
Engineering Applications of Artificial Intelligence 95 (2020) 103869

R
c
T
D

A

K
C
C
H
R
F

1

B
a
i
(
T
e
a
d
h
r
K
p
N
2
r
c
t

t

h
R
A
0

Contents lists available at ScienceDirect

Engineering Applications of Artificial Intelligence

journal homepage: www.elsevier.com/locate/engappai

einforcement learning for quadrupedal locomotion with design of
ontinual–hierarchical curriculum
aisuke Kobayashi ∗, Toshiki Sugino
ivision of Information Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara 630-0192, Japan

R T I C L E I N F O

eywords:
ontinual learning
urriculum learning
ierarchical learning
eservoir computing
ractal network

A B S T R A C T

End-to-end reinforcement learning is a promising approach to enable robots to acquire complicated skills.
However, this requires numerous samples to be implemented successfully. The issue is that it is often difficult
to collect the sufficient number of samples. To accelerate learning in the field of robotics, knowledge gathered
from robotics engineering and previously learned tasks must be fully exploited. Specifically, we propose using
a sample-efficient curriculum to establish quadrupedal robot control in which the walking and turning tasks
are divided into two hierarchical layers, and a robot learns them incrementally from lower to upper layers. To
develop such a curriculum, two core components are designed. First the fractal design of neural networks in
reservoir computing is aimed at allocating the tasks to be learned to respective modules in fractal networks.
This allows mitigating the problem of catastrophic forgetting in neural networks and achieves the capability of
continuous learning. The second task includes hierarchical task decomposition according to robotics knowledge
for controlling legged robots. Owing to the combination of these two components, the proposed curriculum
enables a robot to tune the lower layer even when the upper layer is optimized. As a result of implementing
the proposed design, we confirm that a quadrupedal robot in a dynamical simulator succeeds in learning skills
hierarchically according to the given curriculum, starting from moving legs and finally, walking/turning, unlike
the considered conventional curriculums that are unable to achieve such results.
. Introduction

Recently, the concept of reinforcement learning (RL) (Sutton and
arto, 2018) has been introduced to enable an agent to learn tasks that
re difficult to be solved analytically based on raw high-dimensional
nput. RL is intended to be implemented jointly with neural networks
NN) (Levine et al., 2018; Modares et al., 2015; Luo et al., 2018;
surumine et al., 2019). One of the open problems in such end-to-
nd learning is a need for providing big data. Collecting the sufficient
mount of data and learning corresponding tasks on the basis of these
ata is challenging for robots. To address this issue, several researchers
ave focused on investigating the concept of sample-efficient RL (Tsu-
umine et al., 2019; Schulman et al., 2015; Van Seijen et al., 2016;
obayashi, 2019); however, the suggested approaches are still in the
roof-of-concept phase. Another problem is a lack of interpretability of
N (Smilkov et al., 2017; Ross and Doshi-Velez, 2018; Huang et al.,
020). The features implicitly extracted by a NN are difficult to be
eused in other tasks even if they have similar features. As a result,
onsiderable amount of data can be wasted since the tasks are forced
o be solved from scratch.

Therefore, in the present study, we focus on the question of how
o reuse the knowledge obtained through the tasks already learned in
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the pursuit of sample efficiency. An appropriate curriculum to learn
multiple tasks can be introduced to solve this problem. To design such
a curriculum, two types of components are integrated: (i) continuous
learning to mitigate the problem of catastrophic forgetting (Kobayashi
and Sugino, 2019); (ii) hierarchical learning, which allows fully exploit-
ing domain knowledge to establish a hierarchy. As a proof-of-concept,
we propose a new curriculum for learning the control procedure of
walking for a quadrupedal robot (see Fig. 1).

Specifically, as the first component, we employ a fractal reservoir
computing module (Kobayashi and Sugino, 2019), which is a reservoir
computing module (Jaeger and Haas, 2004; Lukoševičius and Jaeger,
2009) with a fractal structure (Rozenfeld et al., 2007) to enable con-
tinuous learning. It can be used to allocate tasks to the corresponding
modules. In addition, its fractality facilitates transferring (copy) knowl-
edge from a module (i.e., control skill of a leg) to the others. Second,
to establish hierarchy, we divide the whole task into three layers
according to our knowledge of robotics engineering (Heess et al., 2016;
Peng et al., 2017; Nachum et al., 2018): a perception layer to define a
walking direction and moving speed based on high-dimensional input;
a template layer to control the walking direction and moving speed;
and an actuation layer to control the joints of legs.
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Fig. 1. Developed quadrupedal robot and its simulation model— this robot has four
legs with closed linkages; each leg has two actuators to rotate in a sagittal plane; In
this study, we only consider a simulation model for simplicity.

Considering these layers, we aim to design a curriculum enabling
a robot (i) to incrementally learn how to control a leg with different
speeds; (ii) to copy gathered knowledge from other modules for the
corresponding legs; and (iii) to learn how to control walking/turning
speed (see Fig. 2). In particular, the integration of the abovemen-
tioned two components allows actuation layer to be tuned even when
template layer is optimized, although the concept of conventional
NN implies freezing the layer already learned (Heess et al., 2016;
Peng et al., 2017). Overall, using a dynamic simulator, we aim to
design a curriculum to enable a robot to learn how to control the
process of walking/turning, in contrast to the other three conven-
tional curriculums including end-to-end learning that fail to resolve this
problem.

2. Related work and contributions of the current study

2.1. Continual learning

The phenomenon of catastrophic forgetting is considered as one
of the most critical problems associated with NN (McCloskey and
Cohen, 1989; French, 1999). In this problem, the network parameters
optimized during the previously learned tasks are overwritten when
new tasks are learned incrementally, as all of them are updated via
backpropagation (see Fig. 3).

To mitigate this problem, three ways can be considered:

1. rehearsal of previous tasks by storing their data, or sampling
from the generative models for the previous tasks (Lin, 1992;
Parisotto et al., 2015; Shin et al., 2017)

2. regularization implying that parameters are constrained toward
ones optimal for the previous tasks (Kirkpatrick et al., 2017;
Zenke et al., 2017; Kobayashi, 2018)

3. the modularization of a network architecture and the allocation
of corresponding tasks to particular modules (Ellefsen et al.,
2015; Velez and Clune, 2017; Kobayashi and Sugino, 2019)

Here, the rehearsal is associated with the considerable memory costs re-
quired to store the data corresponding to the previous tasks or to learn
the generative models for them. Therefore, this option is excluded from
consideration in pursue of implementing a memory-efficient method.

Concerning regularization, elastic weight consolidation (EWC)
(Kirkpatrick et al., 2017) is the most widely used method that has
been introduced in recent years. EWC implies that network parameters
can be sampled from a multivariate diagonal normal distribution with
the optimal location for previous tasks and its precision. In this case,
the parameters with the large precision have to be fixed on the
optimal location. The others can be updated toward the location that
is optimal for new tasks. In this way, EWC enables NN to learn new
tasks incrementally. However, the performance of EWC depends on the
accuracy of inferring the location and precision.

The cause of the catastrophic forgetting problem lies in the use of
backpropagation that would update all parameters that are related to
the minimization of losses for new tasks. However, if backpropagation

is executed selectively for corresponding modules, the catastrophic

2

Fig. 2. Proposed network architecture for learning quadrupedal robot control— it has
three layers corresponding to perception, template generation, and actuation; in the
actuation layer, the skill to control a leg is first learned, and then, it is transferred to
other three legs; using them as an action space in the template layer, walking/turning
speed control is learned; the reference walking/turning speed can be obtained from the
perception layer, although this part is out of the scope of the present study.

Fig. 3. Scheme of the catastrophic forgetting problem: if an agent learns tasks
incrementally, the parameters optimized for the previous tasks would be overwritten
by the gradients of new tasks; as a result, the agent would forget knowledge learned
in the previous tasks completely.

forgetting problem can be avoided. In this regard, several studies (Ellef-
sen et al., 2015; Velez and Clune, 2017) have proposed modifying a
network architecture to implement the modular one using the evolu-
tionary algorithm. However, such an approach requires long time for
the optimization of a network architecture, and therefore, adding new
tasks is associated with increasingly expensive computational costs.

2.2. Hierarchical learning for locomotion

The invisibility of NN leads to omitting hierarchical subtasks. In
particular, locomotion including walking, running, and so on, com-
prises mainly three following subtasks corresponding to the perception,
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Fig. 4. Scheme of the invisibility of NN: although general tasks have hierarchical
subtasks to be resolved, NN does not deal with them explicitly; therefore, NN cannot
be reusable for the other tasks with similar subtasks, thereby increasing the learning
cost associated with new tasks.

template, and actuation layers (Johnson et al., 2015; Kobayashi et al.,
2018), as shown in Fig. 4; however, end-to-end learning considers them
together.

To explicitly learn such a hierarchy corresponding to given tasks,
several studies have proposed implementing the hierarchical RL frame-
works (Heess et al., 2016; Peng et al., 2017; Nachum et al., 2018). Such
frameworks basically imply dividing a given task into two layers: the
template layer that is merged to perception and the actuation layer that
is aimed to reduce learning costs. It should be noted that in the present
study, we consider a simplification, namely, only using the template
and actuation layers. However, it is known that the simultaneous learn-
ing of multiple layers is difficult to implement due to non-stationary
situations and the catastrophic forgetting problem. Accordingly, the
implementation of learning curriculums can be realized in two main
modes, as described in the following studies: the lower-level layer can
be frozen while the higher-level layer is learned (Heess et al., 2016;
Peng et al., 2017); otherwise, both layers can be concurrently learned
by heuristics, such as reducing the frequency of decision making on the
upper layer (Nachum et al., 2018).

2.3. Contribution of the present study

To reduce the optimization cost for network modularization, the
proposed continuous learning approach employs the pre-designed frac-
tal network (Rozenfeld et al., 2007; Kobayashi and Sugino, 2019). By
including EWC (Kirkpatrick et al., 2017) as a regularization method,
we allow preserving knowledge related to the tasks already learned in
the corresponding modules and enable an agent to transfer knowledge
to the other modules easily by exploiting its scalability.

To efficiently learn hierarchical tasks, we employ a general cur-
riculum capable of learning the tasks from the lower to upper layer.
In addition, by exploiting the ability of continual learning, the upper
layer can be optimized without freezing the lower one, which allows
fine-tuning the upper tasks without forgetting the lower ones.

Therefore, the main contribution of this study lies in the com-
bination of the continual and hierarchical learning methods for the
proposed curriculum. Such a combination enables the accumulation
and adjustment of knowledge from simple to complicated tasks, which
is more biologically plausible. In addition, although the concept itself
has been already reported in the conference paper (Kobayashi and
Sugino, 2019), a more detailed explanation and its application to
locomotion serves an additional contribution. In the next sections, we
introduce the proposed design for legged robots.

3. Preliminaries

3.1. Reinforcement learning

RL enables an agent to learn an optimal policy that can allow
achieving the maximum return (namely, the sum of rewards) from

an environment (Sutton and Barto, 2018). Here, the Markov decision
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Fig. 5. Framework of reinforcement learning: an agent interacts with an environment
through an action sampled from the policy over a current state; the environment returns
the next state according to dynamics and the reward to be maximized.

process (MDP) is assumed as the following tuple ( ,,, 𝑝0, 𝑝𝑇 , 𝛾). The
process of MDP can be described as follows (also see Fig. 5).

The agent first obtains the initial state 𝑠0 ∈  randomly: 𝑠0 ∼ 𝑝0(𝑠0).
At the time step 𝑡 ∈ N, the agent selects action 𝑎𝑡 ∈  from the policy
𝜋 over the current state 𝑠𝑡 ∈ : 𝑎𝑡 ∼ 𝜋(𝑎𝑡 ∣ 𝑠𝑡). Here, 𝑎𝑡 is applied to
the environment, and the agent receives the next state 𝑠𝑡+1 according
to the transition probability model 𝑝𝑇 : 𝑠𝑡+1 ∼ 𝑝𝑇 (𝑠𝑡+1 ∣ 𝑠𝑡, 𝑎𝑡). At the
same time, the agent obtains a reward 𝑟𝑡 ∈  generated by the reward
function: 𝑟𝑡 = 𝑟(𝑠𝑡, 𝑎𝑡, 𝑠𝑡+1).

The agent maximizes the return 𝑅𝑡 =
∑∞

𝑘=0 𝛾
𝑘𝑟𝑡+𝑘 with the discount

factor 𝛾 ∈ [0, 1) by optimizing the policy to 𝜋∗. At this point, we
employ the actor–critic algorithm (Konda and Tsitsiklis, 2000) with
the student-t policy (Kobayashi, 2019) and the true online temporal
difference learning (Van Seijen et al., 2016). Here, the value function
is additionally defined to represent the expectation value of the return
from the current state: 𝑉 (𝑠) = E[𝑅𝑡 ∣ 𝑠𝑡]. In this algorithm, for the
𝑑𝑠-dimensional state space and 𝑑𝑎-dimensional action one, the value
function 𝑉 (𝑠) ∈ R and three parameters for the policy: location 𝜇(𝑠) ∈
R𝑑𝑎 , scale 𝜎(𝑠) ∈ R𝑑𝑎

+ , and degrees of freedom 𝜈 ∈ R+, have to be
approximated using function approximators.

3.2. Reservoir computing

As a function approximator, we employ reservoir computing (RC)
(Jaeger and Haas, 2004; Lukoševičius and Jaeger, 2009) that corre-
sponds to one of NN. RC is a model of cerebellum in biology, and as
a linear regression model, is easy to learn mathematically with a small
number of samples, unlike in deep learning. The simplest dynamics of
RC with 𝑁 neurons’ internal states 𝑥 ∈ R𝑁 can be described as follows:

𝑥𝑡 = 𝑓 (𝑊 rc𝑥𝑡−1 +𝑊 in𝑠𝑡) (1)

𝑦𝑡 = 𝑔(𝜃⊤[𝑥⊤𝑡 , 𝑠
⊤
𝑡 ]

⊤) (2)

where 𝑊 rc ∈ R𝑁×𝑁 and 𝑊 in ∈ R𝑁×𝑑𝑠 are the fixed weights that are
randomly given in general, whereas they are appropriately designed in
this study. Here, 𝑊 rc is resized to guarantee that its spectral radius 𝜌,
namely, max |𝝀| where 𝝀 are the eigenvalues of 𝑊 rc, is smaller than 1
for stability.

𝑦 is the output from RC obtained through a 𝑔(⋅) mapping function
for example, an exponential function for 𝜎 to ensure the positive real
value, and therefore, 𝑦 = [𝑉 , 𝜇⊤, 𝜎⊤, 𝜈]⊤ in this study. 𝜃 ∈ R(𝑁+𝑑𝑠)×(2𝑑𝑎+2)

denotes the readout weight, which can be optimized. In the present
study, 𝜃 is updated using Adam (Kingma and Ba, 2014), one of the
stochastic gradient descent methods, with the learning rate 𝛼 ∈ R+.

In RC, the gradients with respect to 𝜃 only depend on 𝑥 (and 𝑠). If
the activation function 𝑓 (⋅) is rarely non-zero, 𝜃 is rarely updated. Such
sparse update is useful to mitigate the catastrophic forgetting problem,
that is, it can be never caused when only neurons in modules for the

corresponding tasks have non-zero values.
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Fig. 6. Scheme of the task input into RC: task input 𝑏 is additionally provided to RC
as one of the inputs to specify what task the agent should execute; it can facilitate
modularization of neurons according to RC dynamics.

Thereafter, we employ the following sparse activation function
(Kobayashi and Sugino, 2019), 𝑓 (⋅) ∶= ls(⋅; 𝑝):

ls(𝑥; 𝑝) =

⎧

⎪

⎨

⎪

⎩

𝑘(𝑝)sgn(𝑥)
{

1
2 |𝑥| −

1
2𝜋 sin(𝜋|𝑥|)

}𝑝
|𝑥| ≤ 2

𝑘(𝑝)sgn(𝑥) |𝑥| > 2
(3)

where 𝑝 ∈ R𝑁 is the hyperparameter to determine the sparsity (namely,
the width of the dead zone where the output is almost equal to 0). Here,
𝑘(𝑝) is defined in accordance with 𝑝 to standardize the integral value
within 𝑥 ∈ [−2, 2]. Using this activation function, we expect achieving
acceptable performance when the task-specific neurons close to the
centers of modules are with large 𝑝, and the common neurons for all
tasks are with small 𝑝.

3.3. Elastic weight consolidation

To mitigate the catastrophic forgetting problem, EWC (Kirkpatrick
et al., 2017) can be employed in addition to the designed RC described
in the previous section. EWC assumes that the parameters in NN (here-
inafter, denoted as 𝜃) can be sampled from the multivariate diagonal
normal distribution 𝑝EWC(𝜃; 𝜃∗, 𝐹 ) =  (𝜃∗, 𝐹−1), where 𝜃∗ denotes the
optimal values for the already learned tasks, and 𝐹 is the importance
of the respective parameters.

To satisfy this assumption, 𝜃 can be regularized as follows:

EWC(𝜃; 𝜃∗, 𝐹 ) = −𝜆EWC log 𝑝EWC(𝜃; 𝜃∗, 𝐹 ) (4)

∇𝜃EWC(𝜃; 𝜃∗, 𝐹 ) = 𝜆EWC𝐹 (𝜃 − 𝜃∗) (5)

where 𝜆EWC is the magnitude of regularization. That is, if 𝜃∗ and 𝐹
are correctly defined, the part of 𝜃 with the large 𝐹 (the important
parameters for the already learned tasks) can be fixed to 𝜃∗; the others

ould be freely updated to learn new tasks.
It should be noted that several types of relatives have been proposed

o approximate 𝜃∗ and/or 𝐹 (Zenke et al., 2017) Due to the non-
erification target, in this study, we employ a moving average to
stimate 𝜃∗ and 𝐹 for simplicity.

. Fractal network design for continual learning

.1. Task input into the attracting network corresponding to different pat-
erns

As mentioned above, 𝑊 rc and 𝑊 in in RC are defined randomly.
uch randomness can be sometimes useful as a universal function ap-
roximator as it generates statistically diverse neurons. In the context of
ontinual learning, however, this network architecture can be applied
o mitigate the problem of catastrophic forgetting.

Before this step, we define the task input for the network. The task
hat the agent should execute can be commanded as a one-hot vector
r the probabilities of 𝐵 tasks, 𝑏 ∈ R𝐵 . In that case, 𝑏 is added to
4

Fig. 7. Example of the generation process of (𝑢, 𝑣)-flower (Rozenfeld et al., 2007): the
(2, 2)-flower up to the third generation is illustrated with the module indicated in red;
the number of neurons 𝑁 is given to be the number of generation multiplied by 𝑢+ 𝑣;
this architecture is represented as adjacency matrix 𝐴.

RC as a bias multiplied by the bias weight 𝑊 bs ∈ R𝐵×𝐵 . According to
the fixed dynamics of RC, the activated network regions (or neurons)
corresponding to the given tasks can be manipulated by providing the
appropriate task input (see Fig. 6). There are two ways to perform this
step: optimizing 𝑏 or designing 𝑊 bs (and 𝑊 rc), and the latter is selected
in this study. It should be noted that we further design 𝑊 in to facilitate
modularization.

4.2. Fractal network for the reservoir layer

Concerning the high modularity (and scalability) of 𝑊 rc that rep-
resents the dynamics of RC, we find that using a fractal network is
acceptable. As one of these models, a (𝑢, 𝑣)-flower network (Rozenfeld
et al., 2007) is employed in this study. It should be noted that 𝑢 and
𝑣 (and 𝑛th generation) are the hyperparameters to decide its structure.
As 𝑢 = 1 has no modularity, a modular (𝑢, 𝑣)-flower network is defined
under the following condition: 𝑣 ≥ 𝑢 ≥ 2. It is hierarchically structured,
meaning that the degrees of neurons are basically the multiplication of
𝑢 + 𝑣, and it has 𝑢 + 𝑣 hubs with the maximum degree (𝑛 − 1)(𝑢 + 𝑣). In
other words, submodules can be easily increased, as the previous main
modules are stored while its generation progresses.

The generation algorithm for (𝑢, 𝑣)-flower is described below, and
its example is illustrated in Fig. 7.

1. Define a cycle 𝐶1 composed of two completely different paths
with 𝑢 and 𝑣 edges, respectively, as the first generation graph;
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Fig. 8. Task input allocation by designing 𝑊 bs: the neurons close to hubs are regarded
as the task-specific ones; the neurons around the boundaries between modules are
considered as the common neurons for all tasks.

2. Replace all edges in the current generation with 𝐶1 while retain-
ing the existing nodes in the current generation;

3. Repeat 𝑛th generation.

After this procedure, the adjacency matrix 𝐴 that is a binary repre-
sentation of the presence or absence of connections between neurons
can be obtained. That is, 𝑊 rc is given combined with 𝐴 and random

atrix 𝑅.

𝑊 rc = 𝐴◦𝑅 (6)
.t. 𝜌 < 1

here ◦ denotes the Hadamard product.

.3. Design of bias weight for allocation of task input

Next, 𝑊 bs is designed to activate the corresponding modules by
dding 𝑏. As a naive idea, when 𝑊 bs

𝑖 of 𝑖th neuron is given according
o the distance to the hubs for respective tasks, the neurons close to
he hubs are easily activated only for the respective tasks. In addition,
he neurons around the boundaries between the modules represent
ommon knowledge for all tasks (see Fig. 8).

Therefore, we design 𝑊 bs according to the following procedure:

1. From the entire neuron set  , select a hub set for all tasks to be
learned,  ⊂  ;

2. Set a hyperparameter of the kernel function to measure the
distance between two inputs, 𝑘(⋅, ⋅) (𝐾(⋅, ⋅) Gram matrix for it);

3. Set 𝑊 bs of  according to the distance between them and 
with uniformly random plus–minus sign.

𝑊 bs = ±𝐾(, ) (7)

t should be noted that as the kernel function, the KCS kernel (Remaki
nd Cheriet, 2000) that is a modified Gaussian kernel defined to con-
ider the upper and lower bounds of the distance between two inputs,
s employed so that the bounds are on the intermediate points with
djacent hubs.

Even when the generation of the (𝑢, 𝑣)-flower is used as an increment
o add new tasks, it is expected that the distance between the adjacent
ubs would not be smaller than that before the generation increment.
amely, this design does not lose scalability.
 (

5

Fig. 9. Graphical image of the gate for the state input: if the neuron is close to any
hubs, the gate is open only when the task command is given; if the neuron is far from
any hubs, the gate is always open.

4.4. Gate for the state input

In the tasks with the large state space like locomotion control of
multi-legged robots, the state input can enable any neurons to be easily
activated without the sufficient task input. To facilitate modularization,
we additionally suppress the dominant influence of the state input.

Thereafter, a gate matrix, 𝐺(𝑏;𝑊 bs) ∈ R𝑁×𝑁 , is implemented to
smoothly cut the state input to the neurons close to the deactivated
hubs (the center of the modules). 𝐺(𝑏;𝑊 bs) is defined as follows:

𝐺𝑖𝑗 =

{

0 𝑖 ≠ 𝑗
ls(2𝑥𝑖; 1) 𝑖 = 𝑗

(8)

𝑥𝑖 =
|

|

|

|

|

𝑊 bs
𝑖 𝑏

max(1, ‖𝑊 bs
𝑖 ‖) max(1, ‖𝑏‖)

|

|

|

|

|

+
(

1 −
√

min(1, ‖𝑊 bs
𝑖 ‖)

)

where 𝑊 bs
𝑖 denotes the vector for 𝑖th neuron bias weight. This gate is

open regardless of 𝑏 if 𝑊 bs
𝑖 is small; otherwise, it is equal to 1 or 0 if

the corresponding 𝑏 is (not) given (see Fig. 9).

4.5. Redefinition of reservoir dynamics

The formulas provided in Eqs. (1) and (2) should be redefined
according to the aforementioned design. Let 𝑊 in be given from a
uniform random distribution [−1, 1]. In this case, a new dynamics can
therefore be defined as follows:

𝑥𝑡 = ls(𝑊 rc𝑥𝑡−1 + 𝐺(𝑏𝑡;𝑊 bs)𝑊 in𝑠𝑡 +𝑊 bs𝑏𝑡; 𝑝) (9)

𝑦𝑡 = 𝑔(𝜃⊤[𝑥⊤𝑡 , 𝑠
⊤
𝑡 , 𝑏

⊤
𝑡 ]

⊤) (10)

here 𝑊 rc, 𝑊 bs, and 𝐺 are designed in Eqs. (6), (7), and (8), respec-
ively.

Here, 𝑝 is defined for each neuron according to 𝑊 bs
𝑖 by inverting

q. (3).

𝑖 =
ln(𝑟𝑓 )

ln
{

‖𝑊 bs
𝑖 ‖

2 − 1
2𝜋 sin(𝜋‖𝑊 bs

𝑖 ‖)
} (11)

here 𝑟𝑓 = 10−12 is a hyperparameter to determine the sparseness of
he activation function. Owing to this design, the neurons close to hubs
re likely to escape the dead zone easily when the sufficient task input
s provided.

We demonstrate the performance of modularization (namely, the
requency of neurons) in Fig. 10. As expected, the activated neurons
learly correspond to three tasks defined in Kobayashi and Sugino
2019).
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n

Fig. 10. Frequency of neurons when the three tasks are given: green, red, and blue lines denote the 1st, 2nd, and 3rd tasks, respectively; although (a) the conventional design
fails to establish modularization, (b) the proposed design achieves performing the distinguished activation of neurons. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
𝑏

𝑏

5. Curriculum learning with hierarchy

5.1. Transferring knowledge from one leg to others

Concerning multi-legged robots, legs are often designed as separate
modules for compatibility and decentralized control (Inagaki et al.,
2006; Kenneally et al., 2016). Using such hardware modularity and
scalability in the fractal RC, the knowledge about control of one leg can
be easily transferred to others. This would allow improving the sample
efficiency of RL.

As shown in Fig. 11, the procedure to copy the original network for
one leg to others that alternates the general generation of (𝑢, 𝑣)-flower
etwork, can be summarized as follows:

1. Copy the original network except 𝑖th neuron and paste it by
connecting on 𝑖th neuron;

2. Copy the original network except 𝑗th neuron and paste it by
connecting on 𝑗th neuron;

3. Repeat the processes (1–2) for (𝑢 + 𝑣)∕2 − 2 times;
4. Copy the original network except 𝑖th and 𝑗th neurons and paste

it to close the chained network;
5. Copy the values of 𝑊 rc, 𝑊 in, and 𝑊 bs from the origin network

to the copied one.

It should be noted that as 𝑣 ≥ 𝑢 ≥ 2, this transferring is valid only for
robots with four or more legs. In addition, a quadrupedal robot in the
considered case has to satisfy the following: 𝑢 = 𝑣 = 2.

Unlike perfectly divided networks for respective legs, the proposed
network has the connections between modules, and they can com-
municate with each other. That can be advantageous to improve the
control performance corresponding to the whole body control, as all
legs interact with each other through the robot’s body and ground.

5.2. Hierarchy suitable for locomotion control

To reuse the previously gained knowledge, the hierarchical learning
can be designed as follows. It should be emphasized that, in multi-
legged locomotion tasks, we can specify three layers (see Fig. 2): (i)
the perception layer to analyze external environment (is out of scope
of this study); (ii) the template layer to generate the task input; (iii)
the actuation layer, which takes the input from the template layer and
controls all actuators established in a robot.

As the task input into the template layer 𝑏𝑡, the walking direction
and the speed or footstep location would be considered as parameters
to select (Kobayashi et al., 2018; Perrin et al., 2011). To prioritize
locomotion itself rather than locomotion in complex environments,
we select the walking and turning speeds as the task input into the
template layer. That is, 𝑏𝑡 is defined as the commands corresponding
6

to the normalized walking and turning speeds, 𝑣𝑤 and 𝑣𝑡, respectively:
𝑡 = [𝑣𝑤, 𝑣𝑡]⊤.

As the task input into the actuation layer 𝑏𝑎 (namely, the outputs of
the template layer), the Cartesian-space leg poses or phase deviation
of leg oscillators, such as central pattern generator (CPG) (Inagaki
et al., 2006), are considered as parameters to select. It is well known
that CPG has succeeded in various types of locomotion concerning
many real multi-legged robots, even though it only deals with the
phases of respective legs. We therefore select using the phase devia-
tion as the task input into the actuation layer. Owing to this design,
the action space of the template layer can be reduced from eight
(namely, two-dimensional leg positions for respectively legs) to four
dimensions. Here, to exploit modularity, the positive and negative
deviations are divided into different tasks. That is, 𝑏𝑎 is defined as
𝑎 = [max(0, 𝜔1),min(0, 𝜔1),… ,max(0, 𝜔4),min(0, 𝜔4)]⊤ with 𝜔𝑖 the phase

deviation of 𝑖th leg.
For the purpose of acquiring the reference phases from the template

layer, the actuation layer aims to control the actuators corresponding
to all legs. It should be noted that according to the previous section,
this control can be performed for each leg. In this way, although
the network in the actuation layer receives all states about all legs
and all reference phases, they are allocated to respective modules by
implementing 𝑊 in and 𝑊 bs. Such allocation can simplify the learning
process of leg control.

5.3. Curriculum on a hierarchical system

The proposed system has the three capabilities of reusing the knowl-
edge already learned: modularity for continuous learning; transferring
knowledge about leg control; the hierarchy suitable for locomotion. To
fully exploit these capabilities, we need to establish a curriculum for
learning locomotion.

First, a quadrupedal robot needs to learn how to control a leg on
the ground as a part of the actuation layer. The normalized phase
deviation 𝜔 is defined {0, 0.5, 1.0,−0.5,−1.0} in order. At this point,
other legs are fixed at the initial states to reduce the randomness of
the environment. Owing to continuous learning, we can avoid random
commands for 𝜔, which would require considerable time and would be
inefficient. A robot can focus on learning the skills for constant ordered
commands, and interpolation is naturally expected by preserving all
skills for the given commands appropriately. After learning this step,
the knowledge about control of a leg is transferred to other legs to
complete the actuation layer.

Thereafter, the template layer is ready to be trained through the
constant walking/turning speed commands. Although the actuation
layer is not perfectly optimized (in particular, considering the interpola-
tion of 𝜔 and transferred policies), the proposed system allows the robot
to learn it at the same time as the template layer. Such fine-tuning of the
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Fig. 11. Procedure of transferring the network for a leg to the others: the original network is copied, and replicas are connected one by one; as the network (𝑢, 𝑣)-flower has
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ctuation layer combined with the proposed network design in which
he modules for all legs are connected with each other is intended to
acilitate the coordination of legs.

. Simulations

.1. Simulation model

The developed quadrupedal robot is simulated in V-REP (Rohmer
t al., 2013), as shown in Fig. 1. This robot has four modular leg
tructures with the five-section parallel link mechanism. They can be
aunched by two actuators attached on their roots, and their tips move
n a sagittal plane.

The robot has an IMU sensor on its torso, which can be used
o measure the walking speed on the horizontal plane and yaw-axis
otation angle and its speed. In total, the sum of the four-dimensional
tate space for the torso and the four-dimensional state space for each
eg (the angles and angular velocities of two actuators), namely, 20-
imensional state space, is obtained. It should be noted that, in the
ctuation layer for each leg control, the reference sagittal position of
tip of each leg is additionally defined corresponding to the state

pace in the actuation layer; that is, the controller of each leg has the
ix-dimensional state space.

The robot itself has the eight-dimensional action space (namely,
he reference angular velocities of all actuators). In the template layer,
owever, it has the four-dimensional action space due to assuming leg
yclic motions.

The reward function for the template layer is defined as follows:

1 = exp
(

−𝑐𝑡1
|

|

|

|

𝑣
𝑣max

− 𝑏𝑡1
|

|

|

|

)

− 0.5

𝑟2 = exp
(

−𝑐𝑡2
|

|

|

|

𝜔
𝜔max

− 𝑏𝑡2
|

|

|

|

)

− 0.5

𝑟𝑡 = 𝑟1 + 𝑟2 (12)

where 𝑣 and 𝜔 denote the velocity and angular velocity of the torso,
respectively, and are normalized by their maximums, 𝑣max and 𝜔max.
Here, 𝑐𝑡1,2 are the hyperparameters used to tune the decaying rates of
the respective reward terms (𝑐𝑡1 = 2 and 𝑐𝑡2 = 1.5 in the present study).
By maximizing this reward, the robot can realize locomotion with the
desired walking and turning speeds, 𝑏𝑡1,2.

In addition, the reward function in the actuation layer is defined as
ollows:

𝑒 =

√

(

𝑥obs − 𝑥ref
𝑑𝑥

)2
+
(

𝑧obs − 𝑧ref
𝑑𝑧

)2

𝑟𝑎 = 2 exp
(

−𝑐𝑎 𝑒
𝑒max

)

− 1 (13)

here 𝑥 and 𝑧 denote the positions of the tip of a leg. Superscripts
bs and ref are consistent with the observation and reference values,
espectively. The trajectory error 𝑒 is calculated through normalization
y respective radiuses, 𝑑𝑥 and 𝑑𝑧. Similarly as in Eq. (12), we define the
eward function as exponential decay according to the error (normal-
zed by its maximum 𝑒max) with the decaying rate 𝑐𝑎 = 2.5. Although
his reward is not the main purpose of locomotion task, it can be helpful
o gain the skills to control legs and reuse them.
7

.2. Conditions

Here, Table 1 summarizes the parameters of the implementation.
t should be noted that 𝑁 𝑡 = 3512 and 𝑁𝑎 = 684 × 4 are given by the
ourth generation of the (4, 4)-flower and the fifth generation of the (2,
)-flower for four legs (namely, one transferring), respectively. We have
onfirmed that these parameters can be used to learn the tasks stably
n other primitive tasks (Kobayashi and Sugino, 2019), and therefore,
e decide to reuse them.

.3. Continual learning of the actuation layer

First, we demonstrate the performance of continuous learning in
he actuation layer. The proposed method with the (𝑢, 𝑣)-flower is
ompared with the conventional approach based on the standard ran-
om network (Jaeger and Haas, 2004; Lukoševičius and Jaeger, 2009).
s mentioned above, the curriculum to learn the actuation layer (to
ontrol a leg) is defined so that the reference signal to the leg is set as
𝑎 = {0, 0.5, 1.0,−0.5,−1.0} in order.

In Figs. 12(a) and (b), the learning curves gained from the con-
ventional and proposed methods are represented. We find that the
conventional method fails to learn the ±0.5 phase deviations. However,
they can be learned successfully by the proposed method in all cases.
This can be explained by the adverse effect of EWC, which is likely
to preserve important parameters excessively; that is, the conventional
method can use all parameters corresponding to the previous tasks to
some extent and have no room for learning new tasks.

After formulating the curriculum, we test all conditions again with-
out learning. The test results indicate that the average reward of the
proposed method (∼0.35) outperform that of the conventional approach
(∼ 0.15). Even in the case of 𝑏𝑎 = 0.75 that is not learned in the
curriculum, the proposed method gains the ∼0.40 average reward.

6.4. Learning of the template layer using the proposed curriculum

We consider the four kinds of simulations as follows:

1. end-to-end learning from scratch;
2. simultaneous learning of the template and actuation layers from

scratch similarly as in Nachum et al. (2018);
3. learning of the template layer with the actuation layer frozen

after learning similarly as in Heess et al. (2016) and Peng et al.
(2017);

4. the proposed curriculum: after learning the actuation layer, both
template and actuation layers are optimized for the given tasks.

It should be noted that, in the end-to-end learning, an agent does
not have multiple layers and outputs the actions corresponding to the
angular velocities of all actuators over all states that are observed by
the agent. The first task is with 𝑏𝑡 = [1, 0]⊤, walking forward. The other
task is with 𝑏𝑡 = [0, 1]⊤, turning left.

The learning curves from all curriculums are illustrated in
Figs. 13(a) and (b). The first and third curriculums finally achieve
the similar performance, even though their policies cannot enable
walking/turning appropriately. The second curriculum fails to learn
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Fig. 12. Learning curves of the actuation layer with two conditions: in both (a) and (b), the first task, 𝑏𝑎 = 0, can achieve the same performance; (a) when the modular network
is not used, the performance in other tasks that relearned incrementally after the first task, in particular 𝑏𝑎 = ±0.5, deteriorates; (b) in contrast, when the proposed design is used,
all tasks achieve the acceptable performance.

Fig. 13. Learning curves of the template layer with four curriculums: the four legends correspond to the list in the main body; in both walking and turning tasks, the proposed
curriculum outperforms the alternative ones, as they fail to learn both tasks due to the lack of abilities to simplify the tasks and to reuse and modify the previously learned skills.

Fig. 14. Snapshots of simulations after learning: in (a) walking control, the robot can walk forward, although it turns right gradually due to the insufficient rotation feedback; in
(b) turning control, the robot can turn left on the spot with the almost constant speed.

8
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Table 1
Parameters of the implemented algorithm.

Symbol Meaning Value

𝑁 𝑡,𝑎 Number of neurons in the template or actuation layers 3512 or 684 × 4
𝜌𝑡,𝑎 Spectral radius in the template or actuation layers 0.2 or 0.08
𝛼𝑡,𝑎 Learning rate in the template or actuation layers 3e-3/𝑁 𝑡 or 5e-3/𝑁𝑎

𝜖 Numerical stabilization term in Adam 1e−2
𝛾 Discount factor 0.99
𝜆EWC Scale for EWC regularization 1e-10
both tasks due to interference between two layers. It should be noted
that the reason for the fact that its learning curve at the early stage of
walking control task is high is that it mostly stops by chance, and the
reward for turning control is high.

In contrast, the proposed curriculum succeeds in learning both
walking and turning tasks. The learning curves are stably increased
and exceed the results of the other considered curriculums. Indeed, the
motions after learning are as expected (see Fig. 14).

7. Conclusion

The present paper was focused on incorporating the knowledge
gathered from robotics engineering and tasks already learned. From
this perspective, we contributed to designing a curriculum in which
a robot learned subtasks from the lower to upper layer incremen-
tally without freezing the networks already optimized. The proposed
curriculum comprised two components. The first one was the fractal
RC providing modularity to allocate tasks to modules for continuous
learning and establishing fractality to copy the module with primitive
knowledge to similar modules. The second component was designed
heuristically to provide hierarchy for locomotion based on robotics
engineering knowledge. In dynamical simulations, during the learning
from the lower layer, the proposed fractal network design succeeded
in mitigating the problem of catastrophic forgetting and establishing
control of the rotation speed of a leg incrementally. As a result, the
proposed curriculum allowed improving the performance in terms of
the speed control of the walking and turning tasks compared with the
three considered conventional curriculums.

As future study, we plan to introduce a perception layer in addi-
tion to the other layers. It would allow resolving goal-oriented tasks,
and therefore, a curriculum gradually increasing the complexity of
goals (Narvekar et al., 2017) is deemed to be effective. After completing
the development of a hierarchical learning system, we will focus on
conducting experiments on real robots.
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