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Abstract

Reinforcement learning (RL) depends on carefully engineering environment
rewards. However, rewards from environments are extremely sparse for many
RL tasks, challenging for the agent to learn skills and interact with the en-
vironment. One solution to this problem is to create intrinsic rewards for
agents and to make rewards dense and more suitable for learning. Recent al-
gorithms, such as curiosity-driven exploration, usually estimate the novelty
of the next state through the prediction error of dynamics models. How-
ever, these methods are typically limited by the capacity of their dynamics
models. In this paper, a random curiosity-driven model using deep reinforce-
ment learning is proposed, which uses a target network with fixed weights to
maintain the stability of dynamics models and create more suitable intrinsic
rewards. We integrate the parametric exploration method for further pro-
moting sufficient exploration. Besides, a deeper and more closely connected
network is utilized for encoding the pixel images for policy-gradient. By com-
paring our method against the previous approaches in several environments,
the experiments show that our method achieves state-of-the-art performance
on most but not all of the Atari games.

Keywords: Deep reinforcement learning, curiosity-driven exploration,
intrinsic rewards
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1. Introduction

Reinforcement learning has demonstrated remarkable performance by
maximizing the sum of future rewards through learning policies in Atari
games [1, 2, 3], 3D navigation tasks [4, 5], robotic arm grabbing objects
[6, 7], and robot locomotion tasks [8, 9]. The dense and well-defined reward
function can help the agent understand the task and learn skills that might
be useful later in life. For example, Rajeswaran et al. [10] proposed a shap-
ing reward function that was less sparse than an original reward function,
so it leads to faster learning of a good policy. However, reward engineering
or reward shaping can lead to unexpected or even bad results when the re-
ward function is modified slightly. Designing a well-defined reward function
becomes a notoriously challenging engineering problem. This well-designed
reward function is contrary to the original intention of reinforcement learn-
ing to learn good behavior from a limited reward signal. In some real-world
scenarios, the rewards coming from the environment and being extrinsic to
the agent are extremely sparse or missing altogether, making it impossible to
construct a shaped reward function. Standard reinforcement learning algo-
rithms struggle with this sparse reward tasks because exploration behavior
from entropy maximization or epsilon-greedy action selection actions is not
enough. Encouraging exploration can help solve the problem of sparse re-
ward.

Recently, multiple approaches are widely to achieve better exploration,
and they can fall broadly into two categories of guided exploration. Imita-
tion learning [11, 12] has been proposed to guide exploration by observing
a human demonstrator generate state-action trajectories. Various imitation
learning work focuses on pre-training a Q-function [11] or actor-critic ar-
chitectures [13] with human demonstrations, which can achieve impressive
performance. However, there are some limitations to these approaches. For
instance, the “Domain gap” between the expert demonstration and the task
environment could exist, especially the variations in color or texture, and
the introduction of other visual artifacts [14]. The specific action and
reward sequences that led to an expert demonstration trajectory were ob-
tained out-and-out. These limitations have led to difficulties in generating
high-quality expert demonstrations. The other category is intrinsic motiva-
tion methods [15, 16, 17], which provide an auxiliary reward to encourage the
agent to explore environments and discover novel states. Motivation occurs
when an agent acts without any obvious external rewards or regards it as an
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opportunity to explore, learn, and actualize their potentials. Methods with
intrinsic motivation include count-based [18, 19, 20, 21], where the agent uses
state visitation counts as a measure of novelty and the “novelty” state that
has not been seen will have higher rewards. However, the implementation
and calculation of these methods are quite complicated, and these tend to
become less effective as the number of possible states increases. Surprise
[22, 23], which means the inability to predict the future and maximizes a
notion of an agent’s surprise about its experience. Empowerment [23], which
means an information-theoretic formulation of the agent’s influence shortly,
and the agent enjoys the level of control it has about its future. Curiosity
[15, 17, 24, 25, 26, 27, 28, 29], where the agent is more likely to see new states
and usually uses predict error as a reward signal.

However, the intrinsic motivation methods such as count-based explo-
ration [18, 19] and curiosity-driven exploration [15, 17] usually overlook the
visited paths and repeatedly visit those new but actually old states, and
this is called the catastrophic forgetting problem [30]. For example, the
density model in count-based exploration [19] and the dynamic model in
the curiosity-driven method are gradually changed as they are trained. The
model parameters differed greatly between now and the beginning time, and
the model would forget the state that was already experienced. In essence,
a catastrophic forgetting problem occurs when the later model forgets the
previous exploration, and the understanding of the “novel” creates an error.
This catastrophic forgetting is usually related to the fact that the curiosity
model needs enough plasticity to digest new information, but large weight
changes will destroy the previous learning representation and lead to forget-
ting. In this paper, we propose a new curiosity-driven module called random
curiosity module (RCM) to make an effort to the catastrophic forgetting chal-
lenge. A target network with fixed weights is proposed after random initial-
ization, limiting the large change of the dynamic model weight and allowing
the dynamic model to learn new information. Intrinsic reward from RCM
is composed of state prediction error and feature embedding network bias.
Nevertheless, another challenge of curiosity exploration is the “couch-potato”
problem, which means that the agent trying to maximize the prediction er-
ror will tend to seek out stochastic transitions, such as switching the TV
channels endlessly. We propose a solution to this undesirable stochasticity
by fusing RCM and learning intrinsic rewards for policy gradient methods
(LIRPG) [31] and predicting value function. Instead of simply seeking the
unpredictable state or action and adding the intrinsic reward to extrinsic
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reward, the proposed approach is learning parametric intrinsic rewards for
a policy-gradient based learning agent, which updates the intrinsic rewards
parameters to optimize the extrinsic rewards achieved by the policy. Another
intrinsic learning reward achieved by RCM that, when added to the extrinsic
rewards, can improve RL problems’ performance. In addition, we use the
predicted next state of RCM to predict value function and keep value predic-
tion consistent with real value function from the policy model by minimizing
prediction errors. We have adopted a deeper and more connected network
instead of Nature-CNN [1], and can promote the agent’s learning ability. The
primary contributions of this paper are summarized as the following:

• An enhanced curiosity-driven version, called RCM, is presented to
deal with the catastrophic forgetting problem of curiosity-driven ex-
ploration. RCM is based on a fixed randomly initialized network that
limits the large change in feature spaces and ensures stable online train-
ing of dynamics.

• A RCM exploration and the learning parametric intrinsic rewards is
utilized to improve the performance of policy-gradient based RL meth-
ods.

• For different feature spaces for policy networks, a deeper and more
tightly connected network is proposed to promote the skills learning of
agents. We evaluate our method on several Atari games with A2C (Ad-
vantage Actor-Critic) agents and show that our method can outperform
several other exploration techniques.

2. Related Work

Policy gradient-based RL. The advances of RL in recent years are
mostly based on policy gradients. The advantage of policy gradient-based ap-
proaches is that they directly optimize the quantity of interest while remain-
ing stable under function. In order to improve sample efficiency, actor-critic
methods have become popular, and they use value approximators to replace
rollout estimates to reduce variance. A number of improved algorithms based
on policy gradients have been proposed to improve the performance, such as
A2C, A3C(Asynchronous advantage actor-critic) [4], PPO(Proximal Policy
Optimization Algorithms) [32] and ACKTR(Actor Critic using Kronecker-
Factored Trust Region) [33]. The RCM and parametric exploration methods
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proposed in this paper are based on the policy gradient RL framework, and
we choose A2C as the policy architecture. Actually, our method can be
combined with multiple policy-based algorithms.

Reward shaping and Imitation learning. Several ways of using in-
trinsic rewards for exploration have been proposed in reinforcement learning
papers. For example, Ng et al. [34] proposed reward shaping function to
improve the optimal policy, and some auxiliary rewards designing methods
have been proposed to derive policy with desired properties. Sorg et al. [35]
introduced a policy gradient for reward design, which only operates with
lookahead-search based planning agents. The rewards shaped or designed
can assist agents to explore environments, but computing the optimal re-
ward is still a big challenge. Imitation learning for exploration methods have
used in sparse-reward tasks [11, 12, 36] and have good performance. Other
attempts [37, 38, 39] have been made to introduce the expert demonstrations
and trajectory preferences, and the agent is trained to imitate the demon-
strator. Moreover, Schmidhuber et al. [40] studied a method that improved
performance through the reward transformations. However, reward trans-
formations are expert-designed and not learned. Getting high-quality expert
information is difficult. Besides, these methods do not operate in sparse re-
ward settings. The main contribution of this paper is to learn the parameters
of an intrinsic reward function and integrate RCM that can provide dense
rewards for agents.

Random features. Random features have made surprising effective-
ness in RL problems [41], and the theoretical study of the random network
has been widely used in recent years. Features of randomly initialized neu-
ral networks have been applied in the context of exploration [29, 42], and
classification [43, 44, 45].

Intrinsic motivation. Intrinsic motivation has been developed to ex-
plain the need to explore the environment and discover novel states [15]. A
CTS density model was presented in [20] to measure uncertainty and derive
a pseudo-count from the density model as the intrinsic motivation. Ostrovski
et al. [19] also explained the importance of the quality of the density model
for exploration and combined PixelCNN pseudo-counts with different agent
architectures to improve the performance of several hard Atari games. Many
other visitations counts in [18, 21, 46] have also been investigated for explo-
ration. However, visitation counts exploration usually need a high-quality
density model obtained difficultly, and can not work well when the number
of visit states is too large. Prior work on surprise in [22, 47, 48] focuses on
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maximizing a notion of the agent surprise about its experiences via intrinsic
motivation. For instance, Gregor et al. [23] proposed empowerment for explo-
ration. Curiosity-driven exploration includes prediction error [15, 16, 26, 49],
prediction uncertainty [24, 50], improvement [51, 52], and information gain
[17].

This paper aims at the curiosity-driven exploration using deep reinforce-
ment learning. Prior curiosity-based methods maximize the prediction error
or prediction uncertainty. As a result, the agent would be driven to seek
“novel” states, which might lead to the “couch-potato” problem and gives
rise to complex or invalid behaviors. This is because of the limitation of
stochastic dynamics. When the transitions in the environment are random,
the predict error or uncertainty will increase and promote the continuous
occurrence of random transition, resulting in the final fall into the “couch-
potato” dilemma. Such curiosity methods have also suffered from unstable
feature spaces, resulting in the agents forgetting the visited states and ex-
ploring those states repeatedly, which leads to a sudden drop in performance.
The catastrophic forgetting is related to large weight changes that will de-
stroy previous learning and lead to forgetting. In this paper, we mainly
center on the curiosity framework, and a fixed network is utilized to limit ex-
cessive changes in the feature space. It can combine the learning parametric
intrinsic rewards method to prevent the agent from falling into a catastrophic
forgetting dilemma and “couch-potato” problem. Firstly, a target network
with fixed weights after random initialization is applied to the RCM, limiting
the substantial change of weights and reducing forgetting. Second, a value
function prediction is used to delivers RCM consistent with the A2C mod-
ule, avoiding meaningless random transitions. Finally, a solution to solve
this undesirable stochasticity by combing RCM and LIRPG is discussed.

3. Material and Methods

Consider a standard reinforcement learning agent that interacts with an
environment. At each timestep t, the agent sees an observation st, and takes
an action at sampled from a parametric distribution π. The environment
returns a reward rt and switches to state st+1 at time t + 1. The exter-
nal reward rt obtained from the environment is sparse or missing in many
real-world scenarios. Researchers in recent years came up with solutions to
those environments with sparse rewards by providing agents with intrinsic
rewards for exploration. However, curiosity-driven [15] or count-based [19]
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have “couch-potato” and catastrophic forgetting problems. In order to solve
these problems and provide more effective intrinsic reward signal, our new
intrinsic reward has two components: (a) a curiosity reward rct from RCM,
which is added with external reward ret from environment resulting in rt to
be maximized by the policy. (b) a learning parametric reward rinη , where the
extrinsic rewards rex are the sum of ret and rct . The policy is updated to max-
imize both extrinsic rewards rex and intrinsic rewards rinη , while the intrinsic
reward function is updated to maximize only the extrinsic reward. For better
sample-efficient and more reliable performance, we replace the Nature-CNN
policy network with a deeper and more tightly connected network. Our work
can potentially be applied with a range of policy gradient methods such as
A2C, A3C, PPO, and so on. A2C is an asynchronous, deterministic vari-
ant of A3C, which waits for each actor to finish its segment of experience
before performing an update, averaging over all of the actors. Researchers
from OpenAI have found that A2C performs better than A3C. A2C is more
cost-effective than A3C when using single-GPU machines, and is faster than
a CPU-only A3C implementation when using larger policies. In this paper,
we choose the popular A2C as the benchmark algorithm. There are many
advances in policy gradient algorithms, and our method is also compatible
with such policy gradient architectures, such as A3C and PPO.

3.1. Random curiosity module (RCM)

The curiosity-driven method that the novelty of state is evaluated based
on the prediction error of the forward dynamics model performs well on
sparse rewards tasks. However, there is still a challenging problem called
catastrophic forgetting. Catastrophic forgetting is often known and familiar
in machine learning. The occurrence of catastrophic forgetting is related to
the fact that the forward dynamics model’s parameters are evolving with the
progress of training, and the features are changing as they learn. The previ-
ous states have seen early become unrecognizable and novel after numerous
timesteps of exploring and training. Then the understanding of “novel” has
created errors, and sudden drop of performance caused by forgetting occurs.
Due to insufficient information on the forward dynamics model, prediction
tends to fail in large and high-dimensional state spaces. We propose a new
curiosity-driven frame called a random curiosity module to address the catas-
trophic forgetting problem.

Random feature is inspired by an uncertainty quantification method in-
troduced in [42], and the random network presents a practical and straight-
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forward approach to encoding high-dimensional states to latent spaces with
deep reinforcement learning.

RCM uses a fixed randomly initialized network to limit the unstable
changes in the dynamic model, as shown in Figure 1. This involves two
neural networks and three sub-modules: the first network encodes the raw
pixel state st into a feature vector φ (st) and the second network is a fixed
and randomly initialized target network; the first sub-module is forward dy-
namics model that takes φ (st) and at as inputs to predict the next state
φ̂ (st+1); the second sub-module is a inverse dynamics model that takes φ (st)
and φ (st+1) as inputs to predict ât, and the last sub-module is a constraint
model which uses a fixed target network to limit the large changes in feature
spaces. The curiosity intrinsic rewards rct is defined as,

rct = r1 + r2, (1)

r1 =
λ

2

∥

∥

∥
φ̂ (st+1)− φ (st+1)

∥

∥

∥

2

2
, (2)

r2 =
1

2
‖ϕ (st+1)− φ (st+1)‖

2

2
, (3)

where φ̂ (st+1) is the predicted state in feature space from forward dynamics
model. ϕ (st+1) is the output of the target network, and it is the state in
feature space at timesteps t + 1. The output of the target network is stable
and not changed over time on account of the fixed parameters of the target
network. r1 is measured by the next state prediction error, and the larger
the error, the better the novelty and return rewards are higher. r2 is the
uncertainty quantification of feature encoding network, and can also detect
the novelty. The forward model parameters θF is optimized by minimizing
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Figure 1: Random curiosity module.
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the loss function LF :

LF = LP + LR, (4)

LP =
1

2

∥

∥

∥
φ̂ (st+1)− φ (st+1)

∥

∥

∥

2

2
, (5)

LR =
1

2
‖ϕ (st+1)− φ (st+1)‖

2

2
. (6)

We also use inverse dynamics model to predict action given the previous st
and st+1, and it is optimized by minimizing the loss function LI which is the
inverse loss that measures the discrepancy between the predicted and actual
actions. LI denotes the standard soft-max cross entropy function,

LI = H (at, ât) . (7)

The inverse dynamics model uses a common network φ to embed st and
st+1. Therefore, feature learning is more sufficient and stable. The inverse
dynamics model guarantees the correctness of feature learning through the
prediction action, and the target network guarantees the stability of feature
learning through the constraint feature embedding network φ. In order to
further ensure the accuracy and stability of the next state prediction, value
function prediction is considered in this paper. RCM predicts the next state
φ̂ (st+1), and this includes a plan for future. The A2C algorithm has a value
function V π (st), which sums up all the expected discounted future rewards.
So, this value function should be consistent with the prediction of the next
state. As Brunner et al. [53] said, value function includes a forecast of future
rewards. Consider the value function:

V π (st) = Eπ

[

∞
∑

k=0

γkrt+k

]

= Eπ [rt] + γV π (st+1) . (8)

So, the value function at time t+ 1 is,

V π (st+1) =
V π (st)− Eπ [rt]

γ
, (9)

where the γkrt+k means the sum of future reward and γ is the discount factor,
usually setting as 0.99. At time t RCM and A2C model have experienced
the same information. Thus, the actual value function V π (st+1) and the

predicted value function V π
(

φ̂ (st+1)
)

should be consistent with each other.
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The actual value function with input features φ (s) is denoted by V π (φ (s)).
We use the output of forward dynamics model φ̂ (st+1) to predict value func-
tion at time t+ 1, and optimize the value prediction network parameters θV

by minimizing the loss function LV ,

LV =
1

2

∥

∥

∥
V π

(

φ̂ (st+1)
)

− V π (φ (st+1))
∥

∥

∥

2

2
, (10)

=
1

2

∥

∥

∥

∥

V π
(

φ̂ (st+1)
)

−
V π (φ (st))− Eπ [rt]

γ

∥

∥

∥

∥

2

2

. (11)

Eπ [rt] is difficult to calculate, because at each state there is only one action
that can be taken. When policy π is adopted, the reward r̄t that is obtained
in each step is the unbiased sample of random variable rt. Thus, we use r̄t as
an approximation of Eπ [rt]. The representation of immediate reward in this
paper is rt, which is the sum of intrinsic and extrinsic rewards. In RCM, rt
is the sum of rct and ret . In next section, rt is the sum of rct , r

e
t and rinη . The

value prediction loss can be calculated as,

LV ≈
1

2

∥

∥

∥

∥

V π
(

φ̂ (st+1)
)

−
V π (φ (st))− rt

γ

∥

∥

∥

∥

2

2

. (12)

The overall optimization problem that is solved by RCM is a composition
of LF , LI and LV and can be written as,

min

[

−λPEπ

[

∞
∑

t=0

γtrt

]

+ λILI + λFLF + λVLV

]

, (13)

where λP , λI , λF and λV are the weights of each loss function.

3.2. Combining learning parametric rewards

From the perspective of implementation means, exploration can be di-
vided into two types: one is state-action exploration that systematically
explores state or action space such as picking different action at each time
st is visited; the other is parameter exploration that parameterizes policy
π (at|st;µ) such as picking different parameters and trying for a while. Pa-
rameter exploration method has the advantage of consistent exploration, but
does not know the state-action space. One of the methods of state-action
space exploration is curiosity exploration that is adding intrinsic rewards to
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extrinsic rewards and maximize the sum of the intrinsic rewards and the
extrinsic rewards, but there is no direct participation in policy-gradient up-
dates. Learning parametric rewards building on the optimal rewards frame-
work [31] belongs to parameter exploration method, which updates the policy
parameters θ and the intrinsic reward parameters θ′. We will briefly describe
how learning parametric rewards based policy-gradient RL works, and then
we will present our method that incorporates it. Policy gradient based RL
is directly calculating the direction in which the gradient may be updated to
maximize the external rewards. The policy πθ is a representation of states
transforming to a probability distribution over actions. The value of a pol-
icy is denoted J (θ), is the expected discounted sum of rewards when agent
executes actions according to policy πθ:

J (θ) = Est,πθ

[

∞
∑

t=0

γtrt

]

. (14)

The gradient of the value J can be computed as,

▽θJ (θ) = Eθ [G (st, at)▽θ logπθ (at|st)] , (15)

where G (st, at) =
∑

∞

i=t γ
i−tri is the return until termination. This G (st, at)

is a simple policy gradient formulation in order to simplify the calculation.
In recent advanced algorithms, G (st, at) can use the advantage function
Aπ (st, at) or TD-error rt+V π (st+1)−V π (st) instead of the return to reduce
the variance. For example, A2C and A3C both learn an advantage critic,

G (st, at) = A (st, at) =
k−1
∑

i=0

γirt+i + γkV (st+k)− V (st) . (16)

We use rinη (st, at) to represent the intrinsic reward function from LIRPG,
and η to represent the intrinsic reward parameters. The extrinsic reward in
LIRPG is expressed as rex, which is the sum of re from the environment and
rc from RCM. The discounted returns from different rewards are defined as:
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Gex (st, at) =
k−1
∑

i=0

γirext+i + γkV (st+k)− V (st) , (17)

Gin (st, at) =
k−1
∑

i=0

γirint+i;η (si, ai) + γkV (st+k)− V (st) , (18)

Gex+in (st, at) =
k−1
∑

i=0

γi
(

rext+i + λrint+i;η (si, ai)
)

+ γkV (st+k)− V (st) ,

(19)

where λ is relative weight of intrinsic reward. The intrinsic rewards rinη serve
only to influence the change in policy parameters. J (θ) can be rewritten as:

Jex = Eθ

[

∞
∑

t=0

γtrext

]

, (20)

J in = Eθ

[

∞
∑

t=0

γtrinη (st, at)

]

, (21)

Jex+in = Eθ

[

∞
∑

t=0

γt
(

rext + λrinη (st, at)
)

]

. (22)

We first use the sum of extrinsic and intrinsic rewards as the reward to update
θ in the direction of Jex+in,

θ′ = θ + α▽θ J
ex+in (θ) (23)

≈ θ + αGex+in (st, at)▽θ logπθ (at|st) . (24)

Then we use the chain rule to update intrinsic reward parameters η in the
direction of Jex,

▽ηJ
ex = ▽θ′J

ex ▽η θ
′, (25)

where the first term is an approximate stochastic gradient of the extrinsic
value with respect with θ′, and it can be sampled as:

▽θ′J
ex ≈ Gex (st, at)▽θ′ logπθ′ (at|st) . (26)
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When updating η, we need two episode values such as θ′. To improve data
efficiency we use off-policy [31] to compute ▽θ′J

ex:

▽θ′J
ex = Gex (st, at)

▽θ′πθ′ (at|st)

πθ (at|st)
. (27)

The second term can be computed as:

▽ηθ
′ = ▽η

(

θ + αGex+in (st, at)▽θ logπθ (at|st)
)

(28)

= ▽η

(

αGex+in (st, at)▽θ logπθ (at|st)
)

(29)

= ▽η

(

αλGin (st, at)▽θ logπθ (at|st)
)

(30)

= αλ

k−1
∑

i=0

γi ▽η r
in
t+i;η (si, ai)▽θ logπθ (at|st) . (31)

The parameters η are updated using the product of Equations 27 and 31 as
follows:

η′ = η + β ▽η J
ex, (32)

where α and β are step-size parameters.

3.3. Deeper and more tightly connected network

Nature-CNN using the same three-layer convolutional architecture is pro-
posed in [1] for mapping the high dimensional image inputs to low dimen-
sional space. However, the data efficiency of Nature-CNN is not enough. As
is common in supervised learning, using deeper and wider neural networks
can make better. IMPALA-CNN or IMPALA-Large [54] use residual blocks
add to convolution layers and are deeper and tightly connected, which have
success in RL problems. These networks use LSTM as the last part of feature
embedding to learn long-term dependencies and remember that long-term in-
formation. Although LSTM can help to remember historical information and
be more sample efficient, such RNN-based networks generally have difficulty
in parameter fine-tuning. Since the network structure is too large and the
computing resources are too large, we use a simplified version of the IMPALA
network called DMTCN(Deeper and More Tightly Connected Network). As
shown in Figure 2, we only use some convolution layers and residual blocks
for observation embedding in policy networks. This network incorporates
residual blocks, which can solve gradient vanishing in backpropagation when
using a deeper and broader network. This deeper network makes it more
data-efficient and has a better computational performance.
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Figure 2: Model Architectures of our deeper and more tightly connected network.

4. Experimental Results

In this section, we evaluate our algorithm on the Arcade Learning Envi-
ronment [55], including continuous control and discrete control tasks. Both
the policy and the feature embedding network work directly from pixels. We
take the maximum value at each pixel from 4 consecutive frames to com-
press them into one frame, which is rescaled to a 84 × 84 grayscale image.
Our proposed method can improve the performance of policy-gradient based
learning methods for solving RL problems. In this paper, we use the A2C
algorithm [4] that is an open-source implementation and has succeeded in
many RL tasks. We compare the proposed methodology against the pre-
vious approaches such as Baselines (A2C), ICM, RND, and LIRPG. The
input state st is passed through a sequence of three convolution layers and
one fully connected layer. The first convolution layer has 32 8 × 8 filters
with stride 4. Besides, the second convolution layer has 64 4× 4 filters with
stride 2. Similarly, the third convolution layer has 64 3× 3 filters with stride
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1. The fully connected layer with 512 hidden units is the fourth layer. A
rectified linear unit(ReLU) is used after each convolution layer or fully con-
nected layer. The output of the fully connected layer is separated into two
fully connected layers, which predict the value function and the action from
Nature-CNN feature representation. We also keep the default values of all
hyper-parameters in the original OpenAI implementation of the A2C-based
policy module unchanged for both the augmented and baseline agents. The
extrinsic reward used is the game score change, which is standard for the
work on Atari games. The intrinsic reward from RCM and the parameter
intrinsic reward from parameter exploration are both clipped into [-1,1]. We
used RMSProp optimizer with all parameters. The decay factor used for
RMSProp is 0.99, and the ǫ is 0.00001.

Random curiosity module results: Figure 3(a) exhibits the improve-
ments of the augmented agents with random curiosity module over baseline
agents. We evaluated our RCM on the Atari benchmark, i.e., Tennis. As
noted above, to demonstrate the performance of random curiosity explo-
ration, we trained the baseline, ICM, and augmented agents for 50 million
steps on each environment. For the augment agents, we explored the envi-
ronments with a random curiosity module, and the intrinsic reward provided
by the RCM module is used and normalized to be superimposed on the ex-
trinsic reward provided by the task. The random curiosity module consists of
the forward module, inverse module, value predict module, and the random
module. The input state st and st+1 are encoded as feature vectors φ (st)
and φ (st+1) using a series of three convolution layers and a fully connected
layer. The forward model is constructed by concatenating φ (st) with at and
passing it into a series fully connected layers with 256 and 288 units. The
inverse model is constructed by concatenating φ (st) and φ (st+1) and passing
it into a single fully connected layer and. The RCM and ICM are consistent
in the design of the forward and inverse models. For the RCM method, the
random model first maps the next time input state st+1 into a fixed feature
vector ϕ (st+1) using the same network frame with three convolution layers
and a fully connected layer. For the random model, the ϕ (st+1) and φ (st)
are concatenated into a single feature vector and made a mean square er-
ror. The output of the value predict model is the output of the forward
model and passes as inputs into a fully connected layer with 1 unit. The
value of loss weights are 2, 8, and 10. As shown in Figure 3(a), we compare
the“A2C+RCM” approach, which combines a random curiosity model with
A2C with two baselines. First is the “A2C” algorithm with e-greedy explo-
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ration. Second is “ICM+A2C” which combines the intrinsic curiosity model
with A2C. We see that learning RCM rewards significantly improves the per-
formance of A2C. Due to the weights changes of the dynamics model of ICM
and the occurrence of random state transitions, there is almost no perfor-
mance improvement for the “A2C+ICM” agent. However, our “A2C+RCM”
agent uses a target network to keep the dynamics model stable and uses value
prediction to avoid random transitions. Thus, our “A2C+RCM” agent has
better performance. In the early time steps of training, exploration means
that the agent has to experience more unknown states, which are likely to
cause bad actions. In the later timesteps of training, exploration behavior is
more effective, so learning speed and performance are greatly improved.

Combining parameter exploration results: Our object of this sec-
tion in the following set of experiments is to evaluate whether augmenting an
agent combing parameter exploration and state-action exploration (RCM)
improves performance. To this end, we compare our approach with three
baselines on multiple Atari games. First is the “A2C” algorithm, and sec-
ond is the “A2C+RCM”. The third is the “A2C+LIRPG” with parameter
exploration. Our approach is named the “A2C+LIRPG+RCM”. For our ap-
proach, the external reward used to update the policy gradient is the sum of
the extrinsic reward provided by the task and the intrinsic reward provided
by the RCM model. The intrinsic reward from parameter exploration is only
to influence the change in policy parameters. We keep the default values of

(a) (b) (c)

Figure 3: The x-axis is time steps during learning. The y-axis is the extrinsic rewards.
(a) We compare our RCM module with baseline and ICM methods. (b) We compare our
combing RCM and parameter exploration method with the others. (c) We compare our
deeper and more tightly connected network with Nature-CNN.
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all hyper-parameters in the parameter exploration module [31] unchanged for
both the augmented and baseline agents. Figure 3(b) shows the performance
of the four algorithms. RCM and LIRPG both improve the performance com-
pared to “A2C”. Our augmenting agent has the best performance compared
to the single RCM exploration agent and the single parameter exploration
agent.

Comparison of different policy network: Figure 3(c) shows the im-
provements of the augmented agents with DMTCN policy network over base-
line agent with Nature-CNN policy network on Ataris games such as Tennis.
For DMTCN, the input state st is passed through a sequence of three sub-
networks. The filters of three subnets are 16, 32 and 32, respectively. The
kernel size of all layers is 3×3. Convolution layers construct each subnetwork
with the stride of 1, max-pooling layers with the stride of 2, and two residual
blocks. A rectified linear unit(ReLU) is used after each convolution layer.
The output of the last subnetwork is fed into a fully connected layer with
256 units. For Nature-CNN, the input state st is passed through a sequence
of three convolution layers with 32, 64, and 64 filters, kernel size of 8 × 8,
2 × 2 and 1 × 1, and stride of 4, 2, and 1, respectively. As shown in Figure
3(c), we see that our augmenting agent with DMTCN performs better than
the baseline agent with Nature-CNN.

Overall performance: Figure 4 shows the improvements of the aug-
mented agents with random curiosity module over baseline agents on 18
Ataris games: Asterix, Alien, Altantis, Amidar, BeamRider, Breakout, De-
monAttack, Gopher, Mspaman, Pong, Qbert, Riverraid, RoadRunner, Seaquest,
SpaceInvaders, Tennis, UpNDown, and Zaxxon. Our augmenting agent uses
the DMTCN network for the policy gradient-based RL algorithm and com-
bines parameter exploration and RCM exploration. In order to verify the va-
lidity of our approach, we perform the four baselines including A2C, A2C+ICM
[15], A2C+RND [41], A2C+LIRPG [31]. Note that our augmenting agent
achieves better performance compared with the others. Among them, the
performance of our method is better than all other methods in 17 experi-
ments. In Pong, our method performs similarly to LIRPG and outperforms
other methods.

5. Discussion

Our method is at the intersection of multiple topics: random curiosity
exploration, parameter exploration and deeper network. Therefore, our paper
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Alien Amidar Asterix Atlantis

BeamRider Breakout DemonAttack Gopher

MsPacman
Pong Qbert Riverraid

RoadRunner Seaquest SpaceInvaders Tennis

UpNDown Zaxxon

Figure 4: The x-axis is time steps during learning. The y-axis is the extrinsic rewards.
We compare our method with other 4 algorithms on 18 Atari games. The red curves are
for the proposed architecture in this paper.

has carried out sufficient experimental verification on these topics.
Recently, a few works demonstrated the success of curiosity exploration in

reinforcement learning tasks. However, the previous methods have a catas-
trophic forgetting problem. With the training, the agent will make an error
in the environmental novelty judgment, which will make the model perfor-
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mance unstable. For example, Burda et al. [29] proposed that the collected
trajectory samples can be used to pre-train the agent’s curiosity dynamic
model, but obtaining high-quality trajectory samples is a challenging prob-
lem. The prediction error based curiosity has some limitations, which may
make the agent more inclined to transition to a meaningless random state,
such as a “couch-potato” problem. Our random curiosity method is still a
curiosity exploration based on prediction error. However, a target network
is added to constrain the dynamic model, which can solve the catastrophic
forgetting problem caused by dynamic model changes. The output of the
forward dynamic model is used to predict value function during training.
Compared with the single-action prediction in ICM, our value prediction
performs better, which could prevent the couch-potato problem from occur-
ring and reduce meaningless random exploration. It can be seen from the
experimental results in Figure 3(a) that the agent using RCM has better
performance than the ICM agent and A2C agent.

Both state-action based and parameter-based exploration are effective ex-
ploration methods in reinforcement learning. The exploration in the state
or action space is to directly change the state or action of the agent to im-
prove training. This makes the results of exploration easier to observe. The
parameter exploration is to indirectly change agent behavior by perturbing
parameters in the RL algorithm. Combining these two methods can more
effectively promote agent exploration and improve performance. As shown
in Figure 3(b), agents combing RCM and parameter exploration can learn
skills faster and better. As shown in Figure 3(c), the agent using a deeper
and more tightly connected network performs far better than the agent using
Nature-CNN in RL tasks, which sufficiently proves the superior performance
of our DMTCN. In the final comparative experiment, our method in this
paper is a combination of RCM, parameter exploration, and DMTCN net-
work. Compared with several other algorithms, our method has the best
performance in multiple Atari games.

6. Conclusions

This paper proposes a novel exploration method that uses a random cu-
riosity module to explore the environments in the state-action space and
combines the parameter exploration method. A deeper and more tightly
connected network is also used to extract features, further improving the
agent’s performance in multiple game tasks. Our experimental results show
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that learning the reward function by combining the random curiosity method
and the parametric exploration method can effectively improve the perfor-
mance of policy gradient framework algorithms such as A2C. Using a deeper
and more tightly connected network can more effectively represent the state
of the agent. In summary, the proposed method in this paper achieves state-
of-the-art performance in multiple Atari games. In the future, a lightweight
network is more suitable for industrial applications. For tasks requiring only
light exploration or even no exploration, it is a future research direction to
adjust the exploration intensity automatically.
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