Neurocomputing 417 (2020) 255-269

Contents lists available at ScienceDirect

Neurocomputing f

journal homepage: www.elsevier.com/locate/neucom

Top-aware reinforcement learning based recommendation N

Feng Liu®, Ruiming Tang"”, Huifeng Guo ", Xutao Li?, Yunming Ye **, Xiugiang He"

Check for
updates

2Shenzhen Key Laboratory of Internet Information Collaboration, Harbin Institute of Technology, Shenzhen 518055, China

®Noah'’s Ark Lab, Huawei, China

ARTICLE INFO

ABSTRACT

Article history:

Received 5 November 2019
Revised 24 June 2020
Accepted 16 July 2020
Available online 6 August 2020
Communicated by Weike Pan

Keywords:
Recommendation
Top-aware
Reinforcement learning

Reinforcement learning (RL) techniques have recently been introduced to recommender systems. Most
existing research works focus on designing policy and learning algorithms of the recommender agent
but seldom care about the top-aware issue, i.e., the performance on the top positions is not satisfying,
which is crucial for real applications. To address the drawback, we propose a Supervised deep
Reinforcement learning Recommendation framework named as SRR. Within this framework, we utilize
a supervised learning (SL) model to partially guide the learning of recommendation policy, where the
supervision signal and RL signal are jointly employed and updated in a complementary fashion. We
empirically find that suitable weak supervision helps to balance the immediate reward and the long-
term reward, which nicely addresses the top-aware issue in RL based recommendation. Moreover, we
perform a further investigation on how different supervision signals impact on recommendation policy.
Extensive experiments are carried out on two real-world datasets under both the offline and simulated
online evaluation settings, and the results demonstrate that the proposed methods indeed resolve the
top-aware issue without much performance sacrifice in the long-run, compared with the state-of-the-

art methods.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

Modeling user dynamics is an important issue in designing
interactive recommender systems (IRS). Recently, Reinforcement
Learning (RL) techniques have been introduced to IRS to capture
the dynamic patterns of user behavior during the interaction with
recommender systems and perform planning to optimize long-
term performance [1-7].

However, existing works focus more on long-term rewards and
may suffer from top-aware issue, i.e., the performance on the top
positions is not satisfying in RL based recommendations. For exam-
ple, in [1-5], the authors only evaluate their models by long-term
reward [3], or by Precision@k and NDCG@k with a very large k
value (e.g. k=40 in [1], k =32 in [2]). None of them evaluates
the performance of top positions, which is important in real-
world recommender systems. Fig. 1 shows a typical observation
in line with such founding, on MovieLens 1M and Yahoo! Music
datasets. The settings of all the algorithms follow [1,4]. We find
that the matrix factorization based method, SVD++, achieves much

* Corresponding author.
E-mail addresses: fengliu@stu.hit.edu.cn (F. Liu), tangruiming@huawei.com
(R. Tang), huifeng.guo@huawei.com (H. Guo), lixutao@hit.edu.cn (X. Li), yeyunming@
hit.edu.cn (Y. Ye), hexiugiang1@huawei.com (X. He).

https://doi.org/10.1016/j.neucom.2020.07.057
0925-2312/© 2020 Elsevier B.V. All rights reserved.

better Precision@1 performance than the RL based methods. In
other words, RL based methods tend to deliver unsatisfactory top
position performance, because they are prone to recommending
the items with larger long-term value.

To understand the impact of the top-aware issue, we analyze a
mainstream App Store. We find that top positions are very crucial
as they attract the majority of users and bring the majority of app
downloads. As shown on the left side of Fig. 2, only about 2.5% of
users will continue searching on the second page and about 94%
of the population stop searching on the first page. From the right
side of Fig. 2, we can see that the first position brings about 16%
of total downloads and nearly 80% of total downloads comes from
the top 15 positions, which is displayed in the first page. Moreover,
similar phenomenons also exist, such as in streaming recommen-
dation services, like Pandora Radio, NetEase Cloud Music, TikTok
video, and in the E-commerce, search engine, etc. The ‘risky’ rec-
ommendations made by the RL recommender agent in top posi-
tions may severely affect the user experiences. Such examples
suggest that the recommendations for the first a few rounds are
of remarkable significance and need to be carefully designed.

In this paper, we aim to solve the top-aware issue that exists in
RL based recommendation approaches. To achieve this goal, we
propose a Supervised deep Reinforcement learning Recommenda-
tion framework named as SRR. Within this framework, we utilize a

http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2020.07.057&domain=pdf
https://doi.org/10.1016/j.neucom.2020.07.057
mailto:fengliu@stu.hit.edu.cn
mailto:tangruiming@huawei.com
mailto:huifeng.guo@huawei.com
mailto:lixutao@hit.edu.cn
mailto:yeyunming@hit.edu.cn
mailto:yeyunming@hit.edu.cn
mailto:hexiuqiang1@huawei.com
https://doi.org/10.1016/j.neucom.2020.07.057
http://www.sciencedirect.com/science/journal/09252312
http://www.elsevier.com/locate/neucom

256 F. Liu et al./ Neurocomputing 417 (2020) 255-269

supervised learning (SL) model to partially guide the learning of
recommendation policy to generate recommendations, where the
supervision signal and RL signal are jointly employed and updated
in a complementary fashion. The SL model plays two important
roles. On one hand, it provides the policy component with a super-
vision signal to learn a combined policy, which enables the agent to
focus more on immediate reward and promote the performance on
top positions. On the other hand, the SL model is updated with the
RL model, which avoids the long-term reward to sacrifice too
much. Moreover, to investigate how different supervision signals
impact the recommendation policy, we develop two models. One
is the classification based model, SRR-L and the other is the ranking
based model, SRR-R. The main contributions of this paper can be
summarized as follows:

e We find that top-aware issue generally exists in RL based rec-
ommendation methods. To address this problem, we propose
a supervised deep reinforcement learning recommendation
framework named as SRR.

e Extensive experiments are carried out on two real-world data-
sets under both the offline and simulated online evaluation set-
tings, and the results demonstrate that the proposed methods
indeed resolve the top-aware issue by achieving better accuracy
in the top positions without much performance sacrifice in the
long-run when compared with state-of-the-art methods.

2. Related work

Our work mostly relates to the recommendation techniques,
based on the characteristics of whether they can perform dynamic
adaptation and long-term planning, we divide them into two
branches, i.e., conventional recommendation techniques and RL
based recommendation techniques.

1.0 = Movielens (1M)
0 B Yahoo!Music
i
0.8
2
o 0.7
%]
g 0.6
& 0.5
0.4
0.3

SVD++ DQON DDPG DEERS DRR

Fig. 1. Precision@1 performance for SVD++ [8] and several RL based recommen-
dation models (DQN [6], DDPG [9], DEERS [1], and DRR [4]) on two public datasets.

Percentage of users V.S. visited pages.

Percentage
°© o o »¢
=y o [e0] o

o
N

o
<)
1
|

Page

2.1. Conventional recommendation techniques

Conventional recommendation methods develop from the static
content-based filtering [10], matrix factorization based methods
[11-13,8], logistic regression [14], factorization machines and its
variants [14-16], and until recently deep learning models [17-
20], to multi-armed bandit methods [21-25].

At the beginning of this century, content-based filtering [10] is
proposed to recommend items by considering the content similar-
ity between items. Later, collaborative filtering (CF) is put forward
and extensively studied. The rationale behind CF is that users with
similar behaviors tend to prefer the same items, and the items con-
sumed by similar users tend to have the same rating. However, the
conventional CF-based methods suffer from the data scarcity
because the similarity calculated from sparse data might be unre-
liable. So the Matrix factorization (MF) is proposed as an advanced
CF technique, plays an important role in recommender systems.
MF models [11-13,8] characterize both items and users by vectors
in the same space, which are inferred from the observed user-item
interactions. Moreover, regarding the recommendation as a binary
classification problem, logistic regression and its variants [14] are
also utilized in recommender systems. Nevertheless, logistic
regression based models are hard to generalize to the feature inter-
actions that never or rarely appear in the training data. Therefore,
factorization machines [15] and its variants [16] are proposed to
model pairwise feature interactions as an inner product of latent
vectors between features and show promising results. As an exten-
sion to FM, Field-aware FM (FFM [16]) enables each feature to have
multiple latent vectors to interact with different fields.

Recently, deep learning (DL) models [19,17,18,20] improve the
performance of recommender systems by using deep neural net-
works to model the complicated feature interactions, which
enhance the model capability greatly. The authors in [17] propose
a product based deep neural network to capture high-order feature
interactions. Cheng et al. [19] propose an interesting hybrid net-
work structure (Wide & Deep) that combines a linear (Wide) model
and a deep model for recommendation. Moreover, the authors in
[18] impose a factorization machine as a ‘wide’ module in Wide
& Deep [19] with no need for feature engineering. Zhou et al.
[20] propose a novel model, Deep Interest Network (DIN), where
a local activation unit is designed to adaptively learn the represen-
tation of user interests from historical behaviors with respect to a
certain ad.

As a distinguished direction, contextual multi-armed bandits
(MAB) are also utilized to model the interactive nature of recom-
mender systems [21-25]. Li et al. apply Thompson Sampling (TS)
and Upper Confident Bound (UCB) to balance the trade-off between
exploration and exploitation in [23,21], respectively. The authors
in [22] further learn hidden features for each arm to model the

Percentage of downloads V.S. displayed positions.
0.20

(=]
]
w

Percentage
°©
it
o

0.05

I T

30 40 50 60 70 80
Position

-
0 10 20

Fig. 2. Analysis on percentage of visiting users per page and percentage of app downloads per position in a mainstream App Store.

F. Liu et al./ Neurocomputing 417 (2020) 255-269 257

potential reward based on [21]. Moreover, Zeng et al. [25] propose
a context drift model to address the time-varying problem. To inte-
grate the latent vectors of items and users with some exploration,
the authors of [24] combine matrix factorization with multi-armed
bandits.

In another line of studies, researchers work on the sequential
recommendation (SR) algorithms [26-33]. The authors in [26] con-
siders both user-item similarities and first-order item-item transi-
tions for sequential recommendation. Moreover, in [27], the
authors utilize Gated Recurrent Units (GRU) to model the sequen-
tial dynamics for session-based recommendation, and use session-
parallel mini-batches technique to train the model. What’s more,
an improved version is proposed in [28], where a novel ranking
loss function and an efficient sampling strategy are proposed. In
addition to the RNN-based methods, Convolutional Neural Net-
work (CNN) is also adopted for sequential recommendation
[30,31]. In [30], the researchers embeds the recent engaged items
into an “image” in the latent space, then employ different convolu-
tional kernels to extract sequential patterns. However, such RNN-
and CNN-based methods always encodes the user interactions into
hidden states or latent factors without considering the different
impacts of the items consumed at different time steps on current
decision. Therefore, the attention based models, which exhibit
promising performance in sequence learning, are also utilized in
sequential recommendation [32]. In addition, the authors in [33]
propose to utilize gated network for sequential recommendation,
where a feature gating layer and an instance gating layer are
employed to select what item features can be passed to the down-
stream layers from the feature and instance levels, respectively.

However, the above mentioned methods either consider the
recommendation procedure as a static process, i.e., they assume
the user underlying preference keeps unchanged (CF, DL, MAB),
or do not explicitly model the long-term rewards that the recom-
mendations can make (SR).

2.2. RL based recommendation techniques

Recently, the research of RL based recommendation techniques
has become a hot topic, and several approaches have been pro-
posed [34-38,1,39,3,2,6,40,5]. Such RL methods can be divide into
two categories: model-based methods [34-38| and model-free meth-
ods [39,3,2,6,40,5].

For the model-based methods, they always utilize a model of
the environment to predict rewards for unseen state-action pairs.
The MDP-Based CF model in [34] utilizes a finite sliding window
of past history to define the current state to approximating the par-
tial observable MDP, and they incorporate three strategies (value
function approximation, policy optimization, stochastic sampling)
to reduce the computational complexity. Chen et al. [38] propose
a model-based reinforcement learning framework by developing
a generative adversarial network to imitate user behavior dynam-
ics and learn her reward function, where a combinatorial recom-
mendation policy can be learned by cascading DQNs. Zhao et al.
[36] propose a multi-agent reinforcement learning based approach
for recommendations with multiple scenarios, which can capture
the sequential correlation among different scenarios and jointly
optimize multiple recommendation strategies. Moreover, the
authors in [37] adopt generative adversarial network to model
user-agent interactions for offline recommender policy learning.

For the model-free methods, we can divided them into
branches: policy-based methods [1,39,3,2] and value-based methods
[1,6]. Specifically, policy-based approaches [3,9,7,4,2,41] aim to
generate a policy, of which the input is a state, and the output is
an action. Firstly, one type of those works applies deterministic
policies [3,7,4] based on the deterministic policy gradient algo-
rithms [42,43], which generates an action directly. Dulac-Arnold

et al. [3] resolve the large action space problem by modeling the
state in a continuous item embedding space and selecting the
items via a neighborhood method. However, as the underlying
algorithm is essentially a continuous-action algorithm, its perfor-
mance may be cursed by the gap between the continuous and dis-
crete action spaces. Zhao et al. [7] propose to employ a Deep
Deterministic Policy Gradient framework (DDPG) [43] with a
page-display approach for page-wise recommendation. And the
authors in [4] comprehensively study the state representation
issue in RL based recommendation framework by explicitly model-
ing the user-item interactions, as the state representation is crucial
for reinforcement learning [44]. Secondly, another type of studies
employ the stochastic policies [2,41] according to the policy gradi-
ent theorem [45], which output the distribution of the actions, and
the action is sampled from such distribution. The authors in [2]
propose to utilize a balanced hierarchical clustering tree to tackle
the large discrete action space issue with REINFORCE algorithm
[45], where picking an item is formulated as seeking a path from
the root to a certain leaf of the tree. Chen et al. [41] present an
off-policy correction framework to address the data bias issue in
a top-K recommender system at YouTube, where such data bias
is caused by only observing historical feedbacks on previous rec-
ommendations. For value-based approaches [1,6], the action with
maximum Q-value over all the possible actions is selected as the
best action. Zhao et al. [1] take both user’s positive feedback and
negative feedback into consideration when modeling user state.
Dueling Q-network is utilized in [6], to model Q-value of a state-
action pair. Moreover, a minor update with exploration by dueling
bandit gradient descent is proposed. However, such value-based
approaches need to evaluate the Q-values of all the actions under
a specific state, which is very inefficient when the action space is
large.

Although the RL-based methods attract considerable attention
in the recommendation community, the top-aware issue hinders
their usability in real-world applications.

3. Methodology

In this paper, we formulate the recommendation task as a Mar-
kov Decision Process (MDP), which can be solved by reinforcement
learning. Fig. 3 illustrates the user-recommender interactions in
MDP formulation. At each time step, the recommender (agent)
takes an action a € A (recommend an item in the candidate set)
according to the user (environment) state s € S (user current pref-
erence over the items in the candidate set), and receives a reward
R(s,a) (user feedback of the recommended item). Then, the user
state is updated to s’ with transition probability p(s'|s, a). Formally,
the elements of this MDP (S, A, P, R,7) are defined as follows:

Recommender (Agent)

state s, reward 7, action a,
se = f(he) e = R(st, ar) ar = mg(st)
Tt+1
PE——
St+1

Users (Environment)

Fig. 3. An illustration of user-recommender interaction in MDP.

258 F. Liu et al./ Neurocomputing 417 (2020) 255-269

e S: S denotes the user state space, which is the representation of
the user’s positive interaction history with the recommender, as
well as her demographic information.

A: A is the action space, containing the items available for rec-

ommendation. In this paper, we assume that the agent only rec-

ommends one item to the user each time.

e P: S x A — & is the transition probability, which is determinis-
tic in our model once the user feedbacks are collected. Since the
state is modeled by the user’s positive feedback, once the user’s
feedback is collected, the state transition p(s'ls, a) is determined.

e R:S x A— R is the reward. Given the recommendation based

on the action a and the user state s, the user will provide her

feedback, i.e., click, not click, or rating, etc. The recommender
receives immediate reward R(s,a) according to the user’s
feedback.

y € [0,1] is the discount factor measuring the present value of

long-term rewards.

The target of the recommender agent is to find an optimal pol-
icy my (S x A [0,1]), which maximizes the expected cumulative
rewards for the recommender system.

3.1. Overview of SRR framework

As shown in Fig. 4, the SRR framework consists of four compo-
nents, namely embedding component (EC), state representation com-
ponent (SRC), policy component (PC) and supervised learning
component (SLC).

EC: As a bottom layer, EC maps the items together with the user
demographic information from a high dimensional sparse vector to
a low dimensional dense one e, = [p,, h¢] by concatenating p, and
h;, where p,, is the latent representation of the user demographics
and h; = {q,,...,q,} denotes the embeddings of n latest positive
interacted items at time t. The interaction history h works in a slid-
ing window manner. When the recommender agent recommends
an item q,, we have hy.1 = {q,, ..., q,, q,} if the user provides pos-
itive feedback, otherwise h¢,; = h;.

SRC: In the middle of SRR framework, a carefully designed SRC,
which can be a fully-connected neural network [6], a recurrent
neural network [1] or a carefully designed neural network [4], is
to model the user states. For simplicity, we term SRC as a function
f(-), such that the state is represented as s; = f(e;).

PC: PC is appended to SRC, whose input is state s; and output is
Q-value for value-based models or policy for policy-based models.
Upon the output, value-based models decide the action by choos-
ing the one with highest Q-value; on the other hand, policy-
based models stochastically or deterministically decide the action
from the output policy. Then, the reward R(s, a) is obtained based

TD Learning a

Ranking Supervised model | SLC
Q-values

1

Policy Component | PC < RL Signal
lsf = f(e) S-L;ig-r:al
State Representation {SRC ?’
S
[ec = [Pu kel "
[) XX) (| EC
t User 1

ltems eee Demographic

Fig. 4. SRR Framework for value-based RL models. For simplicity, we omit the SRR
Framework for policy-based models.

on the user feedback. We take a popular value-based model, i.e.,
DQN [46] and a policy-based model, i.e., DDPG, as examples to
illustrate the learning procedure of PC. For the value-based DQN,
the parameters are updated according to the temporal-difference
(TD) learning approach [45], i.e., minimizing the mean squared

Le =4 5= (i — Qo(si,@))?, Yi=T1i+7Qy
1

(Sis1, Ty (Siz1)) and N is the batch size. The target network tech-
nique [46] is always adopted, where ¢ is the set of parameters of
the target Deep Q-network. For the policy-based DDPG, PC stands
for the Actor part (the update of parameters in critic part is the
same as the one in above DQN, which is updated by the TD learning
process). PC outputs a continuous ranking vector [4]. The items are
recommended according to the ranking scores by the inner
product operation between the generated ranking vector and the
item embeddings. And the RL signal is computed according to
the sampled Policy Gradient [43]: Vol (9)
~ Zt: VaQ(S; B)ls—s; gemy(s) VoTo(S)ls—s,, Where 0 denotes the

error as where

parameters of PC, o indicates the parameters of Critic network.

SLC: SLC acts as an indicator to show the difference between the
current recommendation policy and users’ historical preference,
which can be a classification model or ranking model. To stabilize
the training procedure, before feeding into SLC, the output of PC is
re-scale into the range [0, 1] by min-max normalization (i.e., SL Ops
in Fig. 3), which represents the probabilities that the user prefers
the corresponding item. When updating the model, the gradient
of SLC (i.e., SL signal) is back-propagated to PC. That is to say, the
RL signal and SL signal are jointly employed and updated in a com-
plementary fashion. Next, we focus on SLC and explain how it
addresses the top-aware issue.

For easy to follow, the major symbols are listed in Table 1, fol-
lowing common symbolic notation, upper case bold letters denote
matrices, lower case bold letters denote column vectors without
any specification, and non-bold letters represent scalars.

3.2. How SRR resolves the top-aware issue

In the early stage of the interaction, the agent tries to perform
comprehensive explorations to grasp the users’ preference for bet-
ter long-term performance, i.e., the recommendation policy is
aggressive. Such explorations probably generate ‘risky’ items,
which lead to poor performance in the top positions. To resolve
such an issue, we propose to utilize an SL model (i.e., SLC in the
previous section) to supervise the RL model, where the recom-
mender agent learns combined policy m, to generate moderate
items in the direction of partially matching SL signal. Conse-
quently, such a learning scheme delivers better performance in
the top positions. Employing an SL signal to amend the objective
function of the reinforcement learning task provides the agent a
guide to performing a moderate exploration (i.e., not too far away
from the users’ historical preference).

By considering the SL signals and RL signals jointly, we update
the recommendation policy by maximizing the following objective
function:

J(0) = o (0) = (1 =)], (0), (1)

where J (6) is the RL objective which maximizes the expected
cumulative rewards, i.e., satisfy the user demands in the long-run.
And J; (0) is the SL objective, which ensures the recommendation
quality in the first several rounds. Here, o € (0, 1) is a trade-off fac-
tor to balance the RL and SL. Hence, the goal we optimize J(0) is to
resolve the top-aware issue without much performance sacrifice in
the long-run. Next, we elaborate on the RL signals and SL signals,
respectively.

F. Liu et al./ Neurocomputing 417 (2020) 255-269 259

Table 1
Notations.
Notation Description
S state space
A action space
u,v user and item set
u,v user u and item v
P.. 4, embeddings of user u and item v
h a set of latest positive interaction history
d dimension of embedding vectors
s current user state s
a current action a
n length of h
N batch size
0 parameters in SRR

For the RL signals, we consider both the policy-based and value-
based models. For policy-based methods, we take the on-policy
Policy Gradient (PG) [45] as an example, PG is always utilized to
handle the high dimensional and continuous actions. The objective
function is:

Ju(0) = Eyopran [Q7(5,0)] = / P (s) /A (s, a)Q"(s,a)dads, (2)

where p7 is the state distribution, 7 is the recommendation policy, s
is the user current state, a is the recommended item based on the
recommendation policy 7 and the user state s. Maximize J (0)
can be treated as we learn an optimal policy © which maximizes
the expectation of the return (Q”(s,a)). And the gradient of PG
can be calculated by the policy gradient theorem [45], where we
term ViJp, as the gradient of PG:

Vilr(0) = /S p(s) /A Vimo(s,a)Q” (s, a)dads

= / 07 (s) / Ty(s,q) Vgm’i(s’a)Q”(s, a)dads
S A

(S, Q)
= [#7(5) [5.V, log (5. 0)"s.a)dads
S A
= Espr g, [Vo 10g To (s, @)Q™ (s, a)]. (3)

From Eq. (3), we can conclude that if the return Q" (s, a) is pos-
itive (i.e., the long-term user feedback is positive), which indicates
that the decision of recommending item a according to the user
state s is positive, hence we update 0 to the direction of increasing
the probability 7,(s,a); If Q™(s,a) is negative, we update 0 to the
direction of decreasing the probability 7,(s, a).

For value-based methods, we take the off-policy Deep Q-
network (DQN) as an example. DQN employs deep neural networks
to estimate the Q function Q,(s,a),' and the Q value reflects the
quality of the recommended item a under user state s by the recom-
mender agent. The temporal-difference (TD) learning approach [45]
is utilized to learn the Q function, i.e., minimize the mean square
error:

Jn(0) = Esal(y ~ Qu(5,))*y = Ersa[r +ymaxQy (s’ @), (4)

where the target network technique [46] together with the replay
buffer technique [47] that to ensure independent and identical dis-
tribution of samples for training is adopted, and ¢’ is the parameter
of the target Q network. And we term V,J, as the gradient of the
parameter of the Q network:

! The Q function is always parameterized with w, to be consistent with Eq. (1), in
this paper we utilize 0 to parameterize the Q function.

Vi (0) = Esa[Vo(y — Qu(s.a))’]
=FEsarsa|(r+ Vﬂ’laﬁlXQo’ (s',d") —Qy(s,a))VeQ(s,a)]. (5)

It is often computational efficient to sample a mini-batch of
samples to optimize 0, instead of computing the full expectation
of the above gradient.

For the supervision signals, we consider two manners. One is
the classification based model and the other is the ranking based
model. For classification based SL signal, we employ the cross
entropy loss:

K
J5i(6) = — [y log(scorer) + (1 —y;) log(1 — scorey)], (6)
k=1

where y, is a binary variable indicating whether the k-th item is
consumed, K denotes the number of total items, score; is the Q value
of k-th item. We term this method as SRR-L.

For the ranking based SL signal, we adopt pairwise ranking
based loss [48]:

JS0) =" [Py log(Pi) + (1 - Pis) log(1 = Py)], (7)
vj,vel

where Pj; = .) is the predicted probability distribution

1
o 0500 —score

that the user prefers item »; than vk,f’j,k =1(1+Sj) is the real
probability distribution. Sjx € {0,+1}, if the user prefers item v;
than vy, the value of Sj is 1, otherwise —1. If the user has the same
preference on item ¢; and vy, S is 0. We name this method as SRR-
R.

With the above RL objective and SL objective functions, the
parameter 0 of the learned policy is updated as:

0= 0+n[oV]p(0) — (1 =)V (0)]; 8)

where 7 is the learning rate, and VJg, (0) and V] (0) are calculated
according to the RL and SL objective, respectively.

In sum, SLC plays two important roles. On one hand, it provides
PC with a supervision signal to learn a combined policy, which
enables the agent to focus more on immediate reward and pro-
mote the performance of top positions. On the other hand, SLC is
updated with the RL model, which ensures the long-term perfor-
mance not to sacrifice too much.

Comparison to the work in [5]. In this work, we focus on how to
fix the top-aware issue in RL-based recommendation methods.
However, in [5], the authors find that EC cannot be nicely trained
with the other two components simultaneously. Previous studies
bypass the obstacle through a pre-training and fixing strategy,
which is unable to model evolving preference of users and item
correlations in the dynamic environment. Hence, they focus on
addressing the training compatibility between the three compo-
nents in RL based recommendations, where the RL-based models
can be nicely trained in an end-to-end fashion. Therefore, the
research problems of the two studies are definitely different,
although they are in the same research background, i.e., RL-based
recommendation.

4. Training and evaluation procedure
4.1. Training procedure

In this work, the training algorithm of the proposed SRR frame-
work is detailed in Algorithm 1 in terms of value-based DQN.
Specifically, in time step t, the training procedure mainly includes
two phases, i.e., transition generation (lines 6-11) and model
updating (lines 12-16). For the first stage, the recommender
observes the current state s, that is calculated by the SRC, then
generates Q values on all the candidate items through the PC.

260 F. Liu et al./ Neurocomputing 417 (2020) 255-269
Table 2
Statistic information of the datasets.
ML (100k) BC ML (1M) Jester
user 943 1,152 6,040 63,978
item 1,682 5,547 3,952 150
ratings 100,000 50,239 1,000,209 1,761,439

And the action a; (recommended item #,) can be decided by the
highest Q value with &-greedy exploration. Subsequently, the
reward r; can be calculated based on the feedback of the user to
the recommended item ¢, from the offline log,”> and the user state
is updated (lines 9-10). Finally, the recommender agent stores the
transition (S, a, 1t,S¢.1) into the replay buffer D (line 11).

In the second stage, the recommender samples a minibatch of N
transitions with widely used prioritized experience replay [47] tech-
nique (line 12). Then, the recommender updates the parameters 0
according to Eq. (8) (lines 13-15). Note that we also employ the
widely-used target networks [46] with soft replace technique to
smooth the learning and avoid the divergence of parameters.

4.2. Reward shaping

The reward R(s, a) is considered as an evaluation of the quality
of the recommended item. Specifically, we define the reward func-
tion as

R(s,a) = Ro(s,a) + ag(s,a), (9)

where Rq(s, a) is the original reward function, which we leverage a
supervised learning model Probabilistic Matrix Factorization (PMF)
[13] as supervision to the feedbacks (ratings) of the recommended
items that the users never rate before. And all the original rewards
are empirically normalized into the range [—1,1]. The ¢(s,a) is the
potential reward function that can be treated as a local objective,
such as prior knowledge to optimize the Q values, i.e., to enlarge
the distribution of the Q values for better evaluating the actions.
More precisely, in this paper, we utilize the prometion of Normal-
ized Discounted Cumulative Gain (NDCG) [49] (a ranking based
evaluation metric) caused by the ranking action a as the potential
ranking reward, i.e., in each time step, when we add recommended
item v into the recommended list £, we utilize the change of NDCG
of £ as ¢(s,a) [50]. Since the training algorithm learns the model
parameters under the supervision of the rewards, defining the
rewards based on a ranking based evaluation measure can guide
the training process to achieve a better ranking performance.
What's more, o is a hyper-parameter to balance the two reward
functions.

4.3. Offline evaluation

In the offline evaluation, we follow the evaluation method in
[1,7,4,51]. For a given session, the agent only recommends the
items that appear in this session rather than the ones in the whole
item space. The reason is that we only have the ground truth feed-
back for the existing items in the session in the recorded offline log.
The offline evaluation procedure can be treated as a rerank process
on the existing items in the current session by iteratively selecting
an item w.r.t. the action generated by the PC in the SRR framework.
As we recommend only one item per time step, after the end of the
whole recommendation procedure, we can calculate the evaluation
metrics based on the recommended list £ and the ground truth

2 The reward for items that the user never rates before is 0 during the training
procedure.

order of items in this session. Note that the model parameters
are not updated in the offline evaluation. We summarize the offline
evaluation in Algorithm 1, specifically, for current test session, the
recommender first observes the initial state s, and the item list).
Then in the time step t, the recommender observes the current
state s, that is calculated by the SRC, then generates Q values on
all the candidate items () through the PC. And the action a, (rec-
ommended item v, is add to the recommended list £) can be
decided by the highest Q value (line 4-5). Next, the immediate
reward r; can be calculated based on the feedback of the user to
the recommended item v, from the offline log, then the state can
be updated (line 6-7). Moreover, we remove the item v, from
the candidate item list). After T time steps, we can get the final
recommended item list £, then we can calculate the evaluation
result (line 9).

4.4. Simulated online evaluation

As it is risky and costly to directly deploy the RL based models
on recommender systems [2,52], we build an interactive recom-
mendation simulator to mimic the online environment, i.e., to sim-
ulate the reward R(s,a) according to the feedback of the
corresponding recommendation. The online evaluation procedure
follows Algorithm 1, i.e., the parameters continuously update dur-
ing the online evaluation stage. Its major difference from Algo-
rithm 1 is that the feedback of a recommended item is observed
by the environment simulator. Moreover, before each recommen-
dation session starting in the simulated online evaluation, we reset
the parameters back to 0 and w which is the policy learned in the
training stage for a fair comparison.

5. Experiment

In this section, we conduct experiments on four datasets to val-
idate the effectiveness of the proposed SRR, and we aim to answer
the following research questions:

e RQ 1 Can SRR address the top-aware issue for RL based recom-
mendation models?

e RQ 2 How hyper-parameter settings affect SRR?

« RQ 3 Can SRR generate ‘safe’ recommendations to promote the
performance of top positions?

5.1. Experimental setup

5.1.1. Dataset and evaluation metrics

We adopt four publicly available datasets to conduct experi-
ments, which are MovieLens (100 k),> BookCrossing,* MovieLens
(1 M) and Jester (2).° The MovieLens and BookCrossing are abbrevi-
ated as ML and BC, respectively. And the statistics of the datasets are
specified in Table 2.

3 https://grouplens.org/datasets/movielens/.
4 http://www2.informatik.uni-freiburg.de/ cziegler/BX/.
5 http://eigentaste.berkeley.edu/dataset/.

https://grouplens.org/datasets/movielens/

F. Liu et al./ Neurocomputing 417 (2020) 255-269 261

Algorithm 1: Training Algorithm of SRR Framework

1 Initialize the parameters 6 in SRR and parameters in target network
9/

2 Initialize replay buffer D, soft-replace parameter 7

3 for session = 1, M do

4 Observe the initial state sy according to the offline log

5 for t =1, T do

6

7

8

Observe state s; = f(h;), where hy = {q1,...,qn}
Calculate Q values Qg(s;, a;) for all the candidate items
Obtain action a; according to the highest Q value with
e-greedy, recommend item vy
9 Calculate reward r; = R(s;, a;) based on the feedback of the
user
10 Observe new state s;y1 = f(hyr1), where
hiv1 ={Qs, ..., qn, q:} if 7 is positive, otherwise, unchanged
11 Store transition (s, as, 74, S441) in D
12 Sample a minibatch transitions (s;, a;, r;, S;+1) in D with
prioritized experience replay sampling technique
13 Calculate the RL signal in Eq. (5)
14 Calculate the SL signal in Eq. (6) or Eq. (7)
15 update 6 in Eq. (8)
16 Update the target networks:
O —T0+(1—T1)0

17 return 0

Algorithm 2: Offline Evaluation Algorithm of SRR Framework

input : state window size n, reward function R and recommended
list £ = (), evaluation metrics g(-)

output: Evaluation results O
1 Observe the initial state sy and item list Y according to the current

test session
for t =1, T do
Observe current state s; = f(h:), where hy = {q1, ..., qn}
4 Execute action a; according to the highest Q value Qg(s;, a;), and
recommend item vy

5 Add v in £

w N

6 Get reward r, = R(sy, a;) from the feedback located in the users’
log by Eq. (9)

7 Update to a new state s;.1 = f(hsy1), where
hiv1 = {qa, ..., dn, q: } if 7 is positive, otherwise, h; 11 = hy

8 remove v; from Y

9 Calculate evaluation results: O = g(£,Y)
10 return O

262 F. Liu et al./ Neurocomputing 417 (2020) 255-269

o MovieLens (100 k). A benchmark dataset comprises of 0.1 mil-
lion ratings from users to the recommended movies on Movie-
Lens website.

o BookCrossing. This dataset is Collected by Cai-Nicolas Ziegler in
a 4-week crawl (August/ September 2004) from the Book-
Crossing community, which contains 278,858 users (anon-
ymized but with demographic information) providing
1,149,780 ratings (explicit/implicit) about 271,379 books. We
normalize the ratings to discrete values from 0 to 5. We filter
the dataset following the MovieLens (100k) treatment, i.e.,
remove all users and items who had less than 20 and 10 inter-
actions, receptively.

e MovieLens (1 M). A benchmark dataset includes of 1 million
ratings from the MovieLens website.

o Jester (2).° This dataset contains over 1.7 million real-value rat-
ings (—10.0 to +10.0) over jokes in an online joke recommender
system.

In addition, both offline and simulated online evaluations are
conducted following [4,1,5]. For the offline evaluation, we employ
the widely-used ranking based Precision@k, NDCG@XK as the eval-
uation metrics :

i mrel(L;
Precision@k = M . DCGak
rel(L;) _
= ! ,IDCGQk
ic(1.k) log,(i+1)
oy e NDCGak — DECek (10)
- ic(1k) log,(i+1) ~ IDCGak’

where rel(£;) returns 1 if the rating of £; is larger than the threshold,

and 0 otherwise. And £ is the ideal ranking list of £. Moreover, for
the simulated online evaluation, the average reward is leveraged.

5.1.2. Compared methods

For the offline evaluation, we employ conventional representa-
tive methods including Popularity [53], PMF [13]| and SVD++ [8].
Moreover, four state-of-the-art RL based methods are utilized:
DQN [6] and DEERS [1] are value-based models, while DDPG [9],
DRR [4], and EDRR |[5] are policy-based models. For online evalu-
ation, in addition to the four RL based methods, we also consider
two bandit algorithms, LinUCB [21] and HLinUCB [22].

e Popularity recommends the most popular item, i.e., the item
with the highest average rating, and we also remove a few
top most popular items following [53].

PMF makes a matrix decomposition as SVD, while it only takes
into account the non zero elements.

SVD++ mixes the strengths of the latent model as well as the
neighborhood model.

LinUCB selects a contextual arm (item) according to the esti-
mated upper confidence bound of the potential reward.
HLinUCB further learns hidden features for each arm to model
the potential reward.

DQN utilizes a Deep Q-network to generate Q-values to evalu-
ate all the possible actions for the current state.

DDPG learns a ranking vector to pick the highest ranking score
for recommendation.

DEERS represents the state with both the positive and negative
feedbacks by Recurrent Neural Network (RNN) under Deep Q-
Network (DQN) framework.

=)

http://eigentaste.berkeley.edu/dataset/.
7 As we recommend only one item per time step, we evaluate the metrics after the
end of the whole recommendation procedure.

« DRR explicitly models the user-item interactions to represent
the state to better study recommendation policy under the
Actor-Critic framework.

o EDRR incorporates a supervised learning component to learn
more powerful embeddings for RL-based recommendation in
an end-to-end manner.

To verify the effectiveness of the proposed SRR framework
(both SRR-L and SRR-R) on both value-based and policy-based
RL models, we adapt the above five RL-based models into SRR
framework, which are DQN-L(R), DEERS-L(R), DDPG-L(R), DRR-L
(R), and EDRR-L(R). For value-based models DQN-L(R), DEERS-L
(R), and EDRR-L(R), they choose the action with the largest Q-
value under the given state, as described in Section 2.1. For
policy-based methods DDPG-L(R) and DEERS-L(R), PC outputs a
ranking vector [4]. The items are recommended according to the
ranking score by the inner product operation between the gener-
ated ranking vector and the item embeddings. As already stated
before, the ranking scores are re-scaled into the range [0, 1] when
feeding into SLC.

5.1.3. Settings

Following [4,1,5], For each dataset, we choose 80% of the inter-
actions in each user session as the training set and leave the rest as
the test set. Moreover, for ML (100k), BC and ML (1M), the positive
ratings are 4 and 5, while for Jester, the positive ones are those
higher than 0, the ratings are utilized for generating rewards. For
RL-based methods, the number of latest positively rated items n
is empirically set to 5. We perform PMF to train the 100-
dimensional embeddings of the users and items. Moreover, in each
episode, we do not recommend repeated items. The discount rate y
is 0.9, and the batch size is 64. For all the RL methods, the Adam
optimizer is adopted with L,-norm regularization to prevent over-
fitting. For the other methods, the sizes of hidden vector in PMF
and SVD++ both are set to 20, the upper confidence bound factor
o (not the o in Eq. (1)) and L2 regularization in LinUCB are set to
0.3 and 0.1, respectively. For HLinUCB, the upper bound factor o,
and o, are set to 0.3 and 0.1, and the L2 regularization factors /;
and /, are both set to 0.1.

5.2. Performance comparison and analysis (RQ1)

5.2.1. Offline evaluation results and analysis

The offline evaluation results are summarized in Tables 3-6. We
have the following observations:

(1) Compared with conventional methods such as SVD++, the RL
models DQN, DDPG, DEERS, DRR, and EDRR deliver poor perfor-
mance at top-1 and top-3 positions. This is in accordance with
our motivation that RL methods suffer from the top-aware issue.

(2) The performance of the four RL baseline models is improved
by applying SRR-L and SRR-R. More specifically, better accuracy at
top-1 and top-3 is yield and comparable performance at top-20
and the long-term rewards are achieved. Such observations sug-
gest the proposed SRR framework addresses the top-aware issue
without much long-term performance sacrifice, on both value-
based and policy-based RL models. This is attributed to the intro-
duced supervision signals, which enable RL models to better bal-
ance the top-aware accuracy and long-term rewards.

(3) Comparing SRR-L and SRR-R, we find that the RL models
with SRR-R outperform that with SRR-L. Because the pairwise
ranking based supervision signal can learn the pairwise preference
over the items, and it is more consistent with the action in SRR,
which is indeed chosen from the top-ranked item.

http://eigentaste.berkeley.edu/dataset/

F. Liu et al./ Neurocomputing 417 (2020) 255-269 263

Table 3

Ranking performance on ML (100 k) dataset. (The best results are marked in bold type.)
Model Precision@1 Precision@3 Precision@20 NDCG@3 NDCG@20
Popularity 0.8842 0.8025 0.5685 0.9328 0.8720
PMF 0.8921 0.8261 0.5845 0.9335 0.8849
SVD++ 0.9052 0.8220 0.5876 0.9364 0.8866
DQN 0.8014 0.7446 0.6076 09118 0.8815
DQN-L 0.8287 0.7629 0.5942 0.9135 0.8792
DQN-R 0.8335 0.7668 0.6017 0.9142 0.8804
DDPG 0.7978 0.7441 0.6052 0.9106 0.8870
DDPG-L 0.8255 0.7592 0.5912 0.9133 0.8826
DDPG-R 0.8327 0.7665 0.5958 0.9150 0.8841
DEERS 0.8517 0.8031 0.6481 0.9255 0.8933
DEERS-L 0.8754 0.8275 0.6414 0.9342 0.8902
DEERS-R 0.8793 0.8289 0.6433 0.9360 0.8916
DRR 0.8744 0.8136 0.6564 0.9259 0.8982
DRR-L 09172 0.8388 0.6504 0.9392 0.8926
DRR-R 0.9277 0.8405 0.6529 0.9418 0.8945
EDDR 0.8875 0.8287 0.6925 0.9293 0.9062
EDRR-L 0.9252 0.8416 0.6877 0.9408 0.8984
EDDR-R 0.9337 0.8464 0.6885 0.9446 0.9015

Table 4

Ranking performance on BC dataset. (The best results are marked in bold type.)
Model Precision@1 Precision@3 Precision@20 NDCG@3 NDCG@20
Popularity 0.7128 0.6775 0.6302 0.9217 0.8898
PMF 0.7407 0.7045 0.6527 0.9345 0.9037
SVD++ 0.7471 0.7067 0.6539 0.9359 0.9054
DQN 0.6937 0.6772 0.6557 0.9126 0.9062
DQN-L 0.7183 0.6987 0.6712 0.9144 0.9025
DQN-R 0.7194 0.6995 0.6738 0.9165 0.9037
DDPG 0.6924 0.6754 0.6548 09134 0.9070
DDPG-L 0.7139 0.6968 0.6703 0.9152 0.9028
DDPG-R 0.7172 0.6982 0.6726 0.9170 0.9041
DEERS 0.7075 0.6860 0.6685 0.9273 0.9118
DEERS-L 0.7462 0.7092 0.6619 0.9287 0.9087
DEERS-R 0.7524 0.7117 0.6631 0.9306 0.9104
DRR 0.7146 0.6956 0.6734 0.9289 0.9135
DRR-L 0.7695 0.7278 0.6683 0.9364 0.9106
DRR-R 0.7738 0.7346 0.6706 0.9385 0.9118
EDDR 0.7275 0.7044 0.6887 0.9338 0.9189
EDRR-L 0.7784 0.7362 0.6812 0.9394 0.9146
EDDR-R 0.7820 0.7387 0.6825 0.9415 0.9155

Table 5

Ranking performance on ML (1 M) dataset. (The best results are marked in bold type.)
Model Precision@1 Precision@3 Precision@20 NDCG@3 NDCG@20
Popularity 0.8798 0.7483 0.5094 0.9265 0.8727
PMF 0.8918 0.7644 0.5213 0.9404 0.8734
SVD++ 0.8923 0.7722 0.5183 0.9457 0.8785
DQN 0.8036 0.7329 0.5177 0.9084 0.8759
DQN-L 0.8384 0.7602 0.5080 0.9091 0.8715
DQN-R 0.8403 0.7635 0.5114 0.9097 0.8732
DDPG 0.8045 0.7307 0.5185 0.9097 0.8776
DDPG-L 0.8415 0.7733 0.5124 0.9102 0.8737
DDPG-R 0.8430 0.7784 0.5134 0.9125 0.8746
DEERS 0.8279 0.7850 0.5952 0.9249 0.8874
DEERS-L 0.8425 0.7996 0.5730 0.9264 0.8775
DEERS-R 0.8530 0.8107 0.5814 0.9272 0.8789
DRR 0.8441 0.7990 0.6227 0.9280 0.8912
DRR-L 0.9059 0.8235 0.6075 0.9432 0.8907
DRR-R 0.9072 0.8306 0.6183 0.9446 0.8910
EDDR 0.8628 0.8185 0.6488 0.9360 0.8985
EDRR-L 0.9155 0.8447 0.6335 0.9464 0.8937

EDDR-R 0.9178 0.8483 0.6362 0.9485 0.8952

264 F. Liu et al./ Neurocomputing 417 (2020) 255-269

Table 6

Ranking performance on Jester dataset. (The best results are marked in bold type.)
Model Precision@1 Precision@3 Precision@20 NDCG@3 NDCH@20
Popularity 0.6718 0.6380 0.5608 0.9064 0.8415
PMF 0.6851 0.6499 0.5876 0.9125 0.8428
SVD++ 0.6831 0.6441 0.5908 0.9206 0.8515
DQN 0.6238 0.6130 0.5952 0.8936 0.8548
DQN-L 0.6477 0.6401 0.5894 0.8965 0.8507
DQN-R 0.6513 0.6422 0.5907 0.8988 0.8515
DDPG 0.6267 0.6135 0.5947 0.8931 0.8550
DDPG-L 0.6550 0.6418 0.5904 0.9022 0.8513
DDPG-R 0.6584 0.6472 0.5926 0.9075 0.8537
DEERS 0.6447 0.6308 0.6018 0.9095 0.8748
DEERS-L 0.6642 0.6377 0.5831 0.9125 0.8652
DEERS-R 0.6764 0.6385 0.5852 0.9162 0.8675
DRR 0.6584 0.6394 0.6075 0.9175 0.8834
DRR-L 0.7192 0.6421 0.5975 0.9272 0.8795
DRR-R 0.7216 0.6470 0.6034 0.9306 0.8819
EDDR 0.6778 0.6465 0.6168 0.9246 0.8898
EDRR-L 0.7342 0.6584 0.6077 0.9315 0.8842
EDDR-R 0.7370 0.6597 0.6105 0.9334 0.8856

5.2.2. Simulated online evaluation results and analysis

The results of the simulated online evaluation are summarized
in Tables 7 and 8, where * denotes the corresponding RL method.
We observe that proposed models achieve slightly worse perfor-
mance in term of long-term cumulative reward compared with
the base model DRR, but still outperform the other baselines. The
fact suggests that the proposed methods do not sacrifice the
long-term reward too much. Moreover, we observe that SRR-R
models still perform better than SRR-L models.

5.3. Hyper-parameter study (RQ2)

In this subsection, we empirically study the influence of the
embedding size d, length of h, batch size N and trade-off factor
o on the proposed SRR framework. For simplicity, we take
DRR-R as an example to investigate the influence of the
parameters.

5.3.1. Embedding size d

To exploit the influence of the embedding size d, we tune it as
d e {4,8,16,32,64,100,200}, and report the results in Fig. 5. From
the results, we observe that the performance of DRR-R is increased
at first and then decreased when we enlarge the embedding size d.
Both the Precision@1 and average reward achieve the best perfor-
mance on the four datasets when d = 100. As the model capacity
(i.e., the ability of modeling features) increases as the embedding
size enlarges, which results in better performance. However, after
reaching the peak performance, the model capacity will not
increase even we enlarge the embedding size d, as the model
capacity is limited by the scale of the training data.

5.3.2. Length of h

In proposed SRR, we take a set of latest positive interaction his-
tory (h) to represent the user state, here we investigate the influ-
ence of the length of h (n represent the length of h). We very
ne {3,5,7,10,15}, and Fig. 6 reports the results. From the results,

Table 7
The average rewards on ML (100 k) and BC. (x denotes the corresponding RL method, and the best results are marked in bold type.)
Model ML (100Kk) BC
* #-L *-R * *-L *-R
LinUCB 0.4266 - - 0.3126 - -
HLinUCB 03214 - - 0.3225 - -
DQN 0.5806 0.5714 0.5762 0.4237 0.4183 0.4208
DDPG 0.5783 0.5705 0.5748 0.4228 0.4175 0.4192
DEERS 0.7035 0.6842 0.6907 0.4465 0.4324 0.4357
DRR 0.7105 0.7025 0.7054 0.4517 0.4461 0.4493
EDRR 0.7552 0.7446 0.7471 0.4623 0.4570 0.4587
Table 8
The average rewards on ML (1 M) and Jester. (x denotes the corresponding RL method, and the best results are marked in bold type.)
Model ML (1 M) Jester
* #-L *-R * *-L *-R
LinUCB 0.4996 - - 0.2391 - -
HLinUCB 0.5428 - - 0.2488 - -
DQN 0.5944 0.5825 0.5887 0.2791 0.2674 0.2742
DDPG 0.5937 0.5892 0.5915 0.2805 0.2783 0.2792
DEERS 0.6635 0.6378 0.6493 0.3274 0.3086 0.3165
DRR 0.6746 0.6680 0.6717 0.3315 0.3268 0.3291
EDRR 0.6924 0.6852 0.6875 0.3471 0.3425 0.3437

F. Liu et al./ Neurocomputing 417 (2020) 255-269 265
ML (100k) 0.78 BC
— 0.45
0.92 0.77 =
°
— — 0.76 0.44
e e 3
50.90 50.75 88
© @ &
§ § 0.74 0420
a 0.88 o 0.73 °>’
a ©
—— Precision@1 —&— Precision@1 0.41
—e— average reward 0.72 —e— average reward
0.60
0.86 0.40
0 50 100 150 200 0 50 100 150 200
Embedding size d Embedding size d
0.01 ML (1M) 0.68 Jester 03
0.72 '
0.90 0.66T o
= s ~071 032 %5
©0.89 % ® qg)
S 064~ §o0.70 031 %
‘5 0-88 (O 1<)
BL o 2= o
3 © 30.69 ©
Lo.87 0625 L% 030 g
o > o >
© ©
0.86 —+— Precision@1 0.60 0.68 —a— Precision@1
—e— average reward : —e— average reward 0.29
0.85 0.67
0 50 100 150 200 0 50 100 150 200
Embedding size d Embedding size d
Fig. 5. Parameter study on embedding size d.
ML (100k)
0.774
0.9275 0.706 0.449
T =
— 0.9250 7040 = ©
® 0.70 % 90.772 0.448 q;)
50.9225 S 5 =
B ()] B 0.447
v 0702 5 2 o
8 0.9200 @ 8 0.770 @
= @ & 0.446 ©
0.9175 0.700 3 -
—— Precision@1 0.768 —4— Precision@1 0.445
0.9150 —e— average reward —e— average reward
0.698
4 6 8 10 12 14 4 6 8 10 12 14
Length of h Length of h
ML (1M) Jester
0.908 0.330
0.722
0.906
— 0.721
©0.904 ©
c c
o & 0.720
igi0i802 @
O [w]
0 0.900 TR
o o
0.718
0.898 —+— Precision@1 0.668 —— Precision@1 0.325
0.896 —e— average reward 0.717 —e— average reward
4 6 8 10 12 14 4 6 8 10 12 14
Length of h Length of h

Fig. 6. Parameter study on length of h.

we observe that the performance is first increases and then
decreases as we enlarge n, and the summit appears at n =7 on
BC dataset and n = 10 on ML (100k), ML (1M) and Jester datasets.
The reasons are as follows: (1) As the length of h is too small, the
state of user cannot be fully represented, which leads to lower per-
formance; (2) An appropriate size of h can better represent the user
state; (3) When n is too large (n = 15), some out-of-date items in h
cannot represent the current state of the user, which also leads to

lower performance. In SRR, we empirically choose n =5, which
appropriately trade-off the performance and the computational
complexity.

5.3.3. Batch size N

In this subsection, we empirically study the influence of the
batch size N on DRR-R. We tune the batch size
N € {64,128,256,512,1024}, and Fig. 7 reports the results. From

266

F. Liu et al./ Neurocomputing 417 (2020) 255-269

0.928 ML(100k) 0.774
0.449
0.926 ©
o o 0.773 ~
® ® 0.448 2
g 0.924 g v
= -=0.772
G @ 0.447 &
§0.922] ©
a a g
0.771 0.446 3
0.920 —— Precision@1 0.700 —— Precision@1
—e— average reward —e— average reward
0.770 0.445
200 400 600 800 1000 200 400 600 800 1000
Batch size N Batch size N
ML (1M ter
0.908 () 0.672 Jeste
0.329
0.721
0.906 0.670 2 °
by © 0.328 ©
g) % (2)0.720 q;)
o 0.668>= © =
w 0.904 % @ 0.719 0.327 g
o @© o ©
g 0.666 G £ 0.718 o]
0.902 = 0.326 %
—&— Precision@1 0:717 —&— Precision@1
—e— average reward 0.664 —e— average reward
0.900
200 400 600 800 1000 200 400 600 800 1000
Batch size N Batch size N
Fig. 7. Parameter study on batch size N.
ML (100k) .78 BC 0.46
0.92 0.70 s
© ©
. 0.68 g =076 0.44 §
g 0.90 0669 ¢ 043¢
‘@ S D074 0.42 &
O 0.64 oL .
§ 0.88 g § g
~ 0.62 2 = 0419
0.86 —— Precision@1 0.72 —+— Precision@1 0.40
’ —e— Average reward [0.60 —e— Average reward
0.39
0.1 0.2 0.3 04 05 0.6 0.7 0.8 0.9 0.1 0.2 0.3 04 05 0.6 0.7 0.8 0.9
Trade-off factor a Trade-off factor a
ML (1M) 0.68 Jester
0.90 0.72 0.33
0.66'E
- (;5 - 032 g
@o 88 0:64 0 D70 g
o o 0.31
o % - g
o 0620 Fo.68 0300
& 0.86 ¢ a g
- 0.60 < — 0.29<
—i— Precision@1 0.66 —i— Precision@1 =
—e— Average reward —e— Average reward
0.84 0.58 0.28

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Trade-off factor a

0.1 0.2 0.3 0.4 05 0.6 0.7 0.8 0.9
Trade-off factor a

Fig. 8. Parameter study on trade-off factor o.

the results, we observe that the performances of Precision@1 and
Average reward both are first increase and then decline when we
enlarge batch size N, and the summit appears at N = 128 on ML
(100k) and BC datasets, and N = 256 on ML (1M) and Jester data-
sets. We can conclude that an appropriate small batch size
achieves higher performance, nevertheless too large batch size

harms the generalization ability that leads to lower performance
[54].

5.3.4. Trade-off factor o
The trade-off factor « is to balance the RL and SL signals. Fig. 8
presents the results of DRR-R. We observe that the Precision@1

F. Liu et al./ Neurocomputing 417 (2020) 255-269 267

Table 9
Different recommendation manner between DRR-R and DRR on ML-1M dataset. (The
value in (-) denotes the corresponding rating.)

time step DRR-R DRR
1 Pinocchio (4) Road to Wellville (2)
2 Absolute Power (3) Jaws (4)
3 Vacation (5) Baby Geniuses(1)
4 Almost Famous (4) Star Wars: Episode I (5)
5 Forever Young (4) For a Few Dollars More (3)
6 Titan A.E. (4) Wayne’s World (4)
7 Three Kings (3) Peter Pan (5)
8 American Graffiti (5) Aliens (3)
9 Patch Adams (3) Lawrence of Arabia (4)
10 Yellow Submarine(4) Top Gun(4)

first increases and then declines when we enlarge o, and the sum-
mit appears at o = 0.7 for BC and ML (1M) datasets and o = 0.6 for
ML (100k) and Jester datasets. The average reward persistently
increases and achieves comparable performance with DRR, which
indicates that our model promotes the performance in top posi-
tions without much sacrifice of long-term reward. We can con-
clude: (1) when o is small, the weight of SL signals is strong, so
that the exploration is restricted severely and the performance is
not good; (2) a large o indicates weak SL supervision, in this case,
the RL and SL signals can be appropriately balanced. Therefore,
suitable weak supervision helps to trade off the immediate reward
and the long-term reward, and the top-aware issue can be properly
addressed.

5.4. Case study (RQ3)

Apart from being comparable in accuracy performance, the key
advantage of SRR over other RL based recommendation methods is
that it can address the top-aware issue. Towards this end, we show
examples drawn from DRR-R and DRR on ML (1M) dataset to
demonstrate different recommendation manners in top positions.

Here, we give a case study to show the superiority of DRR-R to
DRR in addressing the top-aware issue. Specifically, we randomly
pick up a user (the chosen user is with ID 48) from ML (1M) dataset
and compare the recommendation procedure of DRR-R and DRR.
The results are shown in Table 9. We observe that DRR-R and
DRR perform differently in top 5 positions, and DRR-R performs
better. DRR explores the user’s preference more aggressively but
loses accuracy. More specifically, after recommending ‘Jaws’ with
rating 4, then DRR explores to recommend an adventurous movie
‘Baby Geniuses’ with rating 1, and a safe recommendation ‘Star
Wars: Episode I — The Phantom Menace’ with rating 5, which is
in the same genre with ‘Jaws’. On the other hand, DRR-R keeps rec-
ommending high rating movies in the top positions. The observa-
tion demonstrates DRR-R takes moderate exploration to achieve
reliable performance in top positions while DRR performs aggres-
sive exploration with accuracy sacrifice in top positions.

6. Conclusion

We empirically find that the RL-based recommendation meth-
ods generally suffer from the top-aware issue. To address the
drawback, we propose a supervised reinforcement learning recom-
mendation framework SRR. In the framework, a supervised learn-
ing model is introduced to guide the training of the RL model.
We find that weak supervision is helpful to address the top-
aware issue. Extensive experiments on two real-world datasets
have been carried out and the results demonstrate the proposed
SRR framework indeed resolve the top-aware issue without much
performance sacrifice in the long-run, compared with the state-of-
the-art methods.

CRediT authorship contribution statement

Feng Liu: Conceptualization, Methodology, Software, Valida-
tion, Formal analysis, Writing - original draft. Ruiming Tang:
Methodology, Investigation, Formal analysis, Writing - review &
editing. Huifeng Guo: Methodology, Investigation, Formal analysis,
Writing - review & editing. Xutao Li: Methodology, Investigation,
Formal analysis, Supervision, Writing - review & editing. Yunming
Ye: Supervision, Project administration, Funding acquisition. Xiu-
giang He: Supervision, Project administration.

Declaration of Competing Interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

References

[1] X. Zhao, L. Zhang, Z. Ding, L. Xia,]J. Tang, D. Yin, Recommendations with
negative feedback via pairwise deep reinforcement learning, in: Proceedings of
the 24th ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining, KDD 2018, London, UK, August 19-23, 2018, 2018, pp. 1040-
1048. doi:10.1145/3219819.3219886..

[2] H. Chen, X. Dai, H. Cai, W. Zhang, X. Wang, R. Tang, Y. Zhang, Y. Yu, Large-scale
interactive recommendation with tree-structured policy gradient, in:
Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, 2019,
pp. 3312-3320..

[3] G. Dulac-Arnold, R. Evans, P. Sunehag, B. Coppin, Reinforcement learning in
large discrete action spaces, CoRR abs/1512.07679..

[4] F. Liuy, R. Tang, X. Li, Y. Ye, H. Chen, H. Guo, Y. Zhang, Deep reinforcement
learning based recommendation with explicit user-item interactions
modeling, CoRR abs/1810.12027. arXiv:1810.12027..

[5] F. Liu, H. Guo, X. Li, R. Tang, Y. Ye, X. He, End-to-end deep reinforcement

learning based recommendation with supervised embedding, in: WSDM '20:

The Thirteenth ACM International Conference on Web Search and Data Mining,

Houston, TX, USA, February 3-7, 2020, 2020, pp. 384-392. doi:10.1145/

3336191.3371858..

G. Zheng, F. Zhang, Z. Zheng, Y. Xiang, NJ. Yuan, X. Xie, Z. Li, DRN: A deep

reinforcement learning framework for news recommendation, in: Proceedings

of the 2018 World Wide Web Conference on World Wide Web, WWW 2018,

Lyon, France, April 23-27, 2018, 2018, pp. 167-176. doi:10.1145/

3178876.3185994..

X. Zhao, L. Xia, L. Zhang, Z. Ding, D. Yin,]. Tang, Deep reinforcement learning for

page-wise recommendations, in: Proceedings of the 12th ACM Conference on

Recommender Systems, RecSys 2018, Vancouver, BC, Canada, October 2-7,

2018, 2018, pp. 95-103. doi:10.1145/3240323.3240374..

Y. Koren, Factorization meets the neighborhood: a multifaceted collaborative

filtering model, in: Proceedings of the 14th ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, Las Vegas, Nevada,

USA, August 24-27, 2008, 2008, pp. 426-434. doi:10.1145/1401890.1401944..

[9] X. Zhao, L. Zhang, Z. Ding, D. Yin, Y. Zhao,]. Tang, Deep reinforcement learning
for list-wise recommendations, arXiv preprint arXiv:1801.00209..

[10] RJ. Mooney, L. Roy, Content-based book recommending using learning for text
categorization, in: ACM DL, 2000, pp. 195-204..

[11] Y. Koren, R.M. Bell, C. Volinsky, Matrix factorization techniques for
recommender systems, IEEE Computer 42 (8) (2009) 30-37.

[12] J. Wang, A.P. de Vries, MJ.T. Reinders, Unifying user-based and item-based
collaborative filtering approaches by similarity fusion, in: SIGIR 2006:
Proceedings of the 29th Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval, Seattle, Washington, USA,
August 6-11, 2006, 2006, pp. 501-508. doi:10.1145/1148170.1148257..

[13] R. Salakhutdinov, A. Mnih, Probabilistic matrix factorization, in: Advances in
Neural Information Processing Systems 20, Proceedings of the Twenty-First
Annual Conference on Neural Information Processing Systems, Vancouver,
British Columbia, Canada, December 3-6, 2007, 2007, pp. 1257-1264..

[14] H.B. McMahan, G. Holt, D. Sculley, M. Young, D. Ebner, J. Grady, L. Nie, T.
Phillips, E. Davydov, D. Golovin, S. Chikkerur, D. Liu, M. Wattenberg, A.M.
Hrafnkelsson, T. Boulos, J. Kubica, Ad click prediction: a view from the
trenches, in: The 19th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, KDD 2013, Chicago, IL, USA, August 11-14, 2013,
2013, pp. 1222-1230. doi:10.1145/2487575.2488200..

[15] S. Rendle, Factorization machines, in: ICDM 2010, The 10th IEEE International
Conference on Data Mining, Sydney, Australia, 14-17 December 2010, 2010,
pp. 995-1000. doi:10.1109/ICDM.2010.127..

[16] Y.]Juan, Y. Zhuang, W. Chin, C. Lin, Field-aware factorization machines for CTR
prediction, in: Proceedings of the 10th ACM Conference on Recommender
Systems, Boston, MA, USA, September 15-19, 2016, 2016, pp. 43-50.
doi:10.1145/2959100.2959134..

[6

(7

[8

http://refhub.elsevier.com/S0925-2312(20)31165-6/h0055
http://refhub.elsevier.com/S0925-2312(20)31165-6/h0055

268 F. Liu et al./ Neurocomputing 417 (2020) 255-269

[17] Y. Qu, H. Cai, K. Ren, W. Zhang, Y. Yu, Y. Wen,]J. Wang, Product-based neural
networks for user response prediction, in: IEEE 16th International Conference
on Data Mining, ICDM 2016, December 12-15, 2016, Barcelona, Spain, 2016,
pp. 1149-1154. doi:10.1109/ICDM.2016.0151..

[18] H. Guo, R. Tang, Y. Ye, Z. Li, X. He, Deepfm: A factorization-machine based
neural network for CTR prediction, in: Proceedings of the Twenty-Sixth
International Joint Conference on Artificial Intelligence, [JCAI 2017, Melbourne,
Australia, August 19-25, 2017, 2017, pp. 1725-1731. doi:10.24963/ijcai.2017/
239..

[19] H. Cheng, L. Koc, J. Harmsen, T. Shaked, T. Chandra, H. Aradhye, G. Anderson, G.
Corrado, W. Chai, M. Ispir, R. Anil, Z. Haque, L. Hong, V. Jain, X. Liu, H. Shah,
Wide & deep learning for recommender systems, CoRR abs/1606.07792..

[20] G. Zhou, X. Zhu, C. Song, Y. Fan, H. Zhu, X. Ma, Y. Yan, J. Jin, H. Li, K. Gai, Deep
interest network for click-through rate prediction, in: Proceedings of the 24th
ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining, KDD 2018, London, UK, August 19-23, 2018, 2018, pp. 1059-1068.
doi:10.1145/3219819.3219823..

[21] L. Li, W. Chu, J. Langford, RE. Schapire, A contextual-bandit approach to
personalized news article recommendation, in: Proceedings of the 19th
International Conference on World Wide Web, WWW 2010, Raleigh, North
Carolina, USA, April 26-30, 2010, 2010, pp. 661-670. doi:10.1145/
1772690.1772758..

[22] H. Wang, Q. Wu, H. Wang, Learning hidden features for contextual bandits, in:
Proceedings of the 25th ACM International Conference on Information and
Knowledge Management, CIKM 2016, Indianapolis, IN, USA, October 24-28,
2016, 2016, pp. 1633-1642. doi:10.1145/2983323.2983847..

[23] O. Chapelle, L. Li, An empirical evaluation of thompson sampling, in: Advances
in Neural Information Processing Systems 24: 25th Annual Conference on
Neural Information Processing Systems 2011. Proceedings of a meeting held
12-14 December 2011, Granada, Spain, 2011, pp. 2249-2257..

[24] H. Wang, Q. Wu, H. Wang, Factorization bandits for interactive
recommendation, in: Proceedings of the Thirty-First AAAI Conference on
Artificial Intelligence, February 4-9, 2017, San Francisco, California, USA, 2017,
pp. 2695-2702..

[25] C. Zeng, Q. Wang, S. Mokhtari, T. Li, Online context-aware recommendation
with time varying multi-armed bandit, in: Proceedings of the 22nd ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining,
San Francisco, CA, USA, August 13-17, 2016, 2016, pp. 2025-2034.
doi:10.1145/2939672.2939878..

[26] S. Rendle, C. Freudenthaler, L. Schmidt-Thieme, Factorizing personalized
markov chains for next-basket recommendation, in: WWW 2010, Raleigh,
North Carolina, USA, April 26-30, 2010, 2010, pp. 811-820. doi:10.1145/
1772690.1772773. URL:https://doi.org/10.1145/1772690.1772773..

[27] B. Hidasi, A. Karatzoglou, L. Baltrunas, D. Tikk, Session-based
recommendations with recurrent neural networks, in: 4th International
Conference on Learning Representations, ICLR 2016, San Juan, Puerto Rico,
May 2-4, 2016, Conference Track Proceedings, 2016. URL:http://arxiv.org/abs/
1511.06939..

[28] B. Hidasi, A. Karatzoglou, Recurrent neural networks with top-k gains for
session-based recommendations, in: CIKM, ACM, 2018, pp. 843-852..

[29] H. Guo, R. Tang, Y. Ye, F. Liu, Y. Zhang, A novel KNN approach for session-based
recommendation, in: PAKDD, 2019, pp. 381-393.

[30] J. Tang, K. Wang, Personalized top-n sequential recommendation via
convolutional sequence embedding, WSDM ’18, ACM, New York, NY, USA,
2018, pp. 565-573. doi:10.1145/3159652.3159656. URL:http://doi.acm.org/
10.1145/3159652.3159656.

[31] F. Yuan, A. Karatzoglou, I. Arapakis, .M. Jose, X. He, A simple convolutional
generative network for next item recommendation, in: WSDM 2019,
Melbourne, VIC, Australia, February 11-15, 2019, 2019, pp. 582-590.
doi:10.1145/3289600.3290975..

[32] S. Zhang, Y. Tay, L. Yao, A. Sun,]. An, Next item recommendation with self-
attentive metric learning, AAAI 2019, vol. 9, 2019.

[33] C. Ma, P. Kang, X. Liu, Hierarchical gating networks for sequential
recommendation, in: KDD 2019, Anchorage, AK, USA, August 4-8, 2019,
2019, pp. 825-833. doi:10.1145/3292500.3330984..

[34] G. Shani, D. Heckerman, R.I. Brafman, An mdp-based recommender system,
Journal of Machine Learning Research 6 (Sep) (2005) 1265-1295.

[35] N. Taghipour, A. Kardan, A hybrid web recommender system based on q-
learning, in: Proceedings of the 2008 ACM Symposium on Applied Computing,
2008, pp. 1164-1168.

[36] X. Zhao, L. Xia, D. Yin,]. Tang, Model-based reinforcement learning for whole-
chain recommendations, arXiv preprint arXiv:1902.03987..

[37] X. Bai,]J. Guan, H. Wang, A model-based reinforcement learning with
adversarial training for online recommendation, Advances in Neural
Information Processing Systems (2019) 10735-10746.

[38] X. Chen, S. Li, H. Li, S. Jiang, Y. Qi, L. Song, Generative adversarial user model for
reinforcement learning based recommendation system, arXiv preprint
arXiv:1812.10613..

[39] Y. Hu, Q. Da, A. Zeng, Y. Yu, Y. Xu, Reinforcement learning to rank in e-
commerce search engine: Formalization, analysis, and application, in:
Proceedings of the 24th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, KDD 2018, London, UK, August 19-23,
2018, 2018, pp. 368-377. doi:10.1145/3219819.3219846..

[40] L. Zou, L. Xia, Z. Ding, J. Song, W. Liu, D. Yin, Reinforcement learning to
optimize long-term user engagement in recommender systems, in:

Proceedings of the 25th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, 2019, pp. 2810-2818.

[41] M. Chen, A. Beutel, P. Covington, S. Jain, F. Belletti, E.H. Chi, Top-k off-policy
correction for a REINFORCE recommender system, in: Proceedings of the
Twelfth ACM International Conference on Web Search and Data Mining,
WSDM 2019, Melbourne, VIC, Australia, February 11-15, 2019, 2019, pp. 456-
464. doi:10.1145/3289600.3290999..

[42] D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, M.A. Riedmiller,
Deterministic policy gradient algorithms, in: Proceedings of the 31th
International Conference on Machine Learning, ICML 2014, Beijing, China,
21-26 June 2014, 2014, pp. 387-395..

[43] T.P. Lillicrap, JJ. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, D.
Wierstra, Continuous control with deep reinforcement learning, in: 4th
International Conference on Learning Representations, ICLR 2016, San Juan,
Puerto Rico, May 2-4, 2016, Conference Track Proceedings, 2016..

[44] O. Maillard, R. Munos, D. Ryabko, Selecting the state-representation in
reinforcement learning, in: Advances in Neural Information Processing
Systems 24: 25th Annual Conference on Neural Information Processing
Systems 2011. Proceedings of a meeting held 12-14 December 2011,
Granada, Spain, 2011, pp. 2627-2635..

[45] R.S. Sutton, A.G. Barto, Reinforcement Learning: An Introduction, vol. 1, MIT
press Cambridge, 1998.

[46] V. Mnih, K. Kavukcuoglu, D. Silver, A.A. Rusu, J. Veness, M.G. Bellemare, A.
Graves, M. Riedmiller, A.K. Fidjeland, G. Ostrovski, et al., Human-level control
through deep reinforcement learning, Nature 518 (7540) (2015) 529.

[47] T. Schaul, J. Quan, I. Antonoglou, D. Silver, Prioritized experience replay, in: 4th
International Conference on Learning Representations, ICLR 2016, San Juan,
Puerto Rico, May 2-4, 2016, Conference Track Proceedings, 2016..

[48] C. Burges, T. Shaked, E. Renshaw, A. Lazier, M. Deeds, N. Hamilton, G.
Hullender, Learning to rank using gradient descent, in: Proceedings of the
22nd International Conference on Machine Learning, ICML '05, ACM, New
York, NY, USA, 2005, pp. 89-96.

[49] K. Jarvelin, J. Kekdldinen, Cumulated gain-based evaluation of ir techniques,
ACM Transactions on Information Systems (TOIS) 20 (4) (2002) 422-446.

[50] L. Xia, J. Xu, Y. Lan,]J. Guo, W. Zeng, X. Cheng, Adapting markov decision
process for search result diversification, in: Proceedings of the 40th
International ACM SIGIR Conference on Research and Development in
Information Retrieval, ACM, 2017, pp. 535-544.

[51] X. Zhao, L. Xia, Y. Zhao, D. Yin, j. Tang, Model-based reinforcement learning for
whole-chain recommendations, arXiv preprint arXiv:1902.03987..

[52] W. Zhang, U. Paquet, K. Hofmann, Collective noise contrastive estimation for
policy transfer learning, in: AAAI, AAAI Press, 2016, pp. 1408-1414.

[53] R. Cafiamares, P. Castells, Should I follow the crowd?: A probabilistic analysis
of the effectiveness of popularity in recommender systems, in: The 41st
International ACM SIGIR Conference on Research & Development in
Information Retrieval, SIGIR 2018, Ann Arbor, MI, USA, July 08-12, 2018,
2018, pp. 415-424. doi:10.1145/3209978.3210014..

[54] N.S. Keskar, D. Mudigere,]J. Nocedal, M. Smelyanskiy, P.T.P. Tang, On large-
batch training for deep learning: Generalization gap and sharp minima, in: 5th
International Conference on Learning Representations, ICLR 2017, Toulon,
France, April 24-26, 2017, Conference Track Proceedings, 2017..

Feng Liu received B.S. and M.S. degrees both in Com-
puter Science from Harbin Institute of Technology in
China in 2014 and 2016, respectively. Since Sep, 2016,
he has been at the School of Computer Science and
Technology, Harbin Institute of Technology Shenzhen
Graduate School, P.R. China, where he is currently a
fourth-year PhD student. His research interests include
recommender system, reinforcement learning, deep
learning, data mining.

Ruiming Tang is currently a senior researcher in Hua-
wei Noah'’s Ark Lab. He received the B.S. degree from the
Department of Computer Science at Northeastern
University China in 2009, and the Ph.D. degree from the
Department of Computer Science at National University
of Singapore, in 2014. He joined Huawei Noah’s Ark Lab
since 2014. His research interests include machine
learning and artificial intelligence, particularly, deep
learning and recommender systems.

http://refhub.elsevier.com/S0925-2312(20)31165-6/h0145
http://refhub.elsevier.com/S0925-2312(20)31165-6/h0145
http://refhub.elsevier.com/S0925-2312(20)31165-6/h0145
http://refhub.elsevier.com/S0925-2312(20)31165-6/h0160
http://refhub.elsevier.com/S0925-2312(20)31165-6/h0160
http://refhub.elsevier.com/S0925-2312(20)31165-6/h0160
http://refhub.elsevier.com/S0925-2312(20)31165-6/h0170
http://refhub.elsevier.com/S0925-2312(20)31165-6/h0170
http://refhub.elsevier.com/S0925-2312(20)31165-6/h0175
http://refhub.elsevier.com/S0925-2312(20)31165-6/h0175
http://refhub.elsevier.com/S0925-2312(20)31165-6/h0175
http://refhub.elsevier.com/S0925-2312(20)31165-6/h0175
http://refhub.elsevier.com/S0925-2312(20)31165-6/h0185
http://refhub.elsevier.com/S0925-2312(20)31165-6/h0185
http://refhub.elsevier.com/S0925-2312(20)31165-6/h0185
http://refhub.elsevier.com/S0925-2312(20)31165-6/h0200
http://refhub.elsevier.com/S0925-2312(20)31165-6/h0200
http://refhub.elsevier.com/S0925-2312(20)31165-6/h0200
http://refhub.elsevier.com/S0925-2312(20)31165-6/h0200
http://refhub.elsevier.com/S0925-2312(20)31165-6/h0200
http://refhub.elsevier.com/S0925-2312(20)31165-6/h0225
http://refhub.elsevier.com/S0925-2312(20)31165-6/h0225
http://refhub.elsevier.com/S0925-2312(20)31165-6/h0225
http://refhub.elsevier.com/S0925-2312(20)31165-6/h0230
http://refhub.elsevier.com/S0925-2312(20)31165-6/h0230
http://refhub.elsevier.com/S0925-2312(20)31165-6/h0230
http://refhub.elsevier.com/S0925-2312(20)31165-6/h0240
http://refhub.elsevier.com/S0925-2312(20)31165-6/h0240
http://refhub.elsevier.com/S0925-2312(20)31165-6/h0240
http://refhub.elsevier.com/S0925-2312(20)31165-6/h0240
http://refhub.elsevier.com/S0925-2312(20)31165-6/h0240
http://refhub.elsevier.com/S0925-2312(20)31165-6/h0245
http://refhub.elsevier.com/S0925-2312(20)31165-6/h0245
http://refhub.elsevier.com/S0925-2312(20)31165-6/h0250
http://refhub.elsevier.com/S0925-2312(20)31165-6/h0250
http://refhub.elsevier.com/S0925-2312(20)31165-6/h0250
http://refhub.elsevier.com/S0925-2312(20)31165-6/h0250
http://refhub.elsevier.com/S0925-2312(20)31165-6/h0250
http://refhub.elsevier.com/S0925-2312(20)31165-6/h0260
http://refhub.elsevier.com/S0925-2312(20)31165-6/h0260
http://refhub.elsevier.com/S0925-2312(20)31165-6/h0260

F. Liu et al./ Neurocomputing 417 (2020) 255-269

Huifeng Guo is currently a researcher in Huawei Noah's
Ark Lab. He received the Ph.D. degree from the
Department of Computer Science and technology from
the Shenzhen graduate school, Harbin Institute of
Technology in 2018. His research interests include
machine learning and artificial intelligence, particularly,
deep learning and recommender systems.

Xutao Li received the bachelor’s degree from the Lanz-
hou University, Lanzhou, China, in 2007, and the mas-
ter’'s and Ph.D. degrees in computer science and
technology from the Harbin Institute of Technology,
Harbin, China, in 2009 and 2013, respectively. He was a
Post-Doctoral Research Fellow with the School of
Computer Engineering, Nanyang Technological Univer-
sity, Singapore, in 2014 and 2015. He is currently an
Associate Professor with the Shenzhen Graduate School,
Harbin Institute of Technology. His current research
interests include data mining, machine learning, graph
mining, and social network analysis, especially tensor-

based learning and mining algorithms.

269

Yunming Ye received the PhD degree in Computer
Science from Shanghai Jiao Tong University. He is now a
professor in the Shenzhen Graduate School, Harbin
Institute of Technology. His research interests include
data mining, text mining, and ensemble learning algo-
rithms.

Xiugiang He received the PhD degree in Computer
Science from The Hong Kong University of Science and
Technology. He is now an expert researcher in Huawei
Noah'’s Ark Lab. His research interests include machine
learning and artificial intelligence, particularly, deep
learning and recommender systems.

	Top-aware reinforcement learning based recommendation
	1 Introduction
	2 Related work
	2.1 Conventional recommendation techniques
	2.2 RL based recommendation techniques

	3 Methodology
	3.1 Overview of SRR framework
	3.2 How SRR resolves the top-aware issue

	4 Training and evaluation procedure
	4.1 Training procedure
	4.2 Reward shaping
	4.3 Offline evaluation
	4.4 Simulated online evaluation

	5 Experiment
	5.1 Experimental setup
	5.1.1 Dataset and evaluation metrics
	5.1.2 Compared methods
	5.1.3 Settings

	5.2 Performance comparison and analysis (RQ1)
	5.2.1 Offline evaluation results and analysis
	5.2.2 Simulated online evaluation results and analysis

	5.3 Hyper-parameter study (RQ2)
	5.3.1 Embedding size d
	5.3.2 Length of h
	5.3.3 Batch size N
	5.3.4 Trade-off factor [$] \alpha [$]

	5.4 Case study (RQ3)

	6 Conclusion
	CRediT authorship contribution statement
	Declaration of Competing Interest
	References

