
Expert Systems with Applications 160 (2020) 113701
Contents lists available at ScienceDirect

Expert Systems with Applications

journal homepage: www.elsevier .com/locate /eswa
Deep reinforcement learning based preventive maintenance policy for
serial production lines
https://doi.org/10.1016/j.eswa.2020.113701
0957-4174/� 2020 Elsevier Ltd. All rights reserved.

⇑ Corresponding author at: Department of Mechanical and Aerospace Engineer-
ing, University of Virginia, Charlottesville, VA 22904, USA..

E-mail addresses: jh3ex@virginia.edu (J. Huang), qc9nq@virginia.edu (Q. Chang),
jorge.arinez@gm.com (J. Arinez).
Jing Huang a, Qing Chang a,b,⇑, Jorge Arinez c

aDepartment of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, VA 22904, USA
bDepartment of Engineering Systems and Environment, University of Virginia, Charlottesville, VA 22904, USA
cGeneral Motors Research and Development Center, Warren, MI 48090, USA

a r t i c l e i n f o
Article history:
Available online 30 June 2020

Keywords:
Preventive maintenance
Production loss
Deep reinforcement learning
Serial production line
Group maintenance
Opportunistic maintenance
a b s t r a c t

In the manufacturing industry, the preventive maintenance (PM) is a common practice to reduce random
machine failures by replacing/repairing the aged machines or parts. The decision on when and where the
preventive maintenance needs to be carried out is nontrivial due to the complex and stochastic nature of
a serial production line with intermediate buffers. In order to improve the cost efficiency of the serial pro-
duction lines, a deep reinforcement learning based approach is proposed to obtain PM policy. A novel
modeling method for the serial production line is adopted during the learning process. A reward function
is proposed based on the system production loss evaluation. The algorithm based on the Double Deep Q-
Network is applied to learn the PM policy. Using the simulation study, the learning algorithm is proved
effective in delivering PM policy that leads to an increased throughput and reduced cost. Interestingly,
the learned policy is found to frequently conduct ‘‘group maintenance” and ‘‘opportunistic maintenance”,
although their concepts and rules are not provided during the learning process. This finding further
demonstrates that the problem formulation, the proposed algorithm and the reward function setting
in this paper are effective.

� 2020 Elsevier Ltd. All rights reserved.
1. Introduction

The maintenance activity affects the economics of a manufac-
turing system in several ways. About 15% to 40% of total produc-
tion cost is attributed to maintenance activities in a factory
(Wang, 2012). Therefore, a good maintenance policy is instrumen-
tal to ensure a smooth and efficient production operation but is
nontrivial due to the complex nonlinear and stochastic nature of
a manufacturing system.

A maintenance action reacting to a machine random failure is
referred to as corrective maintenance (CM). The consequences of
machine random failures are often unpredictable, and even catas-
trophic in some situations (Wang, 2002). To reduce such random
failures, the preventive maintenance (PM) is much needed, which
proactively maintains a machine even it is still operational in order
to keep machines in a desired reliability level. However, there is a
trade-off in the PM decision making. If PMs were not performed in
a timely manner, the system would be interrupted by random
failures more frequently, which might lead to significant produc-
tion losses. On the other hand, if PMs were too frequent, the costs
caused by PMs might far outweigh the benefits that PMs could
bring due to the fact that some PM actions might be unnecessary.

For years, scheduled and other ‘‘preventive” maintenance
strategies have been the norm – achieving maintenance objectives
through regular equipment inspections and scheduled mainte-
nance at pre-determined intervals based on operational time,
cycles, units, etc. However, this ‘‘fixed” PM policy may ignore a
machine’s real degradation and its impact on system level
throughput loss. In this paper, an approach based on deep rein-
forcement learning (DRL) is developed to obtain cost-effective
PM policies for serial production lines. A serial production line,
which is constructed with multiple machines that are intercon-
nected by intermediate buffers, exhibits very complex system
dynamics (Li, E. Blumenfeld, Huang, & M. Alden, 2009). The chal-
lenges of deriving the optimal PM policy for the serial production
line are three folds.

First, it is important to correctly evaluate the production losses
caused by maintenance activities under a PM policy. The immedi-
ate outcome of a maintenance action, either CM or PM, is that the
production on the specific machine is interrupted until the mainte-
nance is completed. In both cases, the machine stoppages

http://crossmark.crossref.org/dialog/?doi=10.1016/j.eswa.2020.113701&domain=pdf
https://doi.org/10.1016/j.eswa.2020.113701
mailto:jh3ex@virginia.edu
mailto:qc9nq@virginia.edu
mailto:jorge.arinez@gm.com
https://doi.org/10.1016/j.eswa.2020.113701
http://www.sciencedirect.com/science/journal/09574174
http://www.elsevier.com/locate/eswa

2 J. Huang et al. / Expert Systems with Applications 160 (2020) 113701
propagate in the line and might finally lead to system-level pro-
duction losses. Therefore, it is crucial to evaluate the production
losses caused by maintenance activities, such that the production
losses incurred by the PM can be weighed against those incurred
by potential random failures when deriving the PM policy. The tra-
ditional modeling methods (Li et al., 2009; Zhao & Li, 2015) for pro-
duction systems based on simplified Markov Chain are only
capable of approximately calculating long-term system perfor-
mance indicators and thus cannot serve this purpose. Therefore,
a novel production system modeling and system production loss
evaluation method (Liu, Chang, Xiao, & Biller, 2012; Zou, Chang,
Lei, & Arinez, 2018) need to be leveraged to establish a novel tech-
nique for deriving the optimal PM policy.

Second, the complexity of a production system leads to an
extremely large state space of the maintenance problem. In the
industrial practice, PM schedules are usually planned solely based
on individual machine’s ages recommended by machine vendors,
which tend to be conservative and largely ignore the intricate
interactions among machines in the serial production line. As the
information of the production systems have been increasingly
transparent and detailed, a PM policy would be preferable if it
has fully incorporated all necessary machine-level and system-
level information. However, it inevitably leads to a problem with
an enormous state space, which is intractable with traditional
model-based planning methods. It is promising to embrace new
tools and methodologies emerging in Artificial Intelligence (AI)
and machine learning (ML) areas to develop intelligent decision-
making support systems for production and maintenance
management.

Finally, however, desultory deployments of AI and ML tech-
niques in the production system could possibly lead to very unsat-
isfactory system performance. For example, with abundant real-
time data available in the plant floor, it is not advisable to lump
all the data into AI programs, where the data interferences are
not clear. This could be inefficient or even likely to generate poor
PM decisions. Hence, it is critical to systematically formulate the
problem with thorough understanding of the properties of the
manufacturing system. The domain knowledge of serial production
lines should be well utilized to guide the formulation and solving
of the PM problem.

This paper is devoted to address the above challenges. The main
contributions of this paper are in: 1) formulating the PM decision-
making in serial production lines as a DRL problem in the Markov
Decision Process framework; 2) proposing a reasonable reward
function based on an efficient system modeling and the system
production loss evaluation method; 3) implementing a DRL algo-
rithm to solve the formulated problem effectively and efficiently.

The remainder of the paper is organized as the following: liter-
ature review is provided in Section 2. Section 3 describes the prob-
lem objective and assumptions. Section 4 introduces the
production system modeling method and derives the system pro-
duction loss evaluation based on the model. The maintenance
problem is formulated as a DRL problem and solved by the DDQN
algorithm in Section 5. Numerical case study and conclusions are
provided in Section 6 and Section 7 respectively.
2. Literature review

The machine maintenance is an intricate matter as it relates to
many other aspects of modern industrial practices (Huang, Chang,
Arinez, & Xiao, 2019). The maintenance policy aims in improving
system reliability, preventing the occurrence of system failures,
and reducing maintenance costs (Wang, 2002). It is shaped by
the specific application scenario and the characteristics of the tar-
get system. Regarding the structure of the system of interest, the
maintenance policies can be categorized into single-unit policies
and multi-unit policies. The single-unit policies are designated
for those standalone systems and they have been extensively
investigated by Wang (Wang, 2002). Some examples are age-
dependent policies (Ross, 2014) and periodic PM policies etc. Since
the single-unit system operates independently, the relationship,
either deterministic (Ross, 2014) or stochastic (Ye, 1990), between
the maintenance decision and the overall maintenance cost is usu-
ally known. Therefore, the single-unit maintenance could often be
modeled as a stochastic process, in which optimal PM decision
variables can be obtained by minimizing the maintenance cost
rate, or, equivalently, maximizing the machine availability in some
circumstances. For the serial production line, the maximum
machine availability does not guarantee an optimal maintenance
cost. The system production loss caused by a maintenance action
is conditioning on the buffer states (Liu et al., 2012; Zou, Chang,
Arinez, Xiao, & Lei, 2017), for which in general we cannot derive
the probability distribution (Li et al., 2009).

Unlike in the single-unit system, the components within the
multi-unit system have structural or operational dependencies
on each other. Maintenance policies have been developed based
on the specific structures of the systems, including serial systems
(Ebrahimipour, Najjarbashi, & Sheikhalishahi, 2013), the parallel
systems (Barros, Grall, & Berenguer, 2007) and k-out-of-n systems
(de Smidt-Destombes, van der Heijden, & van Harten, 2009) etc.
The ‘‘group maintenance” and ‘‘opportunistic maintenance” are
the building blocks for most of the existing maintenance policies
for the close-interconnected serial systems. The group mainte-
nance policy (Nicolai & Dekker, 2008; Shafiee & Finkelstein,
2015) conducts multiple maintenance actions simultaneously to
merge and reduce the production losses, while the opportunistic
maintenance policy (Ab-Samat & Kamaruddin, 2014; Laggoune,
Chateauneuf, & Aissani, 2009; Xia, Jin, Xi, & Ni, 2015) identifies
the time window, in which the inserted PM will not incur extra
production losses. They are inspired by the observation that when
one machine is under maintenance, the others can receive mainte-
nance at the same time without incurring extra production loss.
However, it does not hold in a general serial production line
because the buffers among machines could delay the propagation
of the machine stoppage from the maintained machine to its adja-
cent machines (Liu et al., 2012; Zou et al., 2018).

It turns out that neither traditional single-unit policies nor
multi-unit policies could be directly applicable to the serial pro-
duction lines. Therefore, considerable research efforts have been
devoted to deriving feasible maintenance policies for the serial
production lines. There are several works (Fitouhi, Nourelfath, &
Gershwin, 2017; Karamatsoukis & Kyriakidis, 2010; X. Wang,
Wang, & Qi, 2016) that are aimed to derive maintenance policy
for two-machine-one-buffer serial production lines. Fitouhi et al.
(Fitouhi et al., 2017) presented a Markov Chain based method to
evaluate the system performance under different PM policies,
however, the policy considered in that work failed to incorporate
the system dynamics since PM actions were determined based
on only two variables, i.e. degradation states of the two machines.
In the contrast, Karamatsoukis et al. (Karamatsoukis & Kyriakidis,
2010) included the buffer levels in the state definition when they
tried to obtain PM policies using Markov Decision Process (MDP).
Wang et al. (Wang et al., 2016) derived the PM policy based on
semi-MDP for a two-machine-one-buffer production line consider-
ing quality inspections. Machine degradation states are assumed to
be directly related to product quality performance and non-
conforming parts would be scrapped immediately. Although these
works found feasible PM policies under different assumptions, the
approaches proposed in (Karamatsoukis & Kyriakidis, 2010; Wang
et al., 2016) lack scalability and cannot be extended to the more
general cases with more machines and buffers.

J. Huang et al. / Expert Systems with Applications 160 (2020) 113701 3
For longer serial production lines, Arab et al. (Arab, Ismail, &
Lee, 2013) searched for the optimal maintenance schedule using
genetic algorithm in order to maximize the throughput. Ramirez-
Hernandez et al. (Ramírez-Hernández & Fernandez, 2010) used
approximate dynamic programming (ADP) to optimize the mainte-
nance schedule in a five-machine production line. However, both
works simplifies the maintenance problem as inserting known
maintenance tasks, in the form of downtime events, into the pro-
duction shifts, and assumed that the maintenance schedules would
not impact the machine reliability status at all. Kang et al. (Kang &
Ju, 2019) proposed an aggregation-based approximation method
for obtaining maintenance policies for the synchronous production
line, i.e. the cycle time for each machine is identical. But real pro-
duction lines are usually not perfectly balanced, so that it is impor-
tant to consider the different machine processing speeds when
optimizing PM policies (Fitouhi et al., 2017). In (Huang, Chang,
Zou, & Arinez, 2018), a CM policy considering imperfect mainte-
nance effects was proposed for the serial production line, but the
PM was not included in the work. Therefore, a systematic approach
to deriving PM policies for general serial production lines must be
developed to address the above challenges.

Regarding the mathematical techniques used in obtaining
maintenance policies, quite a few methods have been applied in
literatures, including renewal process (Ross, 2014), Markov Chain
(Fitouhi et al., 2017), heuristic methods (Arab et al., 2013), and
MDP (Fitouhi et al., 2017; Kang & Ju, 2019; Karamatsoukis &
Kyriakidis, 2010; Ramírez-Hernández & Fernandez, 2010; X.
Wang et al., 2016) etc. It is noted that MDP is a particularly com-
mon modeling method for maintenance problem in complex sys-
tems including serial production lines, since maintenance is often
a sequential decision-making problem with multi-dimensional
states and actions. However, it is important to realize that the per-
formance of MDP-based maintenance policies can vary tremen-
dously depending on the problem formulation and solving
techniques.

On the one hand, the problem formulation refers to properly
defining the three components, namely state, action, and reward,
according to the problem characteristics and objective. It requires
thorough understanding of system dynamics in serial production
lines. For example, if some key variables are not included in the
state definition, the PM decisions would fail to reflect the real sys-
tem dynamics. In (Fitouhi et al., 2017), the buffer level is not con-
sidered when making PM decisions, hence the PM decision might
be the identical no matter the buffer is full or empty. But one
should also strive not to include redundant variables, especially
in today’s manufacturing systems, which usually have huge
amounts of data from various sources. In this paper, the PM prob-
lem is also formulated as an MDP but with the guidance of our pre-
viously derived systematic knowledge of the serial production
lines.

On the other hand, the solution to an MDP is an optimal pol-
icy that gives the best action for each state, such that the
expected accumulated reward is maximized. There have been a
lot of techniques that can effectively solve the MDP, and some
of them have been applied to maintenance problems. Dynamic
Programming (DP) is an exact and model-based approach to solv-
ing MDP, where model refers to the complete transition probabil-
ities among states. Therefore, in the context of PM problem in
serial production lines, DP is only applicable to two-machine-
one-buffer line (Karamatsoukis & Kyriakidis, 2010), or needs
cruel approximations when applied to longer lines (Kang & Ju,
2019). In the contrast, Reinforcement Learning (RL) is a category
of techniques obtaining the optimal policy for MDP through the
interactions between agents and the uncertain environment
(Sutton & Barto, 2018). Most of the RL algorithms is model-
free, i.e. the state transition probabilities are not required.
Therefore, the model-free RL algorithms well suit the PM prob-
lem in general production lines, for which the system state space
explodes exponentially with increased machine numbers. Instead
of the transition probabilities, a reliable simulator, or experiment
if feasible, that faithfully reflects the uncertain environment
needs to be set up for the implementation of RL algorithms.
Regarding the serial production line, the general-purpose com-
mercial software, e.g. Simul8 and Simulink etc., have long been
used for its simulation. However, the simulation setup is often
arduous, and the efficiency and accuracy are not guaranteed. In
(Zou et al., 2018), a data-driven model for production lines is
established based on dynamic system and conservation of the
flow. The model is derived analytically, and therefore it is not
only accurate but also has high computation efficiency compared
to general-purpose simulation software. In this paper, we will
leverage it to simulate the production system dynamics under
PM for training process of the RL agent.

The selection of the RL algorithms is also a crucial question.
According to how the policy is represented, RL algorithms can be
categorized into policy-based methods, value-based methods,
and actor-critic (Sutton & Barto, 2018). In RL, policy is a function
mapping from state to action. The policy-based methods seek to
directly parameterize the policy. Simple parameterizations could
be, for example, linear combination of polynomial features or basis
functions. The performance of policy-based methods heavily
depends on how the features or basis functions are constructed.
For problems with high dimension and inherent complexity, sim-
ple parameterizations are not sufficient due to their limitations
on representation power. In contrast to policy-based methods,
value-based methods represent the policy implicitly with state-
values or state-action-values, where ‘value’ is the expected accu-
mulated reward starting from a given state or taking a given action.
The naïve Q-learning is one of the most widely used value-based
methods in researches on PM problems because of its simplicity
and robustness. Wang et al. (Wang et al., 2016) presented the
application of naïve Q-learning to PM problem in two-machine-
one-buffer line. However, to some extent, naïve Q-learning also
suffers from the ‘‘curse of dimensionality” mainly because the
naïve Q-learning uses a table to record the Q-value for all state-
action pairs. The problem with large state spaces is not just the
memory needed for large tables, but the time and data needed to
fill them accurately (Sutton & Barto, 2018). The actor-critic method
adopts both policy parameterization and value function in its algo-
rithm, and therefore suffers from the drawbacks of both. In conclu-
sion, despite the fact that these primitive RL algorithms are robust
and accessible, the lack of scalability is preventing them from being
applied to solve a range of real-world problems with large state
space like the PM problem discussed in this paper. To this end, in
recent years, the emergence of deep learning allows the RL to go
‘deep’ as well and results in a series of DRL algorithms. The DRL
scales RL to interesting decision-making problems in practice that
were previously intractable (Arulkumaran, Deisenroth, Brundage,
& Bharath, 2017). Some of the DRL applications in recent years
include, for example, Atari video games (van Hasselt, Guez, &
Silver, 2016; Mnih et al., 2015) and the game of Go (Silver et al.,
2016) etc. Thanks to its good scalability and efficiency, the DRL
shows great potential to solve complex problems in the manufac-
turing industry that are unsolvable with conventional techniques.
The DDQN/DQN algorithm is one of the state-of-the-art DRL algo-
rithms that was originally proposed to play Atari video games (van
Hasselt et al., 2016; Mnih et al., 2015). The algorithm has been
proved to be effective in solving some practical problems other
than the Atari video games (Martinez, Ramasso, Perrin, &
Rombaut, 2020;Wei, Bao, & Li, 2020). In this paper, the DDQN algo-
rithm will be applied to solving the PM problem in the serial pro-
duction lines.

4 J. Huang et al. / Expert Systems with Applications 160 (2020) 113701
3. Problem description

3.1. System structure and assumptions

A serial production line with M machines and M � 1 buffers is
as shown in Fig. 1. The machines Si, i ¼ 1;2; � � � ;M, are represented
with rectangles. The intermediate buffers Bi, i ¼ 2;3; � � � ;M, are
represented with circles. The arrows specify the direction of the
material flow in the system.

The following assumptions are made in this paper:

1) Each buffer Bi has a finite capacity. With the abuse of nota-
tion, the maximum capacity of buffer Bi is also denoted as Bi;

2) The serial production line is a dynamic system. The buffer
levels are changing with the system dynamics. We denote
the buffer level of buffer Bi at time t as biðtÞ, where
0 � bi tð Þ � Bi;

3) The cycle time of machine Si is denoted as Ti;
4) The lifetime of machine Si follows a known distribution pið�Þ,

which can usually be obtained by experiments or from ven-
dors. The age of machine Si at time t is denoted as giðtÞ;

5) When machine Si fails, it stops operation and the mainte-
nance staff must react to the failure and conduct CM. The

duration of a CM on machine Si is dCM
i . The maintenance

effects of CM are perfect, i.e. after the CM is completed on
machine Si, the age of machine Si starts from zero;

6) To reduce machine random failures, an aged machine can be
turned off and receive a PM. The duration of a PM on

machine Si is dPM
i . The maintenance effects of PM are also

perfect, i.e. after the PM is completed on machine Si, the
age of machine Si starts from zero;

7) The maintenance durations dPM
i and dCM

i include not only the
time performing CM or PM but also the response time and
preparation time needed before the maintenance starts;

8) Machine Si resumes production only when the CM or PM is
completed. The remaining maintenance duration at time t
on machine Si is denoted as dr

i ðtÞ. For example, if a CM on
machine S2 was started 12 minutes ago, and the it was sup-

posed to take 30 minutes, i.e. dCM
2 ¼ 30 min, then the remain-

ing maintenance duration is 18 minutes, i.e. dr
2 tð Þ ¼ 18 min;

9) Both CM and PM would incur some fixed resource costs,
including costs of new parts and all other consumable
expenses. The resource costs of a CM and a PM on machine
Si are cCMi and cPMi respectively;

10) The profit per part is cp.

The notations used in this paper are as the following:

� M is the total number of machines in the line
� M� is the index of the slowest machine in the line, i.e.
M� ¼ argmax

i
fTi; i ¼ 1;2; � � � ;Mg

� Ti cycle time of machine Si
� biðtÞ is the buffer level of Bi at time t
� wiðtÞ is the indicator of random failures, i.e. wi tð Þ ¼ 1 if machine
Si fails at time t
� piðxÞ is the lifetime distribution of machine Si
� gi tð Þ is the age of machine Si at time t
Fig. 1. The structure of a serial production line.
� dCM
i is the duration of a CM on machine Si

� dPM
i is the duration of a PM on machine Si

� dr
i ðtÞ is the remaining maintenance duration on Si at time t

� cCMi is the resource cost of a CM on machine Si
� cPMi is the resource cost of a PM on machine Si
� PLðtÞ is the system production loss of the serial production line
at time t
� cp is the profit per part of the production line
� aiðtÞ is the PM decision variable at time t, i.e. conduct PM on
machine Si if ai tð Þ ¼ 1
� A stð Þ is the legal action set for state st
� p is the PM policy
� st is MDP state at time t
� rt is MDP reward at time t
� c denotes discount factor in RL
� � is the parameter for �-greedy exploration in RL
� Cðt;pÞ is maintenance cost up to time t given PM policy p
� NPM

i ðtÞ is the total PM counts on machine Si up to time t

� NCM
i ðtÞ is the total CM counts on machine Si up to time t

� h denotes the parameters for neural network
� Qðs; aÞ denotes the state-action value, also known as Q-value
� Qðs; a; hÞ denotes Q-value approximated by neural network h

3.2. Problem statement

An intermediate part finished by machine Si flows to its down-
stream buffer Biþ1 if buffer Biþ1 is not full, and otherwise machine Si
is said to be blocked. Machine Si starts a new cycle by receiving one
part from its upstream buffer Bi if buffer Bi is not empty, and other-
wise machine Si is said to be starved. The blockage or starvation
makes an operational machine to stand idle. If one machine is
undergoing maintenance, its downstream buffers gradually drain,
and upstream buffers fill up due to the machine stoppage and thus
causing blockage or starvation in its adjacent operational
machines. The stoppage and idleness of these machines might
finally lead to the system-level production loss. The production
loss due to the maintenance activities accounts for a significant
portion of the overall maintenance related costs. We denote the
system production loss caused by the maintenance activities as PL.

Let p denotes the PM policy for a serial production line. The PM
policy p instructs when and which machine should be turned off
and receive a PM. Let Cðt;pÞ denotes all the costs caused by the
maintenance activities up to time t under the PM policy p, then

Cðt;pÞ ¼ cp �
Z t

0
PLðtÞdt þ

XM

i¼1c
PM
i N

PM
i tð Þ þ

XM

i¼1c
CM
i NCM

i ðtÞ ð1Þ

where cp is the profit per part and
R t
0 PLðtÞdt is the accumulative

system production loss up to time t. NPM
i ðtÞ and NCM

i ðtÞ are the total
numbers of PM and CM conducted on machine Si up to time t
respectively.

NPM
i ðtÞ ¼

Z t

0
ai sð Þds ð2Þ

NCM
i ðtÞ ¼

Z t

0
wi sð Þds ð3Þ

An optimal PM policy p� should minimize the long-run mainte-
nance cost rate, which is maintenance cost per unit time. There-
fore, the objective of the maintenance problem in this paper can
be represented as:

p� ¼ argmin
p

lim
t!1

C t;pð Þ
t

� �
ð4Þ

J. Huang et al. / Expert Systems with Applications 160 (2020) 113701 5
With this objective function, the problem to be studied in this
paper can be stated as: Under assumptions 1 to 10, develop a method
to find the optimal PM policy p� for the serial production line, such
that the long-run maintenance cost rate is minimized.

Before we proceed to solve the problem, a proper modeling
method for the serial production line must first be established
and the system production loss, i.e. PLðtÞ, should also be evaluated
such that the impacts of the maintenance activities could be
identified.

4. System modeling and production loss evaluation

Our previous work (Zou et al., 2018) proposed a data-driven
modeling method for serial production lines, which can efficiently
evaluate real-time dynamic behavior of the production system. In
addition, based on the proposed model, the system production loss
can be derived. To keep this paper self-contained, the main conclu-
sions in the modeling methodology are briefly introduced in this
section.

4.1. Serial production line modeling

In this model, the serial production line is modeled by the state
space equations:

_b tð Þ ¼ F b tð Þ;U tð Þ;W tð Þð Þ ð5Þ

Y tð Þ ¼ H b tð Þð Þ ð6Þ
The buffer levels bðtÞ, where b tð Þ ¼ b2 tð Þ; � � � ; bM tð Þ½ �0, is treated

as the system state. The physical meanings of other variables are
as the following:

(1) F �ð Þ ¼ ½f 2 �ð Þ; � � � ; f M �ð Þ� is the dynamic function of the
system state bðtÞ;

(2) U tð Þ ¼ u1 tð Þ; � � � ;uM tð Þ½ �0 is the control input, which describes
whether there is an ongoing maintenance activity, either PM or
CM, at each machine at time t, where

ui tð Þ ¼ 0; if machine Si is under PM=CM
1; if machine Si is operating

�
ð7Þ

(3) W tð Þ ¼ w1 tð Þ; � � � ;wM tð Þ½ �0 is used to indicate whether there
is a random failure on each machine at time t, where

wiðtÞ ¼ 1; if machine Si fails at time t
0; otherwise

�
ð8Þ

(4) Y tð Þ ¼ Y1 tð Þ; � � � ;YM tð Þ½ �0 is the accumulated production
counts of each machine up to time t, and
H �ð Þ ¼ ½H1 �ð Þ;H2 �ð Þ; � � � ;HM �ð Þ� are measurement functions, which
map the system states to the system throughput.

The dynamic function Fð�Þ and the measurement function Hð�Þ
have been analytically derived based on the conservation of the
flow. Given the control input UðtÞ and random disturbance WðtÞ,
the system states bðtÞ and throughputs YðtÞ can be quickly calcu-
lated. One may refer to (Zou et al., 2018) for detailed derivations
and rigorous proof. It has been demonstrated that the presented
model is effective and has great computation efficiency.

It is noteworthy that the DRL algorithm trains its policy with
large amounts of stepwise transition samples from the target envi-
ronment. The data-driven introduced in this section is used to con-
struct such an environment. The DRL agent would make the PM
decisions, which are corresponding to the control input UðtÞ in
the model. In order to simulate the target environment, machine
random failures would also be generated according to the given
machine reliability model. The random failures are corresponding
to the disturbances WðtÞ in our model. Based on the state space
equation in Eqs. (5) and (6), the system states and outputs can
be efficiently computed. Therefore, by using the presented model-
ing method, one can computationally efficiently acquire reliable
transition samples for the DRL training process.

4.2. System production loss evaluation

For simple serial systems without intermediate buffers, any
machine stoppage would immediately count towards the system
production loss. However, with the existence of intermediate buf-
fers, the relationship between system production loss and machine
stoppage duration is not trivial. It has been proved in (Liu et al.,
2012) that in a serial production line a maintenance action causes sys-
tem production loss if and only if the slowest machine is impeded, i.e.
blocked or starved, by the stoppage. Let SM� denotes the slowest
machine in a serial production line, where

M� ¼ argmax
i
fTi; i ¼ 1;2; � � � ;Mg ð9Þ

If we discretize the time into steps, and let DðtÞ be the idleness
time of the slowest machine SM� during the time step t then the
system production loss PLðtÞ during the time step t is

PL tð Þ ¼ DðtÞ
TM�

ð10Þ

where TM� is the cycle time of the slowest machine SM� . Note that
the idleness time DðtÞ on machine SM� includes not only the dura-
tion of maintenance activities on machine SM� itself, but also, more
importantly, the starvation and blockage time of machine SM�
caused by the maintenances on other machines. One may refer to
reference (Liu et al., 2012) for details in derivation and rigorous
proof for system production loss.

In the stepwise simulation scenario, with the system outputs
given by Eq. (6), the system production loss PLðtÞ can also be con-
veniently calculated as

PL tð Þ ¼ 1=TM� � YM� tð Þ � YM� t � 1ð Þð Þ ð11Þ
where 1=TM� is the ideal production increment of the slowest
machine SM� without any disturbance, and the second term
YM� tð Þ � YM� t � 1ð Þ is the actual incremental production counts of
the slowest machine SM� . The difference between them is the sys-
tem production loss during the time step.
5. Obtaining PM policy through DRL

For serial production lines, the state space of the PM problem
stated in Eqs. (1)–(4) explodes with the increasing length of the
line. Considering the large state space, it is very difficult to obtain
the optimal PM policy by using exact approaches such as DP. Alter-
natively, RL is a proper method to tackle this problem.

Firstly, most of the RL algorithms are model-free, which means
that the system transition probability is not required. Secondly, RL
algorithms usually train its policy through sampling transitions in
the state space and action space with either experiments or simu-
lations. The data-driven modeling method described in previous
section offers us great efficiency in the simulation of serial produc-
tion lines. Finally, RL is particularly well-suited to the sort of prob-
lems that bear a trade-off between long-term and short-term
reward. In our case, the PM is increasing the short-term cost, how-
ever, it avoids the long-term cost by reducing the probability of
potential machine failures.

Despite its great potential as a suitable and effective approach
to the PM problem, two key challenges are: 1) how to formally
fit PM problem into the RL framework, and 2) how to solve it with
an efficient and scalable RL algorithm. In this section, the PM
problem will first be formulated as an MDP, which is the general

6 J. Huang et al. / Expert Systems with Applications 160 (2020) 113701
framework for RL. A state-of-the-art DRL algorithm, i.e. DDQN, will
be applied to solve the MDP and obtain PM policy afterwards.

5.1. MDP formulation for PM problem

The most common framework for RL is MDP, which is a stochas-
tic process that models the sequential decision making in uncer-
tain environments. There are three components in an MDP,
including state st , action at and reward function rt . As an extension
of Markov Chain, MDP also describes the stochastic state transi-
tion, however, the transition is driven partially by the environment
uncertainties and partially by the actions. Fig. 2 illustrates two
steps of state transition in a simple MDP. Note that the MDP is a
framework mostly based on discretized time. In the following,
we will follow this convention to use notation t to represent dis-
crete time step.

Based on the state st at time step t, an action at would be
selected according to some rule and implemented in the environ-
ment. In the context of PM problems, this is to determine whether
or not we conduct PM actions on machines. The rule governing the
action selection is referred to as a policy, denoted as pðajsÞ.
p ajsð Þ ¼ Pr at ¼ ajst ¼ sð Þ ð12Þ

Subsequently, a scalar reward rt will be observed, which reflects
the goodness of the action at in state st . The accumulated reward is
referred to as return, denoted as Gt .

Gt ¼ rt þ
X1

k¼1c
krtþk ð13Þ

where c is a discount factor, which is used to make a trade-off
between immediate reward and future rewards. If the immediate
reward is preferred, a small c will be used and vice versa. An opti-
mal policy p� is supposed to maximize the expected return, i.e.

p� ¼ argmax
p

Ep Gt½ �js ¼ stf g ð14Þ

Before we can apply RL algorithms to obtaining the ultimate PM
policy p�, we need to first properly define the three key compo-
nents, i.e. state st , action at , and reward function rt , in the MDP that
models the PM problem in serial production lines.

5.1.1. State definition
Given the state st , one should be able to fully comprehend the

production system status such that an action that suits the status
can be determined. Three factors are essential for the PM decision
making in the serial production line, namely

1) The machine ages gi tð Þ; i ¼ 1;2; � � � ;M, specify the probability
of random failures on each machine;
Fig. 2. An illustrative example of state transitions in MDP.
2) The buffer levels bi tð Þ; i ¼ 2;3; � � � ;M, denote the status of the
production line, which directly relate to the system produc-
tion losses caused by PM actions and random failures;

3) The remaining maintenance duration dr
i ðtÞ, i ¼ 1;2; � � � ;M,

indicate all the ongoing maintenance activities on each
machine.

Consequently, the state st is defined as:

st ¼ g1 tð Þ; � � � ; gM tð Þ; b2 tð Þ; � � � ; bM tð Þ;dr
1 tð Þ; � � � ; dr

M tð Þ� � ð15Þ

Remark 1:. It is important not to confuse MDP state st with the
system state bðtÞ of the serial production line. System state bðtÞ is
raised when modeling the production system dynamics and evaluate
the production losses PLðtÞ given PM decisions and random failures.
However, the state st is defined in order to formulate the PM problem
as an MDP. The state st assembles all the machine-level and system-
level information, including bðtÞ, that are essential to make the PM
decisions.
5.1.2. Action definition
In contrast with the PM, the CM is passively triggered by a ran-

dom failure, which is beyond the control of the agent. Therefore,
the action at is limited to the PM decisions. The action at is a vector
consisting of M binary variables indicating whether we turn off
machines for PM or not at time t.

at ¼ ½a1 tð Þ; a2 tð Þ; � � � ; aMðtÞ� ð16Þ
where

ai tð Þ ¼
0; leave machine Si as it is
1; turn off machine Si for PM

�
ð17Þ

Note that dr
i tð Þ > 0 implies that there is an ongoing mainte-

nance on machine Si, and thus machine Si cannot receive a PM
under such circumstance. The action at is said to be illegal if it
intends to assign a PM on machine Si given dr

i tð Þ > 0. At each time
step, it is only allowed to select an action from the legal action sets
AðstÞ.
A stð Þ ¼ fatj 8i; ai tð Þ ¼ 0; if dr

i tð Þ > 0g ð18Þ
5.1.3. Reward function definition
The overall maintenance cost includes the resource cost of all

PMs and CMs, and the system production loss caused by those
maintenances. Therefore, the reward function rt is defined as:

rt ¼ �cp � PLðtÞ �
XM

i¼1wi tð ÞcCMi �
XM

i¼1ai tð Þc
PM
i ð19Þ

where
PM

i¼1wi tð ÞcCMi and
PM

i¼1ai tð ÞcPMi are the resource costs at
time step t incurred by CMs and PMs respectively, and cp � PLðtÞ
is the profit loss caused by the system production loss PL tð Þ during
the time step. The reward is negative because we seek to maximize
the accumulated reward, and equivalently the overall maintenance
cost can be minimized.

It is noted that the reward function rt is consistent with the
problem objective function presented in Eqs. (1)–(4) in Section III.
The reward function is the stepwise version of the objective func-
tion, such that the RL could deliver the policy that meets our ulti-
mate objective.

5.2. Applying DDQN to obtain PM policy

In order to obtain the optimal policy p�, a lot of algorithms have
been proposed in the past, among which the Q-learning is one of

J. Huang et al. / Expert Systems with Applications 160 (2020) 113701 7
the most widely used algorithms (Sutton & Barto, 2018). It pos-
sesses good efficiency and robustness, and therefore it has also
been applied to solve maintenance problems in a two-machine-
one-buffer production line (X. Wang et al., 2016). One may refer
to (Sutton & Barto, 2018) for details of the naïve Q-learning
algorithm.

Naïve Q-learning Algorithm
Input: �; c
Output: Qðs; aÞ
Initialize Qðs; aÞ table arbitrarily
Initialize s0 randomly
For t ¼ 0;1; � � � ;K do
Choose at from using policy derived from Qðs; aÞ (e.g. �-
greedy)
Take action at , observe rt , stþ1
Q st ; atð Þ Q st ; atð Þ þ a½rt þ cmax

a0
Q stþ1; a

0� �� Qðst ; atÞ�

The naïve Q-learning algorithm utilizes a large table to record the
state-action values, which is also called Q-values. Q-values are the
expected returns if action a is taken in state s and the same policy
is followed afterwards.

Qða; sÞ ¼ Ep Gtjst ¼ s; at ¼ a½ � ð20Þ

The naïve Q-learning has a lack of scalability and cannot be
applied to problems with large state spaces. The problem with
large state spaces is not just the memory needed for large tables,
but the time and data needed to fill them accurately (Sutton &
Barto, 2018). In recent years, the emergence of DRL algorithms
have well addressed the scalability issue in Q-learning. The Double
Deep Q-Network (DDQN) (van Hasselt et al., 2016) is one of the
state-of-the-art algorithms in DRL. It is a stable and scalable
approach to complex and ultra-high-dimensional RL problems,
such as Atari video games (van Hasselt, Guez, & Silver, 2015), in
which the DDQN largely outperforms both human players and its
precedent, Deep Q-Network (DQN) (Mnih et al., 2015). The policy
in Q-learning (including naïve Q-learning, DQN and DDQN etc.) is
implicitly embedded in the state-action values, which is also called
Q-values, which are the expected returns if action a is taken in
state s and the same policy is followed afterwards. In DDQN, the
Q-values are approximated with a neural network h, i.e.

Q s; a; hð Þ _�Qða; sÞ ð21Þ
Instead of filling a large table, the DDQN seeks to iteratively

update the neural network parameters h, which could well approx-
imate the Q-values, until the ultimate policy p� ajsð Þ is obtained.
Similar to the naïve Q-learning, the ultimate policy given by the
neural network h is a deterministic policy.

p� ajsð Þ ¼
1; if a ¼ arg max

a0 2AðsÞ
Q s; a

0
; h

� �� 	
0; otherwise

8<
: ð22Þ

The PM problem for general serial production line also has a
huge state space. For instance, for a four-machine-three-buffer
line, suppose the machine age ranges are [0, 500], buffer capacities
are 10 parts, and maintenance duration ranges are [0, 30], the state
space size is approximately 5	 1019. In this context, the DRL algo-
rithms such as DDQN are well suited to problems with such large
state space. In this section, we will use DDQN to solve the PM prob-
lem MDP defined by Eqs. (15)–(19). The full algorithm is as the
following.
Algorithm 1

Input: M;Ti;Bi;pi tð Þ; cCMi ; cPMi ; cp;d
CM
i ;dPM

i

Output: h
Initialize replay memory D to capacity Nmem

Randomly initialize the neural network h

For t ¼ 0;1; � � � ;K do
Every C1 steps, initialize st randomly and normalize it to st
Every C2 steps, set h� h

Find legal action list AðstÞ according to Eq. (22)
Draw a random number n
 Uniformð0;1Þ
If n > � then
Select at ¼ arg max

a2AðstÞ
Qðst ; a; hÞ

Else
Select a random action at 2 AðstÞ

End if
Input action at to the production line
Run the production line for one step per Eqs. (5) and (6)
Observe wi tð Þ; gi tð Þ; dri ðtÞ
Calculate production loss PLðtÞ using Eq. (11)
Calculate rt according to Eq. (23) and normalize it to rt
Observe next state stþ1 and normalize it to stþ1
Store transition sample ðst ; at ; rt ; stþ1Þ in replay memory D

Sample a minibatch of size b of transitions ðsj; aj; rj; sjþ1Þ
from D

Set yj ¼ rj þ cQ sjþ1; arg max
a2Aðsjþ1Þ

Q sjþ1; a; h
� �

; h�

 �

Perform a gradient descent step on yj � Q sj; aj; h
� ��
2

End for

The flow chart for Algorithm 1 is as shown in Fig. 3. There are
two key techniques that are inherited from the original DDQN
(van Hasselt et al., 2016), including experience replay and target
network. The experience replay is used to stabilize the learning
process by storing past experiences, i.e. one-step transitions
ðst ; at ; rt; stþ1Þ, in a replay memory D, and sampling mini-batches
from D to train the neural network h afterwards (van Hasselt
et al., 2016). While the target network is used to generate targets
when updating the neural network with gradient descent. The
target network h� is a fixed and delayed replica of the current
network h, and the use of target network is intended to overcome
the over-optimism issue. One may refer to references (van
Hasselt et al., 2016; Mnih et al., 2015) for details regarding the
original DDQN algorithm.

Note that this paper is not aimed to develop new DRL algo-
rithms, rather the contribution is to apply a state-of-the-art tech-
nique to complex engineering problems. However, since the
DDQN was originally designed to play video games, some
knowledge-guided adjustments are much needed when applying it
to obtaining the PM policy. These adjustments are discussed and
clarified in the following:

(1) Neural network and its architecture
In Atari video games, the observations are raw images and

the true states are hidden. Therefore, the convolutional neural
network (CNN) is adopted in the original DDQN algorithm. How-
ever, in the context of the PM problem, the state consists of buf-
fer levels, machine ages and maintenance activities, which can
all be directly observed or tracked. As shown in Fig. 4, the neural
network used in this paper consists of several fully connected
layers, whose depth and heights should be determined by the
dimension of the specific PM problem. The inputs are the system
state s, and the outputs are the Q-values for all actions in state s.

Table 1
Hyperparameters in Algorithm 1.

Notation Meaning

L Number of hidden layers in the neural network
hl Number of hidden units in layer l, l ¼ 1; � � � ; L
K Training iterations
c Future reward discount factor
� Parameter for �-greedy
C1 Step interval that the state is randomly generated
C2 Step interval that the function parameter is held for h�

b Size of the minibatch
Nmem Size of the experience memory

Fig. 3. The flow chart of Algorithm 1.

Fig. 4. The achitecture of the Q-network.

8 J. Huang et al. / Expert Systems with Applications 160 (2020) 113701
(2) Replay memory initialization
In DDQN, before the training iteration begins, we need to initi-

ate the memory bufferDwith experiences obtained from a random
policy. Considering that the age is the most important factor in
determining the PM, we generate a random policy based on age
thresholds. It is very likely that the machine is turned off for PM
before its expected age. We construct a distribution p0iðxÞ, which
is similar to but has a slightly smaller expectation than the
machine lifetime distribution piðxÞ. Every time machine Si comes
back in operation, we generate a random number from p0iðxÞ and
use it as the next PM age threshold for machine Si.

(3) Inputs and outputs normalization
The normalization is an operation to ensure that all inputs and

outputs have a similar scale to ease the implementation of the
training process of the neural network. For the state st as inputs,
an intuitive normalization method is

st ¼ g1 tð Þ
E X1½ � ; � � � ;

gM tð Þ
E XM½ � ;

b2 tð Þ
B2

; � � � ; bM tð Þ
BM

;
dr
1 tð Þ
dCM
1

; � � � ;d
r
M tð Þ
dCM
M

()
ð23Þ

where E Xi½ � ¼
R1
0 xpiðxÞdx is the expected lifetime of machine Si,

i ¼ 1;2; � � � ;M. Thus, we normalize the elements of state st to an
approximate range of ½0;1�. Regarding the outputs, the Q-values
and their ranges are not readily available before the training starts.
It is recommended to run a few experiments and obtain the approx-
imate range of the Q-values to decide the proper normalization
scale applied to rt .
5.3. PM policy implementation

In practice, the implementation of DDQN-based PM policy will
follow a two-stage scheme, including offline training and online
decision making. First of all, the parameters regarding the produc-
tion line and maintenances should be collected. These parameters
are listed as the inputs to the Algorithm 1. In addition, there are a
few hyperparameters that we need to define before the learning
begins, which are listed in Table 1 for quick reference.

Given all the parameters and hyper-parameters, Algorithm 1,
along with the production line simulator, will be launched offline
and outputs the neural network parameters h through iterative
training. The neural network h conveys the ultimate PM policy

J. Huang et al. / Expert Systems with Applications 160 (2020) 113701 9
for the specific production line. In the time of implementing, the
PM decision making is conducted online following Procedure 1.

Procedure 1
Input: real-time states

st ¼ g1 tð Þ; � � � ; gM tð Þ; b2 tð Þ; � � � ; bM tð Þ; dr1 tð Þ; � � � ; drM tð Þ� �
Output: PM decision at
Normalize st to st according to same scale in Algorithm 1
Find legal action list AðstÞ according to Eq. (22)
Run a forward propagation in neural network h to get
Qðst; a; hÞ
Find the optimal action as at ¼ arg max

a2AðstÞ
Qðst; a; hÞ

Output at
The PM decision is always made based on the real-time status of the
production line. The buffer states biðtÞ are collected by the dis-
tributed sensors in the production system. The machine ages giðtÞ
remaining maintenance duration dr

i ðtÞ can be tracked through the
real-time production and maintenance management systems.
Therefore, the PM policy proposed in this paper is also a
condition-based PM policy. The training process (Algorithm 1) is
computationally expensive since it requires the training of the neu-
ral network, however it is conducted totally offline and could be
accomplished with abundant computing resources on edge or
cloud. The decision making (Procedure 1) contains only one for-
ward propagation, therefore it should be fast in the real-time con-
trol of the production system.

6. Numerical case study

6.1. Parameters setting and training process

In order to validate the proposed method, we conduct the fol-
lowing numerical experiment and in-depth analysis based on a
6-machine-5-buffer serial production line. Note that the experi-
ment is not conducted on the real plant floor. Nonetheless, the pro-
duction system parameters used in this case study are provided by
an industrial collaborator. The parameters are listed in Table 2. The
machine lifetime follows Weibull distribution with two parame-
ters, i.e. scale parameter ai and shape parameter bi (Dodson,
2006). The slowest machine is machine S3, i.e. M

� ¼ 3. The profit
per part is assumed to be cp= $50.

Given the system parameters, we implement Algorithm 1 to
train the PM policy. The neural network has two fully connected
hidden layers, and each layer has 64 hidden units. Since the
machine number is six, the size of the input layer is 17 and that
Table 2
Machine and buffer parameters.

Parameters Machines

S1 S2

Cycle time Ti (min) 1.00 0.90
PM cost cPMi ($) 105.0 98.0

CM cost cCMi ($) 110.0 100.0

PM duration dpmi (min) 10 9

CM duration dcmi (min) 28 31
Scale parameter ai 400 430
Shape paramter bi 2 2

Buffers

B2 B3

Buffer capacity Bi 8 10
of output layer is 26, i.e. 64. The size of the experience memory
is Nmem = 500,000. The minibatch size is b ¼ 32. The step intervals
for the state randomization and neural network duplication are
C1 ¼ 10;000 and C2 ¼ 20;000, which means that every 10,000
steps the state st will be replaced by a random state and every
20,000 steps a target network h� will be copied from the current
network h.

The future reward discount factor is set to be c = 0.95. The
parameter for �-greedy is initially set to be 0.8, and linearly
reduced to 0.1 when the iteration reaches 300,000 steps and fixed
to 0.1 afterwards. Regarding the gradient descent, the optimizer
used in this case is RMSprop (Tieleman & Hinton, 2012), in which
three parameters are g = 0.00025, �0 ¼ 0:01, and q = 0.95. We
implement the proposed algorithm using TensorFlow with 4 GPUs
and 4 CPUs. The total training iterations are set to be 2,000,000.
The total computation time is 25.42 h.

To monitor the training progress, every 10,000 steps we run the
production system with the PM policy defined by the latest neural
network parameters h for 100,000 min and observe the average
rewards per minute, which is as shown in Fig. 5(a). Although the
training rewards are noisy before one million steps, but the under-
lying trend is that the rewards are increasing with training steps.
Since the rewards are in different scales before and after one mil-
lion steps, the rewards after one million steps are replotted in a
suitable scale in Fig. 5(b). It can be observed that the agent is still
making steady progress throughout the training process despite
some noises.

6.2. Evaluation of the learned policy

To evaluate the performance of the learned policy, three other
scenarios are considered, including the run-to-failure scenario,
the age-dependent PM policy, and opportunistic PM policy.

1) Run-to-failure scenario
In this scenario, no PM decision would be made, and the machi-

nes keep running until failure. The run-to-failure scenario serves as
a baseline. Comparison with the run-to-failure policy would inter-
pret in what scale the PM policy improves the system performance.

2) Age-dependent PM policy scenario
In this policy, we follow the traditional norm - one machine will

receive a PM whenever its age exceeds a predetermined age
threshold. The age-dependent policy is the most widely used PM
policy in the real industry. The optimal age threshold is derived
to minimize the cost rate of each individual machine according
to Ross (Ross, 2014). Details regarding the optimal age thresholds
for each machine are included in the appendix part of this paper.

3) Opportunistic PM policy scenario
In the opportunistic PM policy, there exists a pre-determined

PM interval s. Two conditions would trigger PM actions. If the no
S3 S4 S5 S6

1.20 1.05 1.10 1.05
110.0 120.0 90.0 103.0

120.0 130.0 110.0 125.0

8 11 12 9

25 32 24 25
500 580 550 575
2 2 2 2

B4 B5 B6

12 6 8

10 J. Huang et al. / Expert Systems with Applications 160 (2020) 113701
machine fails before the interval arrives, then all machine will
receive PM at interval s. In the contrast, if there is any machine
fails before the PM interval arrives, then the failed machine has
to receive an CM and other machines would receive opportunistic
PM. In this study, we adopt the opportunistic PM policy in Lag-
goune et al. (Laggoune et al., 2009) and its proposed method for
searching optimal s, which is based on Monte Carlo simulation.
Given the parameters in this case study, the optimal s is found to
be 363 min.

Ten sets of initial states are randomly generated for the evalua-
tion of each policy, in order to ensure that the performance of PM
policies is independent of its initial states. With each initial state,
Table 3
Average maintenance cost rates and 95% confidence intervals.

Initial State Run-to-failure Age-dependent Po

1 7.92 6.68
[7.81, 8.02] [6.53, 6.83]

2 7.98 6.84
[7.9, 8.07] [6.72, 6.95]

3 7.89 6.86
[7.77, 8.01] [6.75, 6.96]

4 7.88 6.71
[7.76, 7.99] [6.59, 6.82]

5 7.92 6.72
[7.82, 8.02] [6.59, 6.86]

6 7.8 6.61
[7.69, 7.92] [6.48, 6.74]

7 7.93 6.78
[7.81, 8.04] [6.65, 6.9]

8 7.78 6.7
[7.66, 7.9] [6.55, 6.84]

9 7.9 6.64
[7.77, 8.03] [6.51, 6.77]

10 7.8 6.65
[7.69, 7.92] [6.53, 6.76]

Fig. 5. (a) Average training rewards monitoring; (b) Average training rewards after
one million steps.
the production line is simulated with the four scenarios indepen-
dently for one week, i.e. 10,800 min. Each simulation is repeated
for 50 times. The overall maintenance cost per minute, which is
also called the maintenance cost rate, is calculated from the simu-
lation results. Table 3 presents the average maintenance cost rates
and their 95% confidence intervals for three scenarios starting from
ten randomly generated initial state sets.

According to the experiment results, all the three policies are
effective PM policies, because they all improve the system perfor-
mance from the run-to-failure scenario. The opportunistic policy
performs slightly better than the age-dependent policy. Despite
the optimality of the age-dependent policy, its optimality is limited
to the single-machine scenario. While the decision variable s in the
opportunistic policy is searched through large amounts of simula-
tions in serial production line, and therefore it could possibly cap-
ture part of the dynamics of the serial production line. However,
given that the opportunistic policy has only one decision variable,
the PM would be conducted whenever there are random failures or
the interval arrives, and therefore it is hard to comprehend the real
dynamics in the production system, such as buffer level fluctua-
tions. To sum up, the learned policy outperforms both the age-
dependent policy and opportunistic policy in all the ten initial
states sets. On average, the learned policy reduces the overall
maintenance cost rate by 8.77% and 6.25% comparing to the age-
dependent policy and opportunistic policy respectively. Table 3
also lists the 95% confidence interval for the average maintenance
cost rates under difference PM policies.

Furthermore, we compare the average numbers of random fail-
ures and PM conducted in all four scenarios starting from initial
state 1. Fig. 6(a) is the comparison of the numbers of random fail-
ures on each machine. The three PM policies both reduce the ran-
dom failures from the baseline by conducting PMs. From Fig. 6(b),
one can tell that both opportunistic policy and learned policy tend
to conduct PMs more frequently that age-dependent policy, which
accordingly results in much less random failures. It implies that the
age-dependent policy is more conservative, since the impact of
intermediate buffers is not considered in its derivation. The latter
two policies would find more opportunities for conducting PM.
The opportunistic policy is even more aggressive than the learned
policy regarding the PM decisions, which also results in more
maintenance resource costs according to Fig. 6(c). In Fig. 6(d), it
shows that opportunistic policy leads to less final system through-
puts, which might be attributed to the interruptions introduced by
the extra PMs.
licy Opportunistic Policy Learned Policy

6.56 6.18
[6.41, 6.7] [6.06, 6.31]
6.57 6.15
[6.44, 6.69] [6.03, 6.28]
6.54 6.12
[6.41, 6.68] [6.0, 6.24]
6.6 6.1
[6.49, 6.71] [5.98, 6.22]
6.47 6.16
[6.36, 6.58] [6.03, 6.28]
6.53 6.18
[6.41, 6.66] [6.04, 6.33]
6.49 6.09
[6.38, 6.6] [5.97, 6.21]
6.51 6.03
[6.36, 6.65] [5.92, 6.14]
6.59 6.09
[6.47, 6.72] [5.99, 6.2]
6.53 6.2
[6.39, 6.67] [6.09, 6.31]

28.7

26.0

22.7

20.1
21.0 20.3

18.8

15.6 14.9
13.8

17.4

13.6
12.8 12.6

9.4

6.2
7.4

6.6

13.9
15.4

9.5
8.0

10.0

7.1

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

S1 S2 S3 S4 S5 S6

Run-to-fail Age-dependent Opportunistic PM Learned Policy

Machine

A
v
er

ag
e

C
M

 C
o
u
n
ts

(a) Average number of random failures for four scenarios

0.0 0.0 0.0 0.0 0.0 0.0

17.4

22.2

15.4
12.0

5.9

11.7

44.5 44.8
47.9

51.1 49.9 50.7

44.3

33.9

45.2
42.5

33.7

44.3

0.0

10.0

20.0

30.0

40.0

50.0

60.0

S1 S2 S3 S4 S5 S6

Run-to-fail Age-dependent
Opportunistic PM Learned Policy

Machine

A
v
er

ag
e

P
M

 C
o
u
n
ts

(b) Average number of PM conducted for four scenarios

Run-to-fail Age-dependent Opportunistic PM Learned Policy

PM Cost - 8,866 30,176 25,650

CM Cost 15,944 10,823 6,239 7,243

-

5,000

10,000

15,000

20,000

25,000

30,000

35,000

40,000

A
v
er

ag
e

C
M

/P
M

 C
o
st

(c) Total resource costs for four scenarios

7619.72

7961.09

8325.35 8350.01

7200.00

7400.00

7600.00

7800.00

8000.00

8200.00

8400.00

Run-to-fail Age-dependent Opportunistic PM Learned Policy

PM Policy

A
v

er
ag

e
P

ro
d

u
ct

io
n

 C
o

u
n

ts

(d) Final system throughputs for four scenarios

Fig. 6. Cost and throughput analysis for four scenarios in initial state 1.

J. Huang et al. / Expert Systems with Applications 160 (2020) 113701 11

12 J. Huang et al. / Expert Systems with Applications 160 (2020) 113701
In conclusion, the age-dependent policy takes the age as the
only criteria for the PM decisions. Although the age thresholds
are analytically optimal, it seems to be too conservative and
doesn’t ensure the best system performance. The opportunistic
policy takes the PM interval s as the only decision variable, and
it tends to conduct aggressive PMs and ignore the underlying sys-
tem dynamics. The results demonstrate that PM policy learned by
the proposed algorithm is able to balance the tradeoff in the PM
decision making. It proves that the problem formulation and the
proposed algorithm in this paper is effective in delivering PM poli-
cies for serial production lines.
6.3. Further observation – Group maintenance and opportunistic
maintenance

To closely examine the learned policy, we take a random initial
state and run the production line with the learned policy. 20 con-
secutive maintenance records along with the states when each
maintenance was conducted are drawn from the maintenance his-
tory. The records are listed in Table 4.

The 15 consecutive maintenances include 9 PMs and 6 CMs.
Interestingly, the ‘‘opportunistic maintenance” (OM) and the
‘‘group maintenance” (GM) can be observed in the records. To be
specific, OM is to conduct PMs on certain machines when there
is an unscheduled failure or repair ‘‘opportunity” on other machi-
nes, and GM is to conduct PMs on multiple machines simultane-
ously to reduce the total maintenance related cost.

From Table 4, we have observed 7 OMs. For example, at time
t ¼ 5781 min, machine S6 failed and a 25-minnute-long CM was
conducted, which created an opportunity for PMs on other
machines. The learned policy determined to conduct the PM on
machine S1, whose age reached 326 min. In addition, 5 out of the
total 9 PMs in the table can be deemed as the GM. For example,
at time t ¼ 6588 min, machine S3, S4, S5 and S6 received PMs
simultaneously.

The last two columns in the table mark whether the PM record
is GM or OM. It turns out that the PM actions at t ¼ 6019 min, t ¼
6218 min, t ¼ 6917 min and t ¼ 6818 are not exclusively GM or
OM, but a combination of the two. The OM and GM observed par-
tially explain the reason why the learned policy has less production
losses, even though it conducts much more frequent PMs than the
age-dependent policy and opportunistic PM policy.

In many existing studies on the maintenance problem in multi-
unit systems, the GM and OM are the starting points for deriving
maintenance policies (Shafiee & Finkelstein, 2015; Xia et al.,
2015). In other words, those studies first restrict the maintenance
Table 4
Maintenance record and GM/OM analysis.

Time t (min) PM/
CM

Failed
machines

Machine ages giðtÞ Buffer lev

5781 CM S6 [326, 17, 104, 101, 100, 152] [6, 5, 0, 0
5782 PM – [327, 18, 105, 102, 101, 0] [5, 5, 0, 0
6018 CM S6 [227, 254, 341, 338, 337, 212] [8, 10, 0,
6019 PM – [228, 255, 342, 339, 338, 0] [7, 10, 1,
6020 PM – [0, 256, 343, 0, 0, 0] [7, 10, 1,
6044 CM S2 [16, 280, 17, 15, 14, 1] [8, 10, 1,
6217 CM S2 [189, 142, 190, 188, 187, 174] [8, 10, 0,
6218 PM – [190, 0, 191, 189, 188, 175] [8, 10, 0,
6219 PM – [191, 0, 0, 0, 0, 0] [8, 10, 0,
6588 PM – [360, 340, 361, 358, 357, 360] [8, 10, 0,
6589 PM – [361, 341, 0, 0, 0, 0] [8, 10, 0,
6680 CM S1 [81, 432, 85, 82, 81, 84] [8, 10, 0,
6916 CM S5 [208, 668, 321, 318, 317, 320] [8, 10, 0,
6917 PM – [209, 669, 322, 319, 0, 321] [8, 10, 0,
6918 PM – [210, 670, 0, 0, 0, 322] [8, 10, 0,
actions to GM or OM, and further optimize the decision variables
for GM and OM to obtain the final policies. For example, the oppor-
tunistic PM policy that was used for comparison purpose in this
paper has one pivotal decision variable s, which is the time interval
to conduct PM on all machines. However, in this paper we do not
take this heuristic approach. Rather, we formulate the policy as a
learning problem based on system property (i.e., permanent pro-
duction loss) and indeed the learned policy is able to make GM
and OM decisions when appropriate. From the construction of
the reward function, the agent is never explicitly rewarded if it
conducts the GM or OM. The decisions of OM and GM are some-
thing that the agent learned itself throughout the training process.

When looking into the learning process, it is not difficult to
explain the phenomenon. For the GM, the action space includes
all the possible combinations of the PM actions on each machine,
which means that the GMs are always available for the agent to
select. If the GM action in some state yielded better accumulated
reward, then the algorithm would increase state-action value to
favor GM in the particular state in the future. Similarly, during
the training process the agent might also conduct OM when there
are random failures on other machines, which would also change
the state-action value to encourage or discourage OM in the future.
Therefore, the GM and OM observed in the learned policy is a log-
ical outcome as long as the problem formulation is rational, and
the solution technique is effective. This interesting finding further
validates the DRL based approach proposed in this paper.
6.4. Discussion

Although the proposed framework is proved to be effective, we
acknowledge that there are still some limitations that should be
addressed. Based on the numerical case and problem assumptions,
we discuss some of the potential future work directions.

1) Interpretability of Machine Learning
One might notice that there are some other behaviors that could

not be well interpreted well in the learned policy. For example, the
learned policy made PM decision ½0;0;1;1;1;1� at time
t ¼ 6218 min, and another PM decision ½1;0;0;0;0;0� in the subse-
quent time step t ¼ 6219 min. Considering the time interval is rel-
atively small compared to the maintenance duration, these two
decisions are almost equivalent to a PM decision ½1;0;1;1;1;1� at
time t ¼ 6218 min. Although the phenomenon is not truly affecting
the system performance, it reveals one of the heated criticisms on
machine learning models, i.e. the lack of interpretability. The inter-
pretability of machine learning models is the ability to explain or
to present in understandable terms to a human (Doshi-Velez &
els biðtÞ Remaining maintenance duration dri ðtÞ PM Decisions at GM OM

, 0] [0, 0, 0, 0, 0, 25] –
, 1] [9, 0, 0, 0, 0, 24] [1, 0, 0, 0, 0, 0] Y
0, 0] [0, 0, 0, 0, 0, 25] –
0, 0] [0, 0, 0, 0, 0, 24.] [1, 0, 0, 1, 1, 0] Y Y
0, 0] [8, 0, 0, 9, 10, 23.] [0, 0, 1, 0, 0, 0] Y
5, 8] [0, 31, 0, 0, 0, 0] –
0, 0] [0, 31, 0, 0, 0, 0] –
0, 0] [0, 30, 7, 10, 11, 8.] [0, 0, 1, 1, 1, 1] Y Y
0, 0] [9, 29, 6, 9, 10, 7] [1, 0, 0, 0, 0, 0] Y
0, 0] [0, 0, 7, 10, 11, 8.] [0, 0, 1, 1, 1, 1] Y
0, 0.] [9, 0, 6, 9, 10, 7.] [1, 0, 0, 0, 0, 0]
0, 0.] [28, 0, 0, 0, 0, 0.] –
0, 0] [0, 0, 0, 0, 24, 0] –
0, 0] [0, 0, 7, 10, 23, 0.] [0, 0, 1, 1, 0, 0] Y Y
0, 0] [9, 8, 6, 9, 22, 8] [1, 1, 0, 0, 0, 1] Y Y

J. Huang et al. / Expert Systems with Applications 160 (2020) 113701 13
Kim, 2017). The interpretability could be one of the prerequisites to
the implementation of any DRL-based PM policies in the real plant
floor. Moreover, if we can interpret the DRL agent’s decision mak-
ing, it would also deepen our understanding on production sys-
tems and maintenance problems.

2) Combination with Predictive Maintenance (PdM)
In this paper, the machine lifetime is assumed to follow a

known distribution. This assumption is reasonable in reality, since
machine reliability is one of the important parameters that ven-
dors have to provide. Hence, it has been a common assumption
in not only most of the researches on PM (Fitouhi et al., 2017;
Kang & Ju, 2019; Karamatsoukis & Kyriakidis, 2010), but also a
broad range of studies on production systems (Li et al., 2009).
Instead of following a given reliability model, PdM aims at infer-
ring the real-time machine reliability status, e.g. remaining useful
life or failure rate, from sensor or inspection data (Wang, 2016).
However, the prediction itself does not guarantee a good mainte-
nance decision, and therefore there is promising combination of
the PdM techniques and the DRL framework proposed in this
paper. To be specific, PdM predicts the machine status based on
real-time data, and the DRL agent takes the prediction as one of
the inputs to make PM decisions in system level.

3) Coordination between PM and Other Activities
In this paper, we assumed that the maintenance control be car-

ried out independently. However, in the real industry, mainte-
nance is only one of the many activities that support the
functioning of a production system. Others include production
scheduling, quality assurance, material handling and shift schedul-
ing etc. There are inevitably complex interactions among some of
these essential activities. In this case, a good coordination is
required between PM decision making and other activities. For
example, in some production systems, PM has to be conducted
either when the machine is down or it starts outputting inferior
products (Pandey, Kulkarni, & Vrat, 2010). The DRL-based frame-
work proposed in this paper should be further extended to
multi-agent deep reinforcement learning (MDRL) (Hernandez-
Leal, Kartal, & Taylor, 2019) to include these considerations, as
the state and action space continue to increase in this case.
7. Conclusion and future work

The PM decision making in a serial production line is a complex
problem due to its exploding state space and complicated interac-
tions among machines. The problem is proposed to be solved using
a DRL approach in this paper. One of the important prerequisites to
successfully solving the problem is that a modeling method for the
serial production line is adopted, such that we can correctly cap-
ture the dynamics of the system and ensure the good computation
efficiency during learning process.

The numerical experiment proves that a good PM policy for the
serial production line can be obtained by using the proposed DRL
approach. In addition, we observe GM and OM in the learned pol-
icy. As two of the most important building blocks for the mainte-
nance policies in the multi-unit systems, the GM and OM were
originated from human reasoning. In this paper, they are obtained
by DRL without giving the agent any prior concepts and rules.
Therefore, if the problems are properly formulated based on thor-
ough understanding of the system properties, we can further
exploit the great potentials of the artificial intelligence (AI) and
Table 5
Optimal age thresholds for age-dependent PM policy.

Machine S1 S2

Optimal age threshold X�i (min) 349 316
machine learning techniques to facilitate complicated decision-
makings in the manufacturing industry.

CRediT authorship contribution statement

Jing Huang: Methodology, Software, Validation, Visualization,
Writing - original draft. Qing Chang: Conceptualization, Methodol-
ogy, Supervision, Writing - review & editing, Funding acquisition,
Project administration. Jorge Arinez: Writing - review & editing,
Investigation, Resources.

Declaration of Competing Interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgements

This work was supported by National Science Foundation [grant
numbers CMMI 1351160, 1853454].

Appendix

1) Derivation of the Age-dependent PM policy

In the age-dependent policy, machine Si receives a PM when it
reaches an age of Xi and receives a CMwhen it fails before that age.
The process can be modeled as a renewal reward process. Let CiðtÞ
be the accumulated maintenance costs, including both production
loss and resource cost, up to time t, then the long-run maintenance
cost rate Ri is

Ri ¼ lim
t!1

Ci tð Þ
t

ðA1Þ

According to Renewal Reward Theorem (Ross, 2014), the long-
run cost rate can be evaluated by

Ri ¼ E½Ci�
E½di� ðA2Þ

where E½Ci� is the expected cost in one renewal cycle, and E½di� is the
expected duration of one renewal cycle.

The CM on machine Si lasts for d
CM
i units of time and it will lose

dCM
i =Ti parts. The CM cost is cCMi þ cp � dCM

i =Ti and the PM cost can be
calculated likewise. The expected cost E½Ci� is

E Ci½ � ¼
Z Xi

0
cCMi þ cp � d

CM
i

Ti

 !
pi xð Þdx

þ
Z 1

Xi

cPMi þ cp � d
PM
i

Ti

 !
pi xð Þdx ðA3Þ

If one renewal cycle ends up with a CM, the duration of the

cycle is the age at failure plus the CM duration dCM
i . If in one

renewal cycle ends up with a PM, the duration of the cycle is

dCM
i þ Xi. Therefore, the expected cycle duration E½di� is

E di½ � ¼
Z Xi

0
dCM
i þ x

�

piðxÞdxþ

Z 1

Xi

dPM
i þ Xi

�

piðxÞdx ðA4Þ
S3 S4 S5 S4

416 492 646 505

14 J. Huang et al. / Expert Systems with Applications 160 (2020) 113701
An optimal age threshold X�i is

X�i ¼ argmin
Xi

E½Ci�
E½di� ðA5Þ

Given the parameters of the four machines in Table 3, the opti-
mal age thresholds for the age-dependent PM policy are computed
according to Eq. (A5) and shown in Table 5.
References

Ab-Samat, H., & Kamaruddin, S. (2014). Opportunistic maintenance (OM) as a new
advancement in maintenance approaches. Journal of Quality in Maintenance
Engineering, 20(2). https://doi.org/10.1108/JQME-04-2013-0018.

Arab, A., Ismail, N., & Lee, L. S. (2013). Maintenance scheduling incorporating
dynamics of production system and real-time information from workstations.
Journal of Intelligent Manufacturing, 24(4), 695–705. https://doi.org/10.1007/
s10845-011-0616-3.

Arulkumaran, K., Deisenroth, M. P., Brundage, M., & Bharath, A. A. (2017). Deep
reinforcement learning: A brief survey. IEEE Signal Processing Magazine, 34(6),
26–38. https://doi.org/10.1109/MSP.2017.2743240.

Barros, A., Grall, A., & Berenguer, C. (2007). Joint modelling and optimization of
monitoring and maintenance performance for a two-unit parallel system.
Proceedings of the IMechE, 221(1), 1–11. https://doi.org/10.1243/
1748006XJRR31.

de Smidt-Destombes, K. S., van der Heijden, M. C., & van Harten, A. (2009). Joint
optimisation of spare part inventory, maintenance frequency and repair
capacity for k-out-of-N systems. International Journal of Production Economics,
118(1), 260–268. https://doi.org/10.1016/j.ijpe.2008.08.058.

Dodson, B. (2006). The Weibull analysis handbook. ASQ Quality Press.
Doshi-Velez, F., & Kim, B. (2017). Towards A Rigorous Science of Interpretable

Machine Learning. ArXiv Preprint ArXiv:1702.08608. Retrieved from http://
arxiv.org/abs/1702.08608.

Ebrahimipour, V., Najjarbashi, A., & Sheikhalishahi, M. (2013). Multi-objective
modeling for preventive maintenance scheduling in a multiple production line.
Journal of Intelligent Manufacturing, 26(1), 111–122. https://doi.org/10.1007/
s10845-013-0766-6.

Fitouhi, M. C., Nourelfath, M., & Gershwin, S. B. (2017). Performance evaluation of a
two-machine line with a finite buffer and condition-based maintenance.
Reliability Engineering and System Safety, 166(March), 61–72. https://doi.org/
10.1016/j.ress.2017.03.034.

Hasselt, H. van, Guez, A., & Silver, D. (2016). Double DQN.pdf. Proceedings of the
30th AAAI Conference on Artificial Intelligence (AAAI-16), 2094–2100.
Retrieved from https://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/
viewPaper/12389.

Hernandez-Leal, P., Kartal, B., & Taylor, M. E. (2019). A survey and critique of
multiagent deep reinforcement learning. Autonomous Agents and Multi-Agent
Systems, 33(6), 750–797. https://doi.org/10.1007/s10458-019-09421-1.

Huang, J., Chang, Q., Arinez, J., & Xiao, G. (2019). A Maintenance and Energy Saving
Joint Control Scheme for Sustainable Manufacturing Systems. Procedia CIRP, 80,
263–268. https://doi.org/10.1016/j.procir.2019.01.073.

Huang, J., Chang, Q., Zou, J., & Arinez, J. (2018). A Real-time Maintenance Policy for
Multi-stage Manufacturing Systems Considering Imperfect Maintenance
Effects. IEEE Access, 1–1. https://doi.org/10.1109/ACCESS.2018.2876024.

Kang, Y., & Ju, F. (2019). Flexible Preventative Maintenance for Serial Production
Lines with Multi-stage Degrading Machines and Finite Buffers. IISE Transactions,
5854, 1–28. https://doi.org/10.1080/24725854.2018.1562283.

Karamatsoukis, C. C., & Kyriakidis, E. G. (2010). Optimal maintenance of two
stochastically deteriorating machines with an intermediate buffer. European
Journal of Operational Research, 207(1), 297–308. https://doi.org/10.1016/j.
ejor.2010.04.022.

Laggoune, R., Chateauneuf, A., & Aissani, D. (2009). Opportunistic policy for optimal
preventive maintenance of a multi-component system in continuous operating
units. Computers and Chemical Engineering, 33(9), 1499–1510. https://doi.org/
10.1016/j.compchemeng.2009.03.003.

Li, J., E. Blumenfeld, D., Huang, N., & M. Alden, J. (2009). Throughput analysis of
production systems: recent advances and future topics. International Journal of
Production Research, 47(14), 3823–3851. Doi: 10.1080/00207540701829752
Liu, J., Chang, Q., Xiao, G., & Biller, S. (2012). The Costs of Downtime Incidents in
Serial Multistage Manufacturing Systems. Journal of Manufacturing Science and
Engineering, 134(2). https://doi.org/10.1115/1.4005789 021016.

Martinez, C., Ramasso, E., Perrin, G., & Rombaut, M. (2020). Adaptive early
classification of temporal sequences using deep reinforcement learning.
Knowledge-Based Systems, 190. https://doi.org/10.1016/j.knosys.2019.105290
105290.

Mnih, V., Kavukcuoglu, K., Silver, D., Andrei A. Rusu, Veness, J., Bellemare, M. G., . . .
Shane Legg. (2016). Human-level control through deep reinforcement learning.
Nature, 2016-Janua(7540), 2315–2321. Doi: 10.1038/nature14236

Nicolai, R. P., & Dekker, R. (2008). Optimal Maintenance of Multi-component
Systems: A Review. Springer Series in Reliability Engineering, 8, 263–286. https://
doi.org/10.1007/978-1-84800-011-7_11.

Pandey, D., Kulkarni, M. S., & Vrat, P. (2010). Joint consideration of production
scheduling, maintenance and quality policies: A review and conceptual
framework. International Journal of Advanced Operations Management, 2(1/2),
1. https://doi.org/10.1504/ijaom.2010.034583.

Ramírez-Hernández, J. A., & Fernandez, E. (2010). Optimization of preventive
maintenance scheduling in semiconductor manufacturing models using a
simulation-based approximate dynamic programming approach. Proceedings
of the IEEE Conference on Decision and Control, 3944–3949. Doi: 10.1109/
CDC.2010.5717523.

Ross, S. M. (2014). Introduction to Probability Models. Academic Press. https://doi.
org/10.1080/00401706.1998.10485493.

Shafiee, M., & Finkelstein, M. (2015). An optimal age-based group maintenance
policy for multi-unit degrading systems. Reliability Engineering and System
Safety, 134, 230–238. https://doi.org/10.1016/j.ress.2014.09.016.

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., Driessche, G. Van Den, . . .
Kavukcuoglu, K. (2016). Mastering the game of Go with deep neural networks
and tree search. Nature, 529(7585), 484–489. Doi: 10.1038/nature16961.

Sutton, R. S., & Barto, A. G. (2018). Reinforcement Learning. An Introduction. MIT
Press.

Tieleman, T., & Hinton, G. (2012). Lecture 6.5-rmsprop: Divide the gradient by a
running average of its recent magnitude. COURSERA: Neural Networks for.
Machine Learning, 4(2), 26–31.

van Hasselt, H., Guez, A., & Silver, D. (2015). Deep Reinforcement Learning with
Double Q-learning. In Thirtieth AAAI conference on artificial intelligence:
Retrieved from. http://arxiv.org/abs/1509.06461.

Wang, H. (2002). A survey of maintenance policies of deteriorating systems.
European Journal of Operational Research, 139(3), 469–489. https://doi.org/
10.1016/S0377-2217(01)00197-7.

Wang, K. (2016). Intelligent Predictive Maintenance (IPdM) system-Industry 4.0
scenario. WIT Transactions on Engineering Sciences, 113(2016), 259–268. https://
doi.org/10.2495/IWAMA150301.

Wang, W. (2012). An overview of the recent advances in delay-time-based
maintenance modelling. Reliability Engineering and System Safety, 106,
165–178. https://doi.org/10.1016/j.ress.2012.04.004.

Wang, X., Wang, H., & Qi, C. (2016). Multi-agent reinforcement learning based
maintenance policy for a resource constrained flow line system. Journal of
Intelligent Manufacturing, 27(2), 325–333. https://doi.org/10.1007/s10845-013-
0864-5.

Wei, S., Bao, Y., & Li, H. (2020). Optimal policy for structure maintenance: A deep
reinforcement learning framework. Structural Safety, 83. https://doi.org/
10.1016/j.strusafe.2019.101906 101906.

Xia, T., Jin, X., Xi, L., & Ni, J. (2015). Production-driven opportunistic maintenance for
batch production based on MAM-APB scheduling. European Journal of
Operational Research, 240(3), 781–790. https://doi.org/10.1016/j.
ejor.2014.08.004.

Ye, M.-H. (1990). Optimal replacement policy with stochastic maintenance and
operation costs. European Journal of Operational Research, 44(1), 84–94. https://
doi.org/10.1016/0377-2217(90)90317-5.

Zhao, C., & Li, J. (2015). Analysis and Improvement of Multiproduct Bernoulli Serial
Lines: Theory and Application. IEEE Transactions on Systems, Man, and
Cybernetics: Systems, 45(9), 1218–1230. https://doi.org/10.1109/
TSMC.2015.2399868.

Zou, J., Chang, Q., Arinez, J., Xiao, G., & Lei, Y. (2017). Dynamic production system
diagnosis and prognosis using model-based data-driven method. Expert Systems
with Applications, 80, 200–209. https://doi.org/10.1016/j.eswa.2017.03.025.

Zou, J., Chang, Q., Lei, Y., & Arinez, J. (2018). Production System Performance
Identification Using Sensor Data. IEEE Transactions on Systems, Man, and
Cybernetics: Systems, 48(2), 255–264. https://doi.org/10.1109/
TSMC.2016.2597062.

https://doi.org/10.1108/JQME-04-2013-0018
https://doi.org/10.1007/s10845-011-0616-3
https://doi.org/10.1007/s10845-011-0616-3
https://doi.org/10.1109/MSP.2017.2743240
https://doi.org/10.1243/1748006XJRR31
https://doi.org/10.1243/1748006XJRR31
https://doi.org/10.1016/j.ijpe.2008.08.058
http://refhub.elsevier.com/S0957-4174(20)30525-X/h0030
http://arxiv.org/abs/1702.08608
http://arxiv.org/abs/1702.08608
https://doi.org/10.1007/s10845-013-0766-6
https://doi.org/10.1007/s10845-013-0766-6
https://doi.org/10.1016/j.ress.2017.03.034
https://doi.org/10.1016/j.ress.2017.03.034
https://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/viewPaper/12389
https://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/viewPaper/12389
https://doi.org/10.1007/s10458-019-09421-1
https://doi.org/10.1016/j.procir.2019.01.073
https://doi.org/10.1109/ACCESS.2018.2876024
https://doi.org/10.1080/24725854.2018.1562283
https://doi.org/10.1016/j.ejor.2010.04.022
https://doi.org/10.1016/j.ejor.2010.04.022
https://doi.org/10.1016/j.compchemeng.2009.03.003
https://doi.org/10.1016/j.compchemeng.2009.03.003
https://doi.org/10.1115/1.4005789
https://doi.org/10.1016/j.knosys.2019.105290
https://doi.org/10.1007/978-1-84800-011-7_11
https://doi.org/10.1007/978-1-84800-011-7_11
https://doi.org/10.1504/ijaom.2010.034583
https://doi.org/10.1080/00401706.1998.10485493
https://doi.org/10.1080/00401706.1998.10485493
https://doi.org/10.1016/j.ress.2014.09.016
http://refhub.elsevier.com/S0957-4174(20)30525-X/h0135
http://refhub.elsevier.com/S0957-4174(20)30525-X/h0135
http://refhub.elsevier.com/S0957-4174(20)30525-X/h0140
http://refhub.elsevier.com/S0957-4174(20)30525-X/h0140
http://refhub.elsevier.com/S0957-4174(20)30525-X/h0140
http://refhub.elsevier.com/S0957-4174(20)30525-X/h0145
http://refhub.elsevier.com/S0957-4174(20)30525-X/h0145
http://refhub.elsevier.com/S0957-4174(20)30525-X/h0145
https://doi.org/10.1016/S0377-2217(01)00197-7
https://doi.org/10.1016/S0377-2217(01)00197-7
https://doi.org/10.2495/IWAMA150301
https://doi.org/10.2495/IWAMA150301
https://doi.org/10.1016/j.ress.2012.04.004
https://doi.org/10.1007/s10845-013-0864-5
https://doi.org/10.1007/s10845-013-0864-5
https://doi.org/10.1016/j.strusafe.2019.101906
https://doi.org/10.1016/j.strusafe.2019.101906
https://doi.org/10.1016/j.ejor.2014.08.004
https://doi.org/10.1016/j.ejor.2014.08.004
https://doi.org/10.1016/0377-2217(90)90317-5
https://doi.org/10.1016/0377-2217(90)90317-5
https://doi.org/10.1109/TSMC.2015.2399868
https://doi.org/10.1109/TSMC.2015.2399868
https://doi.org/10.1016/j.eswa.2017.03.025
https://doi.org/10.1109/TSMC.2016.2597062
https://doi.org/10.1109/TSMC.2016.2597062

	Deep reinforcement learning based preventive maintenance policy for serial production lines
	1 Introduction
	2 Literature review
	3 Problem description
	3.1 System structure and assumptions
	3.2 Problem statement

	4 System modeling and production loss evaluation
	4.1 Serial production line modeling
	4.2 System production loss evaluation

	5 Obtaining PM policy through DRL
	5.1 MDP formulation for PM problem
	5.1.1 State definition
	5.1.2 Action definition
	5.1.3 Reward function definition

	5.2 Applying DDQN to obtain PM policy
	5.3 PM policy implementation

	6 Numerical case study
	6.1 Parameters setting and training process
	6.2 Evaluation of the learned policy
	6.3 Further observation – Group maintenance and opportunistic maintenance
	6.4 Discussion

	7 Conclusion and future work
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Acknowledgements
	Appendix
	1) Derivation of the Age-dependent PM policy

	References

