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In Wireless Sensor Networks (WSNs), various anomalies may arise and reduce their reliability and effi- 

ciency. For example, Coverage Hole can occur in such networks due to several causes, such as damaging 

events, sensors battery exhaustion, hardware failure, and software bugs. Modern trends to use relocation 

of deployed sensor nodes when the manual addition of nodes is neither doable nor economical in many 

applications have attracted attention. The lack of central supervision and control in harsh and hostile en- 

vironments have encouraged researchers to shift from centralized to distributed node relocation schemes. 

In this paper, a new game theory approach based on reinforcement learning to recover Coverage Holes 

in a distributed way is proposed. For the formulated potential game, sensor nodes can recover Coverage 

Holes using only local acquaintances. To reduce the coverage gaps, the combined action of node repo- 

sition and sensing range adjustment is chosen by each sensor node. The simulation results prove that, 

unlike previous methods, the proposed approach can sustain a network overall coverage in the presence 

of random damage events. 

© 2020 Elsevier B.V. All rights reserved. 
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. Introduction 

Over the last decade, continuous and omnipresent monitoring

as become possible thanks to large mobile networks and wireless

ensors. 

Currently, the use of solutions based on Wireless Sensor Net-

orks (WSNs) has gained extensive interest [1] . WSNs deploy a

ery large number of small intelligent devices that form distributed

d hoc networks for data collection and management. In typical

cenarios, these networks are widely deployed in inaccessible and

angerous areas for monitoring different classes of applications [1] .

herefore, self-organization and mutual cooperation of nodes, are

ssential as they extend the lifetime of the network and reduce

ongestion by avoiding redundant data [2] . Wireless communica-

ions play a crucial role in computer networks. Their usefulness

ies in the open solutions they offer to provide mobility and essen-

ial services where infrastructure installation is not possible [3] . 
� Fully documented templates are available in the elsarticle package on CTAN . 
� Since 1880. 
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WSNs have applications in various fields, such as environmen-

al and real-world habitat monitoring, machine surveillance, preci-

ion farming, indoor control, intelligent alarms, and military appli-

ations. Monitoring is one of the most important and critical ap-

lications of WSNs. In fact, such networks perform this task using

 large number of electronic devices deployed across the area of

nterest (AoI) in order to sense and communicate environmental

r physical parameters cooperatively [1,4–6] . Generally, the sensor

odes’ initial positions are not predetermined or preconceived, but

ather randomly generated. Indeed, random positioning also means

hat the monitored areas may have Coverage Holes and serious

verlapping areas, that powerfully degrade the efficiency, reliabil-

ty, and quality of service (QoS) [7–9] . Random deployment is not

he only reason for coverage gaps damaging events, sensors battery

xhaustion, hardware failures, software bugs, and security attacks

ould also be other possible reasons [8] . 

In most cases, it may be impractical and even impossible to re-

lace or recharge the damaged sensor nodes by technicians, es-

ecially for WSNs settled in hostile and/or remote environments.

owever, the gathered data are often scientifically or strategically

mportant, and any discontinuity in the data collection process can

eriously decrease the efficiency and robustness of the network. A

uick and autonomous network recovery can avert the WSN ser-

ices break. Therefore, the ability of a network to heal itself with

https://doi.org/10.1016/j.adhoc.2020.102082
http://www.ScienceDirect.com
http://www.elsevier.com/locate/adhoc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.adhoc.2020.102082&domain=pdf
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minimal human supervision is important to ensure rapid responses

in case of emergency events [10,11] . 

In [12] , three distributed approaches were proposed for cover-

age control in WSNs without information on the location. The au-

thors in [12] present a decentralized scheme based on Laplacian

flows to process a generator of Coverage Holes. The coverage hole

is spotted based on the first homology classes of the Rips com-

plex. A self-healing distributed approach based on a fuzzy-logic

was proposed in [13] to detect and repair the Coverage Holes. For

mobile sensors, the density control technique was used to mini-

mize the overlapping area in order to eliminate Coverage Holes. In

[14] , the authors introduce a distributed method that detects and

eliminates Coverage Holes with the minimum number of redun-

dant nodes using only connectivity information in a high-density

network. An autonomous distributed coverage hole detection ap-

proach was proposed in [15] . To recover holes, this approach cal-

culates the available mobility distance before moving to eliminate

holes. To maintain the network coverage, a distributed algorithm

based on the Voronoi diagram was presented in [16] . The authors

propose to control the size of each Voronoi cell to eliminate the

Coverage Holes. In this case, the communication range must be

long enough otherwise the Voronoi cell of each node may not be

judged accurately. 

Intense research activities have been devoted to the develop-

ment of a variety of network recuperation and topology control

schemes, such as sensing power adjustment, sensor node reposi-

tion [10,11] , and clustering [17,18] . 

Hybrid topology control schemes, such as altering both sensing

power and spatial locations of mobile nodes, have also been elab-

orated to overcome the limitations of previous schemes. Power ad-

justment aims to dynamically modify the node sensing range to

maintain network connectivity and minimize the amount of dis-

sipated energy per node. In certain situations, the power adjust-

ment is more appropriate than nodes reposition mechanisms. In

fact, the dimension of the damaged area could be reduced by a

simple power adjustment and thus economize energy consumption

by avoiding unnecessary movements. Physical node reposition can

react more easily, especially in the proximity of damaged zones.

Therefore, a harmonic balancing between both mechanisms using

a hybrid system permits the network’s healing process to be more

resilient and economical in terms of energy consumption [10] . 

Various coverage control topologies were implemented for

WSNs, but all of them focus mainly on two models of topologies:

centralized topology and distributed topology. The former consists

of a collection of nodes that sends new information and forwards it

to sink nodes where all the data is processed. It is established on

the central nodes and locations of the other sensor nodes. How-

ever, the latter has no central management by the sink nodes. It

consists of a set of independent nodes with equal roles. Because

of the random behavior of Coverage Holes, accurate temporal and

geographical information on the Coverage Hole are not constantly

available and thus a dynamic and repeated adjustment of the de-

ployment parameters becomes necessary. Therefore, Coverage Hole

recovery using any centralized approach would result in compu-

tational complexity and energy consumption [10] . Distributed hy-

brid topology seems to be the most appropriate solution that could

heal Coverage Holes optimally in terms of QoS metrics (i.e. en-

ergy consumption, network lifetime, total coverage rate etc.). In-

deed, the distributed approaches would enable the sensor nodes

to react promptly and autonomously to unforeseen events with a

minimal degree of dependency and human supervision. Each node

could limit its interactions with other nodes and communicate

only with its neighbor nodes. Besides, it could measure the local

uncovered area to take the appropriate actions later, which would

reduce the consumed energy and enhance the network survivabil-

ity [19] . A distributed topology control approach can handle the
roblem from the game theory (GT) perspective. In fact, since the

ame theory is used to make strategic decisions in uncertain en-

ironments, its relevance to a distributed control is already recog-

ized [20] . 

Recently, researchers have shown significant interest in the ex-

ension of multi-agent reinforcement learning [21] in stochastic

ames [22] which are presented as a relevant framework for multi-

gent learning [23] . This type of games extends both game theory

20] and the formal framework of Markov decision processes, in

hich the action-state binding learning algorithm also called the

-learning algorithm [24] , is defined. A repeated game is a sub-

pecialty of stochastic games. The players repeatedly perform the

ame and, at any iteration, the current game necessarily depends

n the results of the previous one. 

In the present work, a novel distributed approach is designed to

ackle the problem of Coverage Holes for WSN. Here, a hybrid algo-

ithm that is able to mitigate the coverage gaps in a decentralized,

ynamic and autonomous way is designed. The proposed approach

erges two coverage control schemes, namely the nodes reposi-

ion and power transmission adjustment, using the game theory

oncept based on the Q-learning algorithm. Q-learning is a rein-

orcement learning technique that relies mainly on the iterated in-

eraction between the learning system and the environment. Re-

nforcement learning techniques were used to solve a variety of

SNs issues, such as, power management [25] , security [26] and

outing problems [27] . To the best of our knowledge, this is the

rst work that uses reinforcement learning (Q-learning) to expand

istributed approaches for Coverage Holes problems in mobile sen-

or networks. The main contributions of this paper can be summa-

ized as follows: 

• A novel hybrid approach for topology control based on the

game theory concept and Q-learning aiming to recover Cover-

age Holes optimally by finding trade-offs between setting the

sensor positions and the sensing power. 

• A novel potential game where nodes actions are decided in an

autonomous and decentralized way, which qualifies the pro-

posed control scheme to be used for networks settled in harsh

and hostile environments. 

• Extensive simulations and comparison studies are used to prove

that the proposed approach enhances the network perfor-

mances when dealing with successive random Coverage Holes. 

The remainder of this paper is organized as follows:

ection 2 reviews the related work about different control

chemes for WSNs. The system model is identified in Section 3 .

ection 4 describes the proposed approach. In section 5, we

resent and discuss the study results. Finally, the main conclusion

f our study is drawn in Section 6 . 

. Related work 

The main research field of topology control schemes can be

ategorized into two types: node relocation-based schemes and

ower transmission-based ones [10,11] . Sensor nodes relocation

rovides a promising solution to emerging and challenging cover-

ge problems in WSNs [28–30] . Relocation schemes can be clas-

ified into virtual force-based schemes, Voronoi-based schemes,

nd flip-based movement schemes. In [28] , a new relocation ap-

roach based on the radial virtual force called the Distributed Self

preading Algorithm (DSSA) is proposed. Several performance met-

ics such as coverage, uniformity, time, and convergence were con-

idered. Despite the good performance of DSSA, especially for sen-

ors movements and small-scale coverage hole recovery, the re-

ults presented in [31] prove that it is not as effective in large

cale coverage hole since it needs a huge number of iterations to
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onverge. Nevertheless, nodes relocation can produce new small

overage Holes due to independent and distributed motions. Be-

ides, in certain cases, some nodes motions could be useless in

erms of coverage maximization and may deplete the sensor bat-

ery supplies and reduce their ability to reach and heal the Cov-

rage Holes. Topology control schemes based on adjusting power

ransmission have been proven to be a powerful control scheme

or small-sized Coverage Holes [32,33] . The individual sensor nodes

equire higher transmission power to recover wide coverage gaps

hich rapidly exhausts the battery supplies and widens the Cov-

rage Hole areas. Recently several research studies have exploited

he hybrid topology control scheme for hole recovery; however the

esults presented in [31] prove that it does not overcome the defi-

iencies of the previously mentioned approaches [34,35] , and [36] .

n [35] , an exact potential game was developed for coverage op-

imization in a WSN consisting of two distributed based learning

lgorithms. A sensing model based on footprints and finite angle

f views were considered. Each sensor node decides to move or

o adjust its angle of view/range in terms of its residual energy

nd neighbor nodes’ actions. In spite of the good performance of

hese models, the authors of [36] showed that they are restricted

o specific wireless network applications due to their limited sens-

ng model (finite angle of view). The same authors investigated an

mnidirectional sensor model which can be employed in a wider

ange of applications thanks to its larger sensing scope. However,

 learning algorithm similar to that of [35] was used for the pro-

osed potential game. 

Lately, there has been a substantial interest in extending single

gent reinforcement learning [37] to stochastic games [38] which

re presented as a relevant framework for multi-agent learning.

uch games extend both the formal framework of Markov decision-

aking processes and the game theory. Nonetheless, one of the

ajor problems in extending mono-agent learning to multi-agent

ystems is the interaction between agents: individual actions can

o longer be considered in isolation from the actions of the other

gents, as their consequences are interdependent. A single agent

sing reinforcement learning can converge to an optimal policy to-

ards stationary agents since the stationarity of opposing agents

an be included in the environment model. In this case, the prob-

em reverts to a single agent environment. 

Several previous works have focused on the possible contribu-

ions ranging from game theory to multi-agent learning. Littman

39] proposed the minimax-Q learning algorithm, in which he

roved the convergence of purely competitive games (i.e. opposite

ewards). The authors in [40] have introduced the Nash Q-learning

lgorithm as part of non-cooperative stochastic games, with decor-

elated rewards. In the same context, Greenwald et al. [41] pro-

osed a similar version to Nash Q-learning, called correlated equi-

ibria learning that used the value of correlated balances (in case

f correlated rewards) rather than Nash’s balances. Littman [42] re-

efined Nash Q-learning in the Friend-or-Foe Q-learning algorithm,

s the combination of a cooperative algorithm and a competitive

nd a proven convergence towards Nash equilibrium for different

lasses of stochastic games. For their part, Claus et al. [43] intro-

uced the concept of a joint-action learner (JAL) which learns the

alue of joint actions rather than just the value of its own ac-

ions and proved the convergence towards a Nash equilibrium in

he purely cooperative games (identical rewards). In this work, the

oncept of JAL is considered. Moreover, a new distributed approach

ased on the game theory and multi-agent reinforcement learning

Q-learning) is proposed for the Coverage Holes recovery. A study

f the proposed approach behavior dealing with a sequence of

andom destructive events (i.e. Coverage Holes), is first presented.

ompared to [36] , the present work extends the payoff function to

 more intelligent and efficient function using the Q-learning algo-

ithm. 
t
. System model 

A WSN can be regarded as a connected graph G ( V, E ) with V

s the set of vertices representing nodes and E is the set of edges

epresenting links between nodes. Each sensor can be designed as

 Unit Disk Graph (UDG) in a two-dimensional rectangular region,

enoted by � = [ x min ; x max ] × [ y min ;y max ] with a sensing radius R s 
nd a communication radius R c [44] . For the sake of simplicity, we

ssume that all nodes in S have the same R c . Let S 1 ∈ S and S 2 ∈ S ,

he couple of nodes ( S 1 , S 2 ) are bi-directionally connected if S 1 is

ithin the transmission range of S 2 . Let E i denote the starting en-

rgy of sensor node i. We suppose that each node is localized via

PS. Coverage Holes may appear due to the predictable or unpre-

ictable death of the sensor nodes, such as battery power deple-

ion or explosion in the post-placement stage. Coverage Hole i can

e regarded as a circle with radius RH i and center ( x Hi , y Hi ). This

ircle depicts the zone where the node failures take place. Cov-

rage Holes with different and complex shape (convex and non-

onvex) can be easily estimated by combining multiple Coverage

oles of different centers and radii. Let D-nodes denote the set of

amaged nodes and U-nodes the set of undamaged nodes, each

ensor node S i ∈ S situated in the holes zone belongs to D-nodes;

therwise, it is regarded as an undamaged node and belongs to U-

odes [45] . For simplicity reasons, we assume that Coverage Holes

ocations are precisely detected. 

.1. Game theory 

The Game theory (GT) is a mathematical model used to make

trategic decisions in an uncertain environment. It is concerned

ith the modeling of situations to describe the possible behav-

ors of interdependent agents in order to determine the optimal

trategy. Dealing with competitive situations in GT, the outcome

f an agent’s choice of action depends critically on the actions

f other agents. In what follows, we present some mathematical

ackground in game theory. 

efinition 1. (Game theory). A game in strategic form ξ =
 

τ, �, υ} is defined by three basic components: 

(1) a player set τ = { 1 , . . . , n } , here, n is the number of players.

We denote by −i players other than player i . 

(2) an action space � = { �1 , �2 , . . . , �n } , each player i has a

strategy �i where �i is a series of players’ actions. 

(3) a utility function set υ where each player i has an utility

function υi : � → R used to evaluate the players’ payoff. 

Denote by �i the action profile { a 1 , a 2 , . . . , a m 

} , ∀ i ∈ τ . Denote

y the strategy profile other than i, i.e. the set of actions of all

layers except i: { �1 , . . . �i −1 , �i +1 , . . . , �n } . 
efinition 2. (Nash Equilibrium (NA)). is a state in which no player

ntends to change his strategy given the strategies adopted by

ther players. Let ξ be a strategic form game, the strategy ( ̈a i , ̈a −i )
s NE of ξ if, for all a i ∈ �i and for all ä −i ∈ �−i , υ( ̈a i , ä −i ) ≥
( a i , ̈a −i ) , ∀ i ∈ τ . 

efinition 3. (exact potential game). A strategic form game � is

n exact potential game with potential function ϕ : � → R if, for

ach i ∈ τ , for each a −i ∈ �−i , and for each a i , ̈a i ∈ �i , we have: 

(a i , a −i ) − ϕ( ̈a i , a −i ) = υi (a i , a −i ) − υi ( ̈a i , a −i ) (1)

In this paper, the Coverage Holes problem was formulated as

 potential repeated multiplayer game. In this game, the sensor

odes represent the players which communicate with each other
o heal the coverage gaps. 
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Fig. 1. Agent-environment interface for mono-agent Reinforcement Learning. 

Fig. 2. Agent-environment interface for a joint-action. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Profit of sensor i. 
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3.2. Q-Learning 

The Q-learning is a reinforcement learning technique based on

the Markov Decision Processes (MDP), which mainly rely on the it-

erated interaction between the agent and the environment. In the

Q-learning, an agent chooses to execute an action a t at an instant t

from the current state s t which leads to a new state s t+1 and that

provides the reward r t (See Fig. 1 ). Thus, it consists of learning the

actions to be performed according to the current state thanks to

a previously acquired experience. The policy pi ( s ) is a plan that

instructs the agent (player) which moves to select every possible

state (position). The player policy is gradually improved due to the

mutual interactions between the learning system and the environ-

ment. However, in practice, most of the reinforcement learning al-

gorithms do not directly work on policies; they rather use the it-

erative approximation of the evaluation function Q ( s, a ). Thus, the

Q ( s, a ) value is defined as the estimated future benefits. Once these

values are learned, the optimal strategy is to choose the action

which corresponds to the maximum Q-value. 

For the mono-agent system, the utility of a state is calculated

as the maximum Q-value of this state regarding all possible ac-

tions. Nevertheless, for a multi-agent system, the optimality cri-

terion cannot consider only the individual actions of agents since

it depends on the joint actions of other players. Thereby, the ex-

tension of the Q-learning to the multi-agent framework (with N

agents) should take into account other players’ actions in the for-

mulation of function (See Fig. 2 ). 

In fact, Q-learning algorithms behave well with discrete states

and actions. However, in real-world issues, the space is generally

continuous with infinite states and action combinations. Q-learning

cannot be directly applicable to the continuous variables. Space of-

ten needs to be discretized using approximation function such as

gradient descent, linear combinations of features and neural net-

work [46,47] . 
. Proposed hybrid recovery algorithm 

In what follows we will present a novel game to heal Coverage

oles for mobile WSNs. Our distributed approach allows the sensor

odes to decide the appropriate topology control actions in an au-

onomous and decentralized way. The proposed game is performed

sing a Q-learning algorithm and is proven to be an exact poten-

ial game. In previous works, we optimized the initial deployment

opology using multi-objective optimization approaches [48–50] . 

.1. Coverage problem formulation 

Based on the aforementioned issue, the players are the sen-

or nodes that can communicate simultaneously with each other

o enhance their own coverage zones with minimal power con-

umption. Moreover, we suppose that all players are rational and

ach one seeks to increase his expected utility function according

o its local vision of the network and its own prevision on actions

hat may be taken by other players. Reciprocal interactions be-

ween this set of players in order to maximize their payoff function

utility function) can be modeled as a repeated multi-player game.

et of actions At each time step t > 0, the set of strategies that

ode i ∈ τ may choose are the set of its possible actions a i ∈ �i .

s mentioned earlier, an hybrid topology control uses both nodes

eposition and power transmission adjustment. Consequently, each

obile sensor i ∈ τ can choose a combined action of changing

ts location p i and its power transmission (the sensing range r i ):

 i = (p i , r i ) , ∀ a i ∈ �i i) Let us suppose that p i = (p x i , p y i ) is the cur-

ent positions of node i in the bi-dimensional space: p i → p ′ 
i 

is the

hange of its positions, with p ′ 
i 
= (p ′ x i , p 

′ 
y i 
) is the next position of

ode i . ii) Let us suppose that r i , r 
′ 
i 
∈ [ R min , R max ] are respectively

he current and the next time sensing range of node i : r i → r i 
′ is

he change of the sensing range, with R min and R max , are respec-

ively the minimum and maximum sensing ranges of the sensor

ode. Utility functions Each node i has a utility or payoff function

i : � → R , defined as: 

i (a i , a −i ) = μαP (a i , a −i ) − μβC(a i ) (2)

here P (a i , a −i ) and C ( a i ) depict respectively the profit and the

ost of the chosen strategy by node i. μα and μβ are the weights

hat balance between the profit and the cost of the game. At each

ime t, in a repeated game, players simultaneously select their ac-

ion strategies and receive their utility functions which are speci-

ed by how much benefit should be gained and how much should

e paid? When all the players properly predict the opponent play-

rs strategies and play the best response to their predictions, the

merging strategy profile is a Nash equilibrium state. 

Each node has a Non-Overlapped Sensing Area (NOSA), defined

s the zone covered by only the node in question (See Fig. 3 ). To

aximize the total coverage area and reduce the coverage gaps,
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Algorithm 1 Distributed Payoff-based Q-learning algorithm. 

1: Initialization: At t = 1 , all sensor nodes maintain their ini- 

tial random positions (initial states).Initialize Q(s, a i , a −i ) arbi- 

trary, NbC(s, a −i ) ← 0 and n (s ) ← 0 ; ∀ s ∈ S; ∀ a i ∈ �i and ∀ a −i ∈ 

�−i .Let α ∈ [0 , 1] be the initial learning rate and ε be the initial 

exploration rate. 

2: Choose action and update state: At each time t ≥ 2 , each sen- 

sor node i updates its state respecting the following rules: 

i observe the current s: n (s ) ← n (s ) + 1 

ii choose the exploration rate ε 

• Exploration: with probability ε return a random action 

• Exploitation: otherwise, with probability (1 − ε) select an 

action a i by solving: arg max a i 
∑ 

a −i 

NbC(s, a −i ) 

n (s ) 
Q(s , a i , a −i ) 

3: Learning: Observing the opponents’ actions a −i , the reward 

R (s, a i ) and the next state: Q(s, a i , a −i ) ← (1 − α) Q(s, a i , a −i ) + 

α[ R (s, a i ) + γπ(s ′ )] NbC(s, a −i ) ← NbC(s, a −i ) + 1 where π(s ′ ) = 

max a i 
∑ 

a i 

NbC(s ′ , a −i ) 

n (s ′ ) Q(s ′ , a i , a −i ) and C(s, a −i ) is the number of 

times the opponent has played action a −i in state s . 

4: Repeat: Sensor i executes step 2 and step 3 until the ending 

condition is met. 
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s  
he sensor node should reduce overlapped zones with its neighbor-

ng nodes; therefore, maximizing profit function value is regarded

s maximizing the NOSA value. 

 (s i , s −i ) = Disk i \ 
⋃ 

j∈ N i 
Disk j (3)

here N i is the set of neighbor of node i . The cost represents the

nergy consumed by the sensor nodes while recovering Coverage

oles. This cost mainly consists of two types: 

-The consumed energy while changing the sensing power de-

oted by E pow 

-The consumed energy while exercising a motion to change

ts positions denoted by E mot . The energy related to changing the

ensing power of node i is specified by: 

 pow 

= 

∑ 

t 

n ∑ 

i =1 

(((4 π.R S i /λ) 2 )�t) (4)

he energy related to the node motions is specified by: 

 mot = 

∑ 

t 

n ∑ 

i =1 

(motion (i )�t) (5)

Where R Si is the sensing range, �t is the time duration / span.

he total consumed energy E tot is regarded as the sum of energy

onsumed taking into account the sensor motion and the sensing

ower change: 

 tot = E pow 

+ E mot (6)

emma1 The specified coverage game ξ cov is an exact potential

ame if there is a function ϕ : � → R , such that ∀ a i , ̈a i ∈ �i , ∀ a −i ∈
−i : 

(a i , a −i ) − ϕ( ̈a i , a −i ) = υ(a i , a −i ) − υ( ̈a i , a −i ) (7)

ith ϕ defined as follows: 

(a i , a −i ) = μαP tot (a i , a −i ) − μβC(a i , a −i ) (8)

here P tot is the network overall coverage and C the sensor node

nergy consumption. 

roof. Let us consider any strategy a := (a i , a −i ) ∈ �, ∀ i ∈ τ . We

elect an arbitrary strategy ä := ( ̈a i , a −i ) from �. The coverage

ame ξ cov is defined to be the exact potential game. In order to

rove this, we change the strategy of node i from a i to ä i without

hanging the others. 

We observe that: 

(a i , a −i ) − ϕ( ̈a i , a −i ) 

 (μαP tot (a i , a −i ) −μβC(a i , a −i )) −(μαP tot ( ̈a i , a −i ) − μβC( ̈a i , a −i )) 

 μα(P tot (a i , a −i ) − P tot ( ̈a i , a −i )) − μβ(C(a i , a −i ) − C( ̈a i , a −i )) 

 μα(P tot (a i , a −i ) − P tot ( ̈a i , a −i )) − μβ(C(a i ) − C( ̈a i )) 

ormally, any change in the overlapped covered area of node i

oes not have any impact on the overall net coverage since it is

lready covered by at least another sensor node (See equation). 

P tot (a i , a −i ) − P tot ( ̈a i , a −i ) = P (a i , a −i ) − P ( ̈a i , a −i ) 

So, we have: 

(a i , a −i ) − ϕ( ̈a i , a −i ) 

 μα(P ( a i , a −i ) − P ( ̈a i , a −i )) − μβ(C( a i ) − C( ̈a i )) 

 υ( a i , a −i ) − υ( ̈a i , a −i ) 

herefore, when player i switches from strategy a i to strategy

dota i , the variation in the potential function ϕ equals to the vari-

tion in the payoff/ utility function. By referring to definition 3, we

an affirm that the proposed coverage game is proven to be an ex-
ct potential game. � a
.2. Distributed payoff-based Q-learning algorithm 

The payoff function depends not only on the profile of the sen-

or node actions but also on the actions of its neighbors. Conse-

uently, a distributed learning approach is the most appropriate

olution since it needs only the payoff received from the previous

teps. The players adapt their behaviors to change of other players’

ehaviors. In this work, we propose a new distributed payoff-based

-learning algorithm to perform the previously formulated cover-

ge game. Here, we deal with a multi-players game; therefore, a

ulti-agent reinforcement learning concept is used. 

The proposed algorithm can be described in pseudo-code 1 . 

The payoff function switches between exploring and exploit-

ng processes, to find the best action sequence. In fact, the explo-

ation process assists nodes to discover the unknown environment

apidly, whereas the exploitation one enables them to keep the ef-

ective scenarios. The metric ε controls the trade-off between the

xploitation of the system’s previously acquired knowledge and the

xploration of the environment. This work extends the potential

ame presented in [36] by improving the distributed payoff based

earning, which only considers the two last most successful actions

f mobile nodes. For the previously considered topology control

cheme, sensor nodes were meant to behave not only in an au-

onomous and decentralized way but also in a rational way. The

ew payoff function based on the Q-learning algorithm takes into

ccount the node environment interaction and opponents’ behav-

or, which gives the sensor nodes a more targeted and effective

esponse while healing the newly-formed Coverage Holes. Besides,

he Q-learning algorithm ensures a good balance between the ac-

uisition of information about new interactions (exploration) and

he choice of actions that seems to lead to viable rewards (ex-

loitation). Contrary to [36] , the temporary strategy is not consid-

red here. The temporary strategy means that we do not have to

hange both sensing power and node positions over iterations; one

f these metrics can be kept. It should also be noted that the pro-

osed approach was proven to be a potential game, which, theo-

etically, can ensure its convergence towards a unique Nash equi-

ibrium. In the following section, we will describe the extensive

imulations that were performed in order to validate the proposed

lgorithm and confirm its efficiency. 
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Fig. 4. Overall coverage dealing with random successive Coverage Holes Value of Stopping Criterion for N = 250 Nodes for an AoI without obstacle. 
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Fig. 5. Value of Stopping Criterion for N = 250 Nodes for an AoI without obstacle. 

Table 1 

Simulation parameters setting. 

Variables names Variables values 

Wireless Sensor Network Parameters 

Ns : Number of sensor Nodes [50, 250] 

R i s : Sensing radius U ~ [7, 15] m 

Rc : Communication radius 30 m 

�: Area of interest [1, 100] × [1, 100]m 2 

Algorithm parameters 

ε: Exploration rate [0, 0.5] 

Coverage holes parameters 

Number of Damages 4 

R i H U ~ [10, 20] m 
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. Simulations and results 

To validate the previously defined mathematical formulations,

e needed to implement our approach and compare the obtained

esults with those of the previously proposed approaches. In this

ork, performance criteria were specified in terms of the total cov-

rage proportion, energy related to the change of sensing power,

he energy related to node motions, and the total energy con-

umption. The performance of the proposed approach was tested

n three topology scenarios: the no obstacle scenario, the rectan-

ular obstacle scenario, and the T shaped obstacle scenario. The

ower transmission adjustment is not possible in all WSNs appli-

ations. Thus, we considered another simulation scenario that uses

ensor nodes which support only positions adjustment in no obsta-

le AoI. The obtained results were compared with those reached by

he DSSA algorithm [28] as well as those of [36] . 

.1. Simulation parameters 

For our simulations, we considered a square region δ with a

00 m long edge divided into a predefined number of squares. The

ize of each square was equal to 1 m 

2 and its center was the point

o be covered. The simulation trials were performed using Matlab.

odes were randomly deployed in the AoI δ with a uniform distri-

ution. The transmission range was fixed to 30 m and the sensing

anges were chosen randomly between 7 m and 15 m (see Table 1 ).

he network connectivity is assumed to be full if the communi-

ation radius is larger than the double of the sensing radius [51] .
s explained above, Q-learning is not appropriate for continuous

pace and an approximation function is needed to discretized the

pace. In this work, a simple form of discretization was used. In

act, the agent (node) performs two actions, namely changing the

ocation and the power transmission. For each algorithm iteration,

he node changes its location by moving one step in the following

irections: left, right, up, or down. The sensor sensing radius takes

n a value in this set: 7, 9, 11, 13 or 15. For the rest of this paper,

he Distributed Hybrid Coverage Hole Recovery Approach proposed

n [36] is abbreviated as (DHCHRA). 

ε was used to balance the exploration and the exploitation pro-

esses in the algorithm. Using a value interval given in table helps

he Q-learning algorithm to converge towards an optimal solution

46,47] . 

For a reliable comparison, we extended and simulated the two

reviously mentioned algorithms. In this paper, we considered the

nergy consumed for the movement of the sensor and that of

hange of its sensing range so that the sensor was proposed to

aise its sensing range to avoid needlessly prevalent movements,

specially with the frequently arising Coverage Holes. Four dam-

ge events with different sizes were generated for each scenario.

he algorithms remained active, after each new emerging Coverage

ole until an overall coverage of 95% was reached. If this thresh-

ld had not been satisfied, algorithms would stop running when

he number of iterations reach 500. The stopping criterion, i.e. the

aximal number of iterations was set to 500 to prevent the col-

ective death of sensor nodes due to the exhaustion of the residual

nergy in their batteries. 

.2. Simulation results 

In this section, we present and analyze the obtained results. Our

esults are compared with those given by DSSA and DHCHRA. All

he algorithms instances were tested on the same initial node dis-

ributions using four different scenarios. 

.2.1. Area of interest without obstacle scenario 

In this scenario, a detection area without physical obstacles was

resented and four damaged events were generated. The damage

vent time sequences were 1 s, 14 s, 57 s, and 161 s. Fig. 4 shows a

napshot sample to prove the ability of the proposed game theory-

ased Q-learning algorithm to recover Coverage Holes. The color in



8 F. Hajjej, M. Hamdi and R. Ejbali et al. / Ad Hoc Networks 101 (2020) 102082 

Fig. 6. Percentage of overall coverage vs. the number of nodes. 

Fig. 7. Network consumed energy vs. the number of nodes for an AoI without obstacle. 
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Fig. 8. Overall coverage dealing with random successive Coverage Holes for an AoI with rectangular shape obstacle. 
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Fig. 9. Overall coverage dealing with random successive Coverage Holes for an AoI with rectangular shape obstacle. 
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Fig. 10. Network consumed energy vs. the number of nodes for an AoI with obstacles. 

Fig. 11. Percentage of overall coverage vs. the number of nodes for an AoI with obstacles. 
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F  
he figure specifies the number of sensors that can cover a zone.

recisely, the number of sensors in the zone decreases as the color

hanges to blue; or it increases as the color changes to red. 

The dark blue, however, indicates that a zone is not covered by

ny sensor node. Fig. 4 b,d,f and h show the new emerging Cover-

ge Holes owing to successive destructive events. The behavior of

ur potential game dealing with the four Coverage Holes is illus-

rated in Fig. 4 c, e, g and j. These figures clearly show the efficiency

f our proposed topology control scheme to heal the network and

aintain the highest coverage threshold, after successive Coverage

ole events. Sensor nodes adjust both sensing range and position

n order to quickly and accurately heal the coverage gaps. 

Fig. 5 shows the average of the required number of iterations

fter the appearance of each coverage hole for NS = 250 nodes

or the given algorithms. The number of iterations increases with

he appearance of successive events, for the three algorithms.

he stopping criterion (number of iterations equal to 	500) was

eached by DSSA and the DHCHRA after event 2 and event 3, re-

pectively. The proposed approach converged faster compared to

he prior counterparts. Indeed, it succeeded to recover the four

overage Holes and reach the aforementioned coverage threshold

95% of overall coverage area) before reaching the stopping crite-

ion. 

Fig. 6 presents the percentage of the overall coverage for

HCHRA , DSSA , and the proposed algorithm considering the num-

er of the sensor nodes (50 to 250 nodes) deployed in the AoI. The

verall coverage is evaluated during the occurrence of the consec-

tive four Coverage Holes. As can be seen in this figure, the pro-

osed algorithm outperforms the above-mentioned algorithms in

erms of overall network coverage. We simulated the efficiency of

SSA, the DHCHRA and the proposed approach in terms of energy

onsumption. 

Fig. 7 a–c show the consumed energy related to the change of

he sensing power, the consumed energy related to node motions,
 r  
nd the total consumed energy, respectively. The results prove that

ur approach outperforms the two approaches in terms of energy

onsumption. As presented above (see Fig. 5 ), the proposed ap-

roach has a rapid response to the consecutive Coverage Holes

ompared to the DSSA and the DHCHRA. These results mean that

ensor nodes take their optimal positions in terms of coverage with

ewer possible movements, which empowers the network to dissi-

ate fewer amounts of energy (see Fig. 7 ) and, thus, extend the

etwork survivability. 

.2.2. Area of Interest with obstacles scenario 

To bring our simulations closer to reality, two obstacles shapes

ere considered in our simulation scenarios: a rectangular shape

nd T shape. The obstacles were placed in the center of the AoI.

he sensor nodes can be placed on the border of the obstacles.

he results of those two scenarios will be presented as follows:

igs. 8 and 9 show a snapshot sample to prove the ability of the

roposed game theory-based Q-learning algorithm to recover Cov-

rage Holes in an area of detection that contains a rectangular and

 shaped obstacle, respectively. 

Figs. 8 b,d,f,h and 9 b,d,f,h show the new emerging Coverage

oles owing to successive destructive events for rectangular ob-

tacle scenario and T shaped obstacle scenario, respectively. The

amage event time sequences were 1 s, 5 s, 70 s, and 273 s, and

 s, 11 s, 169 s, and 312 s for rectangular obstacle scenario and T

haped obstacle scenario, respectively. Other sub-figures show the

ehavior of the approach dealing with the four Coverage Holes in a

etection area with rectangular obstacle shape. The figures present

he capacity of the proposed approach to eliminate Coverage Holes,

ven in the presence of obstacles. 

Fig. 10 shows the average of the number of iterations required

o recover each coverage hole for the proposed obstacle scenarios.

or the rectangular obstacle scenario, the stopping criterion was

eached by the DSSA and the DHCHRA after event 2. The four Cov-
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Fig. 12. Network consumed energy vs. the number of nodes for an AoI with rectangular shape obstacle. 
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erage Holes were recovered by our proposed approach, which suc-

ceeded to achieve the coverage threshold (95% of overall coverage

area) before reaching the stopping criterion. For the T shaped ob-

stacle scenario, the stopping criterion was reached by the DSSA

and the DHCHRA after event 1 and event 2, respectively. How-

ever, the proposed approach recovers the four Coverage Holes be-

fore reaching 92% of overall coverage area. 

Fig. 11 presents the percentage of the overall coverage for the

DHCHRA, blue the DSSA, and the proposed algorithm varying the

number of the sensor nodes (from 50 to 250 nodes) deployed in

a detection area with obstacles. The overall coverage is evaluated

during the occurrence of the consecutive four Coverage Holes. As

shown in this figure, the proposed algorithm outperforms other

algorithms in terms of the overall network coverage, even in the

presence of the obstacles. 

Figs. 12 and 13 present the efficiency of the DSSA, the DHCHRA

and the proposed approach in terms of energy consumption for

detection area with obstacles. Figs. 12 a,b,c and 13 a,b,c show the

consumed energy related to the change of the sensing power, the

consumed energy related to node motions and the total consumed

energy, respectively. The results prove that our approach performs

better than both of the two approaches in terms of energy con-

sumption. 

5.2.3. Topology control scheme without power adjustment 

Many WSN applications do not support power transmission ad-

justment. Therefore, in this section, a topology control strategy

without power control tested in an AoI without obstacle is pre-

sented. The action of the nodes is limited to the position adjust-

ment. 
Fig. 14 shows the percentage of the total coverage area of the

roposed approach for the different suggested scenarios, namely

n AoI with no obstacle, an AoI with rectangular shape obstacle, an

oI with T shaped obstacle, and a control topology scheme with no

ower adjustment for an AoI without obstacle. The percentage of

he total coverage was evaluated varying the number of the sensor

odes (from 50 to 250 nodes). This figure proves that the proposed

pproach reaches a satisfactory coverage rate with 50, 100, 150,

nd 200 nodes for each suggested scenario. Also, it reaches the

overage threshold (95% of overall coverage area) with 250 nodes,

xcept for the T shaped obstacle scenario that reaches only 93% of

verall area coverage. 

Fig. 15 shows the energy consumption results of our approach

or all the proposed scenarios. For the no obstacle scenario, the

ectangular obstacle scenario, and the T shaped obstacle scenario

he energy consumption value is convergent. However, the energy

onsumption of the proposed approach without power adjustment

bviously increased. 

.3. Results and discussions 

We have demonstrated, through a wide range of experimen-

al scenarios, that the proposed Q learning-based approach for

SN topology control gives better results compared to other ap-

roaches. The advantages of using such an approach can be sum-

arized as follows: Unlike other approaches (studies based on

athematical models or simulations, assuming fixed experimen-

al parameters), this solution is adaptable to variations in the state

f the network. Besides, thanks to the robust machine learning al-

orithm, namely the Q learning, this approach can calibrate itself
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Fig. 13. Network consumed energy vs. the number of nodes for an AoI with T shape obstacle. 

Fig. 14. Percentage of overall coverage vs. the number of nodes of the proposed approach for the different proposed scenarios. 
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Fig. 15. The total consumed energy vs. the number of nodes of the proposed approach for the different proposed scenarios. 
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to the newly acquired knowledge. Consequently, Q-learning based

payoff function helps the proposed coverage game to find the Nash

equilibrium and reach the predefined overall coverage threshold

in a detection area without obstacles more rapidly (see Fig. 5 ).

Even in an environment which contains different shapes of obsta-

cles, our approach succeeds to overcome its counterparts in terms

of overall coverage (see Fig. 11 a and b). In addition, Q-learning

takes into account not only the best previous actions of an agent

(sensor), but also the predicted neighbors’ actions. Such behavior

helps sensors to effectively forecast the best strategy that should

be taken and perform the most accurate and successful decision

that enhances both the overall coverage and energy consumption

while recovering Coverage Holes. Therefore, the topology control

scheme induced by our proposed approach outperforms other ap-

proaches in terms of energy consumption and coverage for an AoI

without obstacles scenario and also for an AoI with obstacles sce-

nario (see Figs. 6 and 7 ). However, the speed of our approach to

recovers the Coverage Holes while respecting the predefined cov-

erage sill (95% of overall coverage area) decreased in scenarios with

obstacles. This coverage sill could not be reached with more com-

plicated obstacle scenarios (with T shaped obstacle only 92% of

overall coverage area was achieved). In fact, those results can be

explained by the effect of obstacle on the ease of movement for

some nodes, spacially sensor nodes located in the proximity of the

obstacle border (see Figs. 5 and 10 ). 

The coverage rate of the proposed approach with no power ad-

justment is convergent compared to that of the original version.

However, energy consumption rose compared to the original ver-

sion. Indeed, such type of topology control scheme has limited the

actions of the nodes to reposition. Some coverage gaps do not need

the movement of sensors to recover it, a power adjustment of the

hole neighbor’s nodes can solve the problem and cover the zone

with a minimum amount of energy consumption (see Figs. 14 and

15 ). 

6. Conclusion 

In the present work, we proposed a new hybrid Coverage Hole

recovery approach for WSNs which relies on both the sensing
ower control and node relocation using a game theory based on

-learning algorithm. The efficiency of the proposed algorithm was

ested on a network topology and Coverage Hole events via an

laborated simulation study. The simulation results prove that the

roposed approach outperforms the other Coverage Hole recovery

lgorithms in terms of overall coverage and energy consumption.

s part of future works, we are planning to enhance the technical

aturity of the proposed approach by taking into consideration the

pproximation functions, such as neural networks. We also think

f applying adequate communication protocols to improve the pro-

osed approach. For better results, we plan to design a payoff func-

ion based on deep Q-learning. 
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