
Journal of Network and Computer Applications 150 (2020) 102479

Contents lists available at ScienceDirect

Journal of Network and Computer Applications

journal homepage: www.elsevier.com/locate/jnca

An efficient reinforcement learning-based Botnet detection approach

Mohammad Alauthman a,∗, Nauman Aslam b, Mouhammd Al-kasassbeh c, Suleman Khan b,
Ahmad Al-Qerem c, Kim-Kwang Raymond Choo d

a Department of Computer Science, Faculty of Information Technology, Zarqa University, Zarqa, Jordan
b Department of Computer and Information Sciences, Faculty of Engineering and Environment, Northumbria University, Newcastle Upon Tyne, NE1-8ST, UK
c Department of Computer Science, Princess Sumaya University for Technology, Amman, Jordan
d Department of Information Systems and Cyber Security, University of Texas at San Antonio, San Antonio, TX, 78249, USA

A R T I C L E I N F O

Keywords:
Botnet detection
Network security
Traffic reduction
Neural network
C2C
Reinforcement-learning

A B S T R A C T

The use of bot malware and botnets as a tool to facilitate other malicious cyber activities (e.g. distributed denial
of service attacks, dissemination of malware and spam, and click fraud). However, detection of botnets, particu-
larly peer-to-peer (P2P) botnets, is challenging. Hence, in this paper we propose a sophisticated traffic reduction
mechanism, integrated with a reinforcement learning technique. We then evaluate the proposed approach using
real-world network traffic, and achieve a detection rate of 98.3%. The approach also achieves a relatively low
false positive rate (i.e. 0.012%).

1. Introduction

Bot malware and botnets are two widely understood concepts in
the cyber security literature. Specifically, a botnet is a network of geo-
graphically dispersed infected bots (e.g. any computing device includ-
ing an Internet of Things (IoT) device, such as a smart TV, that has
been compromised by a bot malware), which is remotely controlled by
a botmaster. Such botnets are generally used to carry out a range of
malicious cyber activities, ranging from sending of spams to launching
of distributed denial of service (DDoS) attacks to dissemination of mali-
cious programs (malware) to disseminating illegal materials (e.g. child
exploitation materials) to click fraud, and so on (Yu et al., 2012, 2014;
Alkasassbeh and Almseidin; Almseidin et al., 2017). The communica-
tion channel between the botnet and the botmaster is also referred to
as the command and control (C2C) channel, which can be either cen-
tralized or decentralized (Silva et al., 2013; Lu et al., 2011; Castiglione
et al., 2014; Han and Im, 2012; Ludl et al., 2007). Decentralized C2C
infrastructures, such as peer-to-peer (P2P) infrastructure, are generally
harder to detect in comparison to centralized C2C infrastructures. This
is also partly evidenced by the increased adoption of the P2P infras-

∗ Corresponding author.
E-mail addresses: malauthman@zu.edu.jo (M. Alauthman), nauman.aslam@northumbria.ac.uk (N. Aslam), m.alkasassbeh@psut.edu.jo (M. Al-kasassbeh),

suleman.khan@northumbria.ac.uk (S. Khan), a.qerem@psut.edu.jo (A. Al-Qerem), raymond.Choo@fulbrightmail.org (K.-K. Raymond Choo).

tructure in botnets (Felix et al., 2012), such as Waledac Bot (Davis et
al., 2009), Conficker Bot (Weaver, 2010), Zeus Bot (Binsalleeh et al.,
2010), and Storm Bot (Holz et al., 2008).

A typical P2P botnet lifecycle comprises four main stages, namely:
initial infection, peer discovery, secondary update and attack (Felix et
al., 2012). In the first phase, the bot malware is installed on an end-user
computing device (e.g. Internet of Things device, such as a smart TV,
an edge device, and/or an industrial control system), say by exploiting
known vulnerabilities or using social engineering (e.g. via email attach-
ments, drive-by-downloads) (Li et al., 2009; Almomani et al., 2013;
Moustafa et al., 2019). This is also done without the victim’s knowl-
edge. During the second phase, the bot will seek to establish a connec-
tion with other bots (i.e. infected hosts) that are in the same botnet.
In the third phase, the bot attempts to download and install the latest
update of the bot malware, if it exists (this is analogous to installing a
new version of a mobile app, or patching the system). This phase typ-
ically takes place via the C2C channel. In the last phase, the bots will
carry out the various malicious cyber activities, on the command of the
botmaster.

There are a number of ways to detect such bots. For example, an
organization could analyze their own network traffic and attempt to

https://doi.org/10.1016/j.jnca.2019.102479
Received 2 May 2019; Received in revised form 20 September 2019; Accepted 27 October 2019
Available online 2 November 2019
1084-8045/© 2019 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.jnca.2019.102479
http://www.sciencedirect.com/science/journal/
http://www.elsevier.com/locate/jnca
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jnca.2019.102479&domain=pdf
mailto:malauthman@zu.edu.jo
mailto:nauman.aslam@northumbria.ac.uk
mailto:m.alkasassbeh@psut.edu.jo
mailto:suleman.khan@northumbria.ac.uk
mailto:a.qerem@psut.edu.jo
mailto:raymond.Choo@fulbrightmail.org
https://doi.org/10.1016/j.jnca.2019.102479

M. Alauthman et al. Journal of Network and Computer Applications 150 (2020) 102479

identify suspicious hosts involved in malicious activity. Existing botnet
detection systems, such as those described in (Gu et al., 2008a, 2008b;
Goebel and Holz, 2007; Yen and Reiter, 2008; Lu et al., 2011), generally
rely on DPI to analyze the packet contents. This can be computation-
ally expensive and inefficient in recognizing unknown payload signa-
tures. In addition, such detection systems when deployed in high-speed
and/or high-volume networks, are generally not capable of performing
a comprehensive analysis of all network traffic. Hence, mitigating P2P
botnets remains a topic of going interest for both the research commu-
nity and the practitioner community.

In this paper, we develop an effective reinforcement learning-based
detection system, designed to detect and identify infected hosts in a
P2P botnet, including new bot (with previously unknown behavior and
payload). Specifically, our proposed system comprises a traffic reduc-
tion method, in order to deal with a high volume of network traffic. We
also attempt to detect the bots as early as possible, for example dur-
ing the propagation phase (i.e. before the bot launches any malicious
activity; in other words, during the earlier discussed peer discovery and
secondary update stages). To avoid having a high false positive rate, a
set of host traffic features is adaptively set to differentiate between a
host infected with a P2P Bot and a legitimate network host.

We will now explain the layout of this paper. In the next section,
we will briefly review the relevant literature. In Sections 3 and 4, we
present our proposed approach, and describe the evaluation setup and
findings. The last section concludes this paper.

2. Related literature

As discussed in the preceding section, there is an extensive literature
on bot malware and botnet detection and it remains a topic of ongoing
interest, partly evidenced by the number of research papers (Akinrolabu
et al., 2018; Pajouh et al., 2018; Tran et al., 2019; Wu et al., 2018a) and
literature review and survey papers on the topic published in recent
years (Ring et al., 2019; Singh et al., 2019; Zhauniarovich et al., 2018).

Botnet detection techniques can be broadly classified into anomaly-
based, data mining-based, signature-based and DNS-based techniques
(Feily et al., 2009; Zeidanloo et al., 2010; Ring et al., 2019; Singh et al.,
2019; Zhauniarovich et al., 2018). For example, Han et al. (Han and
Im, 2012) classified P2P botnet detection into those based on machine
learning, data mining, traffic analysis and network behavior, and Wei et
al. classified botnet detection techniques into unsupervised and super-
vised techniques (Wu et al., 2018b).

In the survey of P2P botnet detection, Babak et al. (2014) also pro-
posed a botnet detection system, referred to as PeerRush. The latter
employs a one-class classification approach to classify P2P traffic into
abnormal traffic and normal traffic. Other techniques used in the classi-
fication of abnormal traffic and normal traffic include Gaussian, Parzen,
and K-centers data description (Tax, 2001). Also in (Tax, 2001), the
researchers created an application profile based on the analysis ofsome
P2P applications’ network traffic. In addition, features such as the inter-
val delays between flow duration and packets were used to classify P2P
applications. However, such an approach can be easily circumvented,
for example by changing the delay between packets.

Garg et al. (2013) studied the potential of using three machine learn-
ing algorithms in detecting P2P botnets, namely: J48, Naive Bayes, and
Nearest-Neighbor. They aimed to explore the effectiveness of several
classifiers. While their studied suggested that both J48 and Nearest-
Neighbor achieved reasonably accuracy, the accuracy of detecting legit-
imate traffic is low. Jiang and Shao (2012) proposed relying on the
dependency of botnet flows with other peer bots (in the same botnet)
to detect bots. Specifically, they used a single-linkage hierarchical clus-
tering mechanism to differentiate between a normal host and a P2P
bot. However, it does not detect botnets that utilize irregularity that
lies within the traffic flow (e.g. Storm Bot (Li et al., 2012)).

Zhang et al. (2011) introduced a system to detect hidden P2P botnet,
by monitoring the traffic of suspected C2C. The researchers obtained

four features from every network flow. Such features include bytes and
packets numbers that have been received and sent. The authors used
the BIRCH (Zhang et al., 1997) and hierarchical clustering (Jain et
al., 1999) algorithms for clustering network flow. The system showed
high accuracy rates in detecting malicious and legitimate hosts. It also
showed TPR of 100%, and FPR rate of 0.2%. It should be noted that
the latter system is capable of detecting botnets regardless of the way
the botnets carry out their malicious activities. Despite that, the latter
system targets P2P botnets only. This system is criticized for not being
capable of detecting other botnet types, such as: the HTTP and IRC
bots. In addition, the latter system is vulnerable to several methods of
evasion. Such methods include: the flow disturbance packets, DGA and
Fast-flux algorithms.

Liao et al. (Liao and Chang, 2010) employed a packet size-based
methodology for distinguishing between legitimate P2P traffic and P2P
botnet traffic. When they evaluated the performance of using Bayesian,
J48, and Naive Bayes networks in classifying network traffic, they
achieved accuracy rates of 98%, 87%, and 89%, respectively. They also
determined that P2P bots’ packets size is generally less than normal
P2P applications. Similarly, Zhao et al. (2013) used REPTree for clas-
sification of online P2P botnet detection. However, a key limitation of
this approach is that it can be circumvented using random connection
interval (il Jang et al., 2010).

The approach of Masud et al. (2008) is based on the premise that
bots’ reaction patterns differ from the reaction patterns of humans. They
then demonstrated how one can utilized such an approach to detect
bots by identifying the relationship between incoming packets appli-
cation startups, and outgoing packets and connections. In a separate
work, the authors (Witten and Frank, 2005) evaluated the potential of
using Boosted decision tree, Bayes network classifier, Naive Bayes, sup-
port vector machine and C4.5 decision tree in detecting IRC Botnets.
It was found that the detection rates for these machine learning tech-
niques are greater than 95%, with a false positive rate of less than 3%
and false negative rate of less than 5%. The Boosted decision tree had
the highest overall performance. However, this approach is incapable
of detecting botnets that utilized encrypted communication or contem-
porary bot botnets, such as P2P botnets. More recently in 2018, Wei
et al. (Wu et al., 2018b) introduced an unsupervised method based on
clustering rather than classification methods. Their approach was not
confined to a specific botnet type and is sufficiently flexible.

There have also been focuses on avoiding detection by existing bot-
net detection solutions, for example by using encryption (Holz et al.,
2008; Dittrich and Dietrich, 2008) or using regular protocols (e.g. P2P
and HTTP) (Jiang and Shao, 2012; Grizzard et al., 2007).

It is clear from these discussed works that botnet, particularly P2P
botnet, detection remains an ongoing challenge.

In the next section, we will present our proposed approach.

3. Our proposed approach

In the proposed system, we focus on the passive monitoring of net-
work traffic and the frequent communication between bots and their
C2C servers during propagation. Specifically, such (frequent) commu-
nication is often used to discover other peers and receive commands and
related updates (Han et al., 2009; Noh et al., 2009), and hence can be
leveraged to facilitate detection. Our proposed detection approach com-
prises the following phases: network traffic capture and packet reduc-
tion, feature extraction, malicious activity detection, and bot behavior
detection using reinforcement learning - see Sections 3.1 to 3.4.

3.1. Network traffic capture and packet reduction

In this phase, network traffic will be sniffed based on the sliding
time-window size, and then utilized for traffic reduction. In this paper,
we passively capture the network packets using Jpcap (Zihao and Hui,
2009), since a passive capturing does not (significantly) increase the

2

M. Alauthman et al. Journal of Network and Computer Applications 150 (2020) 102479

Fig. 1. Time-window sliding technique.

volume of packets in the network. It also allows us to detect botnets
without interacting with them. Given the volume of network packets to
be analyzed, network traffic is divided into time-windows. Such a time-
window is also required for delivering the results to the network admin
on a timely basis. Bots may also seek to generate a temporal behavior
after the infection phase (Hegna). Therefore, using time window can
facilitate bot detection. However, we need to determine an appropriate
size. For example, if the size is too small, very few captured packets
will be captured and hence we are not able to learn the traffic char-
acteristics. If the size of time-window is too large, it can be lead to
failure in the early detection of botnet behavior. More details on deter-
mining time-window size is discussed in Section 4. As shown in Fig. 1,
W1,W2…Wn denote the sliding time window size.

Given the size of network traffic, we need to efficiently reduce
its traffic (i.e. performing a triage). For example, we can use existing
approaches such as those described in (Alauthaman et al., 2018) to
reduce the network traffic.

3.2. Feature extraction

We then need to analyze the reduced traffic to identify attributes
that can be used to effectively characterize the botnet, and these
attributes may collectively form a feature. Clearly, the quality of the fea-
tures has a significant impact on the detection accuracy of the machine
learning algorithm used. Network traffic feature extraction can occur
at three levels, namely: packet-level, flow-level, and connection-level
(Roughan et al., 2004). In addition, classification depends on the level
of packet inspection (e.g. deep or shallow packet inspection). We pro-
pose using a mixture of connection and packet levels. For instance, iden-
tifying the inter-arrival time features between the packets in each con-
nection requires gathering of packet-level data to be aggregated into
connections. That is done for collecting statistical information about
connection states. The features employed in our approach are extracted
through two stages. First, connection features are extracted. Then, these
features serve as host features (representing the host state during the
sliding time-window).

3.2.1. Connection level features
This phase focuses on features that are important for the detection of

the P2P botnet. In our study, 43 features are collected and gathered in
accordance with our pre-determined sliding window size - see Table 1.
The features collected comprise control packets exchanged between net-
work hosts and have 5 tuples (IP source address, IP destination address,
source port, destination port, protocol).

3.2.2. Feature reduction
Feature reduction refers to a method that can minimize the num-

ber of attributes in order to eliminate features with minimal impact
on the classification problem (Nguyen et al., 2010; Alkasassbeh, 2017).

The feature reduction technique is adopted for decreasing the ‘over-
fitting’ problem (Livadas et al., 2006), which is crucial in overcoming
the imbalanced dataset problem (Van der Putten and Van Someren,
2004). Thus, the quality of the feature reduction technique is an impor-
tant factor given its influence over the accuracy rate of the classification
algorithm.

We use the classification and regression tree (CART) (Breiman et
al., 1984) as the feature reduction technique. The decision tree gen-
erated by the CART algorithm has two kinds of nodes, namely: leaf
nodes without children and internal nodes with two children. Internal
nodes are associated with a decision function to identify the node that
shall be visited next. To begin building the tree, training samples along
with their class labels are required. During the designing of the tree,
the training set is divided recursively into smaller subsets. Through the
distribution of the classes that are within the training set, a decision
matrix is created. Based on the following matrix, each obtained node
would be provided with a labeled class. Internal node testing is created
using measurement for impurity. It is created for selecting threshold
values and features. A known measurement of impurity for CART is the
entropy impurity, and is mathematically represented below:

Entropy(s) = −
k∑

i=1
P(i

s
)log2P(i

s
) (1)

In the above equation, Entropy(s) denotes the entropy value at s, p(i
s)

is the relatively distribution of class i at s, and k denotes the number of
classes. The optimal splitting value for (s) is selected from a splitting
value group (y); thus, the highest impurity is the impurity difference
between nodes of root and children. The equation is as follows:

ΔE(y, s) = E(s) − (PLE (SL) + (PRE (SR)) (2)

In the above equation, ΔE(y, t) denotes the impurity drop, E (SL) and
E (SR) are the nodes of the right and left branches impurities, and PL
and PR are the probability of input to be in the right (SR) or left (SL)
child nodes.

Table 2 describes the significance of features chosen by the CART
approach, where features F34, F35, F36, F37, F26, F27, F6, F8, F31,
F32, F33, F9, F15, F19, F20, F25, F1, F2, F3, F7, F6, and F43 can be
used for distinguishing between malicious and legitimate connections,
and features F13, F14, F16, F17, F18, F21, F4, F5, F10, F11, F12, F24,
F22, F41, F23, F30, F29, F38, F39, F28, F40, and F42 cannot be used to
distinguish between malicious and legitimate connections. The feature
selection process is carried out based on the input samples’ contribu-
tions, and the feature’s significance is determined based on each input
sample’s role. For instance, it may be a surrogate or a primary splitter.
Surrogate splitters serve as backup rules that simulate the main rules
splitting process. As for the features that can be used to distinguish
between malicious and legitimate connections, they will be utilized for
generating host features during the feature extraction phase.

3.2.3. Host feature extraction at network level
Table 3 shows the 16 host features collected using the proposed

approach. The approach is based on the following three observations.
First, bot infected hosts share particular malicious behavior, and the
features differ from those of a normal host (Yen, 2011). Second, the
Bot’s behavior during propagation repeats itself in a frequent manner
since it is attempting to infect multiple hosts (Felix et al., 2012; Rossi
et al., 2011). Third, a software program generates the Bot connections
(Scanlon and Kechadi, 2012).

For the feature extraction phase, it may start immediately in the
event that the packets are transferred between the hosts. To extract
the features of a node in a manner that is more accurate, we need to
collect sufficient network traffic; otherwise, feature extraction is not
going to be sufficiently robust. Thus, the hosts’ behavior in the pro-
posed approach is observed by analyzing their traffic packets during
the sliding window time. This allows us to obtain the required number

3

M. Alauthman et al. Journal of Network and Computer Applications 150 (2020) 102479

Ta
bl

e
1

Fe
at

ur
es

im
po

rt
an

ce
ra

nk
in

g
by

en
tr

op
y

al
go

ri
th

m
.

Fe
at

ur
e

D
es

cr
ip

tio
n

Fe
at

ur
e

D
es

cr
ip

tio
n

F1
#

of
co

nt
ro

lp
ac

ke
ts

F2
#

of
tr

an
sm

itt
ed

co
nt

ro
lp

ac
ke

ts
F3

#
of

re
ce

iv
ed

co
nt

ro
lp

ac
ke

ts
F4

#
of

tr
an

sm
itt

ed
by

te
s

pe
r

flo
w

F5
#

re
ce

iv
ed

by
te

s
pe

r
flo

w
F6

#
of

tr
an

sm
itt

ed
SY

N
pa

ck
et

s
F7

#
of

re
ce

iv
ed

SY
N

pa
ck

et
s

F8
#

of
tr

an
sm

itt
ed

A
CK

pa
ck

et
s

in
a

se
qu

en
ce

F9
#

of
re

ce
iv

ed
A

CK
pa

ck
et

s
F1

0
#

of
tr

an
sm

itt
ed

du
pl

ic
at

e
A

CK
pa

ck
et

s
F1

1
#

of
re

ce
iv

ed
du

pl
ic

at
e

A
CK

pa
ck

et
s

F1
2

#
A

vg
.l

en
gt

h
of

tr
an

sm
itt

ed
co

nt
ro

lp
ac

ke
ts

F1
3

#
of

re
ce

iv
ed

du
pl

ic
at

e
A

CK
pa

ck
et

s
F1

4
#

A
vg

.l
en

gt
h

of
tr

an
sm

itt
ed

co
nt

ro
lp

ac
ke

ts
F1

5
#

of
tr

an
sm

itt
ed

fa
ile

d
co

nn
ec

tio
ns

F1
6

#
of

re
ce

iv
ed

fa
ile

d
co

nn
ec

tio
n

F1
7

#
of

tr
an

sm
itt

ed
SY

N
-A

CK
pa

ck
et

s/
co

nn
ec

tio
n

F1
8

#
of

re
ce

iv
ed

SY
N

-A
CK

pa
ck

et
s/

co
nn

ec
tio

n
F1

9
#

of
tr

an
sm

itt
ed

SY
N

-A
CK

in
a

se
qu

en
ce

/c
on

ne
ct

io
n

F2
0

#
of

re
ce

iv
ed

SY
N

-A
CK

in
a

se
qu

en
ce

/c
on

ne
ct

io
n

F2
1

#
of

by
te

s
pe

r
co

nn
ec

tio
n/

co
nn

ec
tio

n
F2

2
#

Ra
tio

of
in

co
m

in
g

co
nt

ro
lp

ac
ke

ts
/c

on
ne

ct
io

n
F2

3
av

g.
le

ng
th

of
ou

tg
oi

ng
Ct

rl
pk

ta
vg

.l
en

gt
h

of
Ct

rl
pk

ts
F2

4
Tr

an
sm

itt
ed

SY
N

-r
ec

ei
ve

d
A

CK
/A

vg
.#

of
SY

N
F2

5
(t

ra
ns

m
itt

ed
SY

N
-r

ec
ei

ve
d

SY
N

-A
CK

)/
co

nn
ec

tio
n

F2
6

#
of

tr
an

sm
itt

ed
FI

N
-A

CK
pa

ck
et

s/
co

nn
ec

tio
n

F2
7

#
of

re
ce

iv
ed

FI
N

-A
CK

pa
ck

et
s

pe
r

co
nn

ec
tio

n
F2

8
#

of
tr

an
sm

itt
ed

RS
T-

A
CK

pa
ck

et
s

pe
r

co
nn

ec
tio

n
F2

9
#

re
ce

iv
ed

RS
T-

A
CK

pa
ck

et
s

pe
r

co
nn

ec
tio

n
F3

0
av

g.
tim

e
be

tw
ee

n
at

te
m

pt
s

to
cr

ea
te

co
nn

ec
tio

ns
F3

1
#

of
re

ce
iv

ed
RS

T
pa

ck
et

s
pe

r
co

nn
ec

tio
n

F3
2

of
tr

an
sm

itt
ed

RS
T-

A
CK

pk
ts

in
a

se
qu

en
ce

/c
on

ne
ct

io
n

F3
3

#
of

re
ce

iv
ed

RS
T

pa
ck

et
s

pe
r

co
nn

ec
tio

n
F3

4
of

tr
an

sm
itt

ed
RS

T-
A

CK
pk

ts
in

a
se

qu
en

ce
/c

on
ne

ct
io

n
F3

5
In

te
r-

ar
ri

va
lt

im
e

b/
w

SY
N

an
d

A
CK

by
ho

st
/c

on
ne

ct
io

n
F3

6
In

te
r-

ar
ri

va
lt

im
e

b/
w

SY
N

an
d

RS
T

by
ho

st
/c

on
ne

ct
io

n
F3

7
In

te
r-

ar
ri

va
lt

im
e

b/
w

SY
N

an
d

RS
T-

A
CK

y
ho

st
/c

on
ne

ct
io

n
F3

8
In

te
r-

ar
ri

va
lt

im
e

b/
w

SY
N

fr
om

ho
st

RS
T

fr
om

ot
he

r
si

de
/c

on
ne

ct
io

n
F3

9
In

te
r-

ar
ri

va
lt

im
e

b/
w

SY
N

fr
om

ho
st

RS
T-

A
CK

fr
om

ot
he

r
si

de
/c

on
ne

ct
io

n
F4

0
In

te
r-

ar
ri

va
lt

im
e

b/
w

FI
N

-A
CK

fr
om

ho
st

RS
T

fr
om

ot
he

r
si

de
/c

on
ne

ct
io

n
F4

1
In

te
r-

ar
ri

va
lt

im
e

b/
w

A
CK

fr
om

ho
st

an
d

co
nn

ec
tio

n
an

d
RS

T
fr

om
ot

he
r

si
de

F4
2

In
te

r-
ar

ri
va

lt
im

e
SY

N
fr

om
ho

st
an

d
co

nn
ec

tio
n

an
d

SY
N

-A
CK

fr
om

ot
he

r
si

de
F4

3
Co

nn
ec

tio
n

du
ra

tio
n

of packets. During the feature extraction phase, each network host has a
distinctive feature record. After that, the host feature record can then be
used to differentiate between legitimate network traffic and malicious
botnet traffic. This can be achieved using online machine learning tech-
niques, as well as reinforcement techniques.

Port scanning is the most common activity that precedes a cyber
attack, as well as during various stages of a bot malware lifecycle (e.g.
attack and propagation). For instance, during the propagation phase, a
bot seeks to discover and contacting other peer bots within the same
network. Thus, analyzing and monitoring the rate of the connections
that are newly established can facilitate the detection and measurement
of any malicious bot behavior. Computer ports are subdivided into two
main classes, namely: low-severity and high-severity ports. Based on
the information issued by the Dshield Organization (Dshield.org, 2013),
high-severity ports include those that are most likely to get scanned. All
other ports are considered as ports of low-severity. Thus, the present
study uses the port scanning method for detecting malicious cyber activ-
ities, and features F1 to F8 reflect the scanning behavior.

There are a number of botnet traffic behavior traits, such as bots
showing a connection failure in the network. For example, when a bot
connects to the botnet network, it must find a point of entry that may
be a peer host or a C2C server, in order to deliver information about its
current situation and receive new instruction(s). Consequently, if any
peer attempts to create a connection with those hosts, it may lead to a
connection failure. The feature of connection failure (F9) that is based
on the TCP connection shall be labeled as failed, in the event that the
three-step handshake is not complete (Limmer and Dressler, 2009).

The number of control packets for legitimate network traffic is
observed to have higher diversity in comparison to bot connection traf-
fic. This is because users may use applications that have very different
behavior for control packets. Thus, we do not expect to find trends in
the frequency of the control packet. However, during the peer discov-
ery stage, bots will attempt to contact other botnet peers, and hence
that is a repeat onnection behavior. Such a behavior trait is telling, and
we can use an entropy algorithm (Cover and Thomas, 2012) to mea-
sure the randomness or amount of entropy that is within the control
packet variation per host. The latter can then be used to model the con-
trol packets number connected to the node as a discrete symbol. High
entropy implies a legitimate connection, and a low entropy may sug-
gest a botnet connection. Therefore, further investigation is required.
The entropy of the frequency of the control packet per host (F10 to
F12) is estimated through a group Cp = [c1, c2,… .cn], where ci refers
to the number of control packets per connection. This is mathematically
expressed as follows:

E(t) = −
n∑
i

ci log ci (3)

Features F13 to F15 are related to the network host inter-arrival con-
trol packets. The time of inter-arrival packet refers to the time needed
for creating and transferring data to the transport layer by the applica-
tion (Jaber et al., 2011). This time is calculated by gathering the time
from two consecutive packets in the same connection. The focus of the
proposed technique is the host features, which are estimated at the net-
work. The target of the proposed technique is represented in detecting
an infected machine. The focus of the proposed approach is, therefore,
on the time between the packets from the host.

For feature F16, we use the index of dispersion for counts (IDC) to
measure the probability distribution dispersion for the packets sent by
the host. Gusella (1991) emphasize on the significance of applying the
latter index in the identification of packet variability. This index is used
to quantify whether an observed group is dispersed or clustered with
a standard statistic model. IDC refers to the variance (𝜎)-to-mean (𝜇)
ratio, as expressed below:

IDC = 𝜎2

𝜇
(4)

4

M. Alauthman et al. Journal of Network and Computer Applications 150 (2020) 102479

Table 2
Feature ranking.

Feature Significance Feature Significance Feature Significance

F̃1 0.812 F̃15 0.718 F̃32 0.551
F̃2 0.810 F̃19 0.703 F̃33 0.531
F̃3 0.787 F̃20 0.660 F̃34 0.509
F̃6 0.774 F̃25 0.619 F̃35 0.449
F̃7 0.763 F̃26 0.600 F̃36 0.371
F̃8 0.754 F̃27 0.573 F̃37 0.286
F̃9 0.743 F̃31 0.566 F̃43 0.194

Table 3
Host features of network traffic.

Features Description

F1 Total transmission flows per host in time-window.
F2 Total transmission unique connections per host in time-window.
F3 Total connections try per host in a time-window.
F4 High-severity of dest. port rates in time-window.
F5 The rate of use of unique dest. ports per host in time-window.
F6 The rate of use of unique source ports per host in time-window.
F7 The rate of transmission of unique host connections in time-window.
F8 High-severity of source port rates in time-window.
F9 Failures connections rates per host in a given time interval.
F10 Control packets Entropy rate for connections per host in time-window.
F11 Received Control packets entropy rate for connections per node in time-window.
F12 Transmitted Control packets entropy rates for connections per node in time-window.
F13 The avg. time between host connections.
F14 The avg. time between source inter-arrival control packets.
F15 The avg. length of the connection.
F16 Dispersion index.

3.3. Malicious activity detection

Malicious activity detection includes an offline stage (training), an
online detection stage, and a reinforcement-learning stage. In the first
stage, the classifier is provided with a group of legitimate and bot fea-
ture vectors for the purpose of training. When the training ends, newly
extracted features are uploaded in order to classify the hosts’ activities
within the network as legitimate or malicious.

A neural network is utilized to serve as a detector to identify mali-
cious activity(ies), since the network has robust capabilities for non-
linear system control and identification. That is attributed to an inher-
ent capability of approximating an arbitrary nonlinear problem (Nigrin,
1993; Tsai et al., 2009; Razi and Athappilly, 2005). The resilient back-
propagation-learning algorithm is used for neural network training, in
order to reduce the negative impacts of the fractional derivatives’ vol-
ume. The derivative is used merely for locating the weighted update’s
trend. As for the derivative’s volume, it does not have any negative role
in the weight updating process. The size of the weight change can be
identified using the formula listed below (Riedmiller and Braun, 1993):

Δw(t)
ij =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

−Δij(t), if 𝜕E(t)
𝜕wij

> 0

−Δij(t), if 𝜕E(t)
𝜕wij

< 0,

0, else

(5)

In the above equation, Δij(t) refers to the change in weight between
the hidden and input layers that are within the current iteration (t).
𝜕E(t)
𝜕wij

refers to the partial derivative of each weight. After having the
weights calculated, the newly updated weight value shall be set. That

is performed using the formula listed below:

Δ(t)
ij =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝜂+ · Δij(t), if 𝜕E(t − 1)
𝜕wij

· 𝜕E(t)
𝜕wij

> 0

𝜂− · Δij(t), if 𝜕E(t − 1)
𝜕wij

· 𝜕E(t)
𝜕wij

< 0

Δ(t − 1), else

(6)

Δ(t)
ij refers to the updated value of the current iteration t, and

𝜂 + refers to the positive step value (usually 1.2). As for 𝜂
∑

, it refers to
the negative step value (usually 0.5 (Riedmiller and Braun, 1993)). The
neural network classifier used in this study includes 16 inputs and 2
output parameters. In order to avoid over-fitting by employing several
hidden layers, we use the technique described in (Boger and Guterman,
1997) to decide on the number of hidden layers neurons.

From Fig. 2, one can observe during the offline stage, a group of
identified malicious and legitimate attribute vectors is added to the
classifier. This is done for training our detector in order to classify
the host behaviors on the network as either malicious or legitimate.
In order to ensure that quality of the learned neural network agent, a
cross-validation technique is used to estimate the classifiers’ error rate.
Through cross-validation, the dataset can be randomly partitioned into
several N samples, where evaluations are run for N iterations. At each
iteration, N

∑
1 samples can be chosen to train the model. As for the

last fold of samples, it shall be applied for evaluating the classifier’
accuracy.

In the online detection stage, the agent (trained neural network)
will continuously classify the host within the network. Then, the agent
sends a report to the network administrator about the activities of the
hosts. In addition, as observed in Fig. 3, the reinforcement learning
agent simultaneously operates to extract new features that shall partic-
ipate in improving the performance level of the detection agent in the
future.

5

M. Alauthman et al. Journal of Network and Computer Applications 150 (2020) 102479

Fig. 2. Off-line phase.

Fig. 3. On-line phase.

3.4. Bot detection using reinforcement learning

Reinforcement learning (RL) techniques are widely used to handle
problems that involve difficulty in determining the solution explicitly,
provided that it is probable to generate the signals of reward (Gai and
Qiu, 2018; Barto, 1998). This applies in our botnet detection prob-
lem. Specifically, the RL ‘obstacle’ is expressed in the partially observ-
able markov decision process (POMDP) context. POMDPs are usually
employed for representing dynamic systems, which include the systems
used for the detection of botnet.

A POMDP is a group of states (S), which characterizes the status
of the neural network agent (NNSt), controller agent (AGSt), and host
(HSt) states. (NNAt) denotes the actions of agent at time t, and the agent
of neural networks selects actions using 𝜋 policy. NN𝜋(HSt ,A) denotes
the possibility of having the agent selecting action A when the host is
in the state (HSt). R(AGSt) represent the estimation of reward function
(TSt) denotes the transition function of the controller agent system.

The Markovian transition function defines the system’s dynamics.
It also generates the possibility T(AGSt ,NNAt ,AGSt+1) of transitioning
into an agent state AGSt+1 after action NNAt is taken in state AGSt . The
reward function shall assign the new host’s state (HSt) number, and
the overall amount of the system’s host states shall be processed as a
numeric value to agent state (AGSt).

At any time, the POMDP can be representing the system’s state.
When the action is chosen by the neural network agent (NNAt), the
controller agent rewards and the host state value shall be estimated.
After that, based on the collected reward’s size, the controller agent’s
transition function (TSt) changes the neural network agent, and thus
resulting in a new state NNSt+1. In our context, the detection of a P2P
bot is expressed as an RL problem. That includes a selection for the
action space, reward, value state, and transition functions.

In the action space, after having the action space defined, the host
on the network at each time-window is provided with the possibility of
being a bot or legitimate node. Then, the RL agent shall take that pos-
sibility into account. This is also done for estimating the state’s reward.

In the agent reward function, at any time step, the reward signal is
equivalent to the quantity of the new states that are processed by the
hosts within the network via the time-window. The signal of reward
calculates the importance of the new state, by utilizing the value of
state function in several time-windows. In our context, the new state
may be a bot or a legitimate node.

In the value state function, all the (H) nodes within the network have
several states based on the use mode. As for the function of the value
state, it represents the prospect reward of each host (HSt), according to
the policy NN𝜋 . In every time-window, the output of the neural network
for every host state is split into two sub-states of probabilities. These

6

M. Alauthman et al. Journal of Network and Computer Applications 150 (2020) 102479

sub-states are legitimate E(L) and malicious E(M). Thus, the output of
each host state is expressed as (E.M(HSt)) or (E.L(HSt)), and the formula
below identifies the value state function evaluation for legitimate and
bot hosts and controller agent.

• Assessment the value of state function for bot hosts:

EV𝜋(H(M)) =
∑n

i=0 E(Mst(i))
n

(7)

EV𝜋(H(M)) denotes the percent of bot activity expected for the host
in n time-windows, and E(Mst(i)) is the possibility of malicious activ-
ity results using the policy of the existing neural network.

• Assessment the value of state function for legitimate hosts:

EV𝜋(H(L)) =
∑n

i=0 E(Nst(i))
n

(8)

EV𝜋(H(L)) denotes the expected percent of host’s legitimate activ-
ity in n time-windows, and E(Lst(i)) is the possibility of legitimate
activity results based on the policy of the existing neural network.

• Assessment of controller state value agent function:

V(s) = V(s) +
{

V(Mst) = argmax(M(Actions)) EV𝜋(H(M)st) > EV𝜋(H(L)st)
V(Lst) = argmax(L(Actions)) EV𝜋(H(M)st) < EV𝜋(H(L)st)

(9)

In the above equation, V(s) denotes the calculated states which
obtain the highest reward using the existing neural network agent pol-
icy NN𝜋 .

Finally, for the function of transition, all techniques in the RL
domain require the implementation of a policy that guarantees that
a balance is achieved between exploitation and exploration. The prob-
lem lies in identifying the way to find an effective policy for action-
selection. This policy should be based on sufficient exploitation and
exploration data.

In our context, we attempt to find an effective method in order to
strike a balance between exploitation and exploration. Thus, a directed
exploration approach is adopted, which allows us to explore the state
and action as much as possible before shifting to another approach.

The most straightforward directed exploration method is a greedy
technique. In any host state, the state that shows the highest exposure
of probability value shall be selected. In addition, after implementing
the explorative strategy, several steps are followed, in order to identify
the hidden goals. In case the target is a novel state to the system, the
system can simply shift from exploration to exploitation.

The function of the transition is expressed below:

Tst =
∑

newV(s)∑
V(s) >= 𝜃 (10)

In the above equation, TSt denotes the rate of exploring newstateV(s)
to the whole of the state V(s). Therefore, TSt depends on the analyzed
network traffic volume. The adaptable threshold (𝜃) is set by the net-
work admin. It is set based on the desired degree of network protection.
For example, in sensitive networks, 𝜃 is very short. A low 𝜃 value also
indicates that there is a high learning rate. Table 4 summarizes the RL
system parameter and symbols.

Algorithm 1 describes our proposed system. First, it extracts a new
behavior from the environment. After that, it decides on the action to
take, on the basis of the present policy of the neural network. As for
vector V, it is employed to gather observation for each new states and
actions. Whenever the agent collects a sufficient number of new states,
it moves to the state of exploitation. This is done in order to utilize those
states. At last, the main control agent assesses the new neural network
agent’s performance.

The proposed approach’s key advantage is that the approach sticks
to a specific strategy for a certain period. It will not end up taking 1-
step in the direction of exploratory nor 1-step in the other direction.
Management of the rate of learning (exploring) a new behavior (state)
depends on the network traffic’s state. In comparison with low network

traffic, if there is a significant volume of network traffic, the controller
agent gains numerous new states. After setting the most useful amount
of reward by the system, the system shifts to the exploitative strategy.
This is done by creating a new dataset, by combining new extracted
states with the old dataset. The new dataset is then used for training.
First, a cross-valuation technique is adopted for assessing the perfor-
mance of a new neural network (NN) agent. It is also adopted for assess-
ing the performance evaluation matrices, namely: Matthews correlation
coefficient (MCC), accuracy(ACC), area under the ROC(AUC), and root
means square error (RMSE). Second, the new NN agent is assessed using
the old reference dataset (action and state), in terms of AUC, MCC, ACC
and RMSE. Third, in case the system has the assessment test, the sys-
tem’s primary controller will replace the detection agent with a new
one (NN agent). However, when the new NN agent has a low achieve-
ment level, the system shall retain the current NN agent. It shall also
reset the action and new state buffer.

In summary, the system contains three NN agents. In the first NN,
the reference dataset is utilized to train the first initial agents. The sec-
ond neural network is established through the use of newly extracted
features (states) from the environment. Finally, the best configuration
of the neural network that passes the assessment process is utilized in
the detection phase.

4. Experimental evaluation and results

4.1. Datasets and tools

We use three primary datasets to evaluate the proposed system,
which include non-malicious and malicious traffic - see Table 5. The
first dataset is the information security and object technology (ISOT)
dataset (Saad et al., 2011), which includes Storm Bot, Waledac Bot,
and non-malicious traffic. The second dataset includes four legitimate
for P2P applications (i.e. Vuze, uTorrent, Frostwire, and eMule), and
the traffic of three P2P Botnets (i.e. Zeus, Storm and Waledac) (Babak
et al., 2014). The third dataset is in the Information Security Centre of
Excellence (ISCX) dataset (Shiravi et al., 2012), which contains legiti-
mate network traffic.

The experiments are carried on an Intel Xeonprocessor with
a six-core monster clocked at 2.1 GHz (with a 2.6 GHz Turbo)
and 64 GB RAM, and the proposed approach is implemented
using Matlab 2018b. Table 6 summarizes the tools used in the
experiments.

4.2. Setup

An experimental dataset is created for evaluating the approach’s
capability in the online detection of a new bot infection. In order to
simulate a realistic network traffic condition, a testbed is constructed
for replaying malicious botnet traffic, P2P application traffic, and nor-
mal daily activity traffic, using TcpReplay. Then, the JPCAP tool is used
to capture the replayed network traffic.

The setup comprises the following five steps:

(1) Replaying the entire legitimate and malicious trace files, and
capturing packets through the use of different time-window
sizes.

(2) Reducing network traffic through the use of the proposed net-
work traffic reduction method.

7

M. Alauthman et al. Journal of Network and Computer Applications 150 (2020) 102479

(3) Extracting vectors of feature for hosts while capturing of packets.

Algorithm 1
Bot detection using RL technique

(4) Obtaining the classification results through the use of the testing
sets and the prepared training, by adopting the proposed tech-
nique.

8

M. Alauthman et al. Journal of Network and Computer Applications 150 (2020) 102479

Table 4
RL parameters and symbols.

RL symbol Description

S Current state of environment
A Agent Action
𝜋 Action policy
𝜃 Threshold transition value
HSt Host state at time (t)
NNSt State of the neural network agent at time (t)
NNAt Actions of agent at time (t)
NN𝜋 The policy of neural network
AGSt Controller agent state at time (t)
R(AGSt) Represent the estimation of reward function at current state and time (t)
TSt Represents the transition function of the controller agent system
V(s) The value of state s, using the current neural network agent policy NN𝜋

NN𝜋 (HSt;A) Represents the possibility for the agent to selected action A when the host is in the state (HSt)
EV𝜋 (H(L)) Represents the probability rate of a legitimate behavior using the current neural network agent policy
EV𝜋 (H(M)) Represents the probability rate of a malicious behavior using the current neural network agent policy

Table 5
Datasets.

Group Traffic source Purpose Duration packets number

G1 Strom Bot (Saad et al., 2011) Training 3115 s 128241
G2 Waledac Bot (Saad et al., 2011) Training 605 s 118379
G3 Normal traffic (Saad et al., 2011) Training 126273 s 564999
G4 eMule - (Babak et al., 2014) Training/Testing 24 h 6736353
G5 uTorrent - (Babak et al., 2014) Training/Testing 24 h 6278385
G6 Vuze - (Babak et al., 2014) Training/Testing 24 h 11732688
G7 FrostWire - (Babak et al., 2014) Training/Testing 24 h 4429535
G8 Normal traffic - (Shiravi et al., 2012) Testing 24 h 3776931
G9 Strom Bot traffic - (Babak et al., 2014) Testing/(Zero-Day attacks) 24 h 4251875
G10 Waledac Bot traffic - (Babak et al., 2014) Testing/(Zero-Day attacks) 24 h 12915757
G11 Zeus Bot traffic - (Babak et al., 2014) Testing/(Zero-Day attacks) 24 h 114548

(5) Identifying the size of time-window that provides higher levels of
detection performance and stability during the online and offline
stages.

Due to the significant volume of network packets to be analyzed,
network traffic is divided into time-windows. In addition, time-window
is required for delivering the results to the admin of network on a
timely basis. The use of time-window shorter than 10 s is avoided due
to having few captured packets that are incapable of showing the char-
acteristics of the traffic behavior. We also avoid using time window
greater than 60 s, so that we can detect the bot as early as possi-
ble. Bots can generate a temporal behavior after the infection phase
(Hegna). Thus, such a behavior is leveraged to acquire the requisite
bot behaviors in the time-window. Hence, in this paper, we begin with
a 10 s time-window, which is incremented gradually. This allows us
to determine an optimal performance level. Additionally, 10% of the
time-window size is used to slide between time-windows to quickly
detect any malicious activity, rather than idling for the entire next
window.

In order to assess the proposed system’s performance level, the fol-
lowing metrics need to be computed:

• True positive (TP): The number of bot samples labeled as malicious.
• True negative (TN): The number of normal samples labeled as legit-

imate.

• False positive (FP): The number of normal samples labeled as mali-
cious.

• False negative (FN): The number of bot samples labeled as legiti-
mate.

The false positive rate (FPR) denotes the rate of legitimate sam-
ples that are misclassified as botnet samples, and is mathematically
expressed as follows:

FPR =
∑

FP
TN + FP

(11)

The detection rate (DR) is mathematically expressed as follows:

DR = TP
TP + FN

(12)

Accuracy (ACC) is the rate where samples are correctly classified, and
is mathematically expressed as follows:

ACC = TP + TN
TN + TP + FN + FP

(13)

Precision is the rate where bot samples correctly classified, and is math-
ematically expressed as follows:

Precision = TP
TP + FP

(14)

The F
∑

measure is used to measure the accuracy level of the test, and
both recall and precision of the test are taken into consideration when

Table 6
Experimental tools.

Name Description Version

Jpcap (Zihao and Hui, 2009). Java library for capturing and sending network packets. 0.7
Tcpreplay (Aaron Turner, 2013). Replays Pcap files onto the network 3.4.4

9

M. Alauthman et al. Journal of Network and Computer Applications 150 (2020) 102479

Table 7
Packets reduction rates.

Group # control packets traffic reduction rate

G1 64551 0.5033
G2 69936 0.5907
G3 226308 0.4005
G4 2780725 0.4127
G5 4237135 0.6748
G6 741677 0.6321
G7 2406066 0.5431
G8 1686962 0.4466
G9 1169900 0.2751
G10 9395310 0.7274
G11 59255 0.5172

calculating the score, as shown below:

F
∑

measure = 2 × Precision× Recall
Precision+ Recall

(15)

The root mean square error (RMSE) is the difference between the actual
value estimated by the method of detection and the target value, and is
mathematically expressed as follows:

RMSE =

√√√√ N∑
i=1

(yi − ti)2
N

(16)

In the above equation, N denotes the number of input samples, and
yi denotes the model’s actual output. RMSE = 0 indicates that the
model’s output matches the targets.

The non-dimensional error index NDEI is applied to evaluate the
quality of prediction, and is mathematically expressed as follows
(Espinosa and Vandewalle, 1998):

NDEI = RMSE
Std(ti) (17)

The Matthews correlation coefficient (MCC) is adopted to estimate clas-
sifier efficiency in the event of an imbalanced dataset (Matthews, 1975),
and is mathematically expressed as follows:

MCC = TP × TN − FP × FN√
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

(18)

The receiver operating characteristic (ROC) is a graphical rep-
resentation, which shows the binary classifier efficiency. The x-
axis represents the FPR, and the y-axis represents the TPR. The
area under the ROC (AUC) denotes the performance of the clas-
sifier (Swets, 2014). In addition, the AUC is generally considered
a much more robust estimator of the classifier’s performance level
(Fawcett, 2006).

4.3. Network traffic reduction evaluation

Our proposed network traffic reduction algorithm is designed to
minimize the volume of network traffic that needs to be examined in
our system. In flow-based detection schemes, such as those of (Babak
et al., 2014; Zhao et al., 2013; Timothy et al., 2008; Gu et al., 2008b),
every packet is analyzed. However, we argue that this is not realistic to
be implemented in real-time high-speed network. As shown in Table 7,
the network traffic reduction algorithm can decrease the normal traffic
by an average of over 50%.

The rates of control packets derived from each rule of traffic reduc-
tion technique are presented in Table 8. We also remarked that sev-
eral detection systems proposed in the literature have good detection
rates (Gu et al., 2007, 2008a, 2008c; Goebel and Holz, 2007; Yen and
Reiter, 2008). However, these approaches are not designed for large
networks, partly due to their reliance on DPI techniques (Parra et al.,
2019). For instance, BotHunter (Gu et al., 2007) employs a signature-

Table 8
Network packet reduction rates based on rules.

Group R(1) R(2) R(3) R(4) R(5) R(6)

G1 34.70% 7.00% 13.00% 8.70% 16.70% 20.00%
G2 30.00% 11.20% 8.80% 6.70% 21.30% 22.00%
G3 22.50% 25.80% 20.50% 17.80% 8.30% 5.00%
G4 20.0% 26.70% 15.80% 17.50% 13.30% 6.70%
G5 26.70% 22.20% 22.80% 10.70% 7.70% 10.00%
G6 25.00% 21.30% 18.30% 18.20% 5.20% 12.00%
G7 26.70% 19.30% 24.00% 15.00% 8.50% 6.50%
G8 23.80% 20.00% 19.0% 22.70% 6.70% 7.80%
G9 29.80% 8.20% 8.50% 8.80% 22.80% 21.80%
G10 29.00% 15.00% 6.00% 8.00% 17.00% 25.00%
G11 30.20% 7.70% 4.00% 9.80% 20.50% 27.80%

Table 9
Comparison of network traffic reduction rates.

Method Traffic Reduction TPR FPR

PeerRush (Babak et al.,
2014)

None 99.10% 0.10%

Zhao et al. (Zhao et al.,
2013)

None 98.10% 2.10%

Timothy et al. (Timothy
et al., 2008)

None 92.0% 11.0-15.0%

Gu et al. (Gu et al.,
2008b)

None 1.0% 0-6%

Wang et al. (Wang et al.,
2011)

>70.0% 95.0% 0-3.0%

Proposed approach (40.0-70.0)% 99.10% 0.010%

based detection engine and payload-based anomaly detector. Rishi (Gu
et al., 2008c) and BotSniffer (Gu et al., 2008a) require the parsing of
IRC communication content. TAMD (Yen and Reiter, 2008) inspects the
payloads of packets, with the aim of estimating similarities between
content. Our proposed network traffic reduction approach, however,
focuses only on a small portion of the TCP packets that are utilized in
connection initialization.

Table 9 presents a comparative summary for the performance of
our detection approach with other competing approaches (Babak et al.,
2014; Zhao et al., 2013; Timothy et al., 2008; Gu et al., 2008b; Wang
et al., 2011).

4.4. Host feature evaluations

Table 3 presents the host features of network traffic, and Min-Max
normalization (Al Shalabi and Shaaban, 2006) is used to calculate the
normalized average value of each feature.

Y′ = Yi − Ymin
Ymax − Ymin

(19)

In the above equation, Y′ is the normalized value of Y i, Ymin is the
vector of the minimum feature value, and Y max refers to the vector of
the maximum feature value.

Fig. 4 presents the average normalization value distribution for each
feature. We observe that the distribution of normal host traffic and bot
host traffic. For example, as illustrated in Fig. 4 and explained in Section
3.2.3, features F12, F15, F5, F10 and F16 are considered to be discrim-
inate features that facilitate botnet detection.

Fig. 5 presents a variation between bot and legitimate network
flows, based on the total number of control packets’ entropy rates per
host. The figure indicates that the entropy rates for the legitimate host
are within the range of 0-5, while these rates are below 0.5 for a bot
host traffic. The difference in entropy rates between a bot and legiti-
mate hosts is attributed to the presence of the bot due to the regularity
in the count of control packets per flows. As for the legitimate host
flows, it shows that there is diversity and irregularity in the control

10

M. Alauthman et al. Journal of Network and Computer Applications 150 (2020) 102479

Fig. 4. Normalized feature comparison.

Fig. 5. Control-packets Entropy rates.

packet count per flows. As a result, the legitimate hosts show an entropy
value that is high, whereas the bot shows an entropy value that is
low.

4.5. Evaluation of offline phase

Figs. 6 and 7 present the result of assessing the trained agent during
the offline phase of the proposed approach, where the x-axis is the size

Fig. 6. Offline phase evaluation(ACC,DR,F-measure and FPR).

11

M. Alauthman et al. Journal of Network and Computer Applications 150 (2020) 102479

Fig. 7. Offline phase evaluation (AUC, MCC, RMSE and NDEI).

Fig. 8. Online phase evaluation (ACC,DR,F-measure and FPR).

of time-window applied for phases of the feature extraction. Based on
the 60 s time-window, the proposed approach outperforms the other
approaches, in terms of detection, accuracy and F-measure rates (i.e.
99.0%, 98.30% and 98.90%, respectively). Furthermore, the lowest FPR
has a 60 s time-window size. In the meantime, a 10 s time frame shows
the lowest performance - see Fig. 6.

Fig. 7 presents the AUC, MCC, RMSE and NDEI of the bot detection
system, based on different time-window sizes. We observe thatMCC and
AUC rates are the highest rates, respectively at 95.60% and 99.10%
based on the 60 s time-window.

We also observe that the 60 s time-window has good performance
with good result stability, due to the small time-window size. In addi-
tion, bots generate a temporal behavior after the phase of infection

(Hegna). Thus, 60 s are appropriate for capturing the network traffic
that can be used to facilitate accurate classification. As shown in Figs. 6
and 7, the proposed approach can detect P2P bots with a high accuracy
rate (associated with a low FPR). We emphasized that these results are
obtained using only the training dataset, and the focus of the offline
stage is to prepare the classification agent for online work.

4.6. Evaluation of online bot host detection approach

We will now describe the findings of the proposed approach on the
test dataset (Zero-day attack) - see Figs. 8 and 9 present the over-
all results gained from the online experimental result analysis. As
observed, the proposed approach uses an online evaluation and has

Fig. 9. Online phase evaluation (AUC, MCC, RMSE and NDEI).

12

M. Alauthman et al. Journal of Network and Computer Applications 150 (2020) 102479

Fig. 10. ROC comparison.

Fig. 11. New botnet detection.

the highest F-measure, accuracy, and detection rates respectively at
98.80%, 98.30% and 97.90%, based on a time-window size of 60 s.
The 10 s time-window size yields the least desirable performance.

As observed from Fig. 9, the MCC and AUC rates are 97.6% and
99.96% respectively. Thus, these experimental results show that the
performance of our proposed online detection system is capable of han-

dling imbalanced dataset in the 60 s time-window. Furthermore, RMSE
and NDEI are also used evaluated, and clearly at the 60 s time-window
size, both RMSE and NDEI achieve 0.093 and 0.187% respectively.

It is clear from Fig. 9 and that the proposed method has a good
performance result at the time-window size of 60 s. Also, to evaluate
the performance of our proposed approach, we examine the ROC curve

Table 10
Performance evaluation: A comparative summary.

Methods FPR DR Network packet reduction rates

PeerRush (Babak et al., 2014) 0.10% 99.50% 0.0%
D Zhao et al. (Zhao et al., 2013) 2.10% 98.10% 0.0%
Proposed online method 0.012% 98.30% (40-70)%
Proposed offline method 0.01% 99.10% (40-70)%

13

M. Alauthman et al. Journal of Network and Computer Applications 150 (2020) 102479

- see Fig. 10. Again, the 60 s time-window size has the highest rates for
the classification of legitimate and bot traffic respectively at 0.991 and
0.98.

4.7. New botnet detection

To assess the performance of the proposed approach in detecting
novel types of P2P bots, a sample was selected. The sample consists of
Storm, Zeus, and Waledac. As shown in Fig. 11, the proposed approach
is effective in detecting new P2P bots. In Fig. 11(A), for example, the
rates of detecting Zeus Bot is lower than those of Waledac and Storm
Bots at the 60 s time-window size (i.e. 93.8%, 98.2% and 96.83%,
respectively). This is because we use both Storm and Waledac for the
testing and training dataset.

As observed in Fig. 11 (B), our proposed approach has low FPRs for
Zeus, Storm and Waledac of 0.04%, 0.07% and 0.09% respectively, at
the 60 s time-window size.

A comparative summary of evaluating the proposed approach’s per-
formance with two other P2P botnet detection approaches (Babak et al.,
2014; Zhao et al., 2013) is presented in Table 10. We use the dataset
used by Zhao et al. (2013) during the offline state, and the dataset used
by Babak et al. (2014) during the online state. We observe that the FPR
and bot detection rates using our proposed approach are considerably
better than those of the competing approaches.

5. Conclusion and future work

Botnets remain an ongoing threat in today’s networked society, and
as bot malware evolves so do the mitigation strategies. Our proposed
approach uses both reinforcement learning and our traffic reduction
method. One key contribution of the proposed approach is the network
traffic reduction technique, since we are able to reduce the input pack-
ets by about 50%. We demonstrate in the preceding section that our
proposed approach has a detection rate of 98.30% and a low FPR of
0.010% at the 60 s time-window size. The bottleneck of bot detection
using neural network is associated with the size and dimensionality of
the dataset, as the number of the packets that require scanning is sig-
nificant. This is where our proposed network traffic reduction approach
plays a key role. The use of such an approach can reduce the training
time required, and also increase the learning rate of newly extracted
features in the online system. In addition, the proposed bot detection
approach is shown to achieve good accuracy rate and is able to detect
new bots.

However, there remains a number of challenges that need to be
addressed. For example, bot masters will continue to explore ways
of circumventing detection by existing approaches, for example using
rootkits. In addition, botnets change dynamically through updates, and
hence their operations may change after several life cycle stages. These
characteristics are also known as the drifting concept (Dries and Rück-
ert, 2009). Hence, the proposed approach adopts the idea of reinforce-
ment learning for dynamically improving the system throughout time.
However, this is a rat race between future bot malware designers and
botnet detection solution designers. Hence, there is a need to continue
this line of research.

References

Aaron Turner, F.K., 2013. Tcpreplay Version 4.0.0. http://tcpreplay.appneta.com.
Akinrolabu, O., Agrafiotis, I., Erola, A., 2018. The challenge of detecting sophisticated

attacks: insights from soc analysts. In: Proceedings of the 13th International
Conference on Availability, Reliability and Security. ACM, p. 55.

Al Shalabi, L., Shaaban, Z., 2006. Normalization as a preprocessing engine for data
mining and the approach of preference matrix. In: International Conference on
Dependability of Computer Systems, pp. 207–214, https://doi.org/10.1109/
DEPCOS-RELCOMEX.2006.38.

Alauthaman, M., Aslam, N., Zhang, L., Alasem, R., Hossain, M.A., 2018. A p2p botnet
detection scheme based on decision tree and adaptive multilayer neural networks.
Neural Comput. Appl. 29 (11), 991–1004, https://doi.org/10.1007/s00521-016-
2564-5.

Alkasassbeh, M., 2017. An empirical evaluation for the intrusion detection features
based on machine learning and feature selection methods. J. Theor. Appl. Inf.
Technol. 95.

M. Alkasassbeh, M. Almseidin, Machine Learning Methods for Network Intrusion
Detection, CoRR abs/1809.02610.

Almomani, A., Gupta, B.B., Atawneh, S., Meulenberg, A., Almomani, E., 2013. A survey
of phishing email filtering techniques. IEEE Communications Surveys Tutorials 15
(4), 2070–2090, https://doi.org/10.1109/SURV.2013.030713.00020.

Almseidin, M., Alzubi, M., Kovacs, S., Alkasassbeh, M., 2017. Evaluation of machine
learning algorithms for intrusion detection system. In: 2017 IEEE 15th International
Symposium on Intelligent Systems and Informatics. SISY, pp. 000277–000282,
https://doi.org/10.1109/SISY.2017.8080566.

Babak, R., Roberto, P., Andrea, L., Kang, L., 2014. Peerrush: mining for unwanted p2p
traffic. Journal of Information Security and Applications. 19 (3), 194–208, https://
doi.org/10.1016/j.jisa.2014.03.002, http://www.sciencedirect.com/science/article/
pii/S2214212614000143.

Barto, Andrew, 1998. Reinforcement Learning: an Introduction. MIT Press, Cambridge.
Binsalleeh, H., Ormerod, T., Boukhtouta, A., Sinha, P., Youssef, A., Debbabi, M., Wang,

L., 2010. On the analysis of the zeus botnet crimeware toolkit. In: Eighth Annual
International Conference on Privacy Security and Trust. PST, pp. 31–38, https://doi.
org/10.1109/PST.2010.5593240.

Boger, Z., Guterman, H., 1997. Knowledge extraction from artificial neural network
models. In: IEEE International Conference on Systems, Man, and Cybernetics, vol. 4,
pp. 3030–3035, https://doi.org/10.1109/ICSMC.1997.633051.

Breiman, L., Friedman, J., Stone, C.J., Olshen, R.A., 1984. Classification and Regression
Trees. CRC press.

Castiglione, A., Prisco, R.D., Santis, A.D., Fiore, U., Palmieri, F., 2014. A botnet-based
command and control approach relying on swarm intelligence. J. Netw. Comput.
Appl. 38, 22–33, https://doi.org/10.1016/j.jnca.2013.05.002, http://www.
sciencedirect.com/science/article/pii/S1084804513001161.

Cover, T.M., Thomas, J.A., 2012. Elements of Information Theory. John Wiley & Sons.
Davis, C., Fernandez, J., Neville, S., 2009. Optimising sybil attacks against p2p-based

botnets. In: Malicious and Unwanted Software (MALWARE), 2009 4th International
Conference on, pp. 78–87, https://doi.org/10.1109/MALWARE.2009.5403016.

Dittrich, D., Dietrich, S., 2008. P2p as botnet command and control: a deeper insight. In:
3rd International Conference on Malicious and Unwanted Software, pp. 41–48,
https://doi.org/10.1109/MALWARE.2008.4690856.

Dries, A., Rckert, U., 2009. Adaptive concept drift detection. Stat. Anal. Data Min. 2
(5-6), 311–327, https://doi.org/10.1002/sam.10054.

Dshieldorg, 2013. Most attacked port reports. http://www.dshield.org/portreport.html.
Espinosa, J., Vandewalle, J., 1998. Constructing fuzzy models with linguistic integrity

from numerical data-afreli algorithm. IEEE Transactions on Fuzzy Systems 8 (5),
https://doi.org/10.1109/91.873582.

Fawcett, T., 2006. An introduction to roc analysis. Pattern Recognit. Lett. 27 (8),
861–874, https://doi.org/10.1016/j.patrec.2005.10.010, http://www.sciencedirect.
com/science/article/pii/S016786550500303X.

Feily, M., Shahrestani, A., Ramadass, S., 2009. A survey of botnet and botnet detection.
In: Third International Conference on Emerging Security Information, Systems and
Technologies, pp. 268–273, https://doi.org/10.1109/SECURWARE.2009.48.

Felix, J., Joseph, C., Ghorbani, A., 2012. Group behavior metrics for P2P botnet
detection. In: Vol. 7618 of Lecture Notes in Computer Science, Springer Berlin
Heidelberg, pp. 93–104, https://doi.org/10.1007/978-3-642-34129-8_9. book
section 9.

Gai, K., Qiu, M., 2018. Reinforcement learning-based content-centric services in mobile
sensing. IEEE Network 32, 34–39.

Garg, S., Singh, A., Sarje, A., Peddoju, S., 2013. Behaviour analysis of machine learning
algorithms for detecting p2p botnets. In: 15th International Conference on Advanced
Computing Technologies. ICACT, pp. 1–4, https://doi.org/10.1109/ICACT.2013.
6710523.

Goebel, J., Holz, T., 2007. Rishi: Identify Bot Contaminated Hosts by Irc Nickname
Evaluation.

Grizzard, J.B., Sharma, V., Nunnery, C., Kang, B.B., Dagon, D., 2007. Peer-to-peer
botnets: overview and case study. In: Proceedings of the First Conference on First
Workshop on Hot Topics in Understanding Botnets. USENIX Association. 11.

Gu, G., Porras, P.A., Yegneswaran, V., Fong, M.W., Lee, W., 2007. Bothunter: detecting
malware infection through ids-driven dialog correlation. In: USENIX Security, vol. 7,
pp. 1–16.

Gu, G., Zhang, J., Lee, W., 2008. Botsniffer: Detecting Botnet Command and Control
Channels in Network Traffic.

Gu, G., Perdisci, R., Zhang, J., Lee, W., et al., 2008. Botminer: clustering analysis of
network traffic for protocol-and structure-independent botnet detection. In: USENIX
Security Symposium, vol. 5, pp. 139–154.

Gu, G., Perdisci, R., Zhang, J., Lee, W., 2008. Botminer: clustering analysis of network
traffic for protocol-and structure-independent botnet detection. In: USENIX Security
Symposium, pp. 139–154.

Gusella, R., 1991. Characterizing the variability of arrival processes with indexes of
dispersion. IEEE J. Sel. Area. Commun. 9 (2), 203–211, https://doi.org/10.1109/49.
68448.

Han, K.-S., Im, E., 2012. A survey on P2P botnet detection. In: Vol. 120 of Lecture Notes
in Electrical Engineering, Springer Netherlands, pp. 589–593, https://doi.org/10.
1007/978-94-007-2911-7_56. book section 56.

Han, K.-S., Lim, K.-H., Im, E.-G., 2009. The traffic analysis of p2p-based storm botnet
using honeynet. Journal of the Korea Institute of Information Security and
Cryptology 19 (4), 51–61.

14

http://tcpreplay.appneta.com
http://refhub.elsevier.com/S1084-8045(19)30339-X/sref2
https://doi.org/10.1109/DEPCOS-RELCOMEX.2006.38
https://doi.org/10.1109/DEPCOS-RELCOMEX.2006.38
https://doi.org/10.1007/s00521-016-2564-5
https://doi.org/10.1007/s00521-016-2564-5
http://refhub.elsevier.com/S1084-8045(19)30339-X/sref5
https://doi.org/10.1109/SURV.2013.030713.00020
https://doi.org/10.1109/SISY.2017.8080566
https://doi.org/10.1016/j.jisa.2014.03.002
https://doi.org/10.1016/j.jisa.2014.03.002
http://www.sciencedirect.com/science/article/pii/S2214212614000143
http://www.sciencedirect.com/science/article/pii/S2214212614000143
http://refhub.elsevier.com/S1084-8045(19)30339-X/sref10
https://doi.org/10.1109/PST.2010.5593240
https://doi.org/10.1109/PST.2010.5593240
https://doi.org/10.1109/ICSMC.1997.633051
http://refhub.elsevier.com/S1084-8045(19)30339-X/sref13
https://doi.org/10.1016/j.jnca.2013.05.002
http://www.sciencedirect.com/science/article/pii/S1084804513001161
http://www.sciencedirect.com/science/article/pii/S1084804513001161
http://refhub.elsevier.com/S1084-8045(19)30339-X/sref15
https://doi.org/10.1109/MALWARE.2009.5403016
https://doi.org/10.1109/MALWARE.2008.4690856
https://doi.org/10.1002/sam.10054
http://www.dshield.org/portreport.html
https://doi.org/10.1109/91.873582
https://doi.org/10.1016/j.patrec.2005.10.010
http://www.sciencedirect.com/science/article/pii/S016786550500303X
http://www.sciencedirect.com/science/article/pii/S016786550500303X
https://doi.org/10.1109/SECURWARE.2009.48
https://doi.org/10.1007/978-3-642-34129-8_9
http://refhub.elsevier.com/S1084-8045(19)30339-X/sref24
https://doi.org/10.1109/ICACT.2013.6710523
https://doi.org/10.1109/ICACT.2013.6710523
http://refhub.elsevier.com/S1084-8045(19)30339-X/sref26
http://refhub.elsevier.com/S1084-8045(19)30339-X/sref27
http://refhub.elsevier.com/S1084-8045(19)30339-X/sref28
http://refhub.elsevier.com/S1084-8045(19)30339-X/sref29
http://refhub.elsevier.com/S1084-8045(19)30339-X/sref30
http://refhub.elsevier.com/S1084-8045(19)30339-X/sref31
https://doi.org/10.1109/49.68448
https://doi.org/10.1109/49.68448
https://doi.org/10.1007/978-94-007-2911-7_56
https://doi.org/10.1007/978-94-007-2911-7_56
http://refhub.elsevier.com/S1084-8045(19)30339-X/sref34

M. Alauthman et al. Journal of Network and Computer Applications 150 (2020) 102479

Hegna, A., Visualizing spatial and temporal dynamics of a class of irc-based botnets.
http://ntnu.diva-portal.org/smash/record.jsf?pid=diva2:353050.

Holz, T., Steiner, M., Dahl, F., Biersack, E., Freiling, F., 2008. Measurements and
mitigation of peer-to-peer-based botnets: a case study on storm worm. In:
Proceedings of the 1st Usenix Workshop on Large-Scale Exploits and Emergent
Threats, LEET08, USENIX Association, Berkeley, CA, USA, p. 9 19:9, http://dl.acm.
org/citation.cfm?id=1387709.1387718.

il Jang, D., yu Cho, K., Kim, M., chul Jung, H., Noh, B.-N., 2010. Evasion technique and
detection of malicious botnet. In: International Conference for Internet Technology
and Secured Transactions. ICITST, pp. 1–5.

Jaber, M., Cascella, R., Barakat, C., 2011. Can we trust the inter-packet time for traffic
classification? In: IEEE International Conference on Communications. ICC, pp. 1–5,
https://doi.org/10.1109/icc.2011.5963024.

Jain, A.K., Murty, M.N., Flynn, P.J., 1999. Data clustering: a review, ACM Comput. Surv
31 (3), 264–323, https://doi.org/10.1145/331499.331504.

Jiang, H., Shao, X., 2012. Detecting p2p botnets by discovering flow dependency in c&c
traffic. Peer-to-Peer Networking and Applications 1–12, https://doi.org/10.1007/
s12083-012-0150-x.

Li, C., Jiang, W., Zou, X., 2009. Botnet: survey and case study. In: Fourth International
Conference on Innovative Computing, Information and Control (ICICIC) Fourth
International Conference on, pp. 1184–1187, https://doi.org/10.1109/ICICIC.2009.
127.

Li, H., Hu, G., Yang, Y., 2012. Research on P2P botnet network behaviors and modeling.
In: Vol. 307 of Communications in Computer and Information Science, Springer
Berlin Heidelberg, pp. 82–89, https://doi.org/10.1007/978-3-642-34038-3_12.
book section 12.

Liao, W.-H., Chang, C.-C., 2010. Peer to peer botnet detection using data mining scheme.
In: International Conference on Internet Technology and Applications, pp. 1–4,
https://doi.org/10.1109/ITAPP.2010.5566407.

Limmer, T., Dressler, F., 2009. Flow-based tcp connection analysis. In: IEEE 28th
International Conference on Performance Computing and Communications. IPCCC,
pp. 376–383, https://doi.org/10.1109/PCCC.2009.5403846.

Livadas, C., Walsh, R., Lapsley, D., Strayer, W., 2006. Using machine learning techniques
to identify botnet traffic. In: Proceedings 31st IEEE Conference on Local Computer
Networks, pp. 967–974, https://doi.org/10.1109/LCN.2006.322210.

Lu, W., Rammidi, G., Ghorbani, A.A., 2011. Clustering botnet communication traffic
based on n-gram feature selection. Comput. Commun. 34 (3), 502–514, https://doi.
org/10.1016/j.comcom.2010.04.007, http://www.sciencedirect.com/science/
article/pii/S0140366410001751.

Ludl, C., McAllister, S., Kirda, E., Kruegel, C., 2007. On the effectiveness of techniques to
detect phishing sites. In: Vol. 4579 of Lecture Notes in Computer Science, Springer
Berlin Heidelberg, pp. 20–39, https://doi.org/10.1007/978-3-540-73614-1_2. book
section 2.

Masud, M., Al-Khateeb, T., Khan, L., Thuraisingham, B., Hamlen, K., 2008. Flow-based
identification of botnet traffic by mining multiple log files. In: First International
Conference on Distributed Framework and Applications, pp. 200–206, https://doi.
org/10.1109/ICDFMA.2008.4784437.

Matthews, B.W., 1975. Comparison of the predicted and observed secondary structure of
t4 phage lysozyme. Biochim. Biophys. Acta Protein Struct. 405 (2), 442–451,
https://doi.org/10.1016/0005-2795(75)90109-9, http://www.sciencedirect.com/
science/article/pii/0005279575901099.

Moustafa, N., Hu, J., Slay, J., 2019. A holistic review of network anomaly detection
systems: a comprehensive survey. J. Netw. Comput. Appl. 128, 33–55, https://doi.
org/10.1016/j.jnca.2018.12.006, http://www.sciencedirect.com/science/article/
pii/S1084804518303886.

Nguyen, H.T., Petrović, S., Franke, K., 2010. A comparison of feature-selection methods
for intrusion detection. In: Computer Network Security. Springer, pp. 242–255,
https://doi.org/10.1007/978-3-642-14706-7_19.

Nigrin, A., 1993. Neural Networks for Pattern Recognition. MIT press.
Noh, S.-K., Oh, J.-H., Lee, J.-S., Noh, B.-N., Jeong, H.-C., 2009. Detecting p2p botnets

using a multi-phased flow model. In: Third International Conference on Digital
Society, pp. 247–253, https://doi.org/10.1109/ICDS.2009.37.

Pajouh, H.H., Dehghantanha, A., Khayami, R., Choo, K.-K.R., 2018. Intelligent os x
malware threat detection with code inspection. Journal of Computer Virology and
Hacking Techniques 14 (3), 213–223.

Parra, G.D.L.T., Rad, P., Choo, K.R., 2019. Implementation of deep packet inspection in
smart grids and industrial internet of things: challenges and opportunities. J. Netw.
Comput. Appl. 135, 32–46.

Razi, M.A., Athappilly, K., 2005. A comparative predictive analysis of neural networks
(nns), nonlinear regression and classification and regression tree (cart) models.
Expert Syst. Appl. 29 (1), 65–74, https://doi.org/10.1016/j.eswa.2005.01.006,
http://www.sciencedirect.com/science/article/pii/S0957417405000072.

Riedmiller, M., Braun, H., 1993. A direct adaptive method for faster backpropagation
learning: the rprop algorithm. In: IEEE International Conference on Neural
Networks, vol. 1, pp. 586–591, https://doi.org/10.1109/ICNN.1993.298623.

Ring, M., Wunderlich, S., Scheuring, D., Landes, D., Hotho, A., 2019. A survey of
network-based intrusion detection data sets. Comput. Secur.

Rossi, D., Sottile, E., Veglia, P., 2011. Black-box analysis of internet p2p applications.
Peer-to-Peer Networking and Applications 4 (2), 146–164, https://doi.org/10.1007/
s12083-010-0072-4.

Roughan, M., Sen, S., Spatscheck, O., Duffield, N., 2004. Class of service mapping for
qos: a statistical signature-based approach to ip traffic classification. In: Proceedings
of the 4th ACM SIGCOMM Conference on Internet Measurement, IMC 04. ACM, New
York, USA, pp. 135–148, https://doi.org/10.1145/1028788.1028805.

Saad, S., Traore, I., Ghorbani, A., Sayed, B., Zhao, D., Lu, W., Felix, J., Hakimian, P.,
2011. Detecting p2p botnets through network behavior analysis and machine
learning. In: Ninth Annual International Conference on Privacy, Security and Trust.
PST, pp. 174–180, https://doi.org/10.1109/PST.2011.5971980.

Scanlon, M., Kechadi, T., 2012. Peer-to-Peer botnet investigation: a review. In: Vol. 179
of Lecture Notes in Electrical Engineering, Springer Netherlands, https://doi.org/10.
1007/978-94-007-5064-7_33. book section 33, pp. 231238, (Jong Hyuk).

Shiravi, A., Shiravi, H., Tavallaee, M., Ghorbani, A.A., 2012. Toward developing a
systematic approach to generate benchmark datasets for intrusion detection.
Comput. Secur. 31 (3), 357–374, https://doi.org/10.1016/j.cose.2011.12.012,
http://www.sciencedirect.com/science/article/pii/S0167404811001672.

Silva, S.S., Silva, R.M., Pinto, R.C., Salles, R.M., 2013. Botnets: a survey. Comput.
Network. 57 (2), 378–403.

Singh, M., Singh, M., Kaur, S., 2019. Issues and challenges in dns based botnet detection:
a survey. Comput. Secur.

Swets, J.A., 2014. Signal Detection Theory and ROC Analysis in Psychology and
Diagnostics: Collected Papers. Psychology Press.

Tax, D.M.J., 2001. One-class Classification. TU Delft, Delft University of Technology.
Timothy, S.W., David, L., Robert, W., Carl, L., 2008. Botnet detection based on network

behavior. In: Vol. 36 of Advances in Information Security, Springer US, pp. 1–24,
https://doi.org/10.1007/978-0-387-68768-1_1. book section 1.

Tran, H., Dang, C., Nguyen, H., Vo, P., Vu, T., 2019. Multi-confirmations and dns graph
mining for malicious domain detection. In: Intelligent Computing-Proceedings of the
Computing Conference. Springer, pp. 639–653.

Tsai, C.-F., Hsu, Y.-F., Lin, C.-Y., Lin, W.-Y., 2009. Intrusion detection by machine
learning: a review. Expert Syst. Appl. 36 (10), 11994, https://doi.org/10.1016/j.
eswa.2009.05.029. 12000 http://www.sciencedirect.com/science/article/pii/
S0957417409004801.

Van der Putten, P., Van Someren, M., 2004. A bias-variance analysis of a real world
learning problem: the coil challenge 2000. Mach. Learn. 57 (12), 177–195,
https://doi.org/10.1023/B3AMACH.0000035476.95130.99.

Wang, K., Huang, C.-Y., Lin, S.-J., Lin, Y.-D., 2011. A fuzzy pattern-based filtering
algorithm for botnet detection. Comput. Network. 55 (15), 3275–3286, https://doi.
org/10.1016/j.comnet.2011.05.026.

Weaver, R., 2010. Passive and active measurement. In: 11th International Conference,
PAM 2010, Zurich, Switzerland, April 7-9, 2010. Proceedings. Springer Berlin
Heidelberg, Berlin, Heidelberg, pp. 181–190, https://doi.org/10.1007/978-3-642-
12334-4_19. Ch. A Probabilistic Population Study of the Conficker-C Botnet.

Witten, I.H., Frank, E., 2005. Data Mining: Practical Machine Learning Tools and
Techniques. Morgan Kaufmann.

Wu, C., Sheng, S., Dong, X., 2018. Research on visualization systems for ddos attack
detection. In: 2018 IEEE International Conference on Systems, Man, and Cybernetics
(SMC). IEEE, pp. 2986–2991.

Wu, W., Alvarez, J., Liu, C., Sun, H.-M., 2018. Bot detection using unsupervised machine
learning. Microsyst. Technol. 24 (1), 209–217, https://doi.org/10.1007/s00542-
016-3237-0.

Yen, T.-F., 2011. Detecting Stealthy Malware Using Behavioral Features in Network
Traffic. Thesis.

Yen, T.-F., Reiter, M., 2008. Traffic Aggregation for Malware Detection. , https://doi.
org/10.1007/978-3-540-70542-0_11 2008/01/01.

Yu, S., Zhou, W., Jia, W., Guo, S., Xiang, Y., Tang, F., 2012. Discriminating ddos attacks
from flash crowds using flow correlation coefficient. IEEE Trans. Parallel Distrib.
Syst. 23 (6), 1073–1080, https://doi.org/10.1109/TPDS.2011.262.

Yu, S., Tian, Y., Guo, S., Wu, D.O., 2014. Can we beat ddos attacks in clouds? IEEE Trans.
Parallel Distrib. Syst. 25 (9), 2245–2254, https://doi.org/10.1109/TPDS.2013.181.

Zeidanloo, H., Shooshtari, M., Amoli, P., Safari, M., Zamani, M., 2010. A taxonomy of
botnet detection techniques. In: 3rd IEEE International Conference on Computer
Science and Information Technology, vol. 2. ICCSIT, pp. 158–162, https://doi.org/
10.1109/ICCSIT.2010.5563555.

Zhang, T., Ramakrishnan, R., Livny, M., Birch, 1997. A new data clustering algorithm
and its applications. Data Min. Knowl. Discov. 1 (2), 141–182,
https://doi.org/10.1023/A%3A1009783824328.

Zhang, J., Perdisci, R., Lee, W., Sarfraz, U., Luo, X., 2011. Detecting stealthy p2p botnets
using statistical traffic fingerprints. In: IEEE/IFIP 41st International Conference on
Dependable Systems Networks. DSN, pp. 121–132, https://doi.org/10.1109/DSN.
2011.5958212.

Zhao, D., Traore, I., Sayed, B., Lu, W., Saad, S., Ghorbani, A., Garant, D., 2013. Botnet
detection based on traffic behavior analysis and flow intervals. Computers &
Security 39, Part A (0) 2–16, https://doi.org/10.1016/j.cose.2013.04.007 http://
www.sciencedirect.com/science/article/pii/S0167404813000837.

Zhauniarovich, Y., Khalil, I., Yu, T., Dacier, M., 2018. A survey on malicious domains
detection through dns data analysis. ACM Comput. Surv. 51 (4), 67.

Zihao, S., Hui, W., 2009. Network data packet capture and protocol analysis on
jpcap-based. In: International Conference on Information Management, Innovation
Management and Industrial Engineering, vol. 3, pp. 329–332, https://doi.org/10.
1109/ICIII.2009.388.

Mohammed Alauthman received his PhD degree from Northumbria University Newcas-
tle, UK in 2016. He received a B.Sc. degree in Computer Science from Hashemite Univer-
sity, Jordan, in 2002, and received M.Sc. degrees in Computer Science from Amman Arab
University, Jordan, in 2004. Currently, he is Assistant Professor and senior lecturer at
department of computer science, Zarqa University, Jordan. His research interests include
cyber-security, Cyber Forensics, advanced machine learning and data science applica-
tions.

15

http://ntnu.diva-portal.org/smash/record.jsf?pid=diva2:353050
http://dl.acm.org/citation.cfm?id=1387709.1387718
http://dl.acm.org/citation.cfm?id=1387709.1387718
http://refhub.elsevier.com/S1084-8045(19)30339-X/sref37
https://doi.org/10.1109/icc.2011.5963024
https://doi.org/10.1145/331499.331504
https://doi.org/10.1007/s12083-012-0150-x
https://doi.org/10.1007/s12083-012-0150-x
https://doi.org/10.1109/ICICIC.2009.127
https://doi.org/10.1109/ICICIC.2009.127
https://doi.org/10.1007/978-3-642-34038-3_12
https://doi.org/10.1109/ITAPP.2010.5566407
https://doi.org/10.1109/PCCC.2009.5403846
https://doi.org/10.1109/LCN.2006.322210
https://doi.org/10.1016/j.comcom.2010.04.007
https://doi.org/10.1016/j.comcom.2010.04.007
http://www.sciencedirect.com/science/article/pii/S0140366410001751
http://www.sciencedirect.com/science/article/pii/S0140366410001751
https://doi.org/10.1007/978-3-540-73614-1_2
https://doi.org/10.1109/ICDFMA.2008.4784437
https://doi.org/10.1109/ICDFMA.2008.4784437
https://doi.org/10.1016/0005-2795(75)90109-9
http://www.sciencedirect.com/science/article/pii/0005279575901099
http://www.sciencedirect.com/science/article/pii/0005279575901099
https://doi.org/10.1016/j.jnca.2018.12.006
https://doi.org/10.1016/j.jnca.2018.12.006
http://www.sciencedirect.com/science/article/pii/S1084804518303886
http://www.sciencedirect.com/science/article/pii/S1084804518303886
https://doi.org/10.1007/978-3-642-14706-7_19
http://refhub.elsevier.com/S1084-8045(19)30339-X/sref52
https://doi.org/10.1109/ICDS.2009.37
http://refhub.elsevier.com/S1084-8045(19)30339-X/sref54
http://refhub.elsevier.com/S1084-8045(19)30339-X/sref55
https://doi.org/10.1016/j.eswa.2005.01.006
http://www.sciencedirect.com/science/article/pii/S0957417405000072
https://doi.org/10.1109/ICNN.1993.298623
http://refhub.elsevier.com/S1084-8045(19)30339-X/sref58
https://doi.org/10.1007/s12083-010-0072-4
https://doi.org/10.1007/s12083-010-0072-4
https://doi.org/10.1145/1028788.1028805
https://doi.org/10.1109/PST.2011.5971980
https://doi.org/10.1007/978-94-007-5064-7_33
https://doi.org/10.1007/978-94-007-5064-7_33
https://doi.org/10.1016/j.cose.2011.12.012
http://www.sciencedirect.com/science/article/pii/S0167404811001672
http://refhub.elsevier.com/S1084-8045(19)30339-X/sref64
http://refhub.elsevier.com/S1084-8045(19)30339-X/sref65
http://refhub.elsevier.com/S1084-8045(19)30339-X/sref66
http://refhub.elsevier.com/S1084-8045(19)30339-X/sref67
https://doi.org/10.1007/978-0-387-68768-1_1
http://refhub.elsevier.com/S1084-8045(19)30339-X/sref69
https://doi.org/10.1016/j.eswa.2009.05.029
https://doi.org/10.1016/j.eswa.2009.05.029
http://www.sciencedirect.com/science/article/pii/S0957417409004801
http://www.sciencedirect.com/science/article/pii/S0957417409004801
https://doi.org/10.1023/B3AMACH.0000035476.95130.99
https://doi.org/10.1016/j.comnet.2011.05.026
https://doi.org/10.1016/j.comnet.2011.05.026
https://doi.org/10.1007/978-3-642-12334-4_19
https://doi.org/10.1007/978-3-642-12334-4_19
http://refhub.elsevier.com/S1084-8045(19)30339-X/sref74
http://refhub.elsevier.com/S1084-8045(19)30339-X/sref75
https://doi.org/10.1007/s00542-016-3237-0
https://doi.org/10.1007/s00542-016-3237-0
http://refhub.elsevier.com/S1084-8045(19)30339-X/sref77
https://doi.org/10.1007/978-3-540-70542-0_11
https://doi.org/10.1007/978-3-540-70542-0_11
https://doi.org/10.1109/TPDS.2011.262
https://doi.org/10.1109/TPDS.2013.181
https://doi.org/10.1109/ICCSIT.2010.5563555
https://doi.org/10.1109/ICCSIT.2010.5563555
https://doi.org/10.1023/A3A1009783824328
https://doi.org/10.1109/DSN.2011.5958212
https://doi.org/10.1109/DSN.2011.5958212
https://doi.org/10.1016/j.cose.2013.04.007
http://www.sciencedirect.com/science/article/pii/S0167404813000837
http://www.sciencedirect.com/science/article/pii/S0167404813000837
http://refhub.elsevier.com/S1084-8045(19)30339-X/sref85
https://doi.org/10.1109/ICIII.2009.388
https://doi.org/10.1109/ICIII.2009.388

M. Alauthman et al. Journal of Network and Computer Applications 150 (2020) 102479

Nauman Aslam received the Ph.D. degree in engineering mathematics from Dalhousie
University, Halifax, NS, Canada, in 2008. He was an Assistant Professor with Dalhousie
University, until 2011. He is currently a Reader with the Department of Computer and
Information Sciences, Northumbria University, Newcastle upon Tyne, U.K. His research
interests include wireless ad hoc and sensor networks, fault-tolerant and reliable commu-
nication, and remote health monitoring application.

Mouhammd Alkasassbeh graduated from the school of computing, Portsmouth Univer-
sity, UK in 2008. He is currently a full professor in the Computer Science Dept. Princess
Sumaya University for Technology. His research interests include Network Traffic Analy-
sis, Network Fault Detection, Classification Network Fault and abnormality and Machine
learning in the area of computer networking and network security.

SULEMAN KHAN received the Ph.D. degree (Distinction) from the Faculty of Computer
Science and Information Technology, University of Malaya, Malaysia, in 2017. He was a
faculty member with the School of Information Technology, Monash University Malaysia
(June 17 - March 19). Currently, he is faculty member in department of computer and
information sciences, Northumbria University, Newcastle, UK. He has published more
than 50 high-impact research articles in reputed international journals and conferences.
His research areas include, but are not limited to, network forensics, software-defined
networks, the Internet of Things, cloud computing, and vehicular communications.

Ahmad Al-Qerem graduated in applied mathematics and MSc in Computer Science at
the Jordan University of Science and Technology in 1997 and 2002, respectively. After

that, he was appointed as full-time lecturer at the Zarqa University. Currently he is a vis-
iting professor at Princess Sumaya University for Technology (PSUT). He obtained a PhD
from Loughborough University, UK. His research interests are in performance and ana-
lytical modeling, mobile computing environments, protocol engineering, communication
networks, transition to IPv6, and transaction processing. He has published several papers
in various areas of computer science. Currently, he has a full academic post as associate
professor and the head of the Department of Internet Technology at Zarqa University -
Jordan.

Kim-Kwang Raymond Choo (SM15) received the Ph.D. in Information Security from
Queensland University of Technology. He currently holds the Cloud Technology Endowed
Professorship at the University of Texas at San Antonio. In 2016, he was named the Cyber-
security Educator of the Year - APAC (Cybersecurity Excellence Awards are produced in
cooperation with the Information Security Community on LinkedIn), and in 2015 he and
his team won the Digital Forensics Research Challenge organized by Germany’s Univer-
sity of Erlangen-Nuremberg. He is the recipient of the 2018 UTSA College of Business Col.
Jean Piccione and Lt. Col. Philip Piccione Endowed Research Award for Tenured Faculty,
ESORICS 2015 Best Paper Award, 2014 Highly Commended Award by the Australia New
Zealand Policing Advisory Agency, Fulbright Scholarship in 2009, 2008 Australia Day
Achievement Medallion, and British Computer Society’s Wilkes Award in 2008. He is also
a Fellow of the Australian Computer Society, an IEEE Senior Member, and Co-Chair of
IEEE Multimedia Communications Technical Committee (MMTC)’s Digital Rights Man-
agement for Multimedia Interest Group.

16

	An efficient reinforcement learning-based Botnet detection approach
	1. Introduction
	2. Related literature
	3. Our proposed approach
	3.1. Network traffic capture and packet reduction
	3.2. Feature extraction
	3.2.1. Connection level features
	3.2.2. Feature reduction
	3.2.3. Host feature extraction at network level

	3.3. Malicious activity detection
	3.4. Bot detection using reinforcement learning

	4. Experimental evaluation and results
	4.1. Datasets and tools
	4.2. Setup
	4.3. Network traffic reduction evaluation
	4.4. Host feature evaluations
	4.5. Evaluation of offline phase
	4.6. Evaluation of online bot host detection approach
	4.7. New botnet detection

	5. Conclusion and future work
	References

