
Engineering Applications of Artificial Intelligence 91 (2020) 103559

Contents lists available at ScienceDirect

Engineering Applications of Artificial Intelligence

journal homepage: www.elsevier.com/locate/engappai

Interpretable policies for reinforcement learning by empirical fuzzy sets✩

Jianfeng Huang a,∗, Plamen P. Angelov b, Chengliang Yin a

a Shanghai Jiao Tong University, School of Mechanical Engineering, 200240 Shanghai, China
b Lancaster University, School of Computing and Communications, LA1 4WA Lancaster, UK

A R T I C L E I N F O

Keywords:
Interpretable fuzzy systems
Reinforcement learning
Probability distribution learning
Autonomous learning systems
AnYa type fuzzy systems
Empirical Fuzzy Sets

A B S T R A C T

This paper proposes a method and an algorithm to implement interpretable fuzzy reinforcement learning
(IFRL). It provides alternative solutions to common problems in RL, like function approximation and continuous
action space. The learning process resembles that of human beings by clustering the encountered states,
developing experiences for each of the typical cases, and making decisions fuzzily. The learned policy can
be expressed as human-intelligible IF-THEN rules, which facilitates further investigation and improvement. It
adopts the actor–critic architecture whereas being different from mainstream policy gradient methods. The
value function is approximated through the fuzzy system AnYa. The state–action space is discretized into a
static grid with nodes. Each node is treated as one prototype and corresponds to one fuzzy rule, with the value
of the node being the consequent. Values of consequents are updated using the Sarsa(𝜆) algorithm. Probability
distribution of optimal actions regarding different states is estimated through Empirical Data Analytics (EDA),
Autonomous Learning Multi-Model Systems (ALMMo), and Empirical Fuzzy Sets (εFS). The fuzzy kernel of
IFRL avoids the lack of interpretability in other methods based on neural networks. Simulation results with
four problems, namely Mountain Car, Continuous Gridworld, Pendulum Position, and Tank Level Control, are
presented as a proof of the proposed concept.

1. Introduction

Reinforcement learning (RL) has attracted extensive research inter-
est in recent years. It is mainly for solving decision-making problems
in Markovian processes (Sutton and Barto, 2018). The goal is to find
out the mapping from states to actions which yields maximal return.
Here, ‘‘return’’ is defined as optionally discounted cumulative rewards
within a finite or infinite time horizon. Various algorithms have been
developed to solve RL problems. At the early stage, policies are derived
through evaluation of actions values, like in the classic tabular Q-
learning (Watkins, 1989) and Sarsa (Rummery and Niranjan, 1994).
However, it is also possible to make decisions directly through a param-
eterized function, like in Silver et al. (2014) and Sutton et al. (2000).
State-of-the-art researches combine deep learning (DL) (Goodfellow
et al., 2016; Lecun et al., 2015) with RL to attain powerful algorithms
like Deep Q-Learning Networks (DQN) (Antonoglou et al., 2015; Mnih
et al., 2013) which is able to play Atari games at human level and Deep
Deterministic Policy Gradient (DDPG) (Lillicrap et al., 2015) which can
be used for high-dimensional continuous action space.

Although great progress in both theory and applications of RL
has been achieved, few researches are observed dealing with improv-
ing interpretability of policies produced by existing algorithms. In

✩ No author associated with this paper has disclosed any potential or pertinent conflicts which may be perceived to have impending conflict with this work.
For full disclosure statements refer to https://doi.org/10.1016/j.engappai.2020.103559.
∗ Corresponding author.

E-mail address: 515064@sjtu.edu.cn (J. Huang).

circumstances where safety is critical, like bio-medicine, the lack of
interpretability makes the application of RL unacceptable (Maes et al.,
2012; Verma et al., 2018). Introduction of deep neural networks (DNN)
to deal with high-dimensional state–action space further deteriorates
the problem, since DNN is known to be black-box.

Current attempts in deriving interpretable policies are characterized
by (a) expressing them as parameterized forms like fuzzy rules (Hein
et al., 2017; Mucientes and Casillas, 2007; Samsudin et al., 2011),
mathematical formulas (Hein et al., 2018; Maes et al., 2012), domain
specific programming language (Verma et al., 2018), and (b) using
optimization methods like Particle Swarm Optimization (PSO) (Hein
et al., 2017), genetic algorithms (GA) (Hein et al., 2018; Samsudin
et al., 2011), ant colony optimization (ACO) (Mucientes and Casillas,
2007), or searching algorithms (Maes et al., 2012; Verma et al., 2018)
to determine the parameters. They can be further categorized into two
groups according to the objective of the optimization/searching prob-
lem. In Hein et al. (2018, 2017), an environment model is established
using neural networks (NN), based on historical state–action-reward
trajectories from the real environment. Objective/fitness function of the
optimization problem is then expressed as the weight-average return
of all initial states within the RL framework. Here, the role of RL

https://doi.org/10.1016/j.engappai.2020.103559
Received 15 June 2019; Received in revised form 28 November 2019; Accepted 10 February 2020
Available online 27 February 2020
0952-1976/© 2020 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.engappai.2020.103559
http://www.elsevier.com/locate/engappai
http://www.elsevier.com/locate/engappai
http://crossmark.crossref.org/dialog/?doi=10.1016/j.engappai.2020.103559&domain=pdf
https://doi.org/10.1016/j.engappai.2020.103559
mailto:515064@sjtu.edu.cn
https://doi.org/10.1016/j.engappai.2020.103559

J. Huang, P.P. Angelov and C. Yin Engineering Applications of Artificial Intelligence 91 (2020) 103559

is solely on providing the objective/fitness/scoring function, rather
than updating policy parameters. This kind of methods are typical
model-based ones since they require the availability of environment
models. Therefore, they are only applicable when the system dynamics
are relatively easy to model. Another approach is to firstly learn a
high-performance whereas uninterpretable policy (also referred to as
‘‘oracle’’ or nominal policy) through state-of-the-art methods like DQN,
and then search for parameters that minimize the differences between
the behavior of the nominal policy and the parameterized one (Verma
et al., 2018). Inspired by imitation learning (Ross et al., 2010; Schaal,
1999), this method provides policy interpretability by making one in
the interpretable form to imitate another uninterpretable. Hein et al.
(2018) compared these two approaches with different objectives in pa-
rameter optimization/searching, and found that the one that optimizes
the RL return directly actually performs better.

All attempts above fail to learn interpretable policies online, in
a per-step manner. Rather, they are all per-batch. This means that
policy parameters will not be updated until the end of an episode.
Furthermore, for either the return optimization or the policy imitation
approaches, the final attained policy is fixed once the offline learning
is finished. If the environment changes, the whole set of policy pa-
rameters have to be relearned. In other words, these algorithms are
non-adaptive. Another disadvantage is that whereas the parameters can
be learned automatically, the structure of the policy has to be manually
specified a priori, like the number of membership functions (Mucientes
and Casillas, 2007), the number of the rules (Hein et al., 2017; Mu-
cientes and Casillas, 2007; Samsudin et al., 2011), the complexity of
the mathematical formulas (Hein et al., 2018; Maes et al., 2012), the
atoms and operators in the language for policy representation (Verma
et al., 2018), etc. Such decisions are problem-specific and are usually
hard to made, which implies the necessity of trial and error. These
drawbacks are shared by most of existing algorithms for interpretable
RL. There are exceptions, though. In Juang and Hsu (2009), interval
type-2 fuzzy sets are used in antecedent parts of the fuzzy rules, which
are online generated automatically through a clustering algorithm. The
algorithm also partitions the input space to reduce the number of
rules. Consequent part of each rule is updated using both Q-learning
and ACO, the former of which is per-step whereas the latter is per-
episode. Thus, the algorithm is capable of online learning both the
structure and the parameters automatically. However, discussions in
Juang and Hsu (2009) are restricted to the problem of wall-following
control of a mobile robot, in which the action space is discrete and
univariate, and the number of action candidates is finite and small. Fur-
thermore, the policy is solely action-value based, and therefore covers
only deterministic cases (one state is mapped to exactly one action). In
circumstances where effects of function approximation are significant,
stochastic policy may provide better optimality than deterministic ones
(Sutton and Barto, 2018).

The term ‘‘interpretability’’, though widely mentioned in literature
on machine learning, has not yet been well defined (Lipton, 2018; Maes
et al., 2012). In Maes et al. (2012), interpretability of the policy is
indicated through the Kolmogorov complexity, which is related to the
number of symbols used in a certain description language. Generally
speaking, it is more a qualitative metric than a quantitative one (Verma
et al., 2018). Here, we take a practical perspective: a policy is regarded
as ‘‘interpretable’’ if it satisfies:

(a) users are able to develop intuitive insights about the inter-
active process between the agent and the environment. More
specifically, this means that:

• the mapping between states/observations and actions
should be expressed explicitly in a human-readable manner,
rather than through black-box representations like NN;

• there should be some inductive procedures in the policy
derivation, so as to condense the results and make them
more tractable.

(b) the form of policy should facilitate integration of priori knowl-
edge as well as modification of the algorithmic results according
to expertise or application requirements.

Fuzzy systems, dating back to Mamdani and Assilian (1975), Takagi
and Sugeno (1985) and Zadeh (1965), are appropriate candidates for
such missions. Fuzzy controllers have been widely used in the past
decades and welcomed by engineers, partly due to the fact that the
control laws can be conveniently expressed as interpretable IF-THEN
rules. Besides, fuzzy systems are universal approximators (Buckley,
1993; Kosko, 1994; Wang and Mendel, 1992) just like NN and therefore
can be used for approximation of value functions in RL (Jin, 2000;
Nauck and Kruse, 1998).

This paper proposes a method and an algorithm to implement inter-
pretable fuzzy reinforcement learning (IFRL). It adopts the actor–critic
architecture and consists of two components, namely the value function
approximator and the optimal policy estimator. The former is based on
the recent fuzzy systems AnYa. Value of a certain state–action pair
is estimated as fuzzy ensemble of those of the predefined prototypes.
The latter is a probability distribution learner within the framework
of Autonomous Learning Multi-Model Systems (ALMMo) and Empir-
ical Data Analytics (EDA). Generalization of the learned distribution
between different states is achieved through Empirical Fuzzy Sets (εFS).
Cases of multivariate action space are handled through a hierarchical
learning approach. Compared to other methods for interpretable RL,
the proposed IFRL is model-free and learns online in a sample-by-
sample or step-by-step manner. As a result, it is able to react to the
change of the environment adaptively in real time. This is possible
because IFRL does not rely on offline optimization or searching to
derive the policy parameters. Rather, they are obtained directly from
the learned probability distribution. It is applicable to continuous and
multivariate action space, whereas being different from mainstream
policy gradient methods. The policy learned is expressed stochastically,
which is sometimes more favorable than the deterministic ones under
the function approximation setting. Compared to classic tabular or
state-of-the-art DNN-based algorithms, the main advantage of IFRL is
that it produces policies as human-intelligible IF-THEN rules, which
is convenient for integration of priori knowledge as well as further
investigation and improvement. Numerical experiments on four RL
problems are conducted and the results are presented as a proof of the
concept.

The rest of this paper is organized as follows. Section 2 introduces
the proposed IFRL structure. The value function approximator based on
AnYa is discussed in Section 3. The optimal policy estimator based on
ALMMo, EDA, and εFS is discussed in Section 4. Section 5 presents
simulation results and Section 6 gives the conclusion.

2. IFRL structure

As with other actor–critic algorithms, IFRL is made up of two
components, namely the value function approximator and the optimal pol-
icy estimator. However, the mechanism of generating actual behaviors
and the learning process of optimal policy in IFRL are different from
mainstream policy-gradient methods. Common practice of the latter is
to produce actual behaviors directly from a parameterized policy function
describing the probability of selecting a certain action under a certain
state. The value function can be used to aid the learning process of the
policy function, but is not required for selecting actions (Sutton and
Barto, 2018). The policy function is updated by gradient-based methods
to maximize returns.

In the proposed IFRL, actions that are actually carried out come
from two different sources. The first are the advised actions from the
function approximator by comparing values of all candidates. The
second are the inferred actions from the policy estimator which reflects
the distribution of advised actions. The two sources can be combined
in different ways, e.g. switching to one with a certain probability. The

2

J. Huang, P.P. Angelov and C. Yin Engineering Applications of Artificial Intelligence 91 (2020) 103559

Fig. 1. Block diagram of IFRL.

policy estimator differs from policy gradient methods in that it learns
the policy from observed samples empirically, rather than through
optimization techniques like gradient descent. Details are to be given
in Section 4.

Candidates evaluated by the function approximator are also from
two different sources. The first are the randomly selected actions
from predefined intervals across the whole range of each dimension
(𝐴𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠1 in Fig. 1). For example, velocity of vehicles typically ranges
from 0 to 200 km/h, which can be divided into 20 intervals with
the interval length being 10 km/h. Thus, the first interval will be 0–
10 km/h, and the second 10–20 km/h, and so on. At each time step for
decision making, within each interval, one sample of velocity is ran-
domly selected for evaluation. This approach is aiming to enable sparse,
coarse, and fast exploration of the action space, and identify regions
that are worth further investigation. Therefore, the interval length can
be set quite large, which facilitates computation and memory reduction.
The second source of candidates are actions randomly selected from the
neighborhood of the inferred action (𝐴𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠2 in Fig. 1). They are
to enable finer exploration in the region that is promising for optimal
actions. The candidate with the largest estimated value is output as the
advised action by the value function approximator.

After the current action 𝐴𝑡 is executed, the agent moves to a
new state 𝑆𝑡+1 and receives a reward 𝑅𝑡+1. The same procedure is
repeated to determine the behavior 𝐴𝑡+1 for the new state. The Sarsa(𝜆)
algorithm is then used to update the value of the last state–action pair
(𝑆𝑡, 𝐴𝑡). The policy estimator is updated each time the advised action
is determined.

Complete block diagram of the proposed IFRL is shown in Fig. 1.

3. Value function approximator

The value function approximator is responsible for evaluating values
of different state–action pairs, and providing samples for the optimal
policy estimator. We use AnYa for this purpose. This section discusses
the framework of AnYa as well as the calculation and update of the
firing strengths and consequents.

3.1. AnYa framework

The value function approximator is based on the fuzzy rule-based sys-
tem AnYa (Angelov, 2012; Angelov and Yager, 2012, 2011) within the
EDA framework (Angelov et al., 2016, 2017a,b,c). The approximated
value of a certain state–action pair is determined by constructing a set
of fuzzy rules, each of which can be written as

IF
(

𝐒
𝐀

)

∼

(

𝐒∗𝐣
𝐀∗
𝐣

)

Then 𝑞(𝐒,𝐀) = 𝐶𝑗 (1)

Fig. 2. A typical grid.

where 𝐒 and 𝐀 are the state and action variable, respectively.
(

𝐒∗𝐣
𝐀∗
𝐣

)

denotes the 𝑗th prototype, 𝑗 = 1, 2,… , 𝑁 where 𝑁 denotes the total
number of prototypes. A prototype represents a typical case. The ‘‘∼’’
can be interpreted as ‘‘being close to’’. 𝑞(𝐒,𝐀) is the estimated value of
(

𝐒
𝐀

)

. 𝐶𝑗 is the consequent part of the rule. Finally, the estimation that

is used is calculated as the weighted average of all consequents

𝑞(𝐒,𝐀) = λT𝐂 (2)

where λ is the firing strength of each rule

λ =
[

𝜆1 𝜆2 … 𝜆𝑁
]T (3)

and 𝐂 is the vector of consequents

𝐂 =
[

𝐶1 𝐶2 … 𝐶𝑁
]T (4)

3.2. State–action space discretization

State and action variables may come with multiple dimensions, and
may be a hybrid of continuous and discrete components. For example,
when describing the status of a vehicle on a straight road, we may
consider both, the moving direction and the velocity. The former is
discrete with two enumerations: forward or backward. The latter is
continuous with the possible range from 0 to 200 km/h. The approach
here is to transform each continuous dimension into the discrete one
with a certain step, and form a static grid. A typical one is shown in
Fig. 2. The smaller the steps, the finer the hybrid/continuous space is
approximated, whereas the number of nodes in the grid is larger and
more computations are needed.

Each node is treated as one prototype.

3

J. Huang, P.P. Angelov and C. Yin Engineering Applications of Artificial Intelligence 91 (2020) 103559

Fig. 3. Concept of data clouds.

3.3. Firing strength calculation

Calculation of the firing strength vector λ is based on the EDA
framework (Angelov et al., 2017a). Fig. 3 shows the concept. A data
cloud is formed with multiple data samples whereas requiring only
two parameters for description, namely the focal point µ𝐣 denoting the
most representative sample and the standard deviation 𝜎𝑗 denoting the
‘‘radius’’ or range of the 𝑗th cloud. It should be noted that the cloud
itself can be of any shape. With the grid defined in Section 3.2, the
state–action space is partitioned into a set of sub-blocks with equal
volumes. Each block is treated as a data cloud with its focal point

being the corresponding node µ𝐣 =

(

𝐒∗𝐣
𝐀∗
𝐣

)

, 𝑗 = 1, 2,… , 𝑁 . Typicality

of a certain sample 𝐱 =
(

𝐒
𝐀

)

regarding the 𝑗th data cloud is measured

through the unimodal discrete density (Angelov et al., 2017b,c):

𝐷𝑗 =
1

1 +
‖

‖

‖

𝐱−µ𝐣
‖

‖

‖

2

𝜎2𝑗

(5)

It comes with the form of a Cauchy function and can also be interpreted
as the membership function in conventional fuzzy systems. For a static
data cloud (𝜎𝑗 being fixed), the closer the sample is to the focal point,
the larger the typicality. Fig. 3 shows the variation of 𝐷𝑗 regarding

µ𝐣 =
(

0.5
0.5

)

. Note how 𝐷𝑗 decays radially.

To calculate 𝐷𝑗 , µ𝐣 and 𝜎𝑗 should be known. As has been mentioned
before, µ𝐣 is the 𝑗th node itself. Thus 𝜎𝑗 remains to be determined. As is
shown in Fig. 4, variance of samples in the data cloud can be calculated
as (assuming that all members are randomly distributed within the
cloud)

𝜎2 = E(‖𝐗‖2) − ‖E(𝐗)‖2

=
∫ 𝑥2
𝑥1

∫ 𝑦2
𝑦1

(𝑥2 + 𝑦2)d𝑥d𝑦

(𝑥2 − 𝑥1)(𝑦2 − 𝑦1)
−

(𝑥1 + 𝑥2)2

4
−

(𝑦1 + 𝑦2)2

4

=
(𝑥2 − 𝑥1)2 + (𝑦2 − 𝑦1)2

12

(6)

where 𝑥1, 𝑥2, 𝑦1, and 𝑦2 are coordinates of the borders.

4

J. Huang, P.P. Angelov and C. Yin Engineering Applications of Artificial Intelligence 91 (2020) 103559

Fig. 4. Calculation of 𝜎.

Generally, for the state–action space with 𝑛 dimensions, the stan-
dard deviation of each cloud is

𝜎 =

√

√

√

√

1
12

𝑛
∑

𝑖=1
𝑠𝑡𝑒𝑝𝑖2 (7)

where 𝑠𝑡𝑒𝑝𝑖 is the step size for discretization of the 𝑖th dimension. More
details on derivation of Eq. (7) is given in the supplementary material.
In practice, it is usually favorable to ‘‘shrink’’ the clouds. This is done
by adding a factor 𝛿 to the step size:

𝜎 =

√

√

√

√

1
12

𝑛
∑

𝑖=1
(𝛿 ⋅ 𝑠𝑡𝑒𝑝𝑖)2 (8)

For example, 𝛿 = 1
2 means that size of the cloud in each dimension is

half of the original step sizes (Fig. 5).
Finally, firing strength of the 𝑗th rule is defined as the normalized

unimodal discrete density (Angelov et al., 2017b,c):

𝜆𝑗 =
𝐷𝑗

∑𝑁
𝑙=1 𝐷𝑙

(9)

3.4. Consequents update

Consequent of each cloud is updated by the Sarsa(𝜆) algorithm
(Sutton and Barto, 2018). The feature vector and the weight vector in
the context of linear function approximation in reinforcement learning
corresponds to the firing strength λ and the consequents 𝐂 in AnYa,
respectively. The tailored version of Sarsa(𝜆) for AnYa is detailed in
the supplementary material.

3.5. Computation complexity

It is obvious that the number of nodes in the grid grows expo-
nentially with the number of dimensions, which results in the curse
of dimension. To alleviate this problem, other methods for selecting
prototypes should be applied. Some options are discussed in the sup-
plementary material.

4. Optimal policy estimator

The optimal policy estimator, is indeed, a probability distribution
learner. It reconstructs the cumulative distribution function (CDF) from
the online observed samples. Discussions of learning an unknown dis-
tribution in this section will focus on continuous cases. For discrete
variables, the problem is easier since the distribution can be learned
by simply recording the frequency of each enumeration.

4.1. Univariate distribution learning

Consider the circumstance where the agent observes univariate
samples generated from an unknown continuous distribution. The aim
now is to reconstruct the inherent distribution from the samples. There
are many approaches available, the most common of which is to use
conventional distribution models like Gaussian or Cauchy ones for
description, and learn the parameters (mean, standard deviation, etc.)
with optimization techniques. Such practices are popular because they
are convenient for mathematical analysis. However, using predefined
distribution functions may introduce subjective bias and degrade per-
formances of the system. Moreover, merely one distribution function
is usually not descriptive enough and a mixture of them is required,
which induces the need for clustering.

To address these problems, ALMMo and EDA are used.

4.1.1. ALMMo system
ALMMo forms data clouds dynamically from streaming data in an

objective way (Angelov et al., 2017b,c; Angelov and Gu, 2019, 2017a).
In the context of machine learning, an ALMMo agent performs online
clustering for a certain variable, while avoiding the need of specifying
priori configurations like the number of clusters. It is a sophisticated
system with components like structure identification, online quality
monitoring, parameter identification, online input selection, etc. In
the context of IFRL, however, only the first two are used. Structure
identification does the fundamental job of forming data clouds and
updating corresponding parameters like µ and 𝜎. Upon arrival of a new
data sample 𝐱𝐤+𝟏, its unimodal discrete density 𝐷𝑘+1(𝐱𝐤+𝟏) is calculated
using Eq. (5) and then compared with those of the focal points. Based
on the result of comparison, either a new cloud is formed or the
meta-parameters of a certain existing one are updated. Online quality
monitoring is to prune the clouds that are less relevant to the recently
observed samples and keep the number of existing clouds from going
too large, since more clouds bring about more computations. Flowchart
of the ALMMo system’s learning process is given in the supplementary
material. Interested readers can refer to Angelov et al. (2017c) for
further details.

4.1.2. EDA framework
We get a group of autonomously formed clouds and their meta-

parameters like mean µ𝐣, standard deviation 𝜎𝑗 , support 𝑆𝑗 (the number
of members belonging to a certain cloud), etc. with ALMMo. We
then process them with EDA to extract the underlying probabilistic
information. Specifically, the quantity continuous multimodal typicality
is used (Angelov et al., 2017b,c). It resembles the probability density
function (PDF) whereas differs from it. PDF is predefined, subjective,
and considers only spatial relationship of data samples. For example, if
observed samples concentrate around a certain focal point µ, then the
probability density of a sample far away from µ will be small and its
occurrence will be considered less probable. Comparatively, continuous
multimodal typicality considers not only the spatial relationship but also
the frequency of the samples. It approximates frequentist probability
when the number of observed samples is small and automatically
transforms into PDF when a lot of samples are observed (Angelov et al.,
2017a). Since the data clouds are formed online automatically by the
ALMMo, continuous multimodal typicality is totally objective and not
based on any priori assumptions of the pattern of data. Denote this
quantity with 𝜏 and for data sample 𝐱 it is (assuming that Euclidean
type distance is used)

𝜏(𝐱) =
𝛤
(

𝑛+1
2

)

𝜋
𝑛+1
2 𝑆

𝑁
∑

𝑗=1

𝑆𝑗

𝜎𝑛𝑗

(

1 +
‖

‖

‖

𝐱−µ𝐣
‖

‖

‖

2

𝜎2𝑗

)
𝑛+1
2

(10)

where 𝑆 is the number of all the observed data samples, 𝑆𝑗 is the
number of members belonging to the 𝑗th cloud, 𝑛 is the number of

5

J. Huang, P.P. Angelov and C. Yin Engineering Applications of Artificial Intelligence 91 (2020) 103559

Fig. 5. Effect of 𝛿.

dimensions of 𝐱, and 𝑁 is the number of clouds formed dynamically
online. For the univariate case (𝑛 = 1), Eq. (10) turns into

𝜏(𝑥) = 1
𝜋𝑆

𝑁
∑

𝑗=1

𝑆𝑗

𝜎𝑗

(

1 +
(

𝑥−𝜇𝑗
)2

𝜎2𝑗

)
(11)

This function can be used as a form of PDF. The corresponding CDF
can be derived by integrating Eq. (11):

𝑃 (𝑥 ≤ 𝑡) = ∫

𝑡

𝑥=−∞
𝜏(𝑥)d𝑥 =

∑𝑁
𝑗=1 𝑆𝑗

(

1
𝜋 arctan

(

𝑡−𝜇𝑗
𝜎𝑗

)

+ 1
2

)

𝑆
(12)

4.1.3. Inverse transform sampling
The ultimate goal of learning the optimal policy is to reproduce ac-

tions from it. This is done through Inverse Transform Sampling (ITS) (De-
vroye, 1990). Specifically, for the variable 𝑋, samples are reproduced
by

𝑋 = 𝐹−1
𝑋 (𝑈) (13)

where 𝐹𝑋 (𝑡) = 𝑃 (𝑥 ≤ 𝑡) is the CDF and 𝑈 is a uniformly distributed
random number in the interval [0, 1]. For the CDF in Eq. (12), however,
the inverse function is difficult to calculate analytically. Therefore, a 1-
D lookup table is used instead. Eq. (12) is evaluated on evenly spaced
points and the values are stored in a table. The uniform random number
generator is called to produce 𝑈 and interpolation is carried out to
derive the interpolated value of 𝐹−1

𝑋 (𝑈) at the query point.
Note that the domain of definition of 𝐹𝑋 (𝑡) is [−∞,+∞], which

may differ from real cases. To fix this problem, the truncated version
(Kochenderfer et al., 2015) of Eq. (12) should be used:

𝑃𝑡𝑟(𝑥 ≤ 𝑡) =
𝑃 (𝑥 ≤ 𝑡) − 𝑃 (𝑥 ≤ 𝑙)
𝑃 (𝑥 ≤ 𝑟) − 𝑃 (𝑥 ≤ 𝑙)

, 𝑙 ≤ 𝑡 ≤ 𝑟 (14)

where 𝑙 and 𝑟 are the left and right boundary of the interval, respec-
tively.

4.1.4. Verification
The univariate distribution learning algorithm is tested through

a simple simulation. Firstly, an artificial distribution is defined by a
table with two rows specifying the query points and the corresponding
cumulative probability. A batch of samples are then generated from it
using ITS and interpolation. At each time step, one sample is passed to
the proposed algorithm. Totally 10 000 samples are used. Comparison
between the estimated CDF and the actual one as well as the root-mean-
square (RMS) of the estimation error during training is shown in Fig. 6.
It can be seen that the estimated CDF corresponds with the actual one
quite well and the RMS of estimation error falls to a low level with
about 1000 samples.

Fig. 6. Results of learning a univariate distribution.

6

J. Huang, P.P. Angelov and C. Yin Engineering Applications of Artificial Intelligence 91 (2020) 103559

4.2. Fuzzy generalization between different states

4.2.1. εFS framework
The last subsection discusses learning of a continuous univariate dis-

tribution. Now consider the extended circumstance where the learned
distribution is valid only in a certain state. Moreover, the state variable
is also continuous, but not necessarily univariate. The question is how
to generalize the estimated distribution between different states.

We propose to use for this purpose the ALMMo and the εFS (An-
gelov and Gu, 2017b; Rong et al., 2018). They are much like the
density and typicality discussed in Section 3 with differences in that
(a) data clouds are formed dynamically online, whereas in Section 3
they are predefined and static; (b) variable in the antecedent part is
the state variable rather than the state–action pair; (c) consequents are
the distributions regarding each state, whereas in Section 3 they are
the estimated values of each state–action pair.

Suppose that the action variable of the reinforcement learning
problem is one-dimensional. In this case, totally (𝑁 +1) ALMMo agents
need to be used, as is illustrated in Fig. 7. Here, 𝑁 denotes the number
of data clouds/prototypes for states. As a result, 𝑁 agents are needed
for estimating the distributions of optimal actions. Apart from them,
another ALMMo agent is needed for the state variable. It outputs
the firing strength for each of the 𝑁 rules. For better understanding,
recall the process of decision making by human beings. We categorize
numerous situations into several typical ones and take corresponding
actions for each of them. For example, we get more dressing when
we travel north, and less when traveling south (assuming that we live
in the Northern Hemisphere). Here, ‘‘north’’ and ‘‘south’’ are typical
prototypes of the state variable ‘‘latitude’’, and ‘‘more’’ or ‘‘less’’ are the
actions for each prototype. We do not keep a table in our mind with
the first row as 0◦, 1◦, . . . , etc. and the second row as different levels of
dressing, since this will take up too much memory resources. Instead,
we just use two simple rules. This is possible because human beings
are able to identify typical situations and generalize actions from them.
ALMMo and εFS implement these two functionalities, respectively.
Prototypes are identified online through autonomously formed data
clouds. Generalization is done through the fuzzy ensemble of 𝑁 sets
of policies corresponding to 𝑁 prototypes.

Upon encounter of a new state 𝐒𝐭+𝟏, which may be of multiple
dimensions, the vector of firing strength λ(𝐒𝐭+𝟏) is calculated as in
Section 3. Let us denote the policy vector as

𝐅𝑋 =
[

𝐹 1
𝑋 𝐹 2

𝑋 … 𝐹𝑁
𝑋
]T (15)

where 𝐹 𝑗
𝑋 (𝑡) = 𝑃 𝑗 (𝑥 ≤ 𝑡) is the estimated CDF of optimal actions for the

𝑗th prototype of state. The policy for 𝐒𝐭+𝟏 is determined as

𝐹 𝐒𝐭+𝟏
𝑋 = λT𝐅𝑋 (16)

The superscript means that the CDF is conditioned on 𝐒𝐭+𝟏.

4.2.2. Learning of individual policy
Whenever an advised action is proposed by the value function ap-

proximator, the policy corresponding to the most relevant situation
is updated. Relevance of the current state regarding each prototype
is measured through the firing strength vector λ. Specifically, it is
identified as

𝑖𝑛𝑑 = argmax
𝑗

𝜆𝑗 (17)

The corresponding ALMMo agent for actions is then updated as detailed
in Angelov et al. (2017b,c).

4.3. Multivariate actions

Discussions above are restricted to the case of univariate action
variable. However, there are problems with multivariate action space.
To solve them within the same framework introduced before, a hierar-
chical method is used.

The idea is to learn distributions of each component in the action
vector incrementally. Imagine a clock with two hands. In each round,
the player manipulates the two hands and receives a reward as either
0 or 1. The action variable is 𝐀 =

[

𝐴1 𝐴2
]

denoting positions of the
two hands, each of which varies continuously. The aim is to find out
the distribution of 𝐀 with which the player maximizes his rewards.
Since the optimal distribution is unknown, the player tries different
combinations of

[

𝐴1 𝐴2
]

randomly, and for each attempt records the
action and the corresponding reward. Actions with positive rewards are
then picked out. For the first component 𝐴1, a histogram with a certain
discretization step can be used to describe the distribution. However,
for the second one, since it is dependent on the first one, doing so
would be meaningless. In other words, distribution of 𝐴2 is conditioned
on 𝐴1. This situation is similar to the one in Section 4.2, where the
univariate action is conditioned on the state. Therefore, the method
of fuzzy generalization can be used here. If the clock comes with 𝑀
hands, firstly the distribution of 𝐴1 is learned, then the conditioned
distribution of 𝐴2 on 𝐴1, then 𝐴3 on

[

𝐴1 𝐴2
]

, and so on, up to 𝐴𝑀 .
Each time we learn the univariate distribution of a certain component
in the action vector as in Section 4.1, and condition it on the sub-vector
composed of all preceding ones as in Section 4.2.

Now consider a more complex situation where the clock presented
to the player in each round is different and attached with a state
variable 𝐒. This is controlled by the environment and not the player.
However, it can still be treated as part of the condition. Therefore, the
method discussed before can be applied by simply appending 𝐒 to each
condition: 𝐴1 on 𝐒, 𝐴2 on

[

𝐒 𝐴1
]

, 𝐴3 on
[

𝐒 𝐴1 𝐴2
]

, and so on,
up to 𝐴𝑀 . In this way, the problem of multivariate policy learning is
handled. It is hierarchical because the learning of each component is
based on the preceding ones.

Decision process of the inferred action for 𝐒𝐭+𝟏 is as follows. Firstly
generate 𝐴1 through ITS of the fuzzily weighted CDF
𝐹 𝐒𝐭+𝟏
𝐴1

= λT
(

𝐒𝐭+𝟏
)

𝐅𝐴1
as

𝐴1 = ITS
(

𝐹 𝐒𝐭+𝟏
𝐴1

)

(18)

Then generate 𝐴2 as

𝐴2 = ITS(𝐹

[

𝐒𝐭+𝟏 𝐴1
]

𝐴2
) (19)

where 𝐹

[

𝐒𝐭+𝟏 𝐴1
]

𝐴2
= λT

([

𝐒𝐭+𝟏 𝐴1
])

𝐅𝐴2
. And repeat the procedure

for 𝐴3, 𝐴4, etc. until all the components are determined.

4.4. Computation complexity

Computation complexity of the optimal policy estimator is discussed
in this subsection. Suppose that the action space has 𝑀 dimensions. In
this case, the conditions are 𝐒,

[

𝐒 𝐴1
]

,
[

𝐒 𝐴1 𝐴2
]

, . . . ,
[

𝐒 𝐴1 𝐴2 … 𝐴𝑀−1
]

, and the number of them is 1 + (𝑀 − 1) =
𝑀 . For each condition, one ALMMo agent is needed to calculate the
firing strength vector λ. The number of data clouds within each agent is
denoted as 𝑁𝑖, 𝑖 = 1, 2,… ,𝑀 . As has been discussed before, each cloud
corresponds to one prototype of the condition, and for each prototype
there is one policy, which is a univariate distribution learned through
an ALMMo agent. Thus, the number of all agents needed is

𝑀𝑎𝑙𝑙 = 𝑀 +
𝑀
∑

𝑖=1
𝑁𝑖 = 𝑀 +

𝑀
∑

𝑖=1
𝑁 = 𝑀 ⋅ (1 +𝑁) (20)

where 𝑁 is the average of 𝑁𝑖. 𝑁𝑖 is controlled by online quality moni-
toring (Angelov et al., 2017b,c) and its variation is small for the same

7

J. Huang, P.P. Angelov and C. Yin Engineering Applications of Artificial Intelligence 91 (2020) 103559

Fig. 7. Fuzzy generalization of policies between different states.

Fig. 8. The mountain car problem.

configurations. Therefore, 𝑁 can be regarded as a constant for action
space with different dimensions. Consequently, it can be concluded
from Eq. (20) that the computation complexity grows linearly, rather
than exponentially, with increase of the number of dimensions in the
action space. This is one of the advantages of the proposed optimal
policy estimator.

5. Simulation results

Four problems, namely Mountain Car, Continuous Gridworld, Pen-
dulum Positioning, and Tank Level Control, are used for validation.

5.1. Mountain Car

The Mountain Car problem (Sutton and Barto, 2018) is classic and
mainly used for evaluation of function approximation methods. The
goal is to drive the car up to the goal position, which is on the end of
the upslope. Difficulty of the problem is that the power of the car is not
strong enough to propel it along the slope directly. Rather, the car has
to be driven in the inverse direction first to build up enough potential
energy. Definition of the problem is shown in Table 1. An illustration
is given in Fig. 8.

Firstly, AnYa as the value function approximator is compared to
state aggregation, which produces one estimation for one group. Value
approximation in state aggregation is based on merely one component
of the weight vector 𝐰 (i.e. the consequent vector 𝐂), whereas in AnYa
all the components (or part of them, depending on the implementation)

Table 1
Mountain car problem.

Item Definition

State transition
𝑥𝑡+1 = bound

[

𝑥𝑡 + �̇�𝑡+1
]

�̇�𝑡+1 = bound
[

�̇�𝑡 + 0.001𝐴𝑡 − 0.0025 cos
(

3𝑥𝑡
)]

�̇�𝑡 is reset to zero when 𝑥𝑡 reaches the left bound

State variable [𝑥𝑡 �̇�𝑡]
Position and velocity of the car

State space −1.2 ≤ 𝑥𝑡 ≤ 0.5
−0.07 ≤ �̇�𝑡 ≤ 0.07

Initial state 𝑥0 ∈ (−0.6 − 0.4]
�̇�0 = 0

Terminal state 𝑥𝑇 = 0.5
Maximal steps per episode Unrestricted
Discount rate 1

Action variable

𝐴𝑡 can be taken as discrete: 𝐴𝑡 ∈ {+1,−1, 0}
or continuous: 𝐴𝑡 ∈ [−1, 1]
Full throttle forward (+1)
Full throttle backward (−1)
Zero throttle (0)

Action space Discrete action variable
Reward −1 on each step until the terminal state is reached

in 𝐂 are utilized. For the Mountain Car problem, performances of the
two methods are compared through Steps per Episode (SPE), assuming
discrete action space. Results are shown in Fig. 9. It is obvious that
AnYa comes with great advantages over state aggregation regarding
the learning rate. Near optimality is obtained after the first several
episodes. Comparatively, it takes over 2000 episodes for state aggrega-
tion to achieve the same result. Difference in the learning rate by two
methods partly results from the different numbers of components in the
weight vector. In AnYa, only 90 weights need to be learned, whereas
in state aggregation it is 14 280. Using the same number of weights in
state aggregation as that of AnYa will result in divergence.

The cost-to-go function learned at the end is shown in Fig. 10. It
is obvious that state aggregation with more weights produces a better
approximation. However, although AnYa approximates the true values
coarsely (with only 90 weights), the corresponding policy is near-
optimal. This implies that for learning an optimal policy, the exact
value of each state–action pair is not important. Rather, the relativity
of magnitude is what really matters. By considering values of all the
nodes or a group of neighboring ones within the grid, and weighting
them fuzzily, AnYa is able to extract this relativity with a small number
of weights, which makes extremely fast learning possible.

The Mountain Car problem is then solved again by treating the
action variable as continuous. Results are shown in Fig. 11. IFRL auto-
matically forms 9 rules online. Note how the data clouds are positioned
along the optimal phase trajectory. To reach the terminal state, the car

8

J. Huang, P.P. Angelov and C. Yin Engineering Applications of Artificial Intelligence 91 (2020) 103559

Fig. 9. Steps per episode in Mountain Car problem (AnYa vs. state aggregation).

has to dangle back and forth to accumulate energy, which is obvious
from the plot.

The first four of algorithmically learned rules are listed in Table 2.
These rules allow human users to gain insights from them. Firstly,
although the action space is continuous, actual behaviors are concen-
trated on the two ends, which indicates that the car is going either
forward or backward with full throttle most of the time. Thus, using
continuous actions makes little improvement in optimality and is un-
necessary. Secondly, intuition on the optimal policy can be developed
by observing PDFs of several prototypes. For example, PDFs of both
the 1st and the 2nd prototype come with peaks on the two ends of the
action space. This can be translated into human-intelligible rules as ‘‘IF
the car is in the middle of the valley and with low velocity, THEN it
should go either forward or backward with full throttle to build up the
potential energy’’. If the car is on the downhill with negative velocity,
the firing strength of the 3rd rule will be dominant and accordingly the
car should keep going backward with full throttle, which corresponds
to the phase trajectory. On the other hand, if the car is on the downhill
with large velocity (the 4th prototype), then it should go forward with
full throttle to reach the goal directly.

Interpretability through the fuzzy kernel is one of the main advan-
tages of the newly proposed IFRL. This is possible because:

Fig. 11. Results for the Mountain Car problem with continuous action space.

(a) IFRL is able to cluster encountered states online;
(b) it is integrated with an optimal policy estimator, which learns the

probability distribution of optimal actions.

Note also that the automatically formed data clouds only cover
states on the optimal trajectory, which makes the method memory-
efficient.

5.2. Continuous gridworld

A typical gridworld is shown in Fig. 12. The agent starts at the initial
position

[

5 5
]

and tries to move to the target position
[

10 10
]

. The
classic version treats both the state and action as discrete variables. The
agent chooses one of the four actions in each step: left, right, up, and
down. In the adapted version used here, however, the state and action
variables are both continuous, as are shown in Table 3. What is more,
the action variable is now of two dimensions. This means that the agent
can move diagonally. Introduction of the 2-D action space is to validate
the method of hierarchical learning in Section 4.3.

Results of SPE are shown in Fig. 13. The theoretical minimal SPE is
6. The agent achieves near-optimality after 1500 episodes. From Fig. 13

Fig. 10. Cost-to-go function learned by the two methods.

9

J. Huang, P.P. Angelov and C. Yin Engineering Applications of Artificial Intelligence 91 (2020) 103559

Table 2
Online learned rules.

Fig. 12. A typical gridworld.

it can be concluded that the method of hierarchical learning is effective
for problems with multivariate action space.

5.3. Pendulum positioning

The Pendulum Positioning problem is described in Sheen (2019).
The pendulum is initially positioned straight down. A torque is exerted
on the pendulum to drive it to the upright position. If the torque is
too small, the pendulum fails to go up. On the other hand, if it is too
large, the pendulum simply crosses the target position and goes to the

Table 3
Continuous gridworld.

Item Definition

State transition
ℎ𝑡+1 = ℎ𝑡 + ℎ̇𝑡

𝑣𝑡+1 = 𝑣𝑡 + �̇�𝑡

State variable
[

ℎ𝑡 𝑣𝑡
]

Horizontal and vertical position

State space
0 ≤ ℎ𝑡 ≤ 10

0 ≤ 𝑣𝑡 ≤ 10

Initial state
ℎ0 = 5

𝑣0 = 5

Terminal state
ℎ𝑇 = 10

𝑣𝑇 = 10
Maximal steps per episode Unrestricted
Discount rate 1

Action variable

[

ℎ̇𝑡 �̇�𝑡
]

−1 < ℎ̇𝑡 < 1
−1 < �̇�𝑡 < 1

Action space Continuous action variable
Reward −1 on each step until the terminal state is reached

downside again. The aim is to drive the pendulum uprightly with as
few steps as possible. An extra bonus is provided if the pendulum is
successfully positioned to the target, as is shown in Fig. 14 and Table 4.

Phase trajectory of the pendulum is shown in Fig. 15. The action
variable is considered to be continuous. The pendulum starts at the
initial state [𝜋, 0] and travels to the target [0, 0] successfully. Note that
[𝜋, 0] and [−𝜋, 0] are actually the same state.

10

J. Huang, P.P. Angelov and C. Yin Engineering Applications of Artificial Intelligence 91 (2020) 103559

Fig. 13. Steps per episode for the Continuous Gridworld problem with 2-D action space.

Fig. 14. The pendulum positioning problem.

Table 4
Pendulum positioning problem.

Item Definition

State transition Refer to (Sheen, 2019) for details

State variable
[

𝑥𝑡 �̇�𝑡
]

Angle and angular speed of the pendulum

State space −𝜋 ≤ 𝑥𝑡 ≤ 𝜋
−𝜋 ≤ �̇�𝑡 ≤ 𝜋

Initial state 𝑥0 = 𝜋
�̇�0 = 0

Terminal state 𝑥𝑇 = 0
�̇�𝑇 = 0

Maximal steps per episode 1500
Discount rate 0.9

Action variable
𝐴𝑡
𝐴𝑡 can be taken as discrete: 𝐴𝑡 ∈ {−1, 0, 1}
or continuous: 𝐴𝑡 ∈ [−1, 1]

Action space Discrete/continuous action variable

Reward

IF
√

𝑥2𝑡+1 + �̇�2𝑡+1 < 0.01
𝑅 (𝑡 + 1) = −𝑥2𝑡+1 − 0.25�̇�2𝑡+1 + 100
ELSE
𝑅 (𝑡 + 1) = −𝑥2𝑡+1 − 0.25�̇�2𝑡+1

5.4. Tank level control

The Tank Level Control problem is described in Noel and Pandian
(2014). There are two tanks with different liquid levels. The goal
is to maintain the first one at a desired setpoint. This benchmark
is to evaluate the potential of applying IFRL to control problems of

Fig. 15. Phase trajectory of the pendulum.

nonlinear systems with continuous states and inputs, which is common
in practical engineering circumstances. Definition of the problem is
shown in Table 5. Fig. 16 shows the optimal trajectories of tank levels
obtained by dynamic programming (DP) and IFRL, respectively. Results
from DP are calculated offline and can be treated as theoretically best. It
can be observed that the trajectory from IFRL successfully achieves the
control target, though with some chattering. This is due to the inherent
probabilistic characteristics of IFRL.

6. Conclusion

In this paper, a new method and an algorithm are proposed to im-
plement interpretable fuzzy reinforcement learning (IFRL). The method
is able to produce human-intelligible rules online, which facilitates
further investigation and improvement of the policy. It is applicable
to problems with continuous and multivariate action space, which is

11

J. Huang, P.P. Angelov and C. Yin Engineering Applications of Artificial Intelligence 91 (2020) 103559

Table 5
Tank level control problem.

Item Definition

State transition

ℎ1 ≥ ℎ2

⎧

⎪

⎪

⎨

⎪

⎪

⎩

ℎ̇1 =
𝑞1 − 𝑟1

√

ℎ1 − 𝑟3
√

ℎ1 − ℎ2

𝐴1

ℎ̇2 =
𝑞2 − 𝑟2

√

ℎ2 − 𝑟3
√

ℎ1 − ℎ2

𝐴2

ℎ1 ≤ ℎ2

⎧

⎪

⎪

⎨

⎪

⎪

⎩

ℎ̇1 =
𝑞1 − 𝑟1

√

ℎ1 − 𝑟3
√

ℎ2 − ℎ1

𝐴1

ℎ̇2 =
𝑞2 − 𝑟2

√

ℎ2 − 𝑟3
√

ℎ2 − ℎ1

𝐴2

ℎ1 (𝑡 + 1) = ℎ1 (𝑡) + 0.1ℎ̇1(𝑡)
ℎ2 (𝑡 + 1) = ℎ2 (𝑡) + 0.1ℎ̇2(𝑡)

State variable
[

ℎ1(𝑡) ℎ2(𝑡)
]

Liquid levels of the two tanks

State space
0 ≤ ℎ1(𝑡) ≤ 10

0 ≤ ℎ2(𝑡) ≤ 10

Initial state
ℎ1 (0) = 1

ℎ2 (0) = 0
Terminal state ℎ1 (𝑇) = 7
Maximal steps per episode 1500
Discount rate 0.99
Action variable 𝐴𝑡 ∈ [0, 20]
Action space Continuous action variable
Reward 𝑅 (𝑡 + 1) = − |

|

ℎ1 (𝑡 + 1) − ℎ1(𝑇)||

Fig. 16. Optimal trajectories of tank levels (DP vs. IFRL).

a great advantage over the classic tabular approaches. Different from
mainstream policy-gradient methods, the learning process of IFRL is
much like that of a human. Various actions are tried and the outcomes
are evaluated. Favorable ones are memorized to form a policy. The
recent fuzzy system AnYa is used to approximate values of state–action
pairs and acts as an evaluator. The classic Sarsa(𝜆) algorithm is used
to update consequents of the fuzzy rules. ALMMo with EDA is used for
learning the univariate probability distribution. Inferred actions from
the learned CDF are produced through ITS. Generalization between
different states is implemented by εFS. Hierarchical learning is adopted
to deal with multivariate action space. Solution of the Mountain Car
problem shows that the newly proposed method requires orders of
magnitude less parameters and provides low-error solution with or-
ders of magnitude faster convergence, in addition to its transparency
from the human-intelligible fuzzy rules. Effectiveness of hierarchical
learning is validated by solutions of the Continuous Gridworld problem.
Potential of applying IFRL on control problems of nonlinear systems in
engineering is evaluated through the Tank Level Control problem.

Future research directions are:

(a) Improvement of the value function approximator. In the current
version, a static grid is used. This can be replaced with a dynamic
grid to achieve balance between performances and the number
of nodes.

(b) Improvement of the optimal policy estimator. The current version
clusters states/conditions encountered with ALMMo. However,
a more proper setting is to cluster the variable consisting both
the condition and the action. This is expected to reduced the
numbers of rules learned.

(c) Addition of a component for learning of the environment model.
(d) Addition of the ability to perform planning using algorithms like

tree search.
(e) Improvement on the way of generating recommended actions

from the optimal policy estimator, so as to reduce chattering in the
output. This can be achieved by, for example, using the mean of
the distribution (rather than the sampled one from the CDF) as
the inferred action.

(f) Treatment of hidden states.

CRediT authorship contribution statement

Jianfeng Huang: Conceptualization, Methodology, Software, Writ-
ing - original draft. Plamen P. Angelov: Conceptualization, Method-
ology, Formal analysis, Writing - review & editing. Chengliang Yin:
Supervision, Project administration.

Appendix A. Supplementary data

Supplementary material related to this article can be found online
at https://doi.org/10.1016/j.engappai.2020.103559.

References

Angelov, P., 2012. Autonomous Learning Systems. John Wiley & Sons, Ltd., Chichester,
UK, http://dx.doi.org/10.1002/9781118481769.

Angelov, P.P., Gu, X., 2017a. Autonomous learning multi-model classifier of 0-order
(ALMMo-0). In: IEEE Conf. Evol. Adapt. Intell. Syst. pp. 1–7. http://dx.doi.org/10.
1109/EAIS.2017.7954832.

Angelov, P.P., Gu, X., 2017b. Empirical fuzzy sets. Int. J. Intell. Syst. 00, 1–34.
http://dx.doi.org/10.1002/int.21935.

Angelov, P.P., Gu, X., 2019. Empirical Approach to Machine Learning. Springer.
Angelov, P., Gu, X., Kangin, D., 2017a. Empirical data analytics. Int. J. Intell. Syst. 32,

1261–1284. http://dx.doi.org/10.1002/int.21899.
Angelov, P., Gu, X., Kangin, D., Principe, J., 2016. Empirical data analysis: A new

tool for data analytics. In: 2016 IEEE International Conference on Systems, Man,
and Cybernetics (SMC). IEEE, pp. 000052–000059. http://dx.doi.org/10.1109/SMC.
2016.7844219.

Angelov, Plamen P., Gu, X., Principe, J., 2017b. A generalized methodology for data
analysis. IEEE Trans. Cybern. 1, http://dx.doi.org/10.1109/TCYB.2017.2753880.

Angelov, Plamen P., Gu, X., Principe, J.C., 2017c. Autonomous learning multi-model
systems from data streams. IEEE Trans. Fuzzy Syst. 6706, 1–12. http://dx.doi.org/
10.1109/TFUZZ.2017.2769039.

Angelov, P., Yager, R., 2011. Simplified fuzzy rule-based systems using non-parametric
antecedents and relative data density. In: 2011 IEEE Workshop on Evolving and
Adaptive Intelligent Systems (EAIS). IEEE, pp. 62–69. http://dx.doi.org/10.1109/
EAIS.2011.5945926.

Angelov, P., Yager, R., 2012. A new type of simplified fuzzy rule-based system. Int. J.
Gen. Syst. 41, 163–185. http://dx.doi.org/10.1080/03081079.2011.634807.

Antonoglou, I., Fidjeland, .A.K., Wierstra, D., King, H., Bellemare, M.G., Legg, S.,
Petersen, S., Riedmiller, M., Beattie, C., Graves, A., Sadik, A., Kavukcuoglu, K.,
Ostrovski, G., Veness, J., Rusu, A.A., Silver, D., Hassabis, D., Kumaran, D., Mnih, V.,
2015. Human-level control through deep reinforcement learning. Nature 518,
529–533. http://dx.doi.org/10.1038/nature14236.

Buckley, J.J., 1993. Sugeno type controllers are universal controllers. Fuzzy sets Syst.
53, 299–303. http://dx.doi.org/10.1016/0165-0114(93)90401-3.

Devroye, L., 1990. Non-Uniform Random Variate Generation. In: Proceedings of COMP-
STAT 2010-19th International Conference on Computational Statistics, Keynote,
Invited and Contributed Papers. http://dx.doi.org/10.1007/978-3-7908-2604-3-1.

Goodfellow, I., Bengio, Y., Courville, A., 2016. Deep Learning. MIT press.
Hein, D., Hentschel, A., Runkler, T., Udluft, S., 2017. Particle swarm optimization

for generating interpretable fuzzy reinforcement learning policies. Eng. Appl. Artif.
Intell. 65, 87–98. http://dx.doi.org/10.1016/j.engappai.2017.07.005.

12

https://doi.org/10.1016/j.engappai.2020.103559
http://dx.doi.org/10.1002/9781118481769
http://dx.doi.org/10.1109/EAIS.2017.7954832
http://dx.doi.org/10.1109/EAIS.2017.7954832
http://dx.doi.org/10.1109/EAIS.2017.7954832
http://dx.doi.org/10.1002/int.21935
http://refhub.elsevier.com/S0952-1976(20)30049-X/sb4
http://dx.doi.org/10.1002/int.21899
http://dx.doi.org/10.1109/SMC.2016.7844219
http://dx.doi.org/10.1109/SMC.2016.7844219
http://dx.doi.org/10.1109/SMC.2016.7844219
http://dx.doi.org/10.1109/TCYB.2017.2753880
http://dx.doi.org/10.1109/TFUZZ.2017.2769039
http://dx.doi.org/10.1109/TFUZZ.2017.2769039
http://dx.doi.org/10.1109/TFUZZ.2017.2769039
http://dx.doi.org/10.1109/EAIS.2011.5945926
http://dx.doi.org/10.1109/EAIS.2011.5945926
http://dx.doi.org/10.1109/EAIS.2011.5945926
http://dx.doi.org/10.1080/03081079.2011.634807
http://dx.doi.org/10.1038/nature14236
http://dx.doi.org/10.1016/0165-0114(93)90401-3
http://dx.doi.org/10.1007/978-3-7908-2604-3-1
http://refhub.elsevier.com/S0952-1976(20)30049-X/sb14
http://dx.doi.org/10.1016/j.engappai.2017.07.005

J. Huang, P.P. Angelov and C. Yin Engineering Applications of Artificial Intelligence 91 (2020) 103559

Hein, D., Udluft, S., Runkler, T.A., 2018. Interpretable policies for reinforcement
learning by genetic programming. Eng. Appl. Artif. Intell. 76, 158–169. http:
//dx.doi.org/10.1016/j.engappai.2018.09.007.

Jin, Y., 2000. Fuzzy modeling of high-dimensional systems: Complexity reduction and
interpretability improvement. IEEE Trans. Fuzzy Syst. 8, 212–221. http://dx.doi.
org/10.1109/91.842154.

Juang, Chia-Feng, Hsu, Chia-Hung, 2009. Reinforcement ant optimized fuzzy controller
for mobile-robot wall-following control. IEEE Trans. Ind. Electron. 56, 3931–3940.
http://dx.doi.org/10.1109/TIE.2009.2017557.

Kochenderfer, M.J., Amato, C., Chowdhary, G., How, J.P., Reynolds, H.J.D., Thorn-
ton, J.R., Torres-Carrasquillo, P.A., Üre, N.K., Vian, J., 2015. Decision making under
uncertainty: Theory and application.

Kosko, B., 1994. Fuzzy systems as universal approximators. IEEE Trans. Comput. 43,
1329–1333.

Lecun, Y., Bengio, Y., Hinton, G., 2015. Deep learning. Nature 521, 436–444. http:
//dx.doi.org/10.1038/nature14539.

Lillicrap, T.P., Hunt, J.J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., Silver, D.,
Wierstra, D., 2015. Continuous control with deep reinforcement learning. http:
//dx.doi.org/10.1561/2200000006.

Lipton, Z.C., 2018. The mythos of model interpretability. Commun. ACM 61, 36–43.
http://dx.doi.org/10.1145/3233231.

Maes, F., Fonteneau, R., Wehenkel, L., Ernst, D., 2012. Policy search in a space of
simple closed-form formulas: Towards interpretability of reinforcement learning.
In: Lect. Notes Comput. Sci. (Including Subser. Lect. Notes Artif. Intell. Lect. Notes
Bioinformatics). In: LNAI, vol. 7569, pp. 37–51. http://dx.doi.org/10.1007/978-3-
642-33492-4_6.

Mamdani, E.H., Assilian, S., 1975. An experiment in linguistic synthesis with a fuzzy
logic controller. Int. J. Man. Mach. Stud. 7, 1–13. http://dx.doi.org/10.1016/
S0020-7373(75)80002-2.

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D.,
Riedmiller, M., 2013. Playing atari with deep reinforcement learning. pp. 1–9,
http://dx.doi.org/10.1038/nature14236.

Mucientes, M., Casillas, J., 2007. Quick design of fuzzy controllers with good inter-
pretability in mobile robotics. IEEE Trans. Fuzzy Syst. 15, 636–651. http://dx.doi.
org/10.1109/TFUZZ.2006.889889.

Nauck, D., Kruse, R., 1998. A neuro-fuzzy approach to obtain interpretable fuzzy
systems for function approximation. In: 1998 IEEE International Conference on
Fuzzy Systems Proceedings. IEEE World Congress on Computational Intelligence
(Cat. No.98CH36228). IEEE, pp. 1106–1111. http://dx.doi.org/10.1109/FUZZY.
1998.686273.

Noel, M.M., Pandian, B.J., 2014. Control of a nonlinear liquid level system using a
new artificial neural network based reinforcement learning approach. Appl. Soft
Comput. J. 23, 444–451. http://dx.doi.org/10.1016/j.asoc.2014.06.037.

Rong, H., Angelov, P.P., Gu, X., Bai, J., 2018. Stability of evolving fuzzy systems based
on data clouds. IEEE Trans. Fuzzy Syst. 26, 2774–2784. http://dx.doi.org/10.1109/
TFUZZ.2018.2793258.

Ross, S., Gordon, G.J., Bagnell, J.A., 2010. A reduction of imitation learning and
structured prediction to no-regret online learning. In: AISTATS, Vol. 15. pp.
627–635, http://arxiv.org/abs/1011.0686.

Rummery, G., Niranjan, M., 1994. On-Line Q-Learning using Connectionist Systems.
(Technical report), University of Cambridge, Department of Engineering Cambridge,
England.

Samsudin, K., Ahmad, F.A., Mashohor, S., 2011. A highly interpretable fuzzy rule base
using ordinal structure for obstacle avoidance of mobile robot. Appl. Soft Comput.
11, 1631–1637. http://dx.doi.org/10.1016/j.asoc.2010.05.002.

Schaal, S., 1999. Is imitation learning the route to humanoid robots?. Trends Cogn.
Sci. 3, 233–242. http://dx.doi.org/10.1016/S1364-6613(99)01327-3.

Sheen, M., 2019. Reinforcement learning example - pendulum controller w/ animation.
GitHub. URL https://www.github.com/mws262/MATLAB-Reinforcement-Learning-
Pendulum (accessed 3.31.19).

Silver, D., Lever, G., Heess, N., Degris, T., Wierstra, D., Riedmiller, M., 2014. Deter-
ministic policy gradient algorithms. In: 31st International Conference on Machine
Learning, ICML 2014. pp. 605–619.

Sutton, R.S., Barto, A.G., 2018. Reinforcement Learning: An Introduction. MIT press.
Sutton, R.S., McAllester, D.A., Singh, S.P., Mansour, Y., 2000. Policy gradient methods

for reinforcement learning with function approximation. In: Advances in Neural
Information Processing Systems. pp. 1057–1063.

Takagi, T., Sugeno, M., 1985. Fuzzy identification of systems and its applications to
modeling and control. In: IEEE Transactions on Systems, Man and Cybernetics.
Elsevier, pp. 116–132. http://dx.doi.org/10.1109/TSMC.1985.6313399.

Verma, A., Murali, V., Singh, R., Kohli, P., Chaudhuri, S., 2018. Programmatically
interpretable reinforcement learning. In: 35th Int. Conf. Mach. Learn. ICML 2018,
Vol. 11. pp. 8024–8033.

Wang, L.X., Mendel, J.M., 1992. Fuzzy basis functions, universal approximation, and
orthogonal least-squares learning. IEEE Trans. Neural Netw. 3, 807–814. http:
//dx.doi.org/10.1109/72.159070.

Watkins, C.J.C.H., 1989. Learning from Delayed Rewards. King’s College, Cambridge.
Zadeh, L.A., 1965. Fuzzy sets. Inf. Control 8, 338–353. http://dx.doi.org/10.1016/

S0019-9958(65)90241-X.

13

http://dx.doi.org/10.1016/j.engappai.2018.09.007
http://dx.doi.org/10.1016/j.engappai.2018.09.007
http://dx.doi.org/10.1016/j.engappai.2018.09.007
http://dx.doi.org/10.1109/91.842154
http://dx.doi.org/10.1109/91.842154
http://dx.doi.org/10.1109/91.842154
http://dx.doi.org/10.1109/TIE.2009.2017557
http://refhub.elsevier.com/S0952-1976(20)30049-X/sb19
http://refhub.elsevier.com/S0952-1976(20)30049-X/sb19
http://refhub.elsevier.com/S0952-1976(20)30049-X/sb19
http://refhub.elsevier.com/S0952-1976(20)30049-X/sb19
http://refhub.elsevier.com/S0952-1976(20)30049-X/sb19
http://refhub.elsevier.com/S0952-1976(20)30049-X/sb20
http://refhub.elsevier.com/S0952-1976(20)30049-X/sb20
http://refhub.elsevier.com/S0952-1976(20)30049-X/sb20
http://dx.doi.org/10.1038/nature14539
http://dx.doi.org/10.1038/nature14539
http://dx.doi.org/10.1038/nature14539
http://dx.doi.org/10.1561/2200000006
http://dx.doi.org/10.1561/2200000006
http://dx.doi.org/10.1561/2200000006
http://dx.doi.org/10.1145/3233231
http://dx.doi.org/10.1007/978-3-642-33492-4_6
http://dx.doi.org/10.1007/978-3-642-33492-4_6
http://dx.doi.org/10.1007/978-3-642-33492-4_6
http://dx.doi.org/10.1016/S0020-7373(75)80002-2
http://dx.doi.org/10.1016/S0020-7373(75)80002-2
http://dx.doi.org/10.1016/S0020-7373(75)80002-2
http://dx.doi.org/10.1038/nature14236
http://dx.doi.org/10.1109/TFUZZ.2006.889889
http://dx.doi.org/10.1109/TFUZZ.2006.889889
http://dx.doi.org/10.1109/TFUZZ.2006.889889
http://dx.doi.org/10.1109/FUZZY.1998.686273
http://dx.doi.org/10.1109/FUZZY.1998.686273
http://dx.doi.org/10.1109/FUZZY.1998.686273
http://dx.doi.org/10.1016/j.asoc.2014.06.037
http://dx.doi.org/10.1109/TFUZZ.2018.2793258
http://dx.doi.org/10.1109/TFUZZ.2018.2793258
http://dx.doi.org/10.1109/TFUZZ.2018.2793258
http://arxiv.org/abs/1011.0686
http://refhub.elsevier.com/S0952-1976(20)30049-X/sb32
http://refhub.elsevier.com/S0952-1976(20)30049-X/sb32
http://refhub.elsevier.com/S0952-1976(20)30049-X/sb32
http://refhub.elsevier.com/S0952-1976(20)30049-X/sb32
http://refhub.elsevier.com/S0952-1976(20)30049-X/sb32
http://dx.doi.org/10.1016/j.asoc.2010.05.002
http://dx.doi.org/10.1016/S1364-6613(99)01327-3
https://www.github.com/mws262/MATLAB-Reinforcement-Learning-Pendulum
https://www.github.com/mws262/MATLAB-Reinforcement-Learning-Pendulum
https://www.github.com/mws262/MATLAB-Reinforcement-Learning-Pendulum
http://refhub.elsevier.com/S0952-1976(20)30049-X/sb36
http://refhub.elsevier.com/S0952-1976(20)30049-X/sb36
http://refhub.elsevier.com/S0952-1976(20)30049-X/sb36
http://refhub.elsevier.com/S0952-1976(20)30049-X/sb36
http://refhub.elsevier.com/S0952-1976(20)30049-X/sb36
http://refhub.elsevier.com/S0952-1976(20)30049-X/sb37
http://refhub.elsevier.com/S0952-1976(20)30049-X/sb38
http://refhub.elsevier.com/S0952-1976(20)30049-X/sb38
http://refhub.elsevier.com/S0952-1976(20)30049-X/sb38
http://refhub.elsevier.com/S0952-1976(20)30049-X/sb38
http://refhub.elsevier.com/S0952-1976(20)30049-X/sb38
http://dx.doi.org/10.1109/TSMC.1985.6313399
http://refhub.elsevier.com/S0952-1976(20)30049-X/sb40
http://refhub.elsevier.com/S0952-1976(20)30049-X/sb40
http://refhub.elsevier.com/S0952-1976(20)30049-X/sb40
http://refhub.elsevier.com/S0952-1976(20)30049-X/sb40
http://refhub.elsevier.com/S0952-1976(20)30049-X/sb40
http://dx.doi.org/10.1109/72.159070
http://dx.doi.org/10.1109/72.159070
http://dx.doi.org/10.1109/72.159070
http://refhub.elsevier.com/S0952-1976(20)30049-X/sb42
http://dx.doi.org/10.1016/S0019-9958(65)90241-X
http://dx.doi.org/10.1016/S0019-9958(65)90241-X
http://dx.doi.org/10.1016/S0019-9958(65)90241-X

	Interpretable policies for reinforcement learning by empirical fuzzy sets
	Introduction
	IFRL structure
	Value function approximator
	AnYa framework
	State–action space discretization
	Firing strength calculation
	Consequents update
	Computation complexity

	Optimal policy estimator
	Univariate distribution learning
	ALMMo system
	EDA framework
	Inverse transform sampling
	Verification

	Fuzzy generalization between different states
	ΕFS framework
	Learning of individual policy

	Multivariate actions
	Computation complexity

	Simulation results
	Mountain Car
	Continuous gridworld
	Pendulum positioning
	Tank level control

	Conclusion
	CRediT authorship contribution statement
	Appendix A. Supplementary data
	References

