence of this algorithm.
4.1. IR-ADP algorithm

We propose an IR-ADP algorithm, whose block diagram is illus-
trated in Fig. 1. The detailed process of the proposed algorithm is
depicted in Algorithm 1.

Algorithm 1: IR-ADP algorithm

Initialization:

Let u 0ð Þ
i ; 8i ¼ 1;2; . . . ;N be any admissible control policy;

Iteration:
Let the iteration index l ¼ 0, set the precision of computation
e;

1: Repeat

2: Compute the internal reinforcement signal s lþ1ð Þ
i by (6)

@s lþ1ð Þ
i
@ei

� 
T

Aei þ di þ
X
k2L

gk
i

 !
Biu

lð Þ
i �

X
j2N i

aijBj

 
�u lð Þ

j

	
þ 1

2 eTi Q iiei þ u lð ÞT
i Riiu

lð Þ
i þ

X
j2N i

u lð ÞT
�i Rij

 
�u lð Þ

�i

	
¼ 0;

3: Compute the local performance indices J lþ1ð Þ
i by (7)

@J lþ1ð Þ
i

@s lþ1ð Þ
i

� 

@s lþ1ð Þ

i
@ei

� 
T

Aei þ di þ
X
k2L

gk
i

 !
Biu

lð Þ
i

 

�
X
j2N i

aijBju
lð Þ
j

!
þ s lþ1ð Þ

i ei;u
lð Þ
i ;u lð Þ

�i

� 	
¼ 0;

4: Compute the optimal control policy u lþ1ð Þ
i by (13)

u lþ1ð Þ
i ¼ � di þ

X
k2L

gk
i

 !
R�1
ii BT

i

@s lþ1ð Þ
i

@ei
; ð14Þ

6: until kJ lþ1ð Þ
i � J lð Þ

i k 6 e ;
7: The optimal control policy and optimal local performance

index can be expressed as u�
i ¼ ul

i , J
�
i ¼ Jli.

In the IR-ADP algorithm, let s lð Þ
i tð Þ; u lð Þ

i tð Þ, and J lð Þ
i tð Þ be the itera-

tive value of the internal reinforcement signal, control law and per-
formance index, respectively. Starting from an initial admissible
control policy, the algorithm firstly compute the internal reinforce-
ment signal (6) and then local performance index (7), followed by
computing the optimal control policy (13). Repeating the above

processes until the difference between J lþ1ð Þ
i and J lð Þ

i is sufficiently
small.

Remark 3. In traditional ADP algorithms, only external reinforce-
ment signals are utilized, which are not able to provide enough
information [47,48]. In our proposed IR-ADP algorithm, the inter-
nal reinforcement signals are adopted to provide more informative
reinforcement signals from the controller. Moreover, introducing
the internal reinforcement signals allows the controllers to eval-
uate the future performances, which will facilitate the learning
process.
4.2. Convergence analysis of IR-ADP algorithm

In this subsection we show that si; Ji; ui will converge to their
optimal values s�i ; J

�
i and u�

i , respectively, under the proposed IR-
ADP algorithm. Theorem 1 shows that si; Ji;ui converge to their
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optimal values when only the ith agent updates its control policy
while its neighbors’ control policies are fixed. Furthermore, Theo-
rem 2 shows that si; Ji;ui can converge to their optimum when all
agents update their control policies simultaneously.

Theorem 1. Assuming that only the ith agent update its control policy
in every iteration while its neighbors’ control policies are fixed. By
performing the IR-ADP algorithm given in Algorithm 1, the iterative

local performance index J lð Þ
i can converge to the optimal local

performance index J�i given by (9).
Proof. Consider the dynamics of the local neighborhood error

_ei ¼ Aei þ di þ
X
k2L

gk
i

 !
Biu

lþ1ð Þ
i �

X
j2N i

aijBjuj: ð15Þ

Since only the ith agent update its control policy in every iter-

ation, the difference between _s lð Þ
i and _s lþ1ð Þ

i can be given by

_s lþ1ð Þ
i � _s lð Þ

i ¼ @s lþ1ð Þ
i
@ei

� 
T

Aei þ di þ
X
k2L

gk
i

 !
Biu

lþ1ð Þ
i �

X
j2N i

aijBjuj

 !

� @s lð Þ
i

@ei

� 
T

Aei þ di þ
X
k2L

gk
i

 !
Biu

lþ1ð Þ
i �

X
j2N

aijBjuj

 !

¼ @s lþ1ð Þ
i
@ei

� 
T

Aei þ di þ
X
k2L

gk
i

 !
Biu

lþ1ð Þ
i �

X
j2N i

aijBjuj

 !

� @s lð Þ
i

@ei

� 
T

Aei þ di þ
X
k2L

gk
i

 !
Biu

lð Þ
i �

X
j2N

aijBjuj

 !

þ @s lð Þ
i

@ei

� 
T

di þ
X
k2L

gk
i

 !
Biu

lð Þ
i � @s lð Þ

i
@ei

� 
T

di þ
X
k2L

gk
i

 !
�Biu

lþ1ð Þ
i :

ð16Þ
Using the fact

@si
@ei

� 	T
Aei þ di þ

X
k2L

gk
i

 !
Biui �

X
j2N i

aijBjuj

 !

¼ � 1
2 eTi Qiiei þ uT

i Riiui þ
X
j2N i

uT
�iRiju�i

 !
;

ð17Þ

and the Eqs. (12) and (16), we have
_s lþ1ð Þ
i � _s lð Þ

i ¼ 1
2u

lð ÞT
i Riiu

lð Þ
i � 1

2 u
lþ1ð ÞT
i Riiu

lþ1ð Þ
i þ @s lð Þ

i
@ei

� 
T

� di þ
X
k2L

gk
i

 !
Biu

lð Þ
i � @s lð Þ

i
@ei

� 
T

di þ
X
k2L

gk
i

 !
Biu

lþ1ð Þ
i

¼ 1
2u

lð ÞT
i Riiu

lð Þ
i � 1

2 u
lþ1ð ÞT
i Riiu

lþ1ð Þ
i � u lð ÞT

i Riiu
lð Þ
i þ u lð ÞT

i Riiu
lþ1ð Þ
i

¼ � 1
2u

lð ÞT
i Riiu

lð Þ
i � 1

2u
lþ1ð ÞT
i Riiu

lþ1ð Þ
i þ u lð ÞT

i Riiu
lþ1ð Þ
i

¼ � 1
2 u lð Þ

i � u lþ1ð Þ
i

� 	T
Rii u lð Þ

i � u lþ1ð Þ
i

� 	
6 0:

ð18Þ

Then we have

s lð Þ
i � s lþ1ð Þ

i ¼ �
Z 1

t

1
2

u lþ1ð Þ
i � u lð Þ

i

� 	T
Rii u lþ1ð Þ

i � u lð Þ
i

� 	
ds 6 0; ð19Þ

which implies that internal reinforcement signal si is monotonically
non-decreasing. Since the admissible control policies can ensure
that the local performance index Ji is finite and thus internal rein-

forcement signal si is also finite. Thus, s lð Þ
i is bounded. According

to Lemma 1, then we have

J lþ1ð Þ
i � J lð Þ

i ¼ R1
t s lð Þ

i sð Þ � s lþ1ð Þ
i sð Þ

� 	
ds 6 0; ð20Þ

which shows that the local performance index J lð Þ
i is monotonically

non-increasing. Since the local performance indices Ji are finite and

bounded as well, thus, J lð Þ
i is convergent.

Define lim
l!1

J lð Þ
i ¼ J 1ð Þ

i . Next, we show that J lð Þ
i converge to the

optimal local performance indices J�i , i.e., J
1ð Þ
i ¼ J�i . According to the

definition of J�i (9), we have

J�i ei;u�
i ;u

�
�i

� � ¼ min
ui

Ji ei;ui;u�ið Þf g 6 J 1ð Þ
i ei;u

1ð Þ
i ;u 1ð Þ

�i

� 	
:

Since J lð Þ
i is monotonically non-increasing, there exists an itera-

tion index l which satisfies

J 1ð Þ
i ei;u

1ð Þ
i ;u 1ð Þ

i

� 	
6 J lð Þ

i ei;u
lð Þ
i ;u lð Þ

�i

� 	
:

Let u lð Þ
i ¼ u�

i and u lð Þ
�i ¼ u�

�i , then we have

J 1ð Þ
i ei;u

1ð Þ
i ;u 1ð Þ

i

� 	
6 Ji ei;u

�
i ;u

�
�i

� �
, J�i :

Thus, we have J�i ¼ J 1ð Þ
i , which means that the local performance

index Ji can converge to its optimum J�i under the proposed pro-
posed IR-ADP algorithm. The proof is completed.
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The next theorem shows that local neighborhood index Ji can
converge to J�i when the control policies of the ith agent and its
neighbors update simultaneously.

Theorem 2. Assume that the control polices of the ith agent and its
neighbors update simultaneously. Then the local performance index Ji
can converge to the optimal local performance index J�i under the IR-
ADP algorithm in Algorithm 1.
Proof. Similar with the proof of Theorem 1, we have

_s lþ1ð Þ
i � _s lð Þ

i ¼ � 1
2 u lþ1ð Þ

i � u lð Þ
i

� 	T
Rii u lþ1ð Þ

i � u lð Þ
i

� 	
� 1

2

X
j2N

u lþ1ð Þ
i � u lð Þ

i

� 	T
Rij u lþ1ð Þ

i � u lð Þ
i

� 	

�
X
j2N

u lð ÞT
j Rij u lþ1ð Þ

j � u lð Þ
j

� 	
þ @s lþ1ð Þ

i
@ei

� 
T

�
X
j2N

aijBj u lþ1ð Þ
i � u lð Þ

i

� 	
:

ð21Þ

Then a sufficient condition which ensures that _s lþ1ð Þ
i � _s lð Þ

i 6 0 is
given by

1
2r Rij
� �

u lþ1ð Þ
j � u lð Þ

j

��� ��� P dj þ
X
k2L

gk
i

 !
r � R�1

jj Rij

� 	
� @s lð Þ

i
@ei

���� ���� Bj

�� ��þ aij
@s lþ1ð Þ

i
@ei

���� ���� � Bj

�� ��: ð22Þ

If the sufficient condition in (22) holds, then we have

s lþ1ð Þ
i 1ð Þ � s lþ1ð Þ

i tð Þ
� 	

� s lþ1ð Þ
i 1ð Þ � s lþ1ð Þ

i tð Þ
� 	

¼ s lð Þ
i � s lþ1ð Þ

i ¼ R1
t

_s lþ1ð Þ
i � _s lð Þ

i

� 	
ds 6 0;

ð23Þ

which implies that the internal reinforcement signal s lð Þ
i is monoton-

ically non-decreasing. Similarly, we can show that J lð Þ
i is monotoni-

cally non-increasing and thus can converge to its optimum J�i .
4.3. Stability analysis

In this subsection, the stability analysis is provided for the
closed-loop multi-agent system under the optimal control laws.

Theorem 3. Consider the multi-agent system (1) with the optimal
indices Ji (7) for 8i. Then the closed-loop dynamics of the local error
ei tð Þ is asymptotically stable under the proposed optimal control law
(13).
Proof. Consider the external reinforcement signal

ri ei;ui;u�ið Þ ¼ 1
2

eTi Qiiei þ uT
i Riiui þ

X
j2N i

uT
j Rijuj

 !
;

which is positive definite. Then from Lemma 1 and (6), we have

si ei tð Þ;ui tð Þ;u�i tð Þð Þ P 0; Ji ei tð Þ;ui tð Þ;u�i tð Þð Þ P 0:

Since si ¼ 0 and Ji ¼ 0 only when ei tð Þ ¼ 0, thus si and Ji are pos-
itive definite. As a result, the local performance index Ji (7) can be
selected as a Lyapunov function for the error dynamics.

According to the Hamiltonian in (8), we have

_Ji ¼ �si ei tð Þ;ui tð Þ;u�i tð Þð Þ < 0;
which is negative definite. Therefore, the error dynamics in (4) is
asymptotically stable, that is, ei tð Þ ! 0 as t ! 1, which implies that
the containment control problem is solved.
5. NN implementation of IR-ADP

The IR-ADP algorithm proposed in Algorithm 1 requires an
accurate system model, which is always difficult to obtain in prac-
tical applications. In this section, a data-driven implementation of
the algorithm will be provided. Three NNs, i.e., internal reinforce-
ment NN, critic NN and actor NN, are employed to estimate the
internal reinforcement signal si, local performance index Ji and
control policy ui, respectively.

5.1. Internal reinforcement NN

The internal reinforcement neural network is used to estimate
the internal reinforcement signal, which is represented as

ŝi tð Þ ¼ WT
gi2 � / Zgi tð Þ� �

; ð24Þ

where Zgi tð Þ ¼ WT
gi1 � ei tð Þ;ui tð Þ;u�i tð Þ½ � is the input vector, Wgi1

denotes the weight matrix of input-to–hidden layer,Wgi2 denotes
the weight matrix of hidden-to-output layer, and / �ð Þ ¼ tanh �ð Þ is
the activation function.

According to (17), we define the error function egi as

egi ¼ @si
@ei

� 	T
Aei þ di þ

X
k2L

gk
i

 !
Biûi �

X
j2N i

aijBjûj

 !

þ 1
2 eTi Q iiei þ ûT

i Riiûi þ
X
j2N i

ûT
�iRijû�i

 !
;

and the loss function of internal reinforcement network is defined
as

Egi ¼ 1
2
e2gi:

For sake of convenience, during the process of training, only the
hidden-to-output layer matricesWgi2 are updated, while the input-
to-hidden layer matricesWgi1 are the identity matrices with appro-
priate dimensions. Then, according to [37], a gradient decent based
weight update law is given as follows:

_Wgi2 ¼ �bgi � @Egi
@Wgi2

¼ �bgi
@Egi
@egi

� @egi
@ŝi

� @ŝi
@Wgi2

; ð25Þ

where bgi is the learning rate of the internal reinforcement network.

5.2. Critic NN

The critic neural network is used to estimate the local perfor-
mance index and given bybJ i tð Þ ¼ WT

ci2 � / Zci tð Þð Þ; ð26Þ
where Zci tð Þ ¼ WT

ci1 � ŝi tð Þ; ei tð Þ;ui tð Þ; u�i tð Þ½ � is the input vector repre-
sented, Wci1 and Wci2 are the weight matrices of the input-to-
hidden layer and hidden-to-output layer, respectively. According
to (8), the error function of critic network eci is defined as

eci ¼ Hi ei;
@bJ i
@ei

; ûi; û�i

� 

¼ @bJ i

@ŝi

� 

@ŝi
@ei

� 	T
Aei þ di þ

X
k2L

gk
i

 ! 

�Biûi �
X
j2N i

aijBjûj

!
þ ŝi ei; ûi; û�ið Þ;



Fig. 2. The network topology for Example 1.

Fig. 3. Evolution of the agents’ state x and x .
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and the loss function of the critic network is defined as

Eci ¼ 1
2
e2ci:

Again, here only the weight matrices Wci2 are updated while
Wci1 are the identity matrices. The gradient decent based weight
update law is given by

_Wci2 ¼ �bci �
@Egi

@Wci
¼ �bci

@Eci

@eci
� @eci
@bJ i � @bJ i

@Wci2
; ð27Þ

where bci is the learning rate of the critic network.

5.3. Actor NN

The actor neural network is used to generate the iterative con-
trol policy by approximating the optimal control policy (13), and
given by

ûi tð Þ ¼ WT
ai2 � / Zai tð Þð Þ; ð28Þ

where Zai ¼ WT
ai1 � ei is the input vector, Wai1 and Wai2 represent the

weight matrices of the input-to–hidden layer and hidden-to-output
layer, respectively.Wedefinetheerror functionof theactornetworkas

eai ¼ bJ i � Uc;

where Uc is the cost-to-go function and equals 0 here. Then the loss
function of the actor network is defined as

Eai ¼ 1
2
e2ai:

A gradient decent based weight update law is given for Wai2 as
follows:

_Wai2 ¼ �bai �
@Eai

@Wai2
¼ �bai �

@Eai

@eai
� @eai
@ûi

� @ûi

@Wai2
; ð29Þ

where bai is the learning rate of the actor network.
Note that the error function of the internal reinforcement NNs

and critic NNs contain the system matrices A and Bi. In order to
avoid to use the knowledge of system model, we can employ an
identifier to identify the system matrices. The detailed description
can refer to [51,52].

The framework of the NN implementation of the proposed IR-
ADP algorithm is presented in Algorithm 2.

Algorithm 2: NN implementation of IR-ADP algorithm.

Initialization:

Let u 0ð Þ
i ; 8i 2 F be any admissible control policy, randomly

initialize weight matrices of goal represent network, actor

network and critic network W 0ð Þ
gi1;2;W

0ð Þ
ai1;2;W

0ð Þ
ci1;2; 8i 2 F.

Iteration:
Let the iteration index l ¼ 0, set the precision of computation
e.

1: Repeat

2: Compute the internal reinforcement signal ŝ lþ1ð Þ
i using (24);

3: Compute the local performance indices bJ lþ1ð Þ
i using (26);

4: Compute the optimal control policy û lþ1ð Þ
i using (28);

5: Update the weight matrices of goal represent network
using (25);

6: Update the weight matrices of critic network using (27);
7: Update the weight matrices of actor network using (29);

8: Until k̂J lþ1ð Þ
i � Ĵ lð Þ

i k 6 e ;

9: Return W lð Þ
gi1;2;W

lð Þ
ai1;2;W

lð Þ
ci1;2;8i 2 F. Then (24), (26) and (28)

can be used to compute ŝi;bJ i and û respectively.
Remark 4. Different from the traditional methods [32,26] which
has a common characteristic, i.e., two-network architecture
namely critic networks and actor networks are always utilized in
the controller design. Different from them, the proposed IR-ADP
algorithm introduce an additional internal reinforcement (IR)
signal si. Thus, for the implementation of the proposed method,

i;1 i;2



Fig. 4. Convergence comparison between our IR-ADP algorithm and traditional ADP algorithm.

Fig. 5. The network topology for Example 2.
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we establishes three-networks architecture, where additional
network called IR network is introduced to approximate the IR
signals si. The advantages of our method is that the designed si
enables agent to have more effective information in terms of local
information from neighbors, which can speed up the learning
procedure and achieve better control performance.
Fig. 6. Evolution of the agents’ state xi;1 and xi;2.
Remark 5. In the NNs implementation part, three neural networks
(NNs) structure are utilized. The proposed weight update is an
approximation to gradient descent. Note that in the proposed algo-
rithm, all of the internal reinforcement NNs,actor NNs and critic
NNs are updated simultaneously. The control input given by (36)
is applied to system constantly, while converging to the optimal
solution. Since the weight update laws for the three NNs are cou-
pled, the critic NNs is also required to be updated constantly and
simultaneously with the control input. This simultaneous update



Fig. 7. Trajectory evolution of the leaders and followers.
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rule for these NNs makes convergence guarantees more difficult to
prove. In this instance, from the perspective of experimental stud-
ies, many researchers always depends on experience by repeating
experiments to gain a better learning parameters, which proves
convergence. In the works of [49,50], an exact-gradient-descent
method was given with convergence guarantees.
Remark 6. It is noticed that the estimates of si; Ji and u�
i are used in

Algorithm 2 and thus there will certainly be some estimation
errors in the implementation of the algorithm. However, according
to Weierstrass higher-order approximation theorem [51], if the
number of hidden layer neurons is sufficiently large, then the esti-
mation errors can be arbitrarily small.
Fig. 8. Convergence comparison between our algorith
6. Simulation results

In this section, two numerical examples are provided to validate
the proposed IR-ADP algorithm. The two examples consider the
cases with different agent dynamics and network topologies.

Example 1. Consider a MAS with the follower nodes 1, 2, 3 and
leader nodes 4, 5, 6. The network topology of this leader–follower
system is shown in Fig. 2. From the network illustrated in Fig. 2, the
interaction weights among agents are given as a13 ¼ a21 ¼ a32 ¼ 1
and the weights between the leaders and followers are given as
g41 ¼ g52 ¼ g63 ¼ 1. The matrices in the agent dynamics (1) and (2)

are given by A ¼ 0:1 �1
1 �0:1

� �
; B1 ¼ �1:5

1

� �
; B2 ¼ �1

1

� �
, and

B3 ¼ �1
�0:5

� �
. The weight matrices in (5) are given by

R11 ¼ R13 ¼ R21 ¼ R22 ¼ R32 ¼ R33 ¼ 1, and Q11 ¼ Q22 ¼ Q33 ¼
I2�2. The initial state conditions of the leaders are given by

x01 0ð Þ ¼ 0:6170
0:8312

� �
; x02 0ð Þ ¼ 0:4550

0:4052

� �
and x03 0ð Þ ¼ 0:2998

0:2206

� �
.

The learning rates are given by bgi ¼ bci ¼ bai ¼ 0:005 for
8i 2 F ¼ 1;2;3f g.
Fig. 3 shows the state evolution of the agents, where the red
curves denote the trajectories of the leaders and the blue curves
denote the trajectories of the followers. It is noted that the trajec-
tories of the followers stay in the region formed by the envelop
denoted by the black curves, which shows that the followers
approach to the convex hull formed by the leaders under the pro-
posed optimal containment control strategy.

Furthermore, Fig. 4 presents a comparison on the convergence
rates of the proposed IR-ADP algorithm and the traditional ADP
algorithm. From the figure, the local neighborhood errors under
the proposed algorithm converge faster than those under the tradi-
tional ADP algorithm, and thus the IR-ADP algorithm has a better
control performance.
m and traditional ADP algorithm in example two.
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Example 2. In this example, the MAS consists of the follower
nodes 1, 2, 3, 4 and leader nodes 5, 6, 7. The interaction network
topology associated with the leader–follower system is illustrated
in Fig. 5. For the network in Fig. 5, the interaction weights are given
by a14 ¼ a21 ¼ a32 ¼ a43 ¼ 1 and the weights between the leaders
and followers are given by g51 ¼ g62 ¼ g73 ¼ 1. The matrices in the
agent dynamics (1) and (2) are given by

A ¼ 0 0:1
�0:1 0

� �
; B1 ¼ 2

�1

� �
; B2 ¼ 2

�3

� �
; B3 ¼ 1

�3

� �
, and

B4 ¼ 1
�2

� �
. Define the weight matrices in (5) as

R11 ¼ R14 ¼ R21 ¼ R22 ¼ R32 ¼ R33 ¼ R43 ¼ R44 ¼ 1 while the others
are 0, and Q11 ¼ Q22 ¼ Q33 ¼ Q44 ¼ I2�2. Set the initial state of the

leaders as x01 0ð Þ ¼ 0:5990
0:8552

� �
; x02 0ð Þ ¼ 0:2448

0:7272

� �
and x03 0ð Þ ¼

0:4008
0:3106

� �
. The learning rates are given as bgi ¼ bci ¼ bai ¼ 0:005

for 8i 2 F.

Figs. 6 and 7 show that all followers converge to the region
spanned by leaders, which implies that containment control has
achieved. Besides, a comparison is given in Fig. 8, which shows that
the proposed IR-ADP algorithm outperforms traditional two-
network ADP algorithms with faster convergence speed. Addition-
ally, the local neighborhood errors converge after 20 s in Fig. 4
while they converge after 25 s in Fig. 8, thus the convergence speed
of the proposed IR-ADP algorithm increases with the network size.

7. Conclusion

In this paper, we have investigated a containment control prob-
lem of continuous-time MASs. A data-driven IR-ADP algorithm has
been applied to obtain the optimal control policies by solving HJB
equation iteratively. Then three NNs have been utilized to imple-
ment the proposed algorithm, which do not need the accurate sys-
tem model. The theoretical analysis has proven that the proposed
algorithm can converge to the optimal control policies. Finally, the
simulation results have been provided to show the effectiveness of
the proposed algorithm. Future research direction includes optimal
containment control of heterogeneous multi-agent systems.
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