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a b s t r a c t

The unmanned surface vehicle (USV) has been widely used to accomplish missions in the sea or
dangerous marine areas for ships with sailors, which greatly expands protective capability and
detection range. When USVs perform various missions in sophisticated marine environment, au-
tonomous navigation and obstacle avoidance will be necessary and essential. However, there are
few effective navigation methods with real-time path planning and obstacle avoidance in dynamic
environment. With tailored design of state and action spaces and a dueling deep Q-network, a deep
reinforcement learning method ANOA (Autonomous Navigation and Obstacle Avoidance) is proposed
for the autonomous navigation and obstacle avoidance of USVs. Experimental results demonstrate that
ANOA outperforms deep Q-network (DQN) and Deep Sarsa in the efficiency of exploration and the
speed of convergence not only in static environment but also in dynamic environment. Furthermore,
the ANOA is integrated with the real control model of a USV moving in surge, sway and yaw and it
achieves a higher success rate than Recast navigation method in dynamic environment.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

Unmanned surface vehicle is a small surface ship with the
ability of autonomous planning and navigation, which can accom-
plish missions such as the environmental perception and target
detection under the autonomous mode or manual intervention.
The unmanned aerial vehicle (UAV), unmanned ground vehicle
(UGV), unmanned underwater vehicle (UUV) and USV are impor-
tant parts of unmanned system, and their cooperative operations
jointly construct holonomic unmanned marine system [1,2]. Once
equipped with multiple sensors, communication devices and ad-
vanced control devices, USVs will be flexible and intelligent to
carry out different missions such as marine detection, water
quality measurement and so on.

Different missions will require USVs to be deployed in vari-
ous marine areas, especially in the harsh and dangerous marine
environment for big ships. Thus there is a high demand for
autonomous navigation and obstacle avoidance for USVs, which
is to find an optimal or approximately optimal route from the
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starting point to target under certain constraints. This will ensure
that USVs could navigate through all obstacles without collisions.

With the theoretical and technical achievements, especially in
reinforcement learning and deep learning, the development of
unmanned systems [3–5] has been dramatically promoted. Tra-
ditional navigation and path planning techniques include graphic
method, dynamic window method [6], artificial potential field
method and so on. There have been some heuristic path planning
algorithms, which include genetic algorithms [7,8] and swarm in-
telligence algorithms [9–12]. Each kind of approaches has
strengths and weaknesses. Traditional methods are easy to fall
into traps in complex environments and have lower probability to
reach destination with a reasonable route compared with heuris-
tic techniques. Some heuristic methods are slow in speed and
unable to detect and avoid obstacles in real time in some cases.
Reinforcement learning algorithms are based on rewards and
punishments mechanism to improve performances completing
the missions. The exploration and greedy policy of reinforcement
learning algorithms are especially suitable for path planning in
sophisticated environment. The higher the random exploration
probability is, the better the obtained navigation routes will be.

Inspired by the theoretical achievements of reinforcement
learning and deep learning, ANOA method is proposed for the
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autonomous navigation of USVs. The main contributions of this
paper can be summarized as follows:

• With tailored design of state and action spaces and a duel-
ing deep Q-network, a deep reinforcement learning method
ANOA is proposed for the autonomous navigation and obsta-
cle avoidance of USVs, which has better performance than
deep Q-network (DQN) and Deep Sarsa not only in static en-
vironment but also in dynamic environment. Furthermore,
a real control model of USVs moving in surge, sway and
yaw is integrated with proposed ANOA and a frequently
used heuristic approach, Recast navigation. In dynamic en-
vironment, ANOA achieves a higher success rate than Recast
navigation after ANOA is fully trained.
• A dueling deep Q-network as the deep learning module is

proposed to sense the sea environment of USVs for infor-
mative feature learning. This dueling deep Q-Network is
trained with a variant of Q-learning, whose input is raw
pixels and whose output is a value function to estimate
future rewards, also known as Q values. The reinforcement
learning part interacts with deep learning part by obtaining
its Q value estimation to make decisions. The proposed deep
learning part could work with a finite space of memory, but
its performance is as good as a well optimized Q table does
in traditional Q learning.
• For the autonomous navigation and obstacle avoidance of

USVs, the pros and cons of different methods are discussed
on a simulation platform constructed with open source
tools. On the simulation platform, ANOA, DQN and Deep
Sarsa are quantitatively evaluated with the reward, loss
value and average Q-value not only in static environment
but also in dynamic environment. Moreover, the comparison
between ANOA and Recast Navigation are quantitatively
evaluated with the success rate in dynamic environment.

The contribution on the sustainability and potential replication
of the research could be expanded to all unmanned vehicles.
That is to say, the proposed ANOA method and the simulation
platform for USVs could also be used for UAVs, UGVs and UUVs
conditionally.

2. Related work

In the changeable and complex marine areas, USVs have to ex-
plore the marine environment by self-navigation to approach des-
tinations safely. To be intelligent and autonomous, USVs should
be aware of surrounding obstacles with the help of different types
of sensors. With real-time environmental awareness, USVs should
be capable of making right decisions without human control or
interventions aiming at predetermined destinations.

The path planning has been a popular research topic for years.
On one hand, traditional global path planning and real time nav-
igation algorithms [13–15] utilized divided environmental struc-
ture space for path exploration. The mode and precision of di-
vision directly affect the efficiency of a path exploration. On the
other hand, researchers used swarm optimization algorithms [16]
and genetic algorithms [17] to improve the effectiveness of path
planning. Raboin et al. [18,19] presented a heuristic planning ap-
proach on guarding a valuable asset by a team of autonomous un-
manned surface vehicles operating in a continuous state–action
space. Some heuristic algorithms may require a large amount
of iterations to get satisfactory results. Thus they are slow in
speed and unable to detect and avoid obstacles in real time,
which are not flexible enough for practical applications in dy-
namic environment. To be specific, slight movements of obstacles
and the disturbance of environment information retrieval may
lead to failure of these methods. As the complexity of maritime

systems is increasing, traditional global path planning models
would become unable to meet the challenge.

Recent developments [20–22] of reinforcement learning and
deep learning have brought new ideas into addressing the prob-
lem of dynamic obstacles, which could provide feasible solutions
of real-time control in changeable environments. For example,
the Q-Learning [23] with Q-table and deep Q-network (DQN) [24]
with deep neural network and other deep reinforcement learning
methods [25,26] would be potential keys to these problems.
Lowe et al. [27] explored deep reinforcement learning methods
for multi-agent domains. They presented an adaptation of actor-
critic methods which take action policies of other agents into
consideration, which could successfully learn policies that require
complex multi-agent coordination. Mnih V et al. [28] proposed
the first deep learning model to successfully learn control policies
directly from high-dimensional sensory input for reinforcement
learning. The model is a convolutional neural network whose
input is raw pixels and output are value function estimating
future rewards. Wu et al. [29] presented a framework called
CISTAR that integrates the widely used traffic simulator SUMO
with a standard deep reinforcement learning library RLLab, which
helps to learn locally optimal policies (with respect to the policy
parameterization) for a variety of objectives such as matching a
target velocity or minimizing fuel consumption. Peng et al. [30]
took StarCraft combat game as a case study where the task was
to coordinate multiple agents as a team to defeat their ene-
mies. They introduced Multi-agent Bidirectionally Coordinated
Network (BiCNet) with vectorized extension of actor-critic formu-
lation. These reinforcement learning and deep learning methods
have proved their potential in the control of agents in cooperative
or competitive environments.

With the help of reinforcement learning and deep learning
methods, there are some research findings for the problem of au-
tonomous navigation and obstacle avoidance. Chen et al. [31] pre-
sented a decentralized multi-agent collision avoidance algorithm
based on a novel application of deep reinforcement learning,
which effectively offloads the online computation (for predict-
ing interaction patterns) to an offline learning procedure. Long
et al. [32] proposed a novel end-to-end framework to gener-
ate reactive collision avoidance policy for efficient distributed
multi-agent navigation. Liu et al. [33] proposed an algorithm
of dynamic multi-step reinforcement learning based on virtual
potential field path planning. Romero-Marti et al. [34] studied
the path planning of mobile robots based on reinforcement learn-
ing, aiming at the balance between exploration and exploitation.
The robot was provided with a topological map of a building
floor (environmental map), with which the robot learnt a path
from one location to another by means of Q-learning. Huang
et al. [35] proposed an approach to navigate the robot from
the start location to the target location without collisions with
static and dynamic obstacles. They have improved the original
Q-learning algorithm in environment modeling, reward function,
and the adapted policy to make the robot stay away from obsta-
cles, reduced the probability of collisions, and reached the target
as fast as possible. Cheng et al. [36] proposed a concise deep
reinforcement learning obstacle avoidance (CDRLOA) algorithm
with the powerful deep Q-networks architecture, in which a com-
prehensive reward function is specifically designed for obstacle
avoidance, target approaching, speed modification, and attitude
correction. This proposed architecture offered a potential an-
swer to the problem of obstacle avoidance for the underactuated
unmanned marine vessel with unknown environmental distur-
bance. Guo et al. [37] proposed a novel hierarchical path planning
algorithm for mobile robots based on A* and reinforcement learn-
ing with a structure of two layers. The path obtained by the
proposed algorithm is smooth and safe for executing. Buitrago
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Martinez et al. [38] proposed a hierarchical reinforcement learn-
ing approach for motion planning in mobile robotics, which was
validated with robot motion planning tasks in simulation and in
an experimental environment.

Aiming at addressing the problem of autonomous navigation
and obstacle avoidance for USVs, the pros and cons of previous
research methods are analyzed and our own model is established
accordingly. In accordance with the model, a deep reinforcement
learning method ANOA is proposed to achieve real-time path
planning with obstacle avoidance in sophisticated marine envi-
ronment. Furthermore, the reward function of ANOA is designed
to evaluate the navigation results. On the constructed simulation
platform, a variety of reinforcement learning methods such as
ANOA, DQN and Deep Sarsa [39] are testified to verify their
performances both in static and in dynamic environments.

3. The navigation and obstacle avoidance for USVs

3.1. Problem formulation

For the autonomous navigation of USVs, the most important
is to reach predetermined target without collision with obstacles
in the environment. Success in the autonomous navigation relies
heavily on efficient methods, which include following parts:

(1) Instant decision-making for movement strategies immedi-
ately after getting observations of different environments.

(2) Sequences of control actions for USVs without stop even in
emergency.

(3) Each action of USVs complying with their designs and easy
to implement.

A reinforcement learning method ANOA is proposed to address
above problems of universal navigation, which will manipulate
USVs to reach the predetermined destination without any colli-
sion. Through the navigation, USVs will observe the information
of environment and record the state information while the pro-
posed ANOA produce the corresponding control strategy. That
is to say, the proposed ANOA is the brain of USVs whose au-
tonomous navigation with obstacle avoidance is realized by a
series of control actions. The formal definition of parameters is
as follows: The USV observes a state st at each time step t , then
an action at (st ) is selected to make a transition from current
state st to next time state st+1. Meanwhile, the USV receives an
immediate reward Rt for each transition. The control action set
a = {a1, a2, a3...an} is predefined to update the location of the
USV. Besides, Tp is the historical time step for observations. That
is to say, ANOA takes the past Tp states as input to select current
action.

3.2. Design of ANOA algorithm

The navigation of a USV could be defined as a Markov Decision
Process (MDP) [40] under discrete time steps. The proposed ANOA
reinforcement learning algorithm contains the following compo-
nents: states, actions, transition function, policy and rewards. For
a state st , an action at is determined by policy π (st ). Then the next
state st+1 is determined accordingly by the transition function,
and an immediate reward is calculated. Considering consecutive
actions with immediate rewards {R1, R2, R3, . . . , Rt}, the quality
of a state could be measured by expected returns to some extent.
The Gt is defined as follows to represent the expected return of
the USV at a certain time:

Gt = Rt + λ ∗ Rt+1 + λ
2
∗ Rt+2 + · · · =

T∑
k=1

λk−1 ∗ Rt+k−1 (1)

where Gt is the sum of discounted rewards after time t , and
λ is the discount factor. In another word, Gt is the expected

cumulative future discounted reward. In Eq. (1), the value of Gt
only depends on the current state st , which is in fact a property
of MDP. By the law of large numbers, we could estimate the
expectation of Gt (st ) by observing the navigation of the USV in
a large number of times, formally as:

vπ (s) = E[Gt |St = s] (2)

Substitute Eq. (1) into Eq. (2) and we have Bellman equation:

v(s) = E[Gt |St = s] = E[Rt + λ ∗ (Rt+1 + λ ∗ Rt+2 + · · ·)|St = s]

= E[Rt + λ ∗ Gt+1|St = s] = E[Rt + λ ∗ v(St+1)|St = s] (3)

Eq. (3) tells us that the value of v(st ) is determined by Rt and
v(st+1).

There are multiple actions that can be selected at each state,
so it is better to use q(s, a) instead of v(s), where q(s, a) is the
expected reward of the next state of s given the action a. The
more rewards, the better for reinforcement learning methods.
Thus the proposed ANOA tries to find the strategy that maximizes
v(s) or its equivalently q(s, a), which is defined in Eq. (4):

π∗ = argmaxqπ (s, a) (4)

There is no closed form of solutions to the optimization prob-
lem descripted in Eq. (4). However, there are several iterative
solutions such as Q learning and Sarsa. There are a variety of
actions that could be selected at each state for the USV and the
next state is different. It is not enough to calculate the action–
value function because the optimal strategy is needed. Therefore,
based on the valuation iteration, the current Q value and rewards
are used to update the historical Q value. The process of updating
Q value is (i.e. Q-Learning):

Q (st , at )← Q (st , at )+ α ∗ (Rt + λ ∗maxat+1Q (st+1, at+1)
− Q (st , at ))

st ← st+1 (5)

In Eq. (5), we will choose at from st using policy derived from Q .
When action at is taken, reward Rt is observed and state st+1 is
also observed. Instead of giving the estimated Q value directly to
the new Q value, it is approached in a gradual way by α. From the
perspective of decision-making, the principles of both Q-learning
and Sarsa are based on the Q-table. In Q-learning, the control
action with the largest Q value will be selected, and they will
be applied to obtain the reward value in current environment.
However, the updating mode of Sarsa is slightly different from
Q-learning and is defined as follows:

Q (st , at )← Q (st , at )+ α ∗ (Rt + λ ∗ Q (st+1, at+1)− Q (st , at ))

st ← st+1, at ← at+1 (6)

In Sarsa, we take action a and observe Rt , st+1. Then we choose
at+1 from st+1 using policy derived from Q . The above discussion
demonstrates that Q-learning is a greedy algorithm based on
maxQ (st+1), and it does not care about the ‘‘wrong’’ and so-
called ‘‘dead’’ states of the USV such as collision with obstacles or
beyond the range of map. While Sarsa is a conservative approach
which updates Q (st , at ) based on Q (st+1, at+1). Thus it is more
sensitive to irrational states, which will choose the control action
far from ‘‘dangerous’’ states first, and it will consider to obtain the
maximum reward value.

Since the space of the marine environment is continuous,
there are infinite amount of states, which incurs infinite amount
of state–action pairs. It is impossible for us to traverse all states
and construct a Q-value table, which will need infinite time and
memory space. DQN brings the solution to the dilemma. It is the
value function approximation that is established, which transfers
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the updating problem of Q value matrix into the function fitting
problem as follows:

Q (s, a, θ ) ≈ Q π (s, a) (7)

The function approximation is described as a parameterized
function of states and actions for the USV. The network param-
eters θ is updated by making the Q function approximates the
optimal Q value. Then the mean-square error is used to define
the loss function:

L(θ ) = E[(R+ γ ∗ argmax
a′

Qt (s′, a′, θ )− Qt (s, a, θ ))2] (8)

where γ is the learning factor and its gradient about the param-
eter θ is:

δL(θ )
δθ
= E[(R+γ ∗argmax

a′
Qt (s′, a′, θ )−Qt (s, a, θ ))2]∗

δQ (s, a, θ )
δθ

(9)

Traditional DQN generally overestimates Q value of control
actions for the USV [25], and the estimation error will accumulate
with the increase of the number of control actions. Because the
overestimation is not uniform, the Q value of a sub-optimal con-
trol action could exceed the Q value of an optimal control action.
Under this circumstances, it would be possible that the optimal
strategy would never be found. Thus the ANOA algorithm with
dueling deep Q-network is proposed to address this problem. The
deep network of ANOA algorithm is divided into two parts on
the end of layer, including the state value function V (s) which
represents the reward value of state, while the action advantage
function A(a) means the extra reward value of choosing an action.
The Q value is estimated under state V value and action A value.
The extra term A(s) here ensures that actions that with better
potential reward would be selected. Therefore according to the
characteristics of ANOA algorithm, Q value can be divided into
two parts: the state–action value and action-advantage value. The
action-advantage value is independent of state and environment
noise, which is a relative action–value in each state relative to
other unselected actions.

Q (s, a; θ, α, β) = V (s; θ, β)+ A(s, a; θ, α) (10)

where θ denotes the parameters of convolutional layers and α
and β are the parameters of two streams of fully-connected layers
in dueling deep Q-network. However, when Q value is given,
the value V and A are not unique. In other words, the various
combinations of value V and A can get the same Q value, which
will make the algorithm lack stabilities. Therefore the average
value of advantage function is used to improve the stability of
the proposed ANOA algorithm:

Q (s, a; θ, α, β) = V (s; θ, β)+ (A(s, a; θ, α)−
1
|a|

∑
a′

A(s, a′; θ, α))

(11)

Due to the deviation between the target value and the real
value, the loss function is established to update the network
parameters continuously as follows:

L(θ ) = Es,a,R,s′ [(y− Qt (s, a, θ ))2] where

y = R+ γ ∗ argmax
a′

Qt (s′, a′, θ ) (12)

Thus we can get the optimal Q value by updating the gra-
dient δL(θ )

δθ
. Aiming at the autonomous navigation with obstacle

avoidance for the USV in marine environment, ANOA algorithm
will calculate the real-time control strategy according to the
observation information and the USV’s state information, which

Fig. 1. Definition of surge, sway and yaw modes of motion.

Fig. 2. The architecture of the dueling deep Q-network for the ANOA algorithm.

drives the USV gradually approach the target to complete the au-
tonomous navigation mission. Through ANOA algorithm, discrete
control actions are generated on the grid-based discrete map. The
algorithm can be formulated as:

At = fANOA(st , st−1, st−2, . . . , st−Tp ) (13)

where fANOA is the proposed algorithm and the input of this algo-
rithm is the past Tp states. At is the control action at time t and it
can be implemented with a real control model for USVs. This real
control model is a refined mathematical model for underactuated
ships or USVs moving in surge, sway and yaw as shown in Fig. 1,
which is obtained from the motion equation of the ship moving
in six degrees of freedom under disturbances induced by wave,
wind and ocean current by neglecting motion in heave, pitch
and roll [41]. It can be referred to [42] for detailed development
of the original mathematical model for underactuated ships or
USVs moving in six degrees of freedom. The control model can
be described with following equations:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ = µ cosψ − ν sinψ
ẏ = µ sinψ + ν cosψ
ψ̇ = r
µ̇ =

m22
m11
νr − d11

m11
µ+ 1

m11
τµ

ν̇ = −
m11
m22
µr − d22

m22
ν

ṙ = − (m11−m22)
m33

µν −
d33
m33

r + 1
m33

(14)
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Fig. 3. The main components and data flow of the ANOA algorithm.

Fig. 4. The architecture of the simulation platform. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web
version of this article.)

where x, y and ψ are the surge displacement, sway displacement
and yaw angle in the absolute coordinate system; µ, ν and r
denote surge, sway and yaw velocities. Dots above these letters
denote the differentiation. The terms mii are constants,in which
1 ≤ i ≤ 3 denotes the USV inertia including added mass. The
positive constant terms djj, 1 ≤ j ≤ 3, represent the hydrody-
namic damping in surge, sway and yaw. τu is the surge force and
τr is the yaw moment. These parameters can be obtained by USVs
with multiple sensors.

The architecture of the dueling deep Q-network for the ANOA
algorithm is demonstrated in Fig. 2.

A dueling deep Q-network is designed to parameterize the
Q-values. The input to the dueling deep Q-network is a one-
channel 10 × 10 image produced by the simulation platform
while the output is a multi-dimensional vector corresponding to
the predicted Q-values of a possible action. The first layer is an
8 kernel 3 × 3 convolution layer and the second layer is a 2
kernel 2 × 2 convolution layer. A convolution layer has kernels

with a certain size of receptive field which can be applied on the
image to extract spatial features of the state. Hence, the USV can
efficiently learn how to navigate through different environments
with different spatial properties. Afterwards, the state is flattened
into a 98-dimensional vector and subsequently fed into 4 fully
connected layers with 256, 32, 16 and 4 units, namely Dense1
to Dense4. Noticeably, Dense3 has two streams to separately
estimate state-value and the advantages for each action and they
are combined by Dense4 following Eq. (11). With the output of
Dense4 as estimated Q-values, control actions for the USV can be
easily obtained.

A concise illustration of the main components and data flow
of the ANOA algorithm is displayed in Fig. 3. The central part
of the figure is the dueling deep Q-network. Simulation part on
the upper side shows how reinforcement learning part uses the
dueling deep Q-network to make decisions and obtains states
and rewards. Lower side, namely network training part illustrates
the forward and backward processes that optimize the network
parameters for ANOA.

In the feedback part of ANOA algorithm, we set the cor-
responding reward value for different circumstances: rwdtarget
represents the reward value of reaching the destination, rwdoutside
is the reward value that the USV is beyond the range of prede-
fined map, rwdcollision is the reward value for the USV which has
collision with obstacles, and rwdinterim−status represents the reward
value that the USV in interim status and is used for controlling
the USV to reach the terminal as soon as possible in shortest
distance. During the training process, the target Q̂−network with
parameters θ− is the same as the online network Q except that
its parameters are copied every C steps from the target network,
in which C is a constant. The steps of proposed ANOA algorithm
are summarized as follows:

Algorithm 1 ANOA algorithm for the navigation of USVs.

Input: observation information obst = [St , At−1], Q-network and
its parameters θ , target Q̂ − network and its parameters θ−
Output: weights θ∗ for ANOA networks
Initialize the obst
Initialize the experience replay repository D to capacity N , and
Initial the historical

observations repository D0 to capacity Tp
Initialize the Q −network with random weights θ , and Initial the
target Q̂ − network
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Fig. 5. The performance of ANOA in static environment.

with θ− = θ
Initialize the parameters α, β of two streams of fully-connected
layers in dueling deep Q-network, and

the Q-value of each action could be obtained by Q = V+A
for episode =1, M do

for t =1,T do
Fetch the observation from D0, and form the input

St = [st , st−1, ..., st−Tp ]
according to the [St , At−1]

Select At = argmaxA′t∈A
Q (St , A

′

t; θ ), otherwise select a
random action At with probability ε

Execute action At , observe reward Rt and calculate St+1
Store the transition (St , At , Rt , St+1) in D
Sample minibatch (St , At , Rt , St+1) randomly from D
Set y(t) = R(t)+γ ∗ argmaxa′Qt (St+1, At+1; θ

−) and train
the network with
loss function L(θ ) = E[(y(t)− Qt (St , At , θ ))2]

Reset the Q-network Q̂ = Q every C steps
End for

End for
Return weights θ∗ for Q-network

4. Experiments

4.1. The simulation platform

To carry out experiments of autonomous navigation and ob-
stacle avoidance for USVs, a simulation platform is constructed

as demonstrated in Fig. 4. The simulation platform is imple-
mented with the Unity Machine Learning Agents Toolkit (ML-
Agents) [43]. It is an open-source Unity plugin that enables games
and simulations to serve as environments for training intelligent
agents. Agents can be trained using reinforcement learning, imita-
tion learning, neuroevolution, or other machine learning methods
through a simple-to-use Python API. On the simulation platform,
the movements of USVs in different marine environments are
simulated.

We designed four modules for the simulation platform:
(1) The USV module is responsible for setting performance pa-

rameters, planning paths and making decisions in action choices
for USVs.

(2) The map module has two responsibilities. One is setting
the property of maps, which are grid-based discrete map or
two-dimensional continuous map. The other is setting the basic
map parameters such as the area, the starting point and the
destination.

(3) The obstacle module is responsible for setting the motion
mode and basic information of obstacles, such as the number and
positions of obstacles.

(4) The administration module is responsible for the coor-
dination of above modules, which will make judgments about
current status and navigation results, including the destination
reached, collisions with obstacles or out of bounds. Furthermore,
the administration module is responsible for the implementation
of different navigation and obstacle avoidance algorithms.

The architecture of the simulation platform is shown in Fig. 4:
the red boat is on behalf of the USV; the green cube represents
the destination and the gray reefs represent obstacles. The wind
velocity and direction and ocean currents and dynamics are not
taken into consideration in this simulation platform.
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Fig. 6. The change of reward at each episode in static environment.

Fig. 7. The change of loss and Q-value at each episode in static environment.

The combination of proposed modules will provide an intu-
itive interface for the observation on the process and results of
different algorithms. In real marine environments, the USV mod-
ule could be modified and installed in USVs and the map module,
the obstacle module and the administration module could be
installed in an Unmanned Aerial Vehicle (UAV). Due to its’ aerial
view of marine environments, the UAV could update the map
module and obstacle module. What is more, the administration
module in the UAV will have optimal control strategy according
to obtained global information.

For the experiment of proposed ANOA algorithm, a 10 × 10
grid-based discrete map is adopted. Thus observation information
including the USV and obstacles is expressed in a matrix form,
which is the input for the proposed dueling deep Q-network as
shown in Fig. 2. This matrix is initialized with 0 in each cell,
which also serves as the feasible path point. In this matrix, 1 is the
obstacle location, 2 is the USV location and 3 is the destination.
According to the input of dueling deep Q-network and the matrix,
the output will be generated after computations. The output is
the movement of the USV in four cardinal directions: north, east,
south, and west. The four cardinal directions are represented by
integer 1 − 4 and the step length of the movements is 1. In
addition, the reward function is designed to evaluate the returns
of the USV in a certain state, which is defined as follows:

(1) The reward value is set to −1 when the USV is beyond the
range of defined map;

(2) The reward value is set to −2 when the USV has collisions
with obstacles;

(3) The reward value is set to 3 when the USV reaches the
defined destination;

(4) The reward value is set to −0.001 when the USV is in
interim states, which enable the USV to be on a possible path to
the destination.

According to above-mentioned parameter settings, experi-
ments are carried out to test the effectiveness and performances
of proposed ANOA algorithm. To avoid any implementation re-
lated issue, we used two open source and well-reviewed pack-
age to build the simulation platform and carry out the exper-
iment. The platform is built with The Unity Machine Learning
Agents Toolkit [43] and the ANOA algorithm is implemented with
Keras-RL [44].

4.2. Experimental results of reinforcement learning methods in static
environment

On the predefined 10 × 10 grid-based discrete map, there are
stationary obstacles that are shown in Fig. 5. The step length of
the USV’s movements is set to 1. The starting point of the USV is
set to the top left cell of the map and the destination is set to the
bottom right. The movements of the USV with proposed ANOA
algorithm are demonstrated in the consecutive images of Fig. 5.
Not all frames are shown in Fig. 5 due to the limited space. From
Fig. 5, it is clearly demonstrated that the USV achieves smooth
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Fig. 8. The performance of ANOA in dynamic environment.

navigation following the shortest path without collisions against
any obstacles, which proves the effectiveness of ANOA in static
environment.

To further analyze the performance of ANOA algorithm, the re-
ward, average reward, loss value and average Q-value are demon-
strated in Figs. 6 and 7. In Fig. 6, the curves of reward value
and average reward value from DQN, Deep Sarsa and ANOA are
demonstrated, which have similar trends but different details.
The ANOA algorithm is the first to explore an effective strategy
and its initial reward value is higher than DQN and Deep Sarsa.
When the maximum reward value is found by DQN, Deep Sarsa
and ANOA in the late-stage of exploration, the ANOA algorithm
has a relatively stable fluctuation, while DQN and Deep Sarsa have
stronger fluctuations than ANOA.

The loss value of DQN, Deep Sarsa and ANOA at each episode
are shown in Fig. 7(a). As demonstrated, the proposed ANOA is
the fastest one to find effective strategies. In the early stage, the
loss value of proposed ANOA algorithm is much lower than that
of DQN and Deep Sarsa. Although these three algorithms eventu-
ally converge, the overall volatility of Deep Sarsa is significantly
greater than DQN and ANOA. The average Q-value of DQN, Deep
Sarsa and ANOA at each episode are shown in Fig. 7(b). Because
the calculation of the Q value of Deep Sarsa is different from
that of DQN and ANOA as discussed in Section 3.1, there are big
differences among these three algorithms.

From Figs. 6 and 7, we could safely draw a conclusion that
ANOA is faster than DQN and Deep Sarsa in the effective ex-
ploration. Furthermore, in terms of convergence speed, ANOA is
the highest among three algorithms. ANOA successfully converges
within 2000 episodes, while DQN and Deep Sarsa converge after
around 3000 episodes. The average Q value is an important eval-
uation index for reinforcement learning algorithms. The learning

process of ANOA converges at around 1000 episodes, while DQN
and Deep Sarsa converge after 2000 episodes. Compared with
DQN and Deep Sarsa, ANOA has higher efficiency in the explo-
ration, better performances in finding effective strategies and
better stability in the late-stage of convergence.

4.3. Experimental results of reinforcement learning methods in dy-
namic environment

In order to prove the robustness of ANOA algorithm, the dy-
namic environment is introduced with moving obstacles. The
random appearances of obstacles are introduced into the ob-
stacle module of the simulation platform. Then a large amount
of experiments are conducted to check whether the USV can
avoid obstacles and follow the shortest path to reach destination
by autonomous navigation with ANOA. The movements of the
USV in dynamic environment are demonstrated in Fig. 8 and the
performances of ANOA, DQN and Deep Sarsa are shown in Fig. 9.
From Fig. 8, it is clearly demonstrated that the USV achieves
smooth navigation following the shortest path without collisions
against any obstacles even obstacles could randomly move in the
whole navigation process.

It has been proved that ANOA outperforms DQN and Deep
Sarsa in static environment. Furthermore, the performances of
these three algorithms in dynamic environment should be evalu-
ated. The experimental setup is consistent within last section. The
trends of reward value are demonstrated in Fig. 9(a). The ANOA
is the first to explore an effective strategy and the initial reward
value is higher than DQN and Deep Sarsa. When the maximum
reward value is found by DQN, Deep Sarsa and ANOA in the
late-stage of exploration, the ANOA and DQN have a relatively
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Fig. 9. The change of reward at each episode in dynamic environment.

Fig. 10. The change of loss and Q-value at each episode in dynamic environment.

stable fluctuation, while Deep Sarsa has violent fluctuations. Ac-
cordingly, the change of average reward value at each episode is
demonstrated in Fig. 9(b). The trend in this figure is similar to
that of Fig. 9(a).

The trends of loss value at each episode are shown in Fig. 10(a).
As expected, the ANOA algorithm was fast and efficient in finding
the effective strategies and the loss value of the ANOA algorithm
was much lower than that of DQN and Deep Sarsa in the early
stage. The peak of ANOA loss is 0.01, while the peak of DQN
and Deep Sarsa loss are as high as 0.03 and 0.068 respectively.
Although these three algorithms eventually converge, the overall
volatility of Deep Sarsa was significantly greater than the other
two algorithms. The trends of average Q-value are shown in
Fig. 10(b). Because the calculation of Q value of Deep Sarsa is
different from that of the other two algorithms. Nonetheless,
ANOA successfully converges within 1000 episodes, while DQN
and Deep Sarsa converge after 2000 episodes. Compared with
DQN and Deep Sarsa, ANOA starts the effective exploration earlier
than the other two algorithms and its convergence speed is the
highest and the convergence curve is the smoothest. This is
because ANOA utilizes the average value of advantage function
when calculating the Q value, which improved the stability of the
algorithm.

The above experimental results prove that ANOA is effec-
tive and highly efficient not only in static environment but also
in dynamic environment. Compared with DQN and Deep Sarsa,
ANOA has higher exploration efficiency and convergence speed.

Fig. 11. The success rate of ANOA and Recast navigation.

Therefore, under the guidance of ANOA algorithm, the USV can
navigate towards the destination following the shortest path
without collisions against any obstacles.
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Fig. 12. The performance of ANOA and Recast navigation in dynamic environment I. (For interpretation of the references to colour in this figure legend, the reader
is referred to the web version of this article.)

4.4. Experimental results of ANOA and Recast navigation in dynamic
environment

To evaluate ANOA method in real data, the real control model
for USVs described in Eq. (14) is integrated. Furthermore, a non-
neural network baseline method, Recast navigation [45], is imple-
mented. To compare the performance between ANOA and Recast
navigation in dynamic environment, Recast navigation is also
integrated with the real control model.

Recast navigation is a state-of-the-art non-neural network
based navigation method, which is widely used in practice. The
success rate of ANOA and Recast navigation with respect to the
training steps are drawn in Fig. 11. Since the baseline Recast
navigation is not a learning method but a heuristic method, the
success rate of Recast is a constant value with respect to training
steps.

From Fig. 11, it can be observed that Recast navigation is a
competitive baseline method and achieves better performance
than ANOA when it is trained with less than 70 million steps.
After 70 million steps of training, the ANOA outperforms the
Recast navigation method. With around 90 million training steps,
the ANOA falls into a local optimum and has the same success
rate of the baseline method. However, the ANOA efficiently ex-
plores the possible solutions and achieves better performance
with more than 100 million training steps. After 150 million train-
ing steps, ANOA is compared with Recast navigation in dynamic
environment. Both of them are integrated with real control model
described in Eq. (14).

The red boat is on behalf of the USV controlled by ANOA
algorithm and the yellow boat is on behalf of the USV controlled
by Recast navigation method. Both the red USV and the yellow
USV start from the starting point and head for the destination.

Although obstacles appear randomly, both boats can reach pre-
determined target without any collision with obstacles in most
cases. In some cases, the yellow USV controlled by Recast navi-
gation method may hit obstacles in the early stage of navigation
as shown in Fig. 12 or in the late stage of navigation as shown
in Fig. 13. The failures of Recast navigation are probably because
the Recast navigation method needs a large amount of iterations
to get satisfactory results and unable to make instant decisions to
avoid obstacles.

Heuristic methods generally have long iteration time, whereas
reinforcement learning methods have long training time. Both
methods have strengths and weaknesses and they have different
applicable scenarios. In the autonomous navigation and obstacle
avoidance for USVs, ANOA can achieve a higher success rate than
Recast navigation after ANOA is fully trained.

5. Discussions

The autonomous navigation and obstacle avoidance for USVs
is of scientific significance and practical value since USVs could
get to marine areas dangerous for ships with sailors. With the
help of different types of sensors, USVs should be aware of sur-
rounding obstacles during the autonomous navigation. A qualified
autonomous navigation algorithm should be able to ensure in-
stant decision-making for movement strategies immediately after
getting observation of environments, sequences of control actions
for USVs without stop even in emergency and each action of USVs
complying with their designs and control model.

Path planning methods with global environment information
are easy to fall into traps in complex environments. Heuris-
tic methods focus on finding good heuristic evaluation for the
problem, which may lead to unsatisfactory performance in dy-
namic environment. In dynamic environment, heuristic methods
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Fig. 13. The performance of ANOA and Recast navigation in dynamic environment II. (For interpretation of the references to colour in this figure legend, the reader
is referred to the web version of this article.)

are slow in speed and unable to detect and avoid obstacles
in real time in some cases. However, the proposed ANOA is
specially designed for guidance problem in dynamic environ-
ment and does not need any manually designed heuristic policy.
What is more, reinforcement learning methods provide a direct
adaptive optimal control of nonlinear systems, which is quite in
accord with autonomous navigation and obstacle avoidance even
in dynamic environments. Heuristic methods and reinforcement
learning methods have strengths and weaknesses and they have
different applicable scenarios. Putting deep reinforcement learn-
ing methods into navigation scenarios is not easy because it is
difficult to design state and action spaces in dynamic environ-
ments. The proposed ANOA algorithm with a dueling deep Q-
network could meet the challenge, whose exploration and greedy
policy are especially suitable for path planning in sophisticated
environment. The higher the random exploration probability is,
the better the obtained navigation routes will be.

For the problem of autonomous navigation and obstacle avoid-
ance, there are a large number of actions could be chosen by the
USV. The performance advantage of ANOA over DQN and Deep
Sarsa lies partly in its ability to learn the state-value function
efficiently. Thus ANOA with the dueling network over DQN and
Deep Sarsa is especially prominent when the number of actions
is large. To generalize learning across actions, ANOA has a better
policy evaluation than DQN and Deep Sarsa in the presence
of many similar-valued actions in autonomous navigation and
obstacle avoidance. Furthermore, the ANOA tries to avoid being
overoptimistic. Accordingly, ANOA outperforms DQN and Deep
Sarsa in exploration efficiency and convergence speed.

6. Conclusions

To enhance the intelligence of USVs in the sophisticated ma-
rine environment, the ANOA algorithm is proposed for real-time

path planning with obstacle avoidance. On the constructed simu-
lation platform, multiple experiments are carried out to verify the
effectiveness and efficiency of ANOA algorithm. According to the
experimental results, ANOA outperforms deep Q-network (DQN)
and Deep Sarsa in the efficiency of exploration and the speed of
convergence not only in static environment but also in dynamic
environment. Moreover, a real control model of USVs moving in
surge, sway and yaw is integrated with proposed ANOA and a
frequently used heuristic approach, Recast navigation. In dynamic
environment, ANOA achieves a higher success rate than Recast
navigation after ANOA is fully trained. However, the wind velocity
and direction are not taken into consideration in the simulation
platform. Our future work will focus on two aspects: one is
the real sea environments with the impact of the wind power
to improve ANOA algorithm; the other one is the collaborative
navigation of multiple USVs will be studied.
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