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A B S T R A C T

Welding Sequence Optimization (WSO) is very effective to minimize the structural deformation, however
selecting proper welding sequence leads to a combinatorial optimization problem. State-of-the-art algorithms
could take more than one week to compute the best sequence for an assembly of eight weld beads which is
unrealistic for the early stages of Product Delivery Process (PDP). In this article, we develop and implement
a novel Reinforcement Q-learning algorithm for WSO where structural deformation is used to compute
reward function. We utilize a thermo-mechanical Finite Element Analysis (FEA) to predict deformation.
The exploration–exploitation dilemma has been tackled by domain knowledge driven 𝜀-greedy algorithm
into Q-RL which helps to expedite the WSO and we call this novel algorithm as DKQRL. We run welding
simulation experiment using well-known Simufact® software on a typical widely used mounting bracket which
contains eight welding beads. DKQRL allows the reduction of structural deformation up to ∼71% and it
substantially speeds up the computational time over Modified Lowest Cost Search (MLCS), Genetic Algorithm
(GA), exhaustive search, and standard RL algorithm. Results of welding simulation demonstrate a reasonable
agreement with real experiment in terms of structural deformation.

1. Introduction

Gas Metal Arc Welding (GMAW) is the most common technique for
joining metal components and it has been preferred for its versatility,
speed, and relative ease of robotic automation which is extensively used
in automotive, shipbuilding, aerospace, construction, heavy and earth-
moving equipment (Masubuchi, 1980; Islam et al., 2014). However,
structural deformation due to welding is a serious concern for industry
since it accrues various additional costs such as constraints in the design
phase, extra operations, cost of quality, and overall capital expendi-
ture (Goldak and Akhlaghi, 2005). WSO is highly cost effective which
reduces welding structural deformation significantly. The ad hoc indus-
try practice is to select the best sequence by experience and sometimes
conduct a simplified design of experiments which typically leads to a
sequence that generates considerably more structural deformation than
the optimal one (Biswas et al., 2011). In order to get better welding
sequence, it is needed to conduct innumerable real welding experiments
which is very expensive and time consuming as well. To alleviate this
problem, structural deformation yielded due to welding are predicted
through a welding simulation software based on Finite Element Analy-
sis (FEA) where thermo-mechanical models are commonly used and a
reasonable solutions are achieved through FEA for numerous welding
conditions and geometric configurations (Tikhomirov et al., 2005).
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There are three different FEA based models: (a) simplified: fast but less
accurate, (b) thermo-mechanical: medium complexity but reasonable
solutions, and (c) thermo-mechanical-metallurgical model: computa-
tionally very expensive and time consuming but highly accurate (Islam
et al., 2014).

Selecting optimal welding sequence which ensues less deformation
leads to a combinatorial optimization problem which is NP-hard by
nature (Papadimitriou and Steiglitz, 1982). WSO can be mapped as
a traveling salesman problem which is very popular in Operations
Research (OR). Traveling Salesman (TS) problem can be described as
given a list of cities and the distances between each pair of cities,
discover the shortest possible route that visits each city exactly once
and returns to the origin city. In the similar fashion, WSO can be
described as given a list of welding seams to be placed along with
all possible welding direction, find the best welding sequence which
produces least structural deformation. The best welding sequence can
be certainly found by executing the full factorial design of experiments.
The total number of welding configurations for full factorial design
can be counted by 𝑁 = 𝑛𝑟 × 𝑟!, where 𝑛 and 𝑟 are the number of
welding directions and beads (seams or segments) respectively. This
number grows exponentially with the number of welding beads. For
example, a complex weldment like an aero-engine assembly, it might
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have 52–64 weld segments (Jackson and Darlington, 2011). Hence,
the full factorial design is not feasible for industrial applications and
is often practically in-feasible even using FEA at the early stages of
Product Delivery Process (PDP) (Romero-Hdz et al., 2017). In order
to succeed in the rapidly evolving global manufacturing landscape,
there is a pressing need to increase the competitiveness in the weld-
ing industry. Moreover quality and efficiency are main drivers. So,
mega-trends such as Internet-of-Things (IoT), Industry 4.0 as well as
the development and usage of advanced materials will be critical to
future competitiveness (Lindgren, 2007). Process simulation enables
the implementation of Artificial Intelligence (AI) and Machine Learning
(ML) techniques, because usually a great amount of process output data
is required and ‘‘time to market’’ and ‘‘Do It Right The First Time’’
are pushing the industry to exploit virtual tools. Fig. 1 illustrates the
deformation problem and the AI framework where coupled FEA-AI
virtual tool controls the amount of deformation instead of conducting
real experiments to keep the Geometric Dimensioning and Tolerancing
(GD&T) features within tolerance and ensure the assemblability.

In this research, we present a novel and efficient Reinforcement
Learning (RL) algorithm for Welding Sequence Optimization (WSO)
to improve the weld quality where structural deformation is used to
compute the reward function. We utilized a thermo-mechanical FEA
modeling to predict welding deformation. RL, in the context of AI,
is a type of dynamic programming where the agent over time makes
decisions to maximize its reward and minimize its penalty. In the
welding context, the agent will be rewarded if the sequence (action)
taken minimizes the overall structure deformation. The advantage of
this approach to AI is that it allows an AI program to learn without
a programmer spelling out how an agent should perform the task. An
agent is allowed to learn in an interactive environment by trial and
error using feedback from its own actions and experiences (Sutton and
Barto, 1998). Unlike supervised learning where feedback provided to
the agent is correct set of actions for performing a task or explicitly
mention how to perform a task, RL learns without human intervention
by using rewards and punishment as signals for positive and negative
behavior, i.e., the agent receives rewards by performing correctly and
penalties for performing incorrectly. On the other hand, while the
goal in unsupervised learning is to find similarities and differences
between data points, in reinforcement learning the goal is to find a good
behavior, a suitable action model or a label for each particular situation
that would maximize the long-term benefits (cumulative reward) that
the agent receives. RL algorithm has been extensively used in different
fields such as gaming, neuroscience, psychology, economics, engineer-
ing communications, engineering power systems, and robotics (Sutton
and Barto, 1998).

Here, we make the following technical contributions:
(A) Lessen computational complexity of a combinatorial optimiza-
tion problem: We incorporate domain knowledge into Q-learning al-
gorithm to expedite the convergence and we call it ‘‘DKQRL". Proposed
DKQRL algorithm commendably curtails the computational complexity
over exhaustive search. We conducted the experiment on a mount-
ing bracket which includes eight weld seams that can be applied in
two welding directions. In this scenario, the total number of welding
configurations for exhaustive search is 10,321,920. However, in this
experiment the DKQRL converges after 40 welding configurations. The
average execution time for each welding configuration using FEA simu-
lation software is 30 min. Thus we reduce considerable amount of com-
putational time. (B) Solve the Exploration–Exploitation Dilemma of
RL through Domain Knowledge: RL algorithm can be accelerated as
well as converged through suitable determination of exploration and
exploitation at each stage of RL algorithm. According to the domain
expert of welding, it is advisable to weld the bead near the Center of
Mass (CM) first to lessen the structural deformation due to welding. In
the first step of DKQRL algorithm, if the weld seam near the CM causes
minimum deformation we allow more exploration than exploitation
throughout the process. In addition, when one bead of each part of

the system is welded, it enhances the rigidity of the whole system that
allows more exploration since high rigidity resists structural deforma-
tion (Park and An, 2016). Thus domain knowledge controls the ratio
of exploration and exploitation throughout RL algorithm and hence
expedite WSO. (C) Traveling Salesman Problem and Welding Se-
quence Optimization: We cast the problem of WSO with TS problem.
TS problem consists of visiting each city only once with minimum cost.
Similarly, WSO consists of welding each seam only once. As soon as one
bead is welded, we remove the bead from the set of allowable states
and the corresponding welding directions from the set of allowable
actions. Mapping WSO with TS facilitates implementing RL in WSO and
provides a realistic solution for the combinatorial optimization algo-
rithm. (D) State-of-the-art performance: We conducted the simulation
experiment of Gas Metal Arc Welding (GMAW) through the well-known
welding simulation software Simufact®. The average execution time for
each welding configuration took 30 min using a workstation with two
Intel® Xeon® @2.40 GHz, 48G GB of RAM and 4 GB of dedicated video
memory. The study case is defined as a typical mounting bracket which
is widely used in telescopic jib (Derlukiewicz and Przybyłek, 2008)
and automotive industries (Subbiah et al., 2011; Romeo et al., 2016).
We validated the simulation results through real floor-shop welding
experiment. Results demonstrated a high agreement between the result
of simulation and real experiment in terms structural deformation.
Experimental results demonstrated that best welding sequence can
reduce significantly the amount of structural deformation (∼71%) over
worst sequence. DKQRL based approach substantially speeds up the
computational time over standard RL, Genetic Algorithm (GA) and
exhaustive search.

The organization of the paper is as follows. Section 2 presents
literature review. Proposed domain knowledge driven reinforcement
learning algorithm is presented in Section 3. Results are demonstrated
in Section 4. Section 5 concludes this work. Relevant references are
listed at the end of the paper.

2. Literature review

The literature review is organized into three parts. First, we sum-
marize state-of-the-art optimization techniques implemented in fields
related to welding that can be used for further research in WSO such
as manufacturing process parameters optimization, mechanical and
structural design optimization, Second, we describe Q-learning and
RL approaches. Subsequently, we illustrate the domain knowledge for
WSO.

2.1. State-of-the-art optimization techniques in related fields

Different optimization algorithms such as Genetic Algorithm (GA)
(Islam et al., 2014; Romero-Hdz et al., 2016a, 2017a) , Particle Swarm
Optimization (PSO) (Wang et al., 2015), Graph Search (Romero-Hdz
et al., 2016b), Artificial Neural Networks (ANN) (Fukuda and Yoshikawa,
1990) have been proposed for WSO. Other popular methods for WSO
include Joint Rigidity Method (Park and An, 2016), Surrogate Mod-
els (Voutchkov et al., 2005) and the use of generalized guidelines.

Yildiz et al. (2019a) present a comparative study on the applica-
tion of ten recent meta-heuristic approaches for mechanical design
optimization. In the study they solved six challenging mechanical prob-
lems of mixed variables type. The compared algorithms are: artificial
bee colony (ABC), particle swarm optimization (PSO), moth-flame op-
timization (MFO), ant-lion optimizer (ALO), water cycle algorithm
(WCA), evaporation rate WCA (ER-WCA), gray wolf optimizer (GWO),
mine blast algorithm (MBA), whale optimization algorithm (WOA),
and Salp swarm algorithm (SSA). Solved problems involve multiple
objectives and mixed variables (continuous, integer and discrete), in
addition to various nonlinear constraints on kinematic conditions, man-
ufacturing requirement and performance operating. In terms of the
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Fig. 1. Deformation problem, impact and WSO optimization framework as solution.

solution quality and the robustness, MFO was better than the other used
algorithms.

Yildiz and Yildiz (2017) introduced a newly developed moth-flame
optimization algorithm (MFO) for solving optimization problems in
manufacturing industry. The optimization aim is to maximize the profit
rate for multi-tool milling operations considering difficult constraints.
The optimum manufacturing parameters is very important in order to
develop the quality of the products and to enhance the total profit rate.
According to Literature (Yildiz et al., 2019a; Yildiz and Yildiz, 2017) is
more effective than many other population based-algorithms, in terms
of welding, every single bead can be model as moth, so the population
matrix can be a welding sequence to be conducted. For all the moths,
it is assumed that there is a set of proper fitness values, in this case
the deformation. In the MFO, both moths and flames are the solution.
The moths are the real search agents who move around the search area,
while the flames represent the best position of the moths obtained so
far. In other words, flames can be seen as flags or pins thrown by moths
when looking for a search space. For this reason, each moth searches
around a flag (flame) and updates it to find a better solution.

Yildiz et al. (2019b) and Yıldız et al. (2019) have solved manufac-
turing problems by implementing different algorithms like the Harris
hawks optimization algorithm (HHO), the grasshopper optimization al-
gorithm (GOA), the multi-verse optimization algorithm (MVO), cuckoo
search (Yildiz, 2013a), particle swarm optimization (Gökdağ and Yildiz,
2012), Hybrid Taguchi-Harmony Search (Yildiz and Ozturk, 2010) and
artificial bee colony algorithm (Yildiz, 2013b). This work address a
problem in grinding process to provide optimal surface quality by
computing the optimal process parameters. The results reveal that the
HHO, the MVO and the GOA outperforms the GA which have been one
of the best in WSO.

Yildiz and Yildiz (2019) and Yildiz and Solanki (2012) have intro-
duced several algorithms to solve shape optimization problems in the
automotive industry. The algorithms are the Harris hawks optimization
algorithm (the HHO), the Salp swarm algorithm (SSA), the grasshopper
optimization algorithm(GOA), and the dragonfly algorithm (DA).

Pholdee et al. (2017) proposed the many-objective hybrid real-
code population-based incremental learning and differential evolution
algorithm (MnRPBILDE) based on the concept of objective function
space reduction. The method is then implemented on real engineering
design problems. The topology, shape and sizing design of a simpli-
fied automotive floor-frame structure are formulated and used as test
problems.

2.2. Q-learning (reinforcement learning) for WSO

Okumoto and Ogawa (2007) developed a Q-learning (simplified RL
algorithm) to optimize the welding route of an automatic machine. The

machine consists of a simple truck system that can move only in one
direction until a force is detected. A time-dependent fitness function
is proposed in this work where this type of machines are moved from
one joint to another manually by the welder. Since, the total number of
possible execution combinations grow exponentially with the number
of welding seams, a bad decision can increase the labor hours which
have considerable effect on the cost and lead time. This method used 𝜀-
greedy based selection method which stochastically produces a reduced
reward to avoid the local optima.

Romero-Hdz et al. (2018) implemented RL for WSO. This algorithm
estimates the value function 𝑄(𝑠, 𝑎) by repeating the action through trial
and error in the environment. 𝑄(𝑠, 𝑎) defines as the expectation of a
gain when the agent takes the most suitable action in a state 𝑠. The
most suitable action is expressed as the action 𝑎 in state 𝑠, for which
the value of 𝑄(𝑠, 𝑎) becomes greatest among all the permissible actions
in state 𝑠. The 𝑄 value is updated by the following Eq. (1).

𝑄(𝑠, 𝑎) ← 𝑄(𝑠, 𝑎) + 𝛼{𝑟(𝑠, 𝑎) + 𝛾 max
𝑎′∈𝐴(𝑠′)

𝑄(𝑠′, 𝑎′) −𝑄(𝑠, 𝑎)} (1)

Where, 𝑄(𝑠, 𝑎) is the value of action 𝑎 in state 𝑠, 𝑄(𝑠′, 𝑎′) is the value of
action 𝑎′ at state 𝑠′ after transition, 𝛼 is the learning rate (0 < 𝛼 < 1),
and 𝛾 is the discount rate (0 < 𝛾 < 1). There are a number of selection
methods for solving the exploration–exploitation dilemma available in
the literature. Among them, we tailored very popular 𝜀-greedy method
for WSO in this study. This method stochastically accepts a reduced
reward to circumvent the local minima. The 𝜀-greedy chooses an action
𝑎 in state 𝑠 for which the value of 𝑄(𝑠, 𝑎) is maximum at probability
(1 − 𝜀), 0 < 𝜀 < 1, as illustrated in Eq. (2).

𝑝(𝑠, 𝑎) =

{

1 − 𝜀 when 𝑄(𝑠, 𝑎) is maximum
𝜀 elsewhere

(2)

They solved the exploration–exploitation dilemma by selecting the
value of 𝜀 as 0.2 (generate a random number between 0 and 1 and
if it is less than or equal to 0.2 , execute exploration, otherwise,
perform exploitation). They selected the weld seam with a particular
welding direction which gives the minimum of the maximum structural
deformation for exploitation and on the other hand selected the second
best weld seam for exploration. In this experiment, the robot or human
is regarded as agent, the actions of the agent are the available weld
seams that can be placed into the work piece along with the direction
of the welding, the state is defined as the set of actions that had
already executed. The reward is defined as the inverse of the maximum
structural deformation. The most suitable action is defined as welding
the weld seam along a particular direction which accrues minimum of
the maximum structural deformation.
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2.3. Domain knowledge for WSO

Fukuda and Yoshikawa (1990) discussed that welding sequence is
determined based on the following heuristic knowledge to reduce the
welding distortion, (a) weld from weld lines with greater restraint
and shrinkage; (b) weld alternative weld lines in a member which are
symmetrical to the neutral axis: weld on both sides alternating the
sequence with the same proportion of weld when the joint is symmetric
for example a V groove on both sides of the plate (Electric, 2018;
Beardsley, 2018; Fukuda and Yoshikawa, 1990); (c) weld the closest
weld lines first; (d) weld to avoid abrupt cooling at the ends of crossing
weld lines; (e) weld symmetrically structural wise; (f) weld from the
members nearest from the center of a structure: distortion is reduced by
providing less leverage for the shrinkage forces (Okumoto and Ogawa,
2007); and (g) weld so as not to produce the unweldable parts after
fabrication.

Literature (Electric, 2018; Beardsley, 2018) also reveals that the
following guidelines could significantly improve the welding quality:
(i) Select a proper welding sequence: the aim is to modify the thermal
pattern in the weldment (Masubuchi, 1980); traditionally the sequence
is selected by experience. Recently, different approaches using AI and
ML have been proposed (Romero-Hdz et al., 2016a, 2018, 2017,a,
2016b); (ii) Fewer weld passes: in case of sizes over 10 mm in fillets
or grooves a multi-pass welding is required; so, it is better few big
passes than greater number of small passes with small electrodes; (iii)
Stress Relieving: several conventional methods such as heat treatment,
shot peening, modification of the structural configuration, usage of Low
Temperature Transformation (LTT) wires (Romero-Hdz et al., 2017b)
and thermal tensioning techniques are used; (iv) Intermittent welding:
placing segments in a noncontinuous way across the joint; (v) Clamping:
this is one of the most widely used methods, it consists of fixing the
parts by a contact mechanism. New designs consider a water-cooled
jig; (vi) Use the back step welding technique: it is a well known technique
where basically the deposition is from right to left but each segment is
deposited from right to left starting away from the heated zone; (vii)
Minimize welding time: the energy per unit length or heat input can be
decreased by setting up a different set of parameter, where the speed is
an important factor. It is clear that the bead size can be slightly affected
but finishing the welding cycle quickly has been proved to be effective;
(viii) Avoid over welding: this item refers to control sizing and length of
beads; (ix) Presetting the parts: this technique refers to tack the parts
with a certain deviation on the opposite way where the shrinkage will
pull the part out.

Kim et al. (2005) showed that there must be a certain period of
time (delay) between welding operations associated with weld lines
near each other to avoid heat-caused distortion.

3. Methodology

Here we present a novel RL algorithm where domain knowledge in
the field of welding discussed in the previous section has been incor-
porated for accelerating WSO by solving the exploration–exploitation
dilemma through adapting 𝜀-greedy algorithm. In this section, we first
outline the optimization framework, then we describe the implemen-
tation of the welding domain knowledge exploited in this study and
lastly, the proposed DKQRL tailored for WSO is detailed.

3.1. DKQRL Framework

Fig. 2 illustrates the framework of DKQRL. Consider that an agent
subsists in a world or environment, 𝐸, which can be defined by a set
of states, 𝑆. First, the agent gets observations from the environment
𝐸, then the agent solves the exploration–exploitation dilemma for
exploring new states and gets new information while maximizing its
reward at the same time by taking action based on the information it
receives and trusts it. Then the agent chooses an action 𝑎, consequently

receives an immediate reward 𝑟 and go to next state. In the similar
fashion, the agent acts repeatedly, so that it receives maximum reward
from an initial state to a goal state. RL enables to handle moderate
dynamic change in the environment through learning by repeating and
evaluating the action (Sutton and Barto, 1998).

3.2. Domain knowledge implementation

In this research, we have analyzed in detail the guidelines presented
in the Section 2. As a result, we incorporate two general guidelines
that can be used in any geometry without compromising the original
design, quality of the bead completed or adding additional processes.
First, we compute the Center of Mass (CM) of the whole system and
then calculate the euclidean distance of the nearest and farthest point of
each of the welding bead from CM. We resolve the issue of exploration–
exploitation dilemma of RL by placing the weld bead near and around
the CM first to minimize the welding deformation. This guideline
takes into account the recommendations of Literature (Fukuda and
Yoshikawa, 1990) described in Section 2 as (a), (c) and (f).

Second, we draw a thermal bounding box around the bead based
on the HAZ (Heat Affected Zone) distance. As soon as the first bead is
welded, we avoid to select the weld bead located within the thermal
box region or HAZ distance of previous welded bead. During heating
and cooling cycle of welding operation, many factors affect shrinkage
of the metal and lead to distortion, such as physical and mechanical
properties of the metal which change as heat is applied. For an example,
as the temperature of the weld area increases, yield strength, elasticity,
and thermal conductivity of the steel plate decrease, while thermal
expansion and specific heat increase. These changes, in turn, affect
heat flow and uniformity of heat distribution which affect structural
deformation. Rocha et al. (2018) measure the temperature profiles at
different distances from the weld line using infrared thermography.
Temperature at 10 mm of distance from the weld line achieves around
425 ◦C and the phase transition does not occur. We draw a thermal
box of 30 mm region across all the previously welded bead along all
directions which is consistent with Kim et al. (2002) and suggest not
to weld in this region as illustrated in Fig. 3.

This guideline takes into account the recommendations of Liter-
ature (Fukuda and Yoshikawa, 1990) described in Section 2 as (d),
recommendations of Literature (Electric, 2018) as (vi), and the one
by Literature (Kim et al., 2005). In Literature (Fukuda and Yoshikawa,
1990), guidelines (b) and (e) refer to symmetric beads location, some-
thing that is not generalized for all geometries. Similarly, in Liter-
ature (Electric, 2018), (ii) was not implemented because this study
case is not multi-pass welding, (iii) are additional processes prior,
during or post welding, (iv) is related to design change and structural
analysis is required to validate the impact on the performance of the
part,(v) fixtures usually increases the cost of the project implementation
and prototypes are often build without tooling, (vii) changes on the
parameters might affect the bead finish so the optimization of them
should run separately, (viii) is also related to parameters and for this
study case we use a robot, so bead size is controlled.

Finally suggestions (i) in Literature (Electric, 2018) and (g) in
Literature (Fukuda and Yoshikawa, 1990) are the main goal of WSO
which has been adopted in the approach proposed in this study. All
other guidelines are not compatible with the experimental setup of this
proposed study and hence have not been included in this study.

3.3. Domain knowledge based q-learning (DKQRL)

We adjust the value of 𝜀 of 𝜀-greedy algorithm for WSO by incor-
porating domain knowledge which expedites Q-learning. Algorithm 2
demonstrates the domain knowledge based reinforcement Q-Learning
(DKQRL) for WSO. Unlike the conventional 𝜀-greedy algorithm where
the value of 𝜀 is fixed, in this modified 𝜀-greedy algorithm, we increase
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Fig. 2. RL with domain knowledge (DKQRL) framework for WSO.

Fig. 3. Representation of the implemented domain knowledge guidelines.

Fig. 4. Different mounting brackets available in the market similar to our study case.

the value of 𝜀 at each stage of RL algorithm, if the suitable action chosen
by exploration agrees with the action chosen by exploitation which
increases the probability of choosing the exploration over exploitation
as demonstrated in Algorithm 1. Since FEA based welding simulation
is computationally expensive and WSO is a combinatorial optimiza-
tion problem, hence exploration reduces the computational complexity
significantly over exploitation.

The advantages of exploiting domain knowledge are two-fold: (i)
domain knowledge facilitates to select those actions which reduces
the welding structural deformation through exploration; (ii) domain
knowledge resolves exploration–exploitation dilemma by increasing
the probability of 𝜀, which allows more exploration than exploitation,
and thus accelerates WSO by selecting those actions responsible for

minimizing structural deformation without conducting all permissible
actions through exploitation.

4. Experimental results and discussions

In this section, first we illustrate the study case. Then, we discuss
FEA based simulation experiment conducted for welding deforma-
tion prediction. Subsequently, we illustrate the results of the FEA
for the best and worst sequence found by the proposed DKQRL al-
gorithm. After that, we demonstrate the effects of welding sequence
on WSO. Next, we demonstrate a comparative study among Modified
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Algorithm 1: Pseudocode of Exploration–Exploitation Dilemma tackled
by DKQRL for WSO
Input: the value of 𝜀;
Observe the current state 𝑆;
Generate a random number, say 𝑟;
if 𝑟 ≤ 𝜀 then

Exploration: Choose an action 𝑎 (select the weld bead and the
weld direction which has the minimum distance from the CM and
does not overlap with any of the thermal box region of the seams
that are already welded); 𝑎 = argmin𝑎′∈𝐴′ [𝑄(𝑠′, 𝑎′)];
/* 𝑄(𝑠′, 𝑎′) = argmax𝑎′∈𝐴′

1
𝑑(𝑎′ ,𝐶)

such that 𝐴(𝑎′) ∩ 𝐴(𝑇 ) = ∅ (Null set),
Where 𝑑(𝑎′, 𝐶) represents the distance between the weld bead
associated with 𝑎′ and CM (Center of mass) of the system, 𝐴(𝑥)
represents the area of the parameter 𝑥 and 𝑇 represents the
thermal box regions; */
Exploitation: Choose an action 𝑎 (select the weld bead and the
weld direction) from the set of allowable actions (available
welding seams that are not welded yet and with all possible
welding directions, 𝐴′) which provides minimum of the maximum
structural deformation; 𝑎 = argmin𝑎′∈𝐴′ [𝑄(𝑠′, 𝑎′)];
/* 𝑄(𝑠′, 𝑎′) = argmax𝑎′∈𝐴′

1
𝑑𝑒𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛(𝑠′) , minimum of the maximum

structural deformation; */
else
end
Execute action 𝑎;
Update 𝑄-value with 𝑄(𝑠, 𝑎) ← 𝑚𝑖𝑛𝑎′ [𝑄(𝑠′, 𝑎′)] and remove 𝑎 and −𝑎
from 𝐴′;
Update state-transition model 𝑃 (𝑠′|𝑠, 𝑎);
Store 𝑆 = {𝑠} and 𝐴 = {𝐴, 𝑎};
Return 𝑆 and 𝐴;

Lowest Cost Search (MLCS) (Romero-Hdz et al., 2016a,b), single ob-
jective Genetic Algorithm (SOF-GA) (Romero-Hdz et al., 2016a), multi-
objective Genetic Algorithm(MOF-GA) (Romero-Hdz et al., 2017a), Q-
learning based RL method (Romero-Hdz et al., 2018), and proposed Do-
main Knowledge based Q-Reinforcement Learning (DKQRL) algorithm.
Finally we validate the results of simulation with real experiment.

4.1. Mounting bracket used in this study

Mounting bracket as shown in Fig. 4 is widely used in telescopic
jib (Derlukiewicz and Przybyłek, 2008), automotive industries (Subbiah
et al., 2011), and cars (Romeo et al., 2016). Fig. 5 illustrates the
engineering drawing including dimensional and welding specifications
for this study. In the design there are two parts to be welded, from the
common knowledge it is clear that the thinner part will concentrate
more deformation that the one in triangle form. Since the tolerance of
the true position between holes on both plates to be welded is 0.5 mm,
the concentricity can be achieved by drilling the parts prior welding,
which is a quite common strategy to reduce the cost in metal-fab
operations (Rocha et al., 1995).

4.2. Deformation prediction by FEA

Welding deformation can be accurately predicted using FEA. Fur-
thermore, the research on welding simulation has reached a high level
of maturity and recently several types of software with a great Graph-
ical User Interface (GUI) and features emerge to satisfy the industry
needs. However, the industry stills on the way to fully implement weld-
ing simulation as part of their product delivery process(PDP) (Goldak,
2013). We conducted a simulation experiment of GMAW process using
popular FEA welding software (Islam et al., 2014). We have incorpo-
rated domain knowledge into reinforcement Q-Learning for choosing

Algorithm 2: Pseudocode of Domain Knowledge based Reinforcement
𝑄 -Learning (DKQRL) algorithm for WSO
Initialize 𝑄(𝑠, 𝑎) = 0, 𝑆 = {}, 𝐴 = {}, 𝑠 = {}, 𝐴′ =
{+1,−1,+2,−2,… ,+𝑚,−𝑚}; where 𝑚 is the number of weld beads, ‘+’
and ‘−’ represents two different weld directions.
Initialize a state-transition model 𝑃 (𝑠′|𝑠, 𝑎)
𝑃 (𝑠′|𝑠, 𝑎) = 1∕𝑑𝑒𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛(𝑠′);
𝜀 = 𝜀0;
Result: Weld sequences having minimum of the maximum welding

deformation
while learning do not end i. e., do not finish all the cycles or iterations do

a) Compute the Center of Mass (CM) of the whole system, and
then compute the linear distance between the CM and start and
end of each of the weld bead;
b) Exploration: Choose an action 𝑎′ (Select the weld bead and
the weld direction which has the minimum distance from the CM);
c) Compute the thermal box of each of the weld bead (30 mm in
all the direction across a weld bead);
d) Exploitation: Choose an action 𝑎′′ (select a bead and the weld
direction) from the set of allowable actions (available welding
seams with all possible welding directions, 𝐴′) which provides
minimum of the maximum structural deformation;
𝑎 = argmin𝑎′∈𝐴′ [𝑄(𝑠′, 𝑎′)];
/* 𝑄(𝑠′, 𝑎′) = argmax𝑎′∈𝐴′

1
𝑑𝑒𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛(𝑎′) , minimum of the

maximum structural deformation; */
if 𝑎′ == 𝑎′′ then

𝜀 = 𝑚𝑖𝑛(𝜀0 + 𝜆, 𝜉); 0 < 𝜀, 𝜆, 𝜉 < 1;
else

𝜀 = 𝜀0; 0 < 𝜀0 < 1;
while we do not reach a goal i. e., all the seams are not welded do

if at least one seam of each part is welded then
Solve the exploration–exploitation dilemma by
executing Algorithm 1 with 𝜀 = 𝑚𝑖𝑛(𝜀 + 𝜆, 𝜉);

else
Solve the Exploration–Exploitation Dilemma by
executing Algorithm 1 with 𝜀 = 𝜀;

Return 𝐴;

Fig. 5. Engineering drawing of the study case.

the best welding sequence having minimum structural deformation and
we demonstrated the effects of welding sequence on the weld quality
by analyzing the structural deformation caused by welding by choosing
different welding sequences. We used the values of the parameters same
(𝜀0 = 0.1, 𝜆 = 0.2) throughout the experiment. We divided the welding
bead into eight segments as shown in Fig. 5. We compared the results
of proposed DKQRL with MLCS (Romero-Hdz et al., 2016a,b), single
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Fig. 6. Initial bead ID in the FEA modeling to track the sequence changes.

Table 1
Comparative analysis among different AI techniques in the case study.

AI FEA runs Computation Deformation
Techniques time (h) (mm)

MLCS 72 30 0.93
GA SOF 115 57.5 0.55
GA MOF 81 40.5 0.66
RL 30 18 1.41
DKQRL 40 7 0.61

objective GA (Romero-Hdz et al., 2016a), multi-objective GA (Romero-
Hdz et al., 2017a), and reinforcement learning (Romero-Hdz et al.,
2018) algorithm.

4.3. Discussions about the finite element analysis (FEA) results

Fig. 6 illustrates bead ID numbers, position and direction in the
initial FEA modeling to track the sequence changes. The integer number
represents the name of the bead, the position in the vector is the
sequence, means order of placement starting from the left to right,
and the sign is the direction of welding, for this case, looking at the
part from the top view, positive means up, and negative down. The
best and worst sequences found were [+5,+8,−1,−7,+2,−4,−3,−6] and
[+3,−4,+7,−6,−5,+1,−8,+2] with maximum structural deformation of
0.61 mm and 2.76 mm respectively as shown in Fig. 7. We resolve
the issue of exploration–exploitation dilemma by knowledge based 𝜀-
greedy algorithm, where we choose the value of 𝜀 as 0.1 at iteration
0. Then if the bead nearest to the CM generates minimum structural
deformation, we increase the value of 𝜀 as 0.4. This indicates that the
RL allows exploration 40% time and exploitation 60% time of the ac-
tions chosen. If the value of 𝜀 increases, it facilitates early convergence
of RL algorithm by avoiding onerous FEA based computations of the
structural deformation for all permissible actions and choosing only the
best action among the set of all permissible actions by applying domain
knowledge. When welding operation is performed over beads sequen-
tially, the structural deformation at any stage cannot be determined as
a function of previous stages and the reward function is not cumulative
in nature, hence the value of the learning rate and discount factor are
inapplicable in our application.

4.4. Effects of welding sequence on welding sequence optimization

Box plot of the structural deformation and effective stress values
on the mounting bracket used in this study are shown in Figs. 8
and 9 respectively. If we consider the deformation value of the worst

Fig. 7. Results of different AI techniques and worst sequence found in the simulation
experiment.

sequence as 100%, RL algorithm reduces ∼71% maximum structural
deformation over worst sequence (maximum structural deformation of
best and worst sequence are 0.61 mm, and 2.76 mm respectively). It
is evident that welding sequence has considerable effect on welding
deformation, though, it has very little effect on effective stress which
are consistent with Romero-Hdz et al. (2016a) and Romero-Hdz et al.
(2017a).

4.5. Comparative analysis: Reinforcement learning vs. other AI techniques

The performance of the proposed DKQRL algorithm was compared
with other available AI techniques used for WSO in the literature.
For GA, we have used the same parameters reported in Romero-Hdz
et al. (2016a) and Romero-Hdz et al. (2017a). Fig. 7 demonstrates
the maximum structural deformation of the best sequence found by
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Fig. 8. Boxplot illustrating deformation of different AI techniques for WSO.

Fig. 9. Boxplot demonstrating residual stress of different AI techniques for WSO.

MLCS (Romero-Hdz et al., 2016a,b), the single objective GA (Romero-

Hdz et al., 2016a), multi-objective GA (Romero-Hdz et al., 2017a)

and RL (Romero-Hdz et al., 2018) methods. Table 1 demonstrates

the comparative analysis among MLCS, single objective GA, multi-
objective GA and RL method. Table 1 shows that RL produces a bit
more structural deformation, however, RL converges much faster than
GA. DKQRL converges after 40 FEA simulations whereas MLCS, single
objective GA, multi-objective GA, and RL require 72, 115, 81, and 30
simulations respectively. Since it takes approximately 30 min for each
welding simulation, DKQRL method takes 7 h whereas MLCS, single
objective GA, multi-objective GA, and RL methods take 30, 57.5, 40.5,
and 18 h respectively. Fig. 10 illustrates the search space (tree) for the
best sequence excavated by the DKQRL algorithm.

4.6. Experimental validation of welding simulation

Fig. 11 demonstrates three dimensional (3D) view of the structural
deformation side by side of both real and simulation experiment for
the best sequence [+5,+8,−1,−7,+2,−4,−3,−6]. We illustrate 3D visu-
alization of real experiment using Geomagic Control® software with a
Creaform® Metrascan 210 C-Track 780 3D optical scanner. We used
simufact® FEA software (Islam et al., 2014) for simulation experiment.
Fig. 11 shows a reasonable agreement between real and simulation
experiment in terms of structural deformation.

Results demonstrate that welding simulation predicts a bit higher
deformation values than the real experiment. The difference between
the real and simulation experiment occurs as a result of the cumulative
error in the measurement process. Typically 3D scanner generates
0.085 mm of error and welding positioner accrues 0.1 mm of error.
Deformation difference in mm measured by scanner and simulation
are illustrated through boxplot as shown in Fig. 12. Fig. 12 demon-
strates that the distribution of plate and base are same, however the
distribution of triangle are different from others. It shows that the
mean absolute difference of the deformation between the scanner and
simulation at plate and base regions are 0.112 ± 0.084 mm where the
difference is 0.1629 ± 0.1191 mm at triangle region. This demonstrates
that results of simulation agree with the real experiment at plate and
base regions more than the triangular region. The average deformation
at plate, base and triangular regions found in real experiment are
0.1377 ± 0.1173 mm, 0.1430 ± 0.1103 mm, and 0.2763 ± 0.1676 mm
respectively. It stipulates that the disagreement between the real and
simulation experiment is higher at high deformation region. It points
out that the simulation model needs suitable calibration at the high
deformation region.

5. Conclusions and future work

Welding sequence optimization has considerable effect in structural
deformation. In this study, the maximum structural deformation is ex-
ploited as the Q-function of the RL algorithm for WSO. RL significantly

Fig. 10. Search tree explored by DKQRL algorithm.
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Fig. 11. Structural deformation comparison between real and simulated experiments.

Fig. 12. Deformation difference (in mm) between real experiment and simulation.

reduces the search space over exhaustive search. We incorporated
the domain knowledge and expedite the RL algorithm for WSO by
resolving the exploration–exploitation dilemma. Welding simulation
software was used to compute the structural deformation using FEA.
Proposed DKQRL algorithm for WSO was compared with MLCS, single
objective GA, multi-objective GA and RL algorithms. Proposed DKQRL
based WSO method reduces the search space considerably over other
AI techniques and thus RL finds the pseudo optimal welding sequence
much faster than GA. Experiment of welding simulation was validated
with real experiment.

This research unwraps different avenues for WSO research. In near
future, we would like to develop a more robust multivariate reward
function including structural deformation, residual stress, temperature
and robot path time for WSO. Information of the deformation, residual
stress and temperature at each stage in WSO require to be investigated
for significant improvement of welding quality.
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