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A B S T R A C T

Teaching a humanoid robot to walk is an open and challenging problem. Classical walking behaviors usually
require the tuning of many control parameters (e.g., step size, speed). To find an initial or basic configuration
of such parameters could not be so hard, but optimizing them for some goal (for instance, to walk faster)
is not easy because, when defined incorrectly, may produce the fall of the humanoid, and the consequent
damages. In this paper we propose the use of Safe Reinforcement Learning for improving the walking
behavior of a humanoid that permits the robot to walk faster than with a pre-defined configuration. Safe
Reinforcement Learning assumes the existence of a safe baseline policy that permits the humanoid to walk, and
probabilistically reuse such a policy to learn a better one, which is represented following a case based approach.
The proposed algorithm has been evaluated in a real humanoid robot proving that it drastically increases
the learning speed while reduces the number of falls during learning when compared with state-of-the-art
algorithms.

1. Introduction

For a humanoid robot, performing tasks in complex environments
requires fast and stable behaviors. Humanoid walking is one of the most
interesting research topics and an important application area for multi-
disciplinary fields. For instance, machine learning has provided many
improvements in that task (Meriçli and Veloso, 2010; Farchy et al.,
2013; Gil et al., 2019). However, in all these works, the risk of a robot
fall is not explicitly tackled, and no explicit definition of risk is ever
given nor used in the algorithms. However, RL researchers are paying
increasing attention also to the safety of the approaches (e.g., avoiding
falls, crashes, etc.) during the learning process (Geibel and Wysotzki,
2005; García and Fernández, 2015). Thus, when using RL techniques
for humanoid walking, practical deployment of learning algorithms
must contend with the fact that the training process itself may be
unsafe for the robot. Then, an important question arises; namely, how
can we ensure that the exploration of the state–action space will not
cause damages or falls of the robot, while, at the same time, learning
(near)optimal policies? The matter, in other words, is one of ensuring
that the humanoid is able to explore a dangerous environment both
safely and efficiently also during training. One could argue that such
a training process may be performed first in simulation (where it is
not necessary to behave safely) and, afterwards, transfer the learned
safe policy from simulation to the real environment. This presents two
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drawbacks. On one hand, such simulators are not always available.
On the other hand, behaviors learned in simulation are not always
transferable to real environments due to a significant drop of their
performance (Mouret and Chatzilygeroudis, 2017). Simulation cannot
reproduce real conditions accurately enough, and, hence, a safe policy
trained with simulation could have catastrophic consequences tested
in the real environment. Therefore, it would be highly desirable to
apply the learning algorithm directly to the real robot and, to that, two
conditions are required: (i) fast convergence of the learning algorithm
to (near)optimal policies, and (ii) safe exploration of the state and
action space.

The main contribution of this paper is concerned with the applica-
tion of a Safe RL algorithm, that meets the previous two requirements,
to the task of humanoid robot walking. PI-SRL (García and Fernández,
2012) is our previous algorithm for safe exploration in dangerous and
continuous control tasks. Such a method requires a predefined (and
safe) baseline policy, which is assumed to be suboptimal (otherwise,
learning would be pointless). PI-SRL is based in a risk function, that
measures the risk of a state in terms of its similarity to previously
visited known states in a case base. In that work, the risk function is
defined as a binary step function. In contrast to this binary step risk
function, one would expect that a continuously increasing monotonic
risk function would provide a smoother transition between known
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and unknown states. Therefore, in this paper, we propose to use a
continuously increasing monotonic risk function that determines the
probability to follow the baseline policy, which results in a new algo-
rithm, called Policy Reuse for Safe Reinforcement Learning (PR-SRL).
We use the PR-SRL algorithm to learn the optimal locomotion walking
pattern in a humanoid robot while avoiding falling down, where ve-
locity is the parameter to maximize. The algorithm uses a pre-defined
configuration of a given walking behavior as baseline policy during the
learning process. The experiments demonstrate that the robot learns
to walk faster, while reducing to a minimum degree the number of
falls during learning, when compared with state-of-the-art algorithms.
Different approaches have been used to learn real robots tasks (Meriçli
and Veloso, 2010; Kober and Peters, 2011; Wu et al., 2018), but, as
far as we know, without an explicit mention of the risk concept, and
without implementing automatic mechanisms to detect and to prevent
risk situations.

Regarding the organization of the paper, Section 2 summarizes rel-
evant related work. Section 3 introduces key concepts for RL. Section 4
describes the main concepts of Safe RL, including the PR-SRL algorithm
used for biped walking. Section 5 summarizes the humanoid robot used
to conduct the experimentation, the NAO robot (Gouaillier et al., 2009),
and the mapping of the walking task onto a RL task. Section 6 reports
the evaluation performed and, finally, Section 7 summarizes the main
conclusions of this manuscript.

2. Related work

Designing and improving locomotion policies for biped walking is a
complex task far from trivial, and it has been approached in many dif-
ferent ways using simulated or real environments. In simulation, Torres
and Garrido (2011) uses the Webots mobile robot simulator (Webots,
2013) to simulate the Nao robot bipedal locomotion. They suggests the
use of genetic algorithms to create a robot bipedal controller that is
equivalent in the way humans and animals generate locomotion. In-
stead, Nikbin et al. (2011) use a Particle Swarm Optimization algorithm
to find optimized walking parameters for a Simulated NAO robot of the
RoboCup soccer simulation environment. More recent works in learning
locomotion patterns for biped walking are those by Castro et al. (2017)
and Gil et al. (2019). However, it is important to note that all these
works demonstrate to obtain good policies in simulation environments
(where it is not important to behave safely), but they does not transfer
these policies to real robots in order to evaluate its performance and
safety. Additionally, the authors do not explain the applicability of their
approaches in real robots taking into account time restrictions (in real
environments random exploration of the state space can get even more
prohibitive due to reasons such as safety and/or large convergence
time) or the need to prevent falls also during training.

In real robots, Meriçli and Veloso (2010) use a two phase biped
walk learning approach based on learning from demonstration. Their
method learns movement corrections to the walk based on the cor-
rective feedback provided by a human, while walking autonomously
using an analytical simplified walk algorithm. However, the human
corrections proposed by Mereçli and Veloso depends on the human to
identify the risk situation (i.e., the human must visually detect when the
robot may be falling) and then makes the correction at the appropriate
time, which may too late to avoid the fall. Our approach is not based
on the responsiveness of a human to detect risk situations, it is based
on the distance between the known space and unknown space. Farchy
et al. (2013) propose an iterative optimization algorithm to walk faster.
However, each iteration of the algorithm requires to learn the behavior
on the simulator, test it on the real robot, modify the simulator to
correct the imperfections, and so on; each iteration requires much time
and the number of iterations that can be performed is limited. Lutz et al.
(2012) uses kinesthetic teaching (Oßwald et al., 2011) that enable a
humanoid robot to traverse ramps using only vision and inertial data
for sensing. However, this approach is limited to the human choose

the right pose at the appropriate time, and the choice of a wrong pose
could make fall the robot. Shafii et al. (2010) uses Truncated Fourier
Series (TFS) to generate angular trajectories for the robot joints. Then,
Particle Swarm Optimization is used to find the best angular trajectories
and optimize TFS. However, PSO also requires the random exploration
of the solution space and such form of exploration can lead the agent
to dangerous situations.

There has also been work on using RL to improve robot walking
in real environments. Kulk and Welsh (2011) use Policy Gradient
RL (Kohl and Stone, 2004) with a fitness function to walk faster and
more stable in a physical Nao robot. However, conventional policy-
gradient based approaches requires the use of a stochastic policy and
a batch of episodes executing a random exploration to compute the
gradient information, and this means a negative impact in the learning
speed and in the safety of the system. To overcome the problem of
the computation of the gradient information, Kober and Peters (2011)
presented the PoWER algorithm, a policy search approach based on
expectation–maximization. PoWER implement a different policy per-
turbation scheme, where the parameters of the policy, rather than its
output (i.e., the actions to be performed in every state), are randomly
perturbed. However, once again, such random exploration can lead
the agent to dangerous situations, and PoWER has no mechanism to
detect or avoid these situations. Current approaches based on Deep
RL (Duan et al., 2016) and Evolutionary RL (Koppejan and Whiteson,
2011; Miikkulainen, 2017) for robot control present a similar problem.
They are based on the random exploration of the state–action space
or the policy space, without implementing any mechanism to avoid
dangerous situations during such a exploration. Finally, it is also worth
mentioning that Mescheder (2011) also use RL techniques to optimize
the walking pattern in a real robot. In this work, the reward function
returns a negative reward of −100 for falling over, but the approach
does not introduce an explicit mechanism to avoid enter in this kind of
situations from the beginning of the learning process.

Finally, Table 1 analyzes these RL approaches used in real robotic
tasks across four dimensions: the mechanism they use for risk detection
(column entitled Risk detection in Table 1), how they use the demonstra-
tions provided from humans or automatic controllers (Prior knowledge),
the exploration strategy they use for action selection (Exploration), and
examples of real robotic tasks where these algorithms has been used
(Tasks). Table 1 also analyzes our algorithm PR-SRL across these four
dimensions in such a way that the reader can rapidly appreciate the
contribution of our work to the state-of-the-art.

According to Table 1 we would like to highlight three main aspects.
First, our algorithm PR-SRL is the only approach able to detect dan-
gerous situations through the use of a risk function during training. In
all other approaches, as far as we know, there are not mechanisms to
detect such a risk situations. Second, PR-SRL is the only approach that
use prior knowledge also during training. In all other cases, example
demonstrations (from humans or automatic controllers) are provided
to bootstrap the learning algorithms (i.e., as a type of initialization
procedure), but not during training. However, as demonstrated in our
previous work (García and Fernández, 2012), such initialization is not
enough to avoid dangerous situations: it is necessary to provide such
knowledge also during training. For this reason, during training PR-
SRL is able to detect dangerous situations through the use of a risk
function and use the baseline policy to return to safe states as described
in Section 4. Therefore, thirdly, PR-SRL provides a guided and safe
exploration towards the most promising regions of the space, while the
rest of algorithms use a random exploration, so they are blind to the risk
of actions, potentially ending up in catastrophic states as demonstrated
in Section 6.

3. Background on Reinforcement Learning

A RL environment is typically formalized by means of an MDP (Sut-
ton and Barto, 1998). An MDP consists of a set of states 𝑆, a set of
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Table 1
This table lists most of the methods based on RL discussed in this related work and classifies each in terms of four dimensions.
Algorithm Risk detection Prior knowledge Exploration Tasks

Policy Gradient (Kohl
and Stone, 2004; Kulk
and Welsh, 2011; Kober
and Peters, 2011)

– Initialization Random action
perturbation

Biped walking, Quadrupedal
locomotion, Motor trajectories

PoWER (Kober and
Peters, 2011;
Kormushev et al., 2013;
Yuan et al., 2019)

– Initialization Random parameter
perturbation

Biped walking, Motor
trajectories

Deep RL (Duan et al.,
2016; Gu et al., 2017;
Kahn et al., 2018;
Huang et al., 2019)

– Initialization Random action
perturbation

Quadrupedal locomotion,
Navigation, Manipulation

Evolutionary
RL (Chernova and
Veloso, 2004; Koppejan
and Whiteson, 2011;
Miikkulainen, 2017;
Hirayama et al., 2017)

– Initialization Random parameter
perturbation

Quadrupedal locomotion,
Manipulation

Q-learning (Mescheder,
2011)

– Initialization Random action
selection

Biped Walking

PR-SRL Continuous
risk function

Initialization/
Training

Guided action
perturbation

–

actions 𝐴 available from each state, the reward function 𝑅 ∶ 𝑆 ×𝐴 → R
which assigns numerical rewards to transitions, and transition probabil-
ities 𝑇 ∶ 𝑆×𝐴×𝑆 → [0, 1] that capture the dynamics of a system. In this
paper, we consider 𝑆 and 𝐴 to be infinitely large bounded sets, i.e., we
consider MDPs where both the states and actions are continuous. We
also consider discrete-time MDPs, i.e., at each discrete time step 𝑛 the
learning agent perceives a state 𝑠 ∈ 𝑆 and takes an action 𝑎 ∈ 𝐴 that
leads it to the next discrete time step 𝑛 + 1, with 𝑛 ∈ {1, 2, 3,…}. The
goal is to learn a policy 𝜋, which maps each state to an action, such
that the return 𝐽 (𝜋) is maximized:

𝐽 (𝜋) =
𝐻
∑

ℎ=0
𝛾ℎ𝑟ℎ (1)

where 𝑟𝑛 is the immediate reward received in step 𝑛, and 𝛾 is the
discount factor and affects how much the future is taken into account
(with 0 ≤ 𝛾 ≤ 1). We assume that the interaction between the learning
agent and the environment is broken into episodes, where 𝐻 is a
time instant at which a terminal state is reached, or a fixed length
for a finite horizon problem. Traditional methods in RL, such as TD-
learning (Sutton and Barto, 1998), typically try to estimate the return
(sum of rewards) for each state 𝑠 when a particular policy 𝜋 is being
performed. This is also called the value-function 𝑉 𝜋 (𝑠) = 𝐸[𝐽 (𝜋)|𝑠0 = 𝑠].
The value of performing an action 𝑎 in a state 𝑠 under policy 𝜋 is
represented as 𝑄𝜋 (𝑠, 𝑎) = 𝐸[𝐽 (𝜋)|𝑠0 = 𝑠, 𝑎0 = 𝑎]- this value represents
the estimated return, i.e. sum of rewards, the system will receive when
it performs action 𝑎 in the state 𝑠, and follows the policy 𝜋 thereafter.
The 𝑄-function is also called the action-value function.

To correctly approximate the value or the action-value function,
RL learning algorithms use exploration/exploitation strategies (e.g., 𝜖-
greedy, softmax) as a balance between the exploration of random
unexplored actions and the exploitation of the ongoing learned pol-
icy (Tijsma et al., 2016). However, typically these exploration strategies
do not implement mechanisms to detect and to avoid risk situations as
the strategy proposed in this paper.

4. Safe Reinforcement Learning

In this section, we describe the main elements of Safe Reinforce-
ment Learning. A wider explanation of its basis, as well as previous
algorithms, can be found in the literature (García and Fernández, 2012,
2015). As described previously, in this paper, we assume the presence
of a baseline behavior, 𝜋𝑇 , able to provide safe demonstrations of the

biped walking task, and to advise suboptimal actions in unknown states
to reduce the probability of entering into dangerous situations. That
means that while the baseline behavior might not be able to indicate
the best action in all cases, the action it supplies should, at the very
least, be safer than that obtained through random exploration

By a way of introduction, the intuition behind the safe exploration
used in this paper is as follows. At the beginning the learning agent
knows nothing about the environment, i.e, for the learning agent, all
the states are unknown states. We consider that an unknown state is an
unsafe state because the agent does not know what action to perform on
it. Certainly, not knowing what to do in a given situation increases the
probability of ending up in trouble. Thus, in our case, the concept of risk
is associated to the concept of unknown (García and Fernández, 2012).
In case of an unknown state, the risk is maximum, hence, it increases
the probability that the learning agent asks the baseline behavior, 𝜋𝑇 ,
for advice. Then, this unknown state together with the action suggested
by 𝜋𝑇 in that state are stored by the learning agent, and the unknown
state becomes a known state. In this way, if the agent revisits a state
similar (or equal) to the new known state, it will know what action
to perform on it. As the learning process proceeds, the learning agent
gradually discovers more of the environment around it and, then, it
begins to explore beyond the actions provided by 𝜋𝑇 . To this end, it
adds small amounts of Gaussian noise or perturbations to the actions
previously provided by the baseline behavior in order to find new
and better ways of completing the task. Therefore, although a baseline
behavior is used, the objective is to explore beyond what is provided in
the demonstrations by 𝜋𝑇 . In some cases, such a exploration leads the
learning agent to new unknown regions of the state space. The learning
agent is assumed to be able to detect such situations with a risk function
and, then, it asks for advice to the baseline behavior to return to safe,
known states. The iteration of this process leads the learning agent to
progressively and safely explore the state and action spaces in order to
find new and improved ways to complete the task, while avoiding the
visits to dangerous or error states.

It is important to be aware of the fact that this exploration is based
on parent–child learning, where the baseline behavior, 𝜋𝑇 , takes the
role of the parent and the learner takes the role of the child. At the
beginning, the child does not know much about the world, hence, asks
the parent for advice. The child incorporates the parent’s knowledge
into his/her own knowledge about the world. However, the curiosity
leads the child to explore new actions beyond the advice of the parent.
Therefore, the child investigates new similar actions around the actions
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Fig. 1. Known/unknown and error/non-error states.

advised by the parent. In this process, he/she can discover new and
better actions that the advised by the parent to perform the task.
However, if during this exploration process for better actions the child
is again in an unknown situation, he/she request immediately the advice
of his/her parent. In this way, the child safely explores the world.

It is also important to note that this form of exploration requires
dividing the state space into error/non-error and unknown/known
states. Section 4.1 provides a formal description of this partition. It also
requires the definition of a risk function able to detect risk situations
(Section 4.2), and a safe exploration/exploitation strategy (Section 4.3).
Finally, Section 4.4 present PR-SRL, the algorithm used to safely learn
the biped walking task. This algorithm uses the 𝜋-reuse exploration
strategy to safely balance the exploitation of actual learned knowledge,
the exploration of new actions, and the request of teacher advice in
considered dangerous parts of the state space.

4.1. Partitioning the state space: Error and non-error, and known and
unknown states

In this paper, the state space is divided as described in Fig. 1.
Regarding error/non-error states, we follow as far we can the notation
presented in Geibel and Wysotzki (2005) for the definition of error and
non-error states. In their study, Geibel and Wysotzki (2005) associate
risk with error states and non-error states, with the former understood
as a state in which it is considered undesirable or dangerous to enter.

Definition 1 (Error and Non-error States). Let 𝑆 be a set of states and
𝛷 ⊂ 𝑆 the set of error states. A state 𝑠 ∈ 𝛷 is an undesirable terminal
state where the control of the agent ends when 𝑠 is reached with
damage or injury to the agent, the learning system or any external
entities. The set 𝛤 ⊂ 𝑆 is considered a set of non-error terminal states
with 𝛤 ∩ 𝛷 = ∅ and where the control of the agent ends normally
without damage or injury.

In terms of RL, if the agent enters an error state, the current episode
ends with damage to the learning system (or other systems); whereas
if it enters a non-error state, the episode ends normally and without
damage.

In respect to the unknown/known states, let us assume the learning
agent is equipped with a case-base 𝐵 = {𝑐1,… , 𝑐𝜂}. In 𝐵, every case 𝑐𝑖
consists of a state–action pair (𝑠𝑖, 𝑎𝑖) that the agent has experienced in
the past and with an associated value 𝑉 (𝑠𝑖). Thus, 𝑐𝑖 = ⟨𝑠𝑖, 𝑎𝑖, 𝑉 (𝑠𝑖)⟩,
where the first element represents the case’s problem part and cor-
responds to the state 𝑠𝑖, the following element, 𝑎𝑖, depicts the case
solution (i.e., the action expected when the agent is in the state 𝑠𝑖) and
the final element, 𝑉 (𝑠𝑖), is the value function associated with the state
𝑠𝑖. Each state 𝑠𝑖 is composed of 𝑛 continuous state variables and each
action 𝑎𝑖 is composed of 𝑚 continuous action variables.

Hence, the cases in 𝐵 describe a Case Based Policy of the agent,
𝜋𝜃𝐵 , and its associated value function 𝑉 𝜋𝜃𝐵 . When the agent receives a
new state 𝑠𝑞 , the agent first retrieves the nearest neighbor to the 𝑠𝑞

Fig. 2. Binary step function, and continuous risk function for different values of 𝑘.
The parameter 𝜃 is set to 𝜃 = 0.3.

point in 𝐵 according to some similarity metric and then the associated
action is performed. In this paper, we consider the Euclidean distance
as similarity metric Eq. (2).

𝑑(𝑠𝑞 , 𝑠𝑖) =

√

√

√

√

𝑛
∑

𝑗=0
(𝑠𝑞,𝑗 − 𝑠𝑖,𝑗 )2 (2)

A density threshold, 𝜃, is used to determine when a new case should
be added to the memory. When the distance of the nearest neighbor to
𝑠𝑞 is greater than 𝜃, a new case is added to the memory. In this sense,
the parameter 𝜃 defines the size of the classification region for each
case in 𝐵.

Definition 2 (Known and Unknown States). Given a case base 𝐵 =
{𝑐1,… , 𝑐𝜂} composed of cases 𝑐𝑖 = (𝑠𝑖, 𝑎𝑖, 𝑉 (𝑠𝑖)), a state 𝑠𝑞 is considered
known, when min1≤𝑖≤𝜂 𝑑(𝑠𝑞 , 𝑠𝑖) ≤ 𝜃; the state 𝑠𝑞 is considered unknown
otherwise. Formally, we consider a set 𝛺 ⊆ 𝑆 of known states, and we
allow an additional set of unknown states 𝛶 ⊆ 𝑆 with 𝛺 ∩ 𝛶 = ∅, and
𝛺 ∪ 𝛶 = 𝑆.

When the agent receives a new state 𝑠 ∈ 𝛺, it performs the action
𝑎𝑖 of the case 𝑐𝑖 for which 𝑑(𝑠, 𝑠𝑖) = min1≤𝑗≤𝜂 𝑑(𝑠, 𝑠𝑗 ) (known state).
However, if the agent receives a state 𝑠 ∈ 𝛶 where, by definition,
the distance to any state in 𝐵 is larger than 𝜃 (unknown state), no
case is retrieved. Consequently, the action to be performed from that
state is unknown to the agent. It is important to bear in mind that at
the beginning of the exploration process, the agent does not have any
information about the environment, hence, all the states are unknown,
i.e., at the beginning of the exploration process it is 𝛶 = 𝑆.

4.2. The risk function

In this paper, we use a continuous risk function in order to measure
the quantity of risk of a given state 𝑠. Given a case base 𝐵 = {𝑐1,… , 𝑐𝜂}
composed of cases 𝑐𝑖 = (𝑠𝑖, 𝑎𝑖, 𝑉 (𝑠𝑖)), the risk for each state 𝑠 is defined
as Eq. (3).

𝜚𝐵(𝑠) = 1 − 1

1 + 𝑒
𝑘
𝜃 ((min1≤𝑗≤𝜂 𝑑(𝑠,𝑠𝑗 )−

𝜃
𝑘 )−𝜃)

(3)

Eq. (3) allows us to obtain a smoother transition between risk-
free states (i.e., known states) and risk states (i.e., unknown states) as
described in Fig. 2.

The parameter 𝑘 has a double effect. On the one hand, depending
on its value, the width of the sigmoid function varies. A lower value
of 𝑘 implies a wider sigmoidal function. On the left of the parameter 𝜃
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in Fig. 2, this implies a higher probability of consider known states as
unknown states This results in a less aggressive exploration of the state
space during the learning process since the baseline behavior advices
are more frequently required (being able to affect negatively the final
performance of the algorithm). On the other hand, the parameter 𝑘 is
used to displace the sigmoid function to the left, reducing in this way
the probability of consider unknown states as known states. However, it
is important to note that this probability does not disappear completely,
i.e., this displacement allows also to keep the smooth transition to the
right of the 𝜃 parameter (Fig. 2). In summary, using Eq. (3), lower
values of 𝑘 imply a less aggressive exploration of the state space, and
a lower probability of consider unknown states as known. Instead, the
higher the values of 𝑘 are, the more similar the continuous risk func-
tions in Fig. 2 will be with the binary step function. This implies a more
aggressive exploration of the state space, increasing the probabilities of
damages.

The risk function in Eq. (3) can be seen as the probability that a
state will be considered as an unknown state. Therefore, from Eq. (3),
the application of probabilistic policy reuse to measure the advice of
a teacher in safe RL is easy, by using the risk function 𝜚𝐵(𝑠) as a
transfer function. The transfer rate depends on the safety of the learning
agents: if safety is high (i.e., 𝜚𝐵(𝑠) is low), probability to use the advice
of the teacher is very low, while if safety is low (i.e., 𝜚𝐵(𝑠) is high),
such probability increases. This integration will be explained deeply in
Section 4.4.

4.3. Safe 𝜋-reuse exploration/exploitation strategy

Algorithm 1 shows Safe 𝜋-reuse, a version of the 𝜋-reuse (Fernández
and Veloso, 2006; Fernández et al., 2010) algorithm to incorporate the
teacher advice in the exploration process. The main elements over the
original 𝜋-reuse strategy are:

• the past policy 𝛱𝑝𝑎𝑠𝑡 is replaced by the baseline behavior 𝜋𝑇
• the new policy to be learned 𝛱𝑛𝑒𝑤 is replaced by the case base

policy 𝜋𝜃𝐵
• the parameter 𝜓 is replaced by 𝜚𝐵(𝑠)
• no 𝜖-greedy strategy is used, because actions are continuous.

Instead, random Gaussian noise is used to generate exploratory
actions.

Algorithm 1: Safe 𝜋-reuse (𝜋𝑇 ,𝐻, 𝐵, 𝜎, 𝜃, 𝑘)
Input: 𝜋𝑇 , 𝐻 , 𝐵, 𝜎, 𝜃, 𝑘
Output: 𝑙𝑖𝑠𝑡𝐶𝑎𝑠𝑒𝑠𝐸𝑝𝑖𝑠𝑜𝑑𝑒, 𝑡𝑜𝑡𝑎𝑙𝑅𝑤𝐸𝑝𝑖𝑠𝑜𝑑𝑒

1 Initialize listCasesEpisode ← ∅, 𝑡𝑜𝑡𝑎𝑙𝑅𝑤𝐸𝑝𝑖𝑠𝑜𝑑𝑒← 0, ℎ← 1, initial
state, 𝑠ℎ

2 repeat
3 Compute the case < 𝑠, 𝑎, 𝑉 (𝑠) >∈ 𝐵 closest to the current

state 𝑠ℎ;
4 𝜚𝐵(𝑠ℎ) ← 1 − 1

1+𝑒
𝑘
𝜃 ((min1≤𝑗≤𝜂 𝑑(𝑠ℎ,𝑠𝑗 )−

𝜃
𝑘 )−𝜃)

;

5 With a probability of 𝜚𝐵(𝑠ℎ): 𝑎ℎ ← 𝜋𝑇 (𝑠ℎ), 𝑐𝑛𝑒𝑤 ← (𝑠ℎ, 𝑎ℎ, 0);
6 With a probability of 1 − 𝜚𝐵(𝑠ℎ): 𝑎ℎ ← 𝑟𝑛𝑑_𝑔𝑎𝑢𝑠𝑠(𝜋𝐵(𝑠ℎ), 𝜎),

𝑐𝑛𝑒𝑤 ← (𝑠, 𝑎ℎ, 𝑉 (𝑠));
7 Execute 𝑎ℎ and receive the next state 𝑠′ℎ, and reward, 𝑟𝑠ℎ ,𝑎ℎ ;
8 𝑡𝑜𝑡𝑎𝑙𝑅𝑤𝐸𝑝𝑖𝑠𝑜𝑑𝑒 ← 𝑡𝑜𝑡𝑎𝑙𝑅𝑤𝐸𝑝𝑖𝑠𝑜𝑑𝑒 + 𝑟(𝑠ℎ, 𝑎ℎ);
9 𝑙𝑖𝑠𝑡𝐶𝑎𝑠𝑒𝑠𝐸𝑝𝑖𝑠𝑜𝑑𝑒← 𝑙𝑖𝑠𝑡𝐶𝑎𝑠𝑒𝑠𝐸𝑝𝑖𝑠𝑜𝑑𝑒 ∪ 𝑐𝑛𝑒𝑤;
10 𝑠ℎ ← 𝑠′ℎ;
11 ℎ ← ℎ + 1;
12 until ℎ < 𝐻 ;

The Safe 𝜋 − 𝑟𝑒𝑢𝑠𝑒 exploration/exploitation strategy is as follows.
The algorithm builds a case for each step of an episode. For each
new state 𝑠ℎ, the closest case ⟨𝑠, 𝑎, 𝑉 (𝑠)⟩ ∈ 𝐵 is computed using the
Euclidean distance metric defined in Eq. (2) (see line 3 in Algorithm 1).

At this point, the 𝜋-reuse strategy is followed, using the 𝜚𝐵(𝑠) function
as a transfer probability: with a probability of 𝜚𝐵(𝑠) the policy of the
baseline behavior 𝜋𝑇 is followed, while with a probability of 1 − 𝜚𝐵(𝑠),
the action suggested by current base case policy is executed. Therefore,
in areas far from the known states, the probability to use the baseline
behavior advice is very high, while this advice is rarely used in known
areas. If the algorithm follows the baseline behavior the action 𝑎ℎ
performed is suggested by the baseline behavior 𝜋𝑇 which defines safe
behavior, and a new case ⟨𝑠ℎ, 𝑎ℎ, 0⟩ is built (line 5). In this case, the
state 𝑠ℎ is considered an unknown state.

If the algorithm exploits the new policy the action 𝑎ℎ is performed
(line 6). In this case, the new case ⟨𝑠, 𝑎ℎ, 𝑉 (𝑠)⟩ is built replacing the
action 𝑎 corresponding to the closest case in ⟨𝑠, 𝑎, 𝑉 (𝑠)⟩ ∈ 𝐵, with
the new action 𝑎ℎ resulting from the application of random Gaussian
noise to 𝑎. In order to maximize exploration safety, it seems advisable
that movement through the state space is not arbitrary, but rather that
known space be expanded only gradually by starting from a known
state. Therefore, in line 6 the action performed is sampled from a
Gaussian distribution with the mean at the action output given by the
case selected in B. The shape of the Gaussian distribution depends on
parameter 𝜎 (standard deviation). In this study, 𝜎 is used as a width
parameter. While large 𝜎 values imply a wide bell-shaped distribution,
increasing the probability of selecting actions 𝑎ℎ very different from
the current action 𝑎, a small 𝜎 value implies a narrow bell-shaped dis-
tribution, increasing the probability of selecting actions 𝑎ℎ very similar
to the current action 𝑎. Finally, the reward obtained in the episode is
accumulated, where 𝑟(𝑠ℎ, 𝑎ℎ) is the immediate reward obtained when
action 𝑎ℎ is performed in state 𝑠ℎ (line 8) and the new case is added to
the list of cases (line 9).

Fig. 3 graphically represents a running example of the lines 3–6 of
Algorithm 1 for action selection, which are the heart of the algorithm.
In the proposed example, the state 𝑠ℎ = (1, 2) is perceived from
the environment. First, then, it is computed the Euclidean distances
between the perceived state 𝑠ℎ = (1, 2) and each state 𝑠𝑖 of the cases
𝑐𝑖 ∈ 𝐵. Let us assume that the minimum distance is with the state
𝑠1 = (2, 3) corresponding to the case 𝑐1 = ⟨(2, 3), 4, 8⟩ ∈ 𝐵 and, thus,
𝑐1 is the closest case to 𝑠ℎ = (1, 2).

Once the closest case 𝑐1 ∈ 𝐵 is selected, it is computed the risk
function, 𝜚𝐵(𝑠ℎ), using the distance 𝑑(𝑠ℎ, 𝑠1) as described in Eq. (3).
In the running example in Fig. 3, let us consider the risk function is
𝜚𝐵(𝑠ℎ) = 0.7. This value, 0.7, is used as a probability of considering the
state 𝑠ℎ as a dangerous state. If that is the case, the action 𝑎ℎ to be
performed in the next step is computed using the baseline behavior,
𝑎ℎ = 𝜋𝑇 (𝑠ℎ). Otherwise, the action 𝑎ℎ is computed adding a small
amount of Gaussian noise to the action in the closest case.

4.4. PR-SRL algorithm

The Safe 𝜋-reuse is used by the PR-SRL algorithm to conduct a
safe exploration of the state and action spaces. The PR-SRL algorithm1

used for biped walking is depicted in Algorithm 2. The algorithm is
composed of three steps performed in each episode.

- (a) Case generation. The algorithm uses the 𝜋-reuse exploratory
strategy in Algorithm 1 to build the cases in the episode (line 3 in
Algorithm 2.

- (b) Computing the state-value function for the unknown
states. In this step, the state-value function of the states considered
to be unknown in the 𝜋-reuse exploration is computed. In the pre-
vious step (line 3), the state-value function for these states is set to
0. The algorithm proceeds in a manner similar to the first-visit MC
algorithm (Sutton and Barto, 1998). In this case, the return for each
considered unknown state 𝑠𝑖 is computed, but not averaged since only
one episode is considered (lines 6–7).

1 The source code of PI-SRL and PR-SRL is available in https://bitbucket.
org/fjaviergp/srl.
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Fig. 3. Running example of the Safe 𝜋-reuse exploration/exploitation strategy for a given state 𝑠ℎ = (1, 2). First, it is computed the closest case, 𝑐1 = ⟨(2, 3), 4, 8⟩, from 𝐵. Second,
it is computed the risk function 𝜚𝐵 (𝑠ℎ). Finally, thirdly, it is computed the action 𝑎ℎ according to the probability given by 𝜚𝐵 (𝑠ℎ).

Algorithm 2: PR-SRL(𝜂, 𝜋𝑇 , 𝛩, 𝜎, 𝜃, 𝑘, 𝑃 ,𝐻)
Input: 𝜂,𝜋𝑇 ,𝛩,𝜎, 𝜃, 𝑃 , 𝐻
Output: 𝐵

1 Initialize maxTotalRwEpisode ← 0, 𝐵 ← ∅;
2 repeat

/* (a) Case generation */
3 𝑙𝑖𝑠𝑡𝐶𝑎𝑠𝑒𝑠𝐸𝑝𝑖𝑠𝑜𝑑𝑒, 𝑡𝑜𝑡𝑎𝑙𝑅𝑤𝐸𝑝𝑖𝑠𝑜𝑑𝑒 ← 𝜋-reuse(𝜋𝑇 ,𝐻 ,𝐵,𝜎,𝜃,𝑘);

/* (b) Computing the state-value function for
the unknown states */

4 foreach 𝑐𝑖 ∈ 𝑙𝑖𝑠𝑡𝐶𝑎𝑠𝑒𝑠𝐸𝑝𝑖𝑠𝑜𝑑𝑒 do
5 if 𝑠𝑖 was considered an unknown state then
6 𝑟𝑒𝑡𝑢𝑟𝑛(𝑠𝑖) ←

∑𝑘
𝑗=𝑛 𝛾

𝑗−𝑛𝑟(𝑠𝑗 , 𝑎𝑗 );
7 𝑉 (𝑠𝑖) ← 𝑟𝑒𝑡𝑢𝑟𝑛(𝑠𝑖);
8 end
9 end

/* (c) Updating the cases in B using the
gathered experience */

10 if 𝑡𝑜𝑡𝑎𝑙𝑅𝑤𝐸𝑝𝑖𝑠𝑜𝑑𝑒 > (𝑚𝑎𝑥𝑇 𝑜𝑡𝑎𝑙𝑅𝑤𝐸𝑝𝑖𝑠𝑜𝑑𝑒 − 𝛩) then
11 𝑚𝑎𝑥𝑇 𝑜𝑡𝑎𝑙𝑅𝑤𝐸𝑝𝑖𝑠𝑜𝑑𝑒 ←

max(𝑚𝑎𝑥𝑇 𝑜𝑡𝑎𝑙𝑅𝑤𝐸𝑝𝑖𝑠𝑜𝑑𝑒, 𝑡𝑜𝑡𝑎𝑙𝑅𝑤𝐸𝑝𝑖𝑠𝑜𝑑𝑒);
12 foreach 𝑐𝑖 =< 𝑠𝑖, 𝑎𝑖, 𝑉 (𝑠𝑖) >∈ 𝑙𝑖𝑠𝑡𝐶𝑎𝑠𝑒𝑠𝐸𝑝𝑖𝑠𝑜𝑑𝑒 do
13 if 𝑠𝑖 was considered a known state then
14 Compute the case < 𝑠𝑖, 𝑎, 𝑉 (𝑠𝑖) >∈ 𝐵

corresponding to the state 𝑠𝑖;
15 Compute 𝛿 ← 𝑟(𝑠𝑖, 𝑎𝑖) + 𝛾𝑉 (𝑠𝑖+1) − 𝑉 (𝑠𝑖);
16 if 𝛿 > 0 then
17 Replace < 𝑠𝑖, 𝑎, 𝑉 (𝑠𝑖) >∈ 𝐵 with

< 𝑠𝑖, 𝑎𝑖, 𝑉 (𝑠𝑖) >∈ 𝑙𝑖𝑠𝑡𝐶𝑎𝑠𝑒𝑠𝐸𝑝𝑖𝑠𝑜𝑑𝑒;
18 𝑉 (𝑠𝑖) ← 𝑉 (𝑠𝑖) + 𝛼𝛿;
19 end
20 end
21 else
22 𝐵 ← 𝐵 ∪ 𝑐𝑖;
23 end
24 end
25 end
26 if ‖𝐵‖ > 𝜂 then
27 Remove the 𝜂 − ‖𝐵‖ least-frequently-used cases in 𝐵;
28 end
29 𝑝 ← 𝑝 + 1
30 until 𝑝 < 𝑃 ;

- (c) Updating the cases in B using gathered experience. Updates
in B are made with the cases gathered from episodes with a cumulative
reward similar to that of the best episode found to that point using
the threshold 𝛩 (line 10). Thus, the updates in B will be made with
the cases gathered from episodes with a similar quality to the best
episode found so far. In this step, two types of updates appear, namely,

replacements and additions of new cases. Again, the algorithm iterates
for each case 𝑐𝑖 = (𝑠𝑖, 𝑎𝑖, 𝑉 (𝑠𝑖)) ∈ 𝑙𝑖𝑠𝑡𝐶𝑎𝑠𝑒𝑠𝐸𝑝𝑖𝑠𝑜𝑑𝑒 (line 12). If 𝑠𝑖 was
considered a known state during the 𝜋-reuse exploration (line 13), we
compute the case ⟨𝑠𝑖, 𝑎, 𝑉 (𝑠𝑖)⟩ ∈ 𝐵 corresponding to the state 𝑠𝑖 (line
14). One should note that the case 𝑐𝑖 = (𝑠𝑖, 𝑎𝑖, 𝑉 (𝑠𝑖)) ∈ 𝑙𝑖𝑠𝑡𝐶𝑎𝑠𝑒𝑠𝐸𝑝𝑖𝑠𝑜𝑑𝑒
was built in line 08 of Algorithm 1, replacing the action 𝑎 corresponding
to the case ⟨𝑠𝑖, 𝑎, 𝑉 (𝑠𝑖)⟩ ∈ 𝐵 with the new action 𝑎𝑖 and resulting
from the application of random Gaussian noise to the action 𝑎. Then,
the temporal distance (TD) error 𝛿 is computed (line 15). If 𝛿 > 0,
performing the action 𝑎𝑖 results in a positive change for the value of a
state, and it is reinforced. In the algorithm, this reinforcement is carried
out by updating the output of the case ⟨𝑠𝑖, 𝑎, 𝑉 (𝑠𝑖)⟩ ∈ 𝐵 at 𝑎𝑖 (line 17).
If, instead, 𝑠𝑖 was considered a known state, the case 𝑐𝑖 is added to B
(line 22). Finally, the algorithm removes cases from 𝐵 if necessary (line
27).

5. Robotic framework

In this section, we firstly describe the humanoid robot used to
conduct the experiments (Section 5.1), and, we present the mapping
of the biped walking task onto an episodic RL task for the application
of Safe RL (Section 5.2).

5.1. NAO robot

In this paper, we use the Aldebaran NAO V5 robot to conduct the
experiments (Fig. 4). It weighs 4.5 kg, is 57 cm high and has 22 degrees
of freedom (DoFs).

NAO V5 has an on-board ATOM Z530 1.6 GHz processor, 1 GB
RAM and 2 GB Flash memory, to be shared between the low level
control system and the autonomous perception, cognition, and motion
algorithms. It is equipped with several sensors including two color
cameras, two ultrasound distance sensors, a 3-axis accelerometer, a 2-
axis gyroscope (X–Y), an inertial measurement unit for computing the
absolute orientation of the torso, 4 pressure sensors on the sole of each
foot, and a bump sensor at the tip toe of each foot (Gouaillier et al.,
2009).

5.2. Mapping humanoid walking onto a reinforcement learning task

In our biped walking problem, the state and action spaces are
continuous. The state space 𝑆 is represented by a 14-dimensional vector
that reflects the configuration of the robot. It is composed of the values
of 8 joint angles, the readings from the accelerometer in the 𝑥, 𝑦 and
𝑧 dimensions, and the readings from the gyroscope in the 𝑥, 𝑦 and
𝑧 dimensions. Similarly, the action space 𝐴 is a 8-dimensional vector
representing the torque directly applied to that 8 joints. Therefore, the
action vector 𝑎 ∈ (−1, 1)8 specifies the fraction of maximum torque to
be used in positive or negative direction. However, the implementation
of an action in this form was not straightforward as NAO has a built-in
feedback control mechanism that maintains specified angles of robot’s
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Fig. 4. Nao robot.

joints. The API allows to set new posture to be maintained and a torque
limit. To simulate direct torque control, we set the torque limit for
every joint and compute the change in the maintained angle of 𝑖th joint
𝛥𝛼𝑖 by following relationship in Eq. (4).

𝛥𝛼𝑖 = 𝜔𝑖 ∗ 𝑎𝑖 ∗ 𝛥𝑡 (4)

where 𝜔𝑖 is the maximum rotation velocity of the 𝑖th joint (with
full torque), and 𝛥𝑡 is the duration of the action. Our approach to
allow the algorithm to access the robot hardware, like many other
researchers (Ashar et al., 2015; Röfer and Laue, 2014; Bahdi, 2018),
is through the Device Communication Manager (DCM). This module
provides the fastest way to control the robot and, thus, reduces latency
problems: it allows sending commands to the actuators and a rapid
updating of actuator/sensor values.

The joints considered, which are the same for the left and right side
of the robot, are: shoulder pitch, hip roll, hip pitch, and knee pitch.
While the robot is walking, the feet are supposed to be parallel to the
ground. This is achieved by using the ankle joints. Therefore, in this
case, to learn the biped walking behavior, there are 8 DoFs. We tackled
this biped robot walking as an episodic task, where each episode ends
when the robot falls down or reaches a maximum length duration (we
have limited the maximum time the robot can be walking). Each time
step in the episode spans 200 ms, and the maximum number of steps of
an episode is fixed to 100. We consider the objective of maximizing the
distance traveled, so the reward function 𝑟 is computed considering the
distance that the robot has traveled in a single time step. Therefore, it
is important to keep in mind that since the episodes have a maximum
duration, and the objective is to maximize the distance traveled by the
robot in these episodes, indirectly we are encouraging the robot to walk
as fast as possible

6. Experimental results

This section presents the experimental results collected from the
use of PR-SRL for policy learning in the real Aldebaran NAO robot
described in Section 5.

6.1. Experimental scope

In this domain, the experiments have been conducted in order to
learn a near-optimal policy which maximizes the traveled distance of

NAO, and minimizes the number of falls during learning. During the
experiments, the robot is equipped with a harness managed by a human
that prevents the robot falls completely to the ground, thus, prevent
possible hardware damage. A similar harness is used by Meriçli and
Veloso (2010). It is important to note that the harness is used only to
prevent the robot from hitting the ground, but not to guide its steps.
Obviously, the ideal is that the learning processes could be conducted
without the need of these external devices, since they require the rapid
reaction of the human to avoid falling, which is not always the case.
The experiments in Section 6.2 demonstrate that PR-SRL does not need
these devices while other algorithms do need. In each episode, NAO
begins from the same initial position and pose. Therefore, at the end of
each episode, regardless of the distance traveled, NAO is transported
again to this initial position, and adjusted to the start pose.

The results of PR-SRL in this domain are compared to those yielded
by four additional techniques namely: TFS-PSO which is based on the
use of Truncated Fourier Series (TFS) to model the angular trajectories
of the joints, and on the use of Particle Swarm Optimization (PSO) to
optimize its parameters (Shafii et al., 2010), HCD which is a biped
walking learning approach based on human corrective demonstra-
tions (Meriçli and Veloso, 2010), the PoWER algorithm in which the
policy is parameterized using Dynamic Motor Primitives (DMPs) (Kober
and Peters, 2011), and DDPG which is a successful RL algorithm based
on Deep Learning and Policy Gradient (Wu et al., 2018). It is important
to note that in this paper TFS-PSO, HCD, PoWER and DDPG do not
begin learning from scratch since they are initialized using exactly
the same baseline behavior 𝜋𝑇 as that used in our PR-SRL algorithm.
In the case of TFS-PSO in which a population of particles/solutions
are required at the beginning of learning, each of the particles are
generated by slightly perturbing 𝜋𝑇 . This makes the comparison of
performances as fair as possible. However, it is important to be aware
of the fact that we are not trying to prove whether our algorithm is
better than TFS-PSO, HCD, PoWER, or DDPG since they make its own
use of its exploration/exploitation strategies. Instead we will take the
results achieved with all these algorithms as reference to analyze the
performance and the number of robot falls achieved with our algorithm.
Additionally, the performance of PR-SRL is also compared with that of
PI-SRL (García and Fernández, 2012), our previous algorithm which
makes use of a step risk function instead of a continuous risk function
as described in Section 4.2.
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Fig. 5. (a) Mean cumulative reward per episode obtained by PR-SRL using different values of 𝑘. (b) Mean number of falls and cumulative reward obtained by PR-SRL using
different values of 𝑘. The means and standard deviations have been computed from 10 different runs.

6.2. NAO results

Fig. 5(a) shows three different learning processes corresponding to
PR-SRL using different values of 𝑘: 𝑘 = 3, 𝑘 = 6 and 𝑘 = 12. In
Fig. 5(a), we have run the algorithm 10 times due to the stochastic
nature of the learning process. Therefore, Fig. 5(a) shows the average
results together with their standard deviations. The conclusion to be
drawn from Fig. 5(a) is that small 𝑘 values perform a less aggressive
exploration of the state and action space which slightly affect the final
performance of the algorithm, although the obtained behavior is safer.
Instead, high 𝑘 values perform a more aggressive exploration, which
also implies a higher probability of failure. In PR-SRL 𝑘 = 12 the
continuous risk function begins to look like the binary step function,
and the failures appear. However, PR-SRL 𝑘 = 6 is able to completely
avoid the falls, while maintaining a similar performance achieved by
PR-SRL 𝑘 = 12. It is also important to note that PR-SRL clearly exceeds
the performance of the baseline behavior 𝜋𝑇 used. Finally, Fig. 5(a) may
also be used to analyze the learning speed of the proposed algorithm.
The learning curves in Fig. 5(a) demonstrate that PR-SRL reaches
convergence at around episode 70. From this episode on, the learning
speed for all the learning processes decreases, and the performance of
the ongoing policies that are being learned remains constant. Therefore,
our algorithm needs at around 70 episodes to learn this task. Obviously,
the baseline behavior biases the learning algorithm towards promising
regions of the search space, so as to reduce the learning time.

Fig. 5(b) shows the mean number of falls and cumulative reward
over 100 episodes for different approaches. The data has been com-
puted from 10 independent executions of each approach. In particular,
Fig. 5(b) shows the performance of TFS-PSO (pink diamond), the per-
formance of HCD (green square), the performance for PoWER (inverted
gray triangle), the performance of DDPG (brown star), PI-SRL (red
triangle) and, finally, PR-SRL with different 𝑘 values incrementally
tested: 𝑘 = 3, 𝑘 = 6 and 𝑘 = 12 (blue circles). Fig. 5(b) shows that
PR-SRL 𝑘 = 6 is the one that has the best balance between cumulative
reward obtained and number of falls. It reaches a similar performance
that the best performances reached by PoWER and DDPG, but unlike
them, it is able to completely avoid falls. This demonstrate that PR-
SRL 𝑘 = 6 is able to conduct a safe exploration of the state and action
space while learn near-optimal policies. PR-SRL is also able to beat
our previous algorithm PI-SRL, also demonstrating that the use of a
continuous risk function is better than a binary step one, since it allows
a smoother transition between known and unknown states.

Fig. 6 shows the walking speed of the policies obtained for each
algorithm at the end of the learning processes.

Fig. 6 is a box plot showing the minimum, first quartile, median,
third quartile, and maximum of the speed obtained by each policy
from 10 different runs. As can be seen, PR-SRL 𝑘 = 6 obtains a policy

Fig. 6. Walking speed (cm/s) of NAO using the policies obtained for each algorithm at
the end of the learning processes. The minimum, first quartile, median, third quartile,
and maximum for each algorithm have been computed from 10 different runs.

with a high speed similar to the best ones and, additionally, unlike the
others, it learns this policy without falls as demonstrated in Fig. 5(b).
It is important to bear in mind therefore that the problem we are
considering is multi-objective: it is not only about learning to walk as
fast as possible, but about learning to walk as fast as possible without
damage and, in this case, PR-SRL 𝑘 = 6 outperforms all others.

Fig. 7 shows a view-from-above of the NAO robot and the trajec-
tories produced by the baseline behavior, and the policies during the
learning of PR-SRL 𝑘 = 6. The red point in Fig. 7 shows the initial
position of the robot. Fig. 7(a) shows the trajectories of the baseline
behavior 𝜋𝑇 . As can be seen the baseline behavior 𝜋𝑇 in Fig. 7(a) do not
produce falls, but it walk a short distance. In contrast, Fig. 7(b) shows
the robot walk short distances following curved trajectories at the
beginning, but, as the learning process proceeds, the traveled distances
are getting longer and straighter. At the end of the learning process, the
final policy learned by PR-SRL clearly outperform the distance traveled
by the baseline behavior in Fig. 7(a).

As a final remark, Fig. 8 can be used to analyze the distance traveled
by NAO at the end of the learning process using PR-SRL 𝑘 = 6. It shows
four snapshots taken at different time stamps (𝑡 = 0, 𝑡 = 3, 𝑡 = 6, and
𝑡 = 9 s.), where the first snapshot corresponds to the initial pose of the
robot before it begins to walk.

Additionally, for each time stamp, Fig. 8 shows a red dashed line
to show the distance traveled by the baseline behavior at that same
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Fig. 7. Sample trajectories of (a) the baseline behavior 𝜋𝑇 and (b) the policies obtained during the learning with PR-SRL 𝑘 = 6.

Fig. 8. Snapshots from NAO at four different time stamps (𝑡 = 0, 𝑡 = 3, 𝑡 = 6, and 𝑡 = 9 s).

time. The final snapshot show that at the end of the learning process,
the resulted policy greatly exceed the distance traveled by this baseline
behavior, and it is completely stable and free of falls.

7. Conclusions

This paper describes the application of a Safe RL algorithm, PR-
SRL, to the task of robot biped walking. The performance of the
algorithm has been compared with state-of-the-art algorithms. Next we
summarize the main conclusions found in this paper:

(i) Fast convergence and safe exploration of the state and action space.
Typical RL methods perform a random exploration of the state and
action space and this negatively affects both the learning speed and the
safety of the learning system. However, learning speed and safety are
two requirements particularly interesting, even more so we talk about
robotic tasks. In this paper, PR-SRL has shown that it can be applied
successfully to a robotic task as complex as biped robot walking.
Section 6 demonstrates that PR-SRL maximizes the distance traveled
by the NAO robot in a small number of episodes, while minimizing the
number of falls when compared with other state-of-the-art approaches.
In fact, the experiments in Section 6.2 demonstrated that PR-SRL 𝑘 = 6
is able to learn near-optimal policies, without falling once.

(ii) It is impossible to completely avoid risk situations without certain
prior knowledge. Some prior knowledge about the task is necessary to
avoid risk situations. In our case, such a prior knowledge is given by the
presence of a baseline behavior that safely demonstrates the task to be
learned. PR-SRL uses such a baseline behavior for two purposes. On the
one hand, it allows to bootstrap the learning algorithm (i.e., a sort of
initialization procedure), and, on the other hand, to support the subse-
quent exploration process. Such subsequent exploration allows PR-SRL
to go beyond the performance of baseline behavior as demonstrated
in Section 6. However, it is important to note, nevertheless, that the
presence of such a baseline behavior is not guaranteed in all domains
and this limits the applicability of PR-SRL.

(iii) Safe RL to overcome the gap between simulation and reality. When
deal with real robots, a typical approach is to learn first the behavior in
a simulator, and then applying this learned behavior to the real robot.
In a simulator it does not matter if the robot falls, since it will not
suffer any real damage. Such approach would be ideal if simulators
perfectly simulated reality, but this is not the case in most robotic tasks.
In fact, many robotic platforms lack even of simulators. It is necessary,
therefore, to build algorithms that can be applied directly in real robots,

and it is imperative that these algorithms incorporate mechanisms to
detect and avoid risk situations. This is the case of PR-SRL.

(iv) Safe RL to extend life-long of robots. The use of PR-SRL (or other
risk sensitives approaches) for learning in real environments could
reduce the amount of damage incurred and, consequently, allow the
lifespan of the robots to be extended.

(v) As far as we know, this is the first time Safe RL is applied to a real
robotic task. Different approaches have been used to learn in real robots
as described in Section 2, but, as far as we know, without an explicit
mention of the risk concept, and without implementing mechanisms
to detect or to avoid risk situations. However, it is demonstrated in
this paper that such mechanisms are essential when dealing with real
robotic tasks. Obviously, learning directly in robots has other problems,
such as power or latency problems that depend on the particular robotic
platform to be used. It is important to bear in mind that our proposed
algorithm is robot and task independent, but its application is limited
to robotic platforms and tasks where these problems are not present or
can be solved in some way.

In summary, PR-SRL is an interesting, and promising exploration
approach for learning in real robots where it is mandatory to avoid (or
at least minimize) the number of dangerous situations. One future work
would be the deployment of the algorithm in other real robotic tasks,
and its comparison with state-of-the-art algorithms.
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