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a b s t r a c t

Image captioning, i.e., generating the natural semantic descriptions of given image, is an essential
task for machines to understand the content of the image. Remote sensing image captioning is a
part of the field. Most of the current remote sensing image captioning models suffered the overfitting
problem and failed to utilize the semantic information in images. To this end, we propose a Variational
Autoencoder and Reinforcement Learning based Two-stage Multi-task Learning Model (VRTMM) for
the remote sensing image captioning task. In the first stage, we finetune the CNN jointly with the
Variational Autoencoder. In the second stage, the Transformer generates the text description using
both spatial and semantic features. Reinforcement Learning is then applied to enhance the quality of
the generated sentences. Our model surpasses the previous state of the art records by a large margin
on all seven scores on Remote Sensing Image Caption Dataset. The experiment result indicates our
model is effective on remote sensing image captioning and achieves the new state-of-the-art result.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

Recently, there have been extensive study and analysis on
remote sensing images of high resolution, and deep neural net-
works achieved satisfactory results in scene classification and
object detection. Despite the successful application of deep neural
networks in the task aforementioned, it should be pointed out
that the existing research usually attaches more importance to
the image feature of the remote sensing images. Limited work has
been done in capturing the semantic meaning and correlations of
different objects in remote sensing images, which is also a key
issue for the machine to understand the images better.

We focus on the remote sensing image captioning task in
this paper, allowing for generating the semantic descriptions by
teaching a machine to comprehend the content of the image.
In the past years, a little effort has been devoted to the text
descriptions of remote sensing images. Liu et al. [1] applied the
semantic mining method in the remote sensing image retrieval
model. Zhu et al. [2] proposed SAL-LDA (Semantic Allocation
Level-Latent Dirichlet allocation), which is a new strategy based
on the semantic distribution. Yang et al. [3] modeled underlying
relations between features and the context in the given image
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with the Conditional Random Field (CRF) theory. Wang and Zhou
[4] explored a strategy using semantic information to retrieve
remote sensing images in the dataset. Chen et al. [5] proposed
to use the graph model theory to extract object semantic rela-
tions. Li [6] present an object detection-based semantic model
by making comparisons between different themes in different
categories on the semantic level. There are some limitations to
these approaches to fully utilize the image contents and generate
the natural fluent text descriptions. Deep neural networks with
the encoder–decoder framework have been proven successful in
solving natural image captioning tasks. The theory of Reinforce-
ment Learning [7] is also gradually being applied to the image
captioning.

Inspired from work on natural image captioning, some re-
search works have been published for remote sensing image
captioning. Qu et al. [8] employed an RNN as the decoder of
a multi-modal model to describe the content of remote sens-
ing images. Shi and Zou [9] proposed a remote sensing image
captioning model, which first leverages a convolutional neural
network (CNN). Lu et al. [10] exposed a dataset, Remote Sensing
Image Captioning Dataset (RSICD), and performed several experi-
ments on it with different methods to validate their performance,
including multi-modal models and attention-based models. Wang
et al. [11] measured the representation of images and captions
by embedding them to the same semantic space. Zhang et al.
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[12] introduced the attribute attention mechanism in their model,
which can better capture the correspondence between the se-
mantic information and the specific object in the remote sensing
image.

However, there are still some limitations on these approaches:

1. Based on the transfer learning theory, the CNN adopted by
the models above are pre-trained on the ImageNet dataset
to enhance the image feature extraction ability. However,
compared with natural images in ImageNet dataset, most
remote sensing images lack some salient objects that can
attract our attention. Due to the unique ‘‘view of God’’ of
remote sensing images, many items are equally important
and need to be taken into consideration simultaneously. It
may not perform well to directly apply the CNN pre-trained
on ImageNet dataset as the encoder of remote sensing im-
age captioning due to the gap between the remote sensing
images and natural images. On the other hand, ImageNet
dataset is designed for the image classification task. Com-
pared between image classification and image captioning,
it is more important for image captioning models to be
able to encode complete image information as well as the
correlations between the objects in the image.

2. The RNN precludes parallelization within training exam-
ples due to its inherently sequential nature [13], mak-
ing it difficult to train. The Transformer [13], constructed
completely using the attention mechanism to model the
sequence dependency, thus removing recurrence, has been
proven superior to RNN in both feature extraction ability
and training efficiency. Zhu et al. [14] utilized the Trans-
former as the decoder of the natural image captioning
model, but few works have been investigated on remote
sensing image captioning.

3. The Reinforcement Learning (RL) has achieved great suc-
cess in natural image captioning by solving the gap be-
tween training loss and evaluation metrics. However, how
to further enhance the performance of remote sensing
image captioning via RL is still under-explored.

The main purpose of this paper is to overcome the above men-
tioned limitations, and our main contributions and motivations
are listed as follows:

1. Introducing VAE to regularize the shared encoder and ex-
tract image features more effectively by reconstructing in-
put images. A VAE [15] can be regarded as an autoen-
coder whose training is regularized to avoid overfitting
and ensure that the latent space has good properties to
generate some new data. Adding a VAE branch can re-
lieve the overfitting problem caused by the lack of remote
sensing images. Furthermore, the reconstruction process in
VAE can help CNN pre-trained on ImageNet encodes better
representation for the given remote sensing image.

2. Improving the performance of image caption significantly
by virtue of low-level and high-level image features simul-
taneously. Zeiler and Fergus [16] visualized the different
layers of CNN and found that high-level features contain
more semantic information, while low-level features focus
more on details. It will be more effective to take advantage
of both high and low features so that they can complement
each other.

3. Enhancing the final text description quality by adding self-
attention to spatial features. Vaswani et al. [13] introduced
the self-attention mechanism and calculated it with vectors
named Query, Key, and Value. Query and Key are used
to construct the relationships. Value summarizes all rela-
tions within and concludes the output containing relations

between input and all other words. Since the high level fea-
tures focus more on semantic information, different spatial
features are semantic representations for different areas
in the image. Self-attention mechanism can be utilized
to achieve better regional semantic representation by ex-
tracting more information from more related fields in the
image.

Our paper is organized as follows: In Section 2, we intro-
duce the related works on natural image captioning and remote
sensing image captioning. In Section 3, we explain the methods
we proposed for remote sensing image captioning. In Section 4,
we report our experimental settings and analyze the experiment
results. In Section 5, we make the final conclusion of our paper.

2. Related work

There have been extensive studies and analyses on remote
sensing images of high resolution [17,18]. The task of remote
sensing image usually stems from the natural image, e.g., image
captioning task. There are three different categories of meth-
ods for natural image captioning task: retrieval-based methods,
template-based methods, and encoder–decoder based methods.
The retrieval-based methods [19–21] firstly search in the dataset
the image most similar to the input image and obtain the cor-
responding annotation as the template sentence. The result text
description of the given image is then generated using the tem-
plate sentence. The template-based methods proposed in [22–24]
consists of three parts: the predefined sentences with blanks in it,
the object detection model, and the relation model. The relation
model is used to describe the relations of the objects detected by
the object detection model. Then, the blanks in the predefined
sentences are properly filled with these objects, such as entities,
attributes, and behaviors.

The encoder–decoder based methods are inspired from the
sequence-to-sequence neural network proposed in Neural Ma-
chine Translation. In order to enable CNN and RNN interact with
each other for more information during the text description gen-
eration, Mao et al. [25] introduced the multimodal layer in the
multimodal recurrent neural work (m-RNN). Vinyals et al. [26]
proposed to employ LSTM as the sentence decoder to replace the
traditional RNN to alleviate the vanishing gradient problem. Xu
et al. [27] firstly proposed to apply attention mechanisms into
the image captioning model where spatial features are extracted
and input to the LSTM to decode the target sentence. Wu et al.
[28] found that high-level semantic features captured by deeper
layers of CNN play a more important role than image features
maps in boosting the model performance. The importance of
semantic level feature in the image captioning task is also in-
vestigated in [29–31]. Lu et al. [32] further utilized the attention
mechanism to teach model knowing whether it is appropriate
to focus on image features or the next word generation. In-
stead of using traditional grid-like features from a CNN, Anderson
et al. [33] proposed to use bottom-up and top-down attention
based on a ResNet within a Faster R-CNN framework to extract
region-specific features. Traditional image captioning can only
describe the object appearing during the training stage. Novel
object captioning [34,35] attempted to describe unknown ob-
jects using an approach similar to template-based methods. They
first generated the caption template with the known objects as
the placeholder, and then replaced them with the detected new
objects in the second stage. Rennie et al. [7] presented an RL-
based self-critical sequence training (SCST) method to improve
the performance of image captioning considerably. Zhu et al. [14]
demonstrated that the Transformer, proposed by Vaswani et al.
[13], also outperforms LSTM in natural image captioning. Im-
age captioning is a multi-model application. Recently, there also
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Fig. 1. The structure of VRTMM. ‘‘Encoder’’ is a pre-trained convolutional neural network such as Vgg16. ‘‘Decoder’’ is the transformer.

have been other similar vision and language tasks proposed. Das
et al. [36] introduced a new dataset on visual dialog. They also
developed a novel two-person chat data-collection protocol and
tested a family of models based on encoder–decoder architecture
on it. Zhu et al. [37] investigated video question answering and
explored the approach similar to template-based methods for
a finer understanding of video content. A dual-channel ranking
loss was introduced to answer multiple-choice questions. The
EmbodiedQA is a task of training an embodied agent to answer
textual questions by interacting with a simulated environment
to gather necessary visual information. Wu et al. [38] made the
agent more generalized to the new scenes by randomly placing
some markers when exploring the new environment. This simple
baseline can be trained end-to-end and achieved competitive
results to the state-of-the-art.

Researches on remote sensing image captioning are based
on the natural image captioning. Qu et al. [8] firstly applied
the encoder–decoder framework to remote sensing image cap-
tioning, which demonstrated that the encoder–decoder frame-
work is also applicable to remote sensing images. Shi and Zou
[9] adopted an object detection based method to replace the
LSTM for the sequence generation due to limited training data.
In order to leverage the potential of deep neural networks, Lu
et al. [10] published Remote Sensing Image Captioning Dataset
(RSICD). Wang et al. [11] regarded the caption generation task as
a latent semantic embedding task, which can be solved via matrix
learning. Zhang et al. [12] introduced the attribute attention
mechanism by utilizing the features from SoftMax layer of the
CNN so that the detailed correspondence between different parts
of images and words can be obtained to improve the model’s
robust performance.

3. VRTMM

In Section 3.1, we mainly introduce the framework of our
model. In Section 3.2, the details of the encoder in our model
is presented. In Section 3.3, we first briefly describe the overall
architecture of the Transformer and then introduce the modifica-
tions we make to adapt the Transformer to the task at hand. In
Section 3.4, we introduce the training details during the finetun-
ing procedure.

3.1. Model architecture

Fig. 1 illustrates the overall model architecture. Our model
consists of the encoder and the decoder. Due to the mismatch
between the text and image information, when the CNN encoder
and Transformer decoder are jointly trained, the noise in the
initial gradients from the Transformer into the image model
corrupt the CNN and will never recover [26]. For this reason,
it is not recommended to train the encoder and the decoder
simultaneously. There are two sequential stages involved in our
framework: encoder finetuning stage and decoder training stage.
During the first stage, the encoder is finetuned on a remote
sensing image scene classification dataset jointly with the Varia-
tional Autoencoder. In the second stage, the decoder is optimized
on RSICD dataset using features extracted by the encoder and
Reinforcement Learning theory. The parameters of the encoder
are fixed for 4/5 of the whole steps in the second stage and
finetuned for the remaining steps to avoid the problem of encoder
corruption mentioned in [26]. Details of the encoder and the
decoder will be described in Sections 3.2 and 3.3.
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Fig. 2. The detailed structure for the encoder finetuning stage. We take the VGG16 as an example.

3.2. Multi-task encoder finetuning

Fig. 2 illustrates the detailed structure for the encoder fine-
tuning stage. In the image captioning, since the encoder takes an
image as the input, the CNN and its different variants are more
appropriate for this task. So we replace the encoder part in the
Transformer with CNN. In practice, the size of remote sensing
datasets for different tasks is usually much smaller than the
natural image datasets. The limitation on training data may lead
to more severe overfitting problems in the deep neural network
during the training procedure. In order to make our model better
generalize to the small remote sensing image dataset, we apply
multi-task learning to our model. During the experiment, we
finetune the CNN on the large scale image classification dataset
for remote sensing images. We introduce Variational Autoencoder
(VAE) to reconstruct the input images jointly with remote sensing
image classification. That is, the model needs to classify the image
and reconstruct the input image simultaneously, i.e., they are
jointly-trained during the finetuning process of the CNN. Per-
forming a variational inference procedure on this model leads to
joint regularization between the VAE and the convolutional neu-
ral network classifier, which contributes to avoiding overfitting
and poor generalization. In the encoder part of the convolutional
neural network, it downsamples the input image with convo-
lutional layers and pooling layers. Then, the input images are
reconstructed in the decoder by means of transpose convolution.

After finetuning the CNN, we store the parameters of the CNN
and the VAE branch in the encoder finetuning stage is deleted
during the decoder training stage. Visualizations of CNN have
shown that different levels of information is captured in different
layers of the network. High-level features of CNN contain the
semantic information of the image while neglecting the details
compared to the low-level features. In the experiment, we make
use of both semantic information and spatial information. For
better controlling different sizes of the spatial feature map, we
apply the adaptive pooling before full connected layers. The high-
level semantic information is obtained through the full connected
layers with additional softmax operation, as Zhang et al. [12] have

demonstrated that the output of the softmax layer is superior to
that of the fully connected layer. The formula can be written as:

f = CNN(I) (1)

semantic = SoftMax(L(f )) ∈ Rd (2)

spatial = MeanPooling(f ) = {V1, . . . , Vn×n} , Vi ∈ Rd (3)

where I is the input remote sensing image, CNN(·) stands for
the output final convolutional layer of a CNN, L(·) is the linear
layer, semantic and spatial represent the semantic information
and the spatial information respectively, d is the target embed-
ding dimension we define, n × n is the number of regions in the
image and Vi represents a single part of the image. In practice, n
is empirically set to 7.

Inspired by the fact that the Transformer is able to model the
dependency among words in the sequence, we consider every
single part of the spatial features as a single word and apply the
self-attention operation, so that different parts of the spatial fea-
tures can interact with each other, thus integrating more context
information. We illustrate the structure of our model during the
finetuning process in Fig. 2. More details of the CNN finetuning
process are introduced in Section 3.4.

3.3. Decoder training part

The detailed structure for the decoder training stage is illus-
trated in Fig. 3. Bahdanau et al. [39] firstly applied the attention
mechanism into the sequence-to-sequence model and boosted
the performance on the Machine Translation task. A number of
state-of-the-art models on natural image captioning stem from
their work. In most of the image captioning models combining
attention mechanisms and encoder–decoder framework [26–28],
researchers replace the RNN-like networks in the encoder with
CNN for better image features, while the decoder part is left
unchanged. Other than previous mainstream methods, we built
the decoder based on the Transformer [13], which is better than
LSTM in both feature extraction ability and training efficiency.
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Fig. 3. The detailed structure for the decoder training stage. We only illustrate the detail of the first decoder, and the others are all the same.

Although Zhu et al. [14] have demonstrated the advantages of
the Transformer over LSTM in image captioning, we make two
modifications to make it accommodate to the remote sensing
image dataset:

1. The original Transformer passed the encoded text features
to the second sub-layer of each encoder to make the gener-
ated sentence and encoded information interact with each
other. As shown in Fig. 3, the spatial features are processed
in the way the original Transformer does. We regard the
vector of every single part in the image as the repre-
sentation of a word in the source sentence for Machine
Translation. At the same time, we regard the semantic
features extracted by the CNN as the initial semantic state
of the target sentences. At each time step, we first consider
the semantic feature as the representation of the first word
in the sentence. After going through the first decoder, only
the intermediate hidden states of the next word is passed
to the next sub-layer, and the semantic feature is only
used to complement the information helpful for the next
word generation. In this way, the generated words in the
sentence collect information from the most relevant part of
the spatial features, the semantic feature, and the previous
word history with the multi-head attention mechanism.

Since we have removed the intermediate hidden start of
word zero in the sentence, i.e., the representation of the
semantic feature of the image, just like operations the
Transformer has performed on the encoded features, we
again pass the semantic information to the decoder and
make it the initial state of the sentence. The remaining op-
erations in each decoder are the same as the first decoder.
Intuitively, this ensures the integrity of the semantic fea-
ture, preventing the previous decoder from only allowing
a small part relevant feature passed to the next decoder.

2. Devlin et al. [40] compared different feature-based ap-
proaches by extracting the feature from one or more layers
in the Transformer without fine-tuning. The experiment
result shows that the concatenation of the last four hidden
layer representation performs better than the weighted
sum of last four hidden layers. As is shown in the right
part of Fig. 3, we concatenate the representations of the last
two layers. To alleviate the overfitting issue, we also add
the dropout layer and layer normalization [41]. The final
representation of the feature is then projected to the target
dimension with a linear layer.
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3.4. Two-stage training

3.4.1. Encoder finetuning stage
We first finetune the CNN with VAE branch on the large scale

remote sensing image classification dataset. The CNN has been
pre-trained on the ImageNet dataset. Starting from the adaptive
pooling layer of the CNN, we add the VAE branch. In the VAE
decoder part, we first reduce the input to a low dimensional space
(half to represent mean and half to represent std). Then we draw
a sample from the Gaussian distribution with the given mean and
std. The sample is decoded to the input image dimensions follow-
ing the mirroring architecture of the encoder, i.e., the modules
before the adaptive pooling layer.

Our loss function during the finetuning process is formulated
as follows:

L = LSoftmax + 0.1 ∗ LL2 + 0.1 ∗ LKL (4)

In Eq. (4), LSoftmax is a Softmax activation plus a Cross-Entropy
loss. The CNN will predict the probability over the whole classes
for the given image:

LSoftmax = −log

(
esp∑C
j esj

)
(5)

where sp is the score CNN predicts for the positive class.
The second term LL2 in Eq. (4) is the L2 loss on the VAE branch

image reconstruction result Ipred to match the given input image
Iinput :

LL2 =
Iinput − Ipred

2
2 (6)

The last term LKL is the KL divergence, which is a standard
VAE penalty term [15,42] describing differences between the
estimated normal distribution N

(
µ, σ 2

)
and a prior distribution

N (0, 1). The closed-form representation can be written as:

LKL =
1
N

∑
µ2

+ σ 2
− log σ 2

− 1 (7)

We adopt a Vgg16 [43] pre-trained on the ImageNet dataset as
the encoder and the size of spatial features in the CNN to 7 × 7.
Considering the different angles of remote sensing images, We
apply a random rotation operation on input images during the
training process for data augmentation. Adam [44] is chosen as
the optimizer. Both the initial learning rate and the coefficient of
L2 regularization are set to 0.0001. The learning rate is multiplied
by 0.7 when the loss on validation set does not decrease after 2
epochs. Early-stopping is applied if there is no promotion on the
validation accuracy for 5 epochs.

3.4.2. Decoder training stage
In practice, the number of layers of the Transformer can be

set by balancing the efficiency and the accuracy. The spatial and
semantic features extracted by the CNN are passed to the Trans-
former using the method mentioned above. The loss function
without the reinforcement learning can be written as:

l = −
1
N

N∑
n=1

log p
(
W (n)

|semantic(n), spatial(n)
)
+ λθ · ∥θ∥

2
2

= −
1
N

N∑
n=1

L(n)∑
i=1

log pi
(
W (n)

i

)
+ λθ · ∥θ∥

2
2

(8)

where N is the total number of images in the dataset, L(n) is the
length of nth training sample’s caption, λθ · ∥θ∥

2
2 represents a

regularization term. The whole model is trained end-to-end, and
the flow-chart of our model can be seen in Fig. 3.

The number of decoders is set to 6. We use the same hyper-
parameter settings in [13] for both the model and the optimizer.
The technique present in [26] is adopted, that is, finetune the
parameters of CNN after training about the 4/5 of the whole steps
to address the mismatch between text and image information.

After optimizing the parameters of the CNN and the Trans-
former, SCST is used to further improve the quality of the sen-
tence. Combined with the RL method, both word and image
features in our model can be seen as the external ‘‘environment’’,
and the Transformer can be viewed as an ‘‘agent’’, which inter-
acts with the external ‘‘environment’’. The ‘‘action’’ standing for
the prediction of the next word is determined by the policy pθ

that is defined by the parameters of the Transformer, θ . As in
Reference [45], after each action, the agent (the Transformer)
updates its internal ‘‘state’’ (parameters of the Transformer). The
‘‘reward’’, for instance, using the CIDEr score of the generated
sentence, denoted by γ in Eq. (9), is computed by the evaluation
metric by making comparisons between the generated sentence
and the ground-truth sentence upon the prediction of the end-of-
sequence (EOS) token. The negative expected reward minimized
by our model can be written as:

L(θ ) = −EW s∼pθ

[
r
(
W s)] (9)

where W s
=
(
W s

1, . . . ,W
s
T

)
and W s

t is the word sampled from the
model at the time step t . Since we take advantage of the method
introduced in [7], e.t., self-critical sequence training (SCST), dur-
ing the Reinforcement Learning period, we refer the reader to [7]
for details of SCST and final evaluation metric we used in our
model is the CIDEr score suggest in [7].

4. Experiments

4.1. Dataset

The finetuning process for the encoder is performed on NWPU-
RESISC45 dataset [46]. NWPU-RESISC45 dataset is a public avail-
able dataset on the REmote Sensing Image Scene Classification
(RESISC) task. It contains 31,500 images and 45 scene classes.
For each class, there are 700 images in it. We conduct the image
captioning experiment on RSICD dataset [10], the largest remote
sensing image captioning dataset so far. RSICD dataset includes
10,921 remote sensing images with 224 × 224 sizes in different
resolutions. Some typical images selected from the RSICD dataset
can be seen in Fig. 4.

4.2. Metrics and baselines

Researches have proposed several evaluation metrics to judge
whether a description generated by a machine is good or not.
The most commonly used metric in the image captioning task is
the BLEU score [47]. It calculates the precision of word n-grams
between the ground-truth sentence and the generated sentence.
ROUGE [48] also gets the evaluation metric by comparing the
reference and the generated sentence, but it focuses on the re-
call. METEOR [49] uses the matching degree including synonym
matching to calculate the harmonic mean F-measure and re-
turns the highest score to indicate the quality. More recently,
the organizers of the MS COCO Captioning challenge propose
CIDEr [50] similar to the BLEU score, which additionally uses a
Term Frequency–Inverse Document Frequency (TF-IDF) weight-
ing in n-gram so that the influence of high-frequency words and
non-keywords can be reduced.

In order to make the comparison between our proposed model
and other models, we perform our experiment with several avail-
able models, including the multimodal method proposed in [8],
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Fig. 4. (a) Images selected form RSICD; (b) Five captions of the image. (1) An airport with dark brown and light brown ground in it. (2) Some white planes in the
airport while with some dark buildings besides. (3) Some sparse light green meadow inside while with some dark brown ground besides. (4) Some square areas
divide into black lines inside. (5) Some planes are parked in an airport dispersedly. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

Table 1
Results of the vanilla Vgg16 and Vgg16 plus VAE on the
NWPU-RESISC45 Dataset.

vanilla-VGG16 VAE-VGG16

Classification Acc. 0.9402 0.9506

the model using basic attention mechanisms in [10], CSMLF intro-
duced in [11], and the attribute attention model proposed in [12].
Among all the models used for comparison with our model, the
attribute attention model achieved the previous state-of-the-art
results on RSICD. Further analysis and comparison of generated
captions between the attribute attention model and VRTMM will
be discussed in Section 4.3.1.

4.3. Experiment settings and results

We adopt a pre-trained VGG16 as our encoder. In order to
achieve a good balance between the Softmax loss term and the
VAE loss term in Eq. (5), we empirically set the hyper-parameter
weight of each term to 0.1. All remote sensing images are cropped
into 224 × 224 before being input to the model. In practice, all the
experiments, including the finetuning encoder process and the
image captioning training process, are done on a server with 1
Nvidia Tesla P100 graphics card under Ubuntu 18.04. In order to
get better captions, the beam search algorithm is applied during
the inference period. Tables 1 and 2 report our experiment results
on the NWPU-RESISC45 dataset the RSICD dataset respectively.

4.3.1. Results analysis
The experimental results from Table 1 show that adding the

VAE branch after the adaptive pooling layer can improve the
classification accuracy about 0.01, which validates the effective-
ness of the VAE branch. From Table 2, we can conclude deep

neural networks (with or without attention mechanisms) perform
better than traditional models. The attribute attention model [12]
achieves the state-of-the-art results with the newly designed
attention mechanisms.

Our model with SCST generates much better results than the
attribute attention model. The improvement on BLEU-1∼4, ME-
TEOR, and ROUGH is nearly 0.04. CIDEr metric of our model is
2.7930, more than 0.4 higher than the previous state-of-the-art
result 2.3563.

From the results shown in Table 2, our model outperforms
all the baselines by a large margin, including the previous state-
of-the-art attribute attention model, which has validated the
effectiveness of our model. The captions generated by our model
and the attribute attention model for the same images are illus-
trated in Fig. 5 for comparison. We can see from Fig. 5 that for
most of the images selected from RSICD dataset, VRTMM is able to
generate captions of higher quality. We can get text descriptions
of relatively more complex grammar structures, such as Fig. 5g.
The model can also describe some important attributes of the
object in the scene, including the amount (like four in Fig. 5f),
the color (like green in Fig. 5b), the shapes (like circle in Fig. 5h,
curved in Fig. 5i).

For some of the images, the text descriptions of VRTMM are
the same (Fig. 5f) or slightly better (around more accurate than
near in Fig. 5e) than the attribute attention model. In some cases,
both of them achieved appropriate results but focusing on dif-
ferent objects in the scene (trees and road in Fig. 5d). Meanwhile,
VRTMM is able to generate captions of significantly higher quality
in these aspects:

1. VRTMM avoids describing the wrong color, such as yellow
in Fig. 5a.

2. VRTMM gives more detailed descriptions for the same im-
age. In Fig. 5b and Fig. 5g, VRTMM successfully recognized

Table 2
Results of the baseline and VRTMM on the RSICD Dataset.

BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGH CIDEr

CSMLF [11] 0.5759 0.3859 0.2832 0.2217 0.2128 0.4455 0.5297
Multimodal [8] 0.6378 0.4756 0.4004 0.3006 0.2905 0.5333 2.2536
Attention [10] 0.7336 0.6129 0.5190 0.4402 0.3549 0.6419 2.2486
AttrAttention [12] 0.7571 0.6336 0.5385 0.4612 0.3513 0.6458 2.3563
VRTMM+SCST 0.7934 0.6794 0.5878 0.5113 0.3726 0.6797 2.7930
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Fig. 5. The comparison of captions generated by the attribute attention model (denoted by ‘‘A’’) and VRTMM (denote by ‘‘V’’) . (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)

buildings in the images while attribute attention model

failed.

3. The attribute attention model describes objects not appear-

ing in the image. There are no buildings in Fig. 5h, but
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Fig. 6. Some examples of failures generated by VRTMM on RSICD dataset. (For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

the word ‘‘buildings’’ is in the generated sentences of the
attribute attention model.

4. The attribute attention model misrecognizes some objects
in the image. For example, the commercial area is misrec-
ognized as the residential area in Fig. 5c. In Fig. 5h, the
attribute attention model mistook a circle center building
for a church.

5. The attribute attention model completely fails to describe
the image while VRTMM does, such as Fig. 5i.

Despite the high quality of the captions for most of the images,
there are also some examples of failures illustrated in Fig. 6,
which is discussed below:

1. Some objects in the generated caption are not in the image.
There are no trees in Fig. 6a-b, but the word ‘‘trees’’ is in the
final descriptions. It can be caused by the high frequency of
some words in the training data. For example, trees often
appear in the remote sensing images, so VRTMM tends to
generate sentences with ‘‘trees’’ whether or not there are
trees in the image.

2. Some objects in the image are not in the generated caption.
In Fig. 6c, VRTMM fails to recognize the building in the
left part of the image. It remains a problem how to depict
minor objects appearing in the edges of the image.

3. Misrecognition. Fig. 6d-h are all examples of misrecog-
nition. Many factors contribute to this problem, such as
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Table 3
Ablation study of VRTMM on the RSICD dataset.

BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGH CIDEr

AttrAttention [10] 0.7571 0.6336 0.5385 0.4612 0.3513 0.6458 2.3563
VRTMM 0.7813 0.6721 0.5645 0.5123 0.3737 0.6713 2.7150
VRTMM-VAE 0.7610 0.6383 0.5431 0.4671 0.3622 0.6499 2.4300
VRTMM-VAE-SA 0.7547 0.6342 0.5410 0.4661 0.3588 0.6475 2.4240

sharing the same color (Fig. 6d-e), sharing the similar ap-
pearance (Fig. 6f-h). It is still a challenge left open by the
existing work on remote sensing images, which is called
the small interclass dissimilarity problem [46]. Enabling
the model reason the appropriate result with the external
knowledge and common sense may help get over around
this problem. For example, people can easily acknowledge
that in Fig. 6e, the forests usually do not have such a regular
shape.

4. Counting errors. Two baseball fields are in Fig. 6i, but
VRTMM mistakes 2 for 4. More work needs to be done to
make the machine describe the image well and do counting
correctly at the same time.

4.3.2. Ablation study
In this section, we investigate the effects of different methods

we use in our model. We denote ’-’ in Table 3 as the exclusion
of the corresponding part in the model. In Table 3, we can see
that our model still outperforms the attribute attention by a
large margin without SCST, verifying the effectiveness of VRTMM.
At the same time, when excluding the variational autoencoder
finetuning process from our model, all seven scores drop a lot,
demonstrating the importance of variational autoencoder fine-
tuning. Meanwhile, our model still outperforms the previous
SOTA. We denote ‘SA’ in Table 3 as the self-attention mechanism
applied to the spatial features. The last line of Table 3 records the
result only using the modified Transformer with spatial and se-
mantic features directly passed to it. Our model still outperforms
the attribute attention model on six metrics, which indicates the
modified Transformer has a better ability comparing with LSTM
in dependency modeling and feature extraction for sequences.

5. Conclusions

In this paper, we propose a new model for remote sensing
image captioning based on the variational autoencoder and the
encoder–decoder architecture. We first finetune the CNN with
the variational autoencoder branch on the remote sensing image
scene classification dataset. The finetuned CNN is then employed
to extract both semantic and spatial features of the images. After
the self-attention operation on spatial features, both semantic
and spatial features are passed to the modified Transformer to
generate the final text descriptions of the image. Our model
achieves the state-of-the-art result on RSICD dataset. In the fu-
ture, we will try to utilize VAE to generate fake data to further
alleviate overfitting in remote sensing image captioning.
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