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a b s t r a c t 

Heterogeneous network (HetNet) is a promising solution to satisfy the unprecedented demand for higher 

data rate in the next generation mobile networks. Different from the traditional single-layer cellular net- 

works, how to provide the best service to the user equipments (UEs) under the limited resource is an 

urgent problem to solve. In order to efficiently address the above challenge and strive towards high 

network energy efficiency, the joint optimization problem of user association and power control in or- 

thogonal frequency division multiple access (OFDMA) based uplink HetNets is studied. Considering the 

non-convex and non-linear characteristics of the problem, a multi-agent deep Q-learning Network (DQN) 

method is studied to solve the problem. Different from the traditional methods, such as game theory, 

fractional programming and convex optimization, which need more and accurate network information 

in practice, the multi-agent DQN method requires less communication information of the environment. 

Moreover, for the communication environment dynamics, the maximum long-term overall network utility 

with a new reward function while ensuring the UE’s quality of service (QoS) requirements is achieved by 

using the multi-agent DQN method. Then, according to the application scenario, the action space, state 

space and reward function of the multi-agent DQN based framework are redefined and formulated. Sim- 

ulation results demonstrate that the multi-agent DQN method has the best performance on convergence 

and energy efficiency compared with the traditional reinforcement learning (Q-learning). 

© 2020 Elsevier B.V. All rights reserved. 
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. Introduction 

In order to meet the explosive increase of mobile data traffic

emands, heterogeneous networks (HetNets) have been proposed

s an efficient solution due to the characteristics of the dense de-

loyment and heterogeneity [1] . Compared with traditional homo-

eneous networks, HetNets consist of different types of base sta-

ions (BSs) named as micro BS, pico BS and femto BS, etc. These

Ss are characterized by their transmit power, BS density and data

ate [2–4] . As the number of mobile devices increases, the interfer-

nce among user equipments (UEs) will be more severe under the

pectrum sharing strategy for the uplink HetNets. Thus, orthogonal

requency division multiple access (OFDMA) based HetNets have

een considered in major wireless communication standards [5–7] .

ince the macro BS and small BS have different coverage, transmit

ower and processing capability, when the conventional maximum
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eceived signal strength based user association scheme is applied

o the HetNets, it will result in inefficient small BS deployment be-

ause most UEs are associated with the macro BS and very few UEs

re attracted by small BS. In addition, with the increase of UEs, the

plink interference is another bottleneck in HetNets [8] . A proper

etting of transmit power by a power control strategy can decrease

he interference among the UEs who select the same subchannel

n the OFDMA based HetNets, which strongly influences the qual-

ty of service (QoS) of UEs. Thus, to further improve the system

erformance and user experience, the joint optimization problem

f user association and power control is of great importance in the

etNets. 

There are some works that studied the user association and

ower control problems in [9–14] . Considering the interplay within

ser association and power control, some literatures investigate

oint optimization of user association and power control in the

etNets, such as [15–18] . The author in [15] investigated the

plink energy-efficient of the communication between the pri-

ary users and the secondary users through user association and

ower control and proposed an iterative algorithm to solve this

https://doi.org/10.1016/j.adhoc.2019.102069
http://www.ScienceDirect.com
http://www.elsevier.com/locate/adhoc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.adhoc.2019.102069&domain=pdf
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problem by using convex optimization etc. Under the noncooper-

ative game theory, a universal joint BS association and power con-

trol algorithm for HetNets was proposed by considering the sys-

tem throughput in [16] . A joint user association and power con-

trol strategy for balancing the network loads by maximizing the

weighted sum of long-term rate was designed in [17] . In [18] , a

heuristic algorithm was proposed to deal with the delay-aware

uplink user association problem in conjunction with power con-

trol in HetNets. In addition, considering the non-convex and non-

linear characteristics about the joint user association and power

control problem, it is difficult to obtain a global optimal so-

lution. In order to solve the problem, some methods have re-

cently been developed, such as the convex optimization strat-

egy [9,10,12,13,15] , game-theoretic method [11,14,16] , fractional pro-

gramming approach [17] and heuristic algorithm [18] . 

However, in order to obtain the solution of the problem by

the above methods, a more and accurate network information

are required, which may not be effectively and practically under

the change of the communication environment in practice. For

the time-varying dynamic environment, how to solve this prob-

lem more effectively and intelligently is still a challenge for the

HetNets. Thus, the emerging artificial intelligence method turns

into an efficient tool for the problem [19] . By constantly inter-

acting with the environment, reinforcement learning [20,21] can

solve the long-term decision and game-theoretic problems through

the online learning. Among the reinforcement learning algorithms,

the Q-learning algorithm is widely used because it does not need

to know the state transition probability [22] . By using less prior

knowledge of the environment, the Q-learning method can obtain

the optimal policy to solve the intelligent decision problems. In

[23] , by using the Q-learning method, the author studied a joint

channel allocation and power control problem for device-to-device

(D2D) transmission underlaying a conventional single-cell cellular

network. Then a Q-learning based method for autonomous chan-

nel and power level selection by D2D users in a multi-cell net-

work was studied in [24] . For load balancing in the vehicular net-

works with heterogeneous BSs, a distributed user association al-

gorithm based online Q-learning was studied in [25] . In [26] , a

Q-learning based power control scheme for energy-efficient opti-

mization in femtocell networks was studied. The problem of joint

caching and resource allocation was investigated for a network of

cache-enabled unmanned aerial vehicles (UAVs) that serve wire-

less ground users over the LTE licensed and unlicensed bands

[27] . 

However, the space of state and action considered in [23–27] is

relatively small. For the joint user association and power control

problem in the HetNets, since the space of state and action is rela-

tively large, it is difficult to get a better performance by Q-learning

method. In order to deal with the large space and make up for

the deficiency of Q-learning method, a deep reinforcement learn-

ing [28] is proposed as a method to handle the large-scale prob-

lem. Based on the deep reinforcement learning approach, through

the combination of Q-learning and deep neural network (DNN),

the deep Q-network (DQN) [29] can effectively improve the net-

work learning performance. In other word, the agent can learn op-

timal strategy from high dimensional state and action space by us-

ing DQN method. Recently, the DQN method has been studied in

some works to solve the intelligent resource management and de-

cision problem. In order to minimize the interference to vehicle-to-

infrastructure (V2I) communications, a DQN based framework was

proposed to optimize the joint sub-band and power level problem

in [30,31] . Then, for the mobile edge computing (MEC) system, the

author formulated the sum cost of delay and energy consumption

for all UEs as the optimization objective and they jointly optimize

the offloading decision and computational resource allocation by

the DQN method [32] . The author tackled the joint caching, com-
uting, and radio resources allocation problem in the fog-enabled

nternet of things (IoT), in order to minimize the service latency

nder the DQN method [33] . By considering the long-term sys-

em power consumption under the dynamics of edge cache states,

 DQN-based joint mode selection and resource management ap-

roach was studied in [34] . However, a few recent literatures study

he DQN based method to solve the joint optimization problem in

etNets, such as [35,36] . In [35] , the deep reinforcement learning

or user association and channel allocation in HetNets was studied,

here the author considered the difference between the UE’s rate

nd the BS’s transmit power as a reward. The author in [36] stud-

ed the control of user association and power allocation to max-

mize UEs’ sum-rate under the constraints of UE’s QoS by using

he DQN scheme, where a convolutional neural network (CNN)

as applied. However, the above studies focus on joint user as-

ociation and channel allocation (or power allocation) in HetNets

ithout considering the analysis of energy efficiency. Considering

he continuous emergence of various new business and applica-

ion scenarios [37,38] , the energy consumption of UE is also ris-

ng together with the growing of intensive mobile data comput-

ng and applications. Since the current battery technology can-

ot satisfy the energy consumption of mobile UEs, optimizing the

nergy efficiency of UEs becomes even more important in the

etNets. 

Based on the above analysis, as deep reinforcement learning

hows great potential in handling large systems, in this paper, a

ulti-agent deep reinforcement learning for joint user association

nd power control is studied. The main contributions of this paper

re summarized as follows. 

1) In this paper, in order to maximize the energy efficiency of

ll UEs, we first jointly optimize the user association and power

ontrol in OFDMA based uplink HetNets by using the multi-agent

QN method. 

2) Since the problem is a mixed-integer non-linear fractional

rograming (MINLFP) problem, it is difficult to obtain the opti-

al solution by the traditional methods, and a multi-agent DQN

lgorithm which requires less transmission overhead information

s studied. Based on the contradiction between energy consump-

ion and battery capacity of UE, the UE’s energy efficiency is re-

efined as the reward function in this paper. For the decentralized

einforcement learning framework, the agents are capable of intel-

igently making their adaptive decisions to maximize their energy

fficiency under the constraints of maximum transmit power and

Es’ QoS requirements without coordinating with other agents. 

3) The performance of multi-agent DQN from the perspectives

f the convergence, optimality and stability are analyzed. Simu-

ation results show that the multi-agent DQN based framework

chieves better convergence and energy efficiency of all UEs com-

ared to other four methods. From the results, the multi-agent

QN algorithm shows great potential in handling large systems. 

The rest of this paper is organized as follows. Section II de-

cribes the system model. Section III presents the problem formu-

ation and the multi-agent DQN based framework. Simulation and

erformance analysis are included in section IV. Finally, conclu-

ions are provided in Section V. 

. System model and problem formulation 

.1. System model 

In this work, an OFDMA based two-tier HetNet is considered as

hown in Fig. 1 . In this scenario, a macro BS is modeled by m = 0

nd within the coverage area of the macro BS, a set of small BSs is

eployed. Without loss of generality, the set of all BSs is denoted

s M = { 0 , 1 , 2 , . . . , M} . The learning process is done by the cloud

erver which is connected to the macro or small BSs through the
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Fig. 1. A typical HetNets. 
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ptical fiber cables. The UEs are randomly distributed in the net-

ork, and the set of the UEs is U = { 1 , 2 , . . . , U} , where U is the

otal number of UEs. The OFDMA based HetNet system has N sub-

hannels denoted by N = { 1 , 2 , . . . , N} , N < U and the UEs operate

n the N subchannels. Since the number of UEs is greater than the

umber of subchannels, the N orthogonal subchannels are first as-

igned to the UEs, then the remaining UEs randomly access the

ubchannels and each UE can only access one subchannel. Assume

hat all BSs and UEs are equipped with one antenna. The chan-

el gain is dominantly affected by Rayleigh fading g u,m 

, log-normal

hadowing (LS in dB) and path loss. The path loss for macro BS

nd small BS is modeled as PL 1 and PL 2 respectively. So, the chan-

el gain h n 
u (m ) ,m 

of the u th user on the n th subchannel with the

 th BS can be expressed as 

 

n 
u (m ) ,m 

= 10 

−( PL 1 / 2 + LS ) / 10 g u,m 

. (1)

In order to describe the relationship between the UE and

he BS, a set of integer binary variables a u,m 

, u = 1 , 2 , . . . , U, m =
 , 2 , . . . , M are introduced. The integer variable a u,m 

denotes

hether the link between BS and UE is active or not, the details

s follows 

 u,m 

= 

{
1 , if the u th UE is associated with the m th BS , 
0 , otherwise . 

(2) 

Moreover, the power consumption of UEs is composed of two

arts, static power consumption and dynamic power consumption.

he static power is the power consumed when running the cir-

uit components, such as converters, mixers, filters and so on, and

he dynamic power consumption is deemed as the transmit power

onsumption. Since the transmit power in a digital handset can

nly be updated at discrete levels, the transmit power can be eas-

ly and efficiently set with a finite number of values by the prac-

ical application. Assume that P n u,m 

= {� p, 2 � p, 3 � p, . . . , K� p} =
 k � p} K 

k =1 
is the transmit power of the u th UE connected to the

 th BS on the n th subchannel, where K (1 ≤ K < ∞ ) denotes the

umber of power levels, and � p = P MAX /K is the power step, with

 

MAX denoting the maximum transmit power of UE. By assuming
hat the static power consumption of UE is P CU , the total power

onsumption P sum 

u of the u th UE can be expressed as 

 

sum 

u = P CU + P n u,m 

. (3)

Then, the signal to interference plus noise ratio (SINR) of the

 th UE connected to the m th BS on the n th subchannel can be

xpressed as 

u,m 

= 

p n u,m 

h 

n 
u (m ) ,m 

I n u,m 

+ σ 2 
, (4) 

here σ 2 denotes the noise power and I n u,m 

=
 

m 

′ ∈M 

∑ 

i ∈U\ u a i,m 

′ p i,m 

′ h n 
i (m 

′ 
) ,m 

represents the interference of

he u th UE connected to the m th BS on the n th subchannel, and

he interference mainly comes from the other users who select

he same n th subchannel. 

According to the Shannon capacity formula, the date rate of the

 th UE can be expressed as 

 u = 

M ∑ 

m =0 

a u,m 

log 2 (1 + γu,m 

) . (5)

.2. Problem formulation 

Based on the described system model, the optimization prob-

em of maximizing the energy efficiency of all UEs in HetNets is

ormulated in this part by jointly considering user association and

ower control. The energy efficiency (bits/Joule) of all the UEs is

efined as the sum of the energy efficiency of each UE. The indi-

idual energy efficiency of u th user selecting the m th BS on n th

ubchannnel is defined as the ratio of its achievable throughput to

he u th user’s total power consumption 

u = 

R u 

P sum 

. (6) 

u 
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Thus, the sum-energy efficiency maximization problem can be

formulated as follows 

P1 : max 
A , p 

U ∑ 

u =1 

ηu 

s. t. C1 : 0 ≤ P n u,m 

≤ P MAX 
u , 

m = 0 , 1 , 2 , . . . , M, u = 1 , 2 , . . . , U, 

C2 : 
∑ 

m 

a u,m 

γu,m 

≥ γth , 

m = 0 , 1 , 2 , . . . , M, u = 1 , 2 , . . . , U, 

C3 : a u,m 

∈ { 0 , 1 } , 
m = 0 , 1 , 2 , . . . , M, u = 1 , 2 , . . . , U, 

C4 : 
∑ 

m 

a u,m 

= 1 , 

m = 0 , 1 , 2 , . . . , M, u = 1 , 2 , . . . , U. 

(7)

In the above formulated problem P1 , A denotes the user asso-

ciation matrix and p is the vector of all UE’s transmit power. The

constraint C 1 means that the transmit power of each UE cannot ex-

ceed the given maximum transmit power. C 2 ensures that the QoS

requirement for each UE can be satisfied, i.e. the predefined mini-

mum SINR γ th is guaranteed. C3 − C4 help to make sure that each

UE can associate with only one BS. Through solving the MINLFP

problem P1 , we can find an optimal control strategy about UE as-

sociation with BSs and transmission power, i.e., A and p . 

3. Multi-agent DQN for joint user association and power 

control 

From P1 , it can be seen that the user association and power

control mechanisms are mutually involved with each other, and

the problem is a mixed-integer and non-convex problem. To ef-

ficiently solve the problem, a multi-agent DQN method based on

reinforcement learning is studied. The main parts of the reinforce-

ment learning based Markov decision process are shown with a

new proposed reward function before presenting the multi-agent

DQN approach. 

3.1. The reinforcement learning approach 

For the scenario considered in this paper, similar to the existing

works [39,40] , the joint optimization problem P1 is converted to a

Markov decision process (S, A , R , P 

ss 
′ ) , where S is the state space,

A defines the action space of UEs, R is the reward function, P 

ss 
′ is

the state transition probability from state s to state s 
′ 
. Then, the

system state space, action space and reward function to construct

the reinforcement learning process are described as follows. 

State space: In the formulated problem P1 , the UE as the

agent needs to select the BSs for communication and determine

the transmit power, then the system state space can be defined

as s state = { s 1 , s 2 , . . . s j , . . . , s (M×K) U } , where s j = j denotes the state

that the situation of all UEs association with BS and power control.

Notice that the number of possible states can be very large with

the increase of index U . Considering the problem in another re-

spect, since each UE can select one subchannel and the users who

select the same subchannel will have an impact on each other due

to the BS selection and power control. Therefore, from the perspec-

tive of subchannel, the state space in each subchannel can be de-

fined as s n = { s 1 , s 2 , . . . s j , . . . , s (M×K) N n } , where N n is the number

of UEs in the n th subchannel service. 

Action space: In the formulated problem P1 , the UE asso-

ciation with the BS and transmit power should be controlled,

which leads to a composite action. The one action of the UEs in

the n th subchannel at time instant t can be defined as a j (t) =
{ { a 1 m 

(t) , p n 
1 m 

(t) } 
1 
, { a um 

(t) , p n um 

(t) } 2 , . . . , { a Um 

(t) , p n 
Um 

(t) } 
N n 

} . 
Then, for the all actions in the n th subchannel, the ac-

tion space at time instant t can be defined as a n (t) =
 a 1 (t) , a 2 (t ) , . . . , a j (t ) , . . . , a 
(M×K) N n 

(t ) } . The all actions for the

 subchannels can be defined as 

 (t) = { a 1 (t) , a 2 (t ) , . . . , a n (t ) , . . . , a N (t ) } . (8)

Reward function: The learning process is driven by the re-

ard function in the reinforcement learning framework. Under the

FDMA based HetNets, the sum-energy efficiency of all UEs is de-

ned as the system reward function, which can be expressed as

(t) = 

N ∑ 

n =1 

r n (t) = 

U ∑ 

u =1 

ηu (t) , (9)

here r n ( t ) (i.e., r n (t) = 

∑ N n 
i =1 

ηi (t) ) is the reward function of the

 th subchannel, which learns the optimal policy by maximizing its

eward with the interactions of the environment. 

Through the above analysis, the problem P1 can be transformed

nto problem P2 as follows 

2 : max 
A n , p n 

r n , 

. t. C1 − C4 , 
(10)

here A n and p n denote the user association matrix and transmit

ower vector on the n th subchannel, respectively. 

For the reinforcement learning in each subchannel, at the in-

tant time t , the agent knows its current state s t n and obtains the

trategy πn according to the s t n by using the learning process. The

gent will decide to make an action a n ( t ) according to the policy

n , i.e., a n (t) = πn (s t n ) . Then the UEs in the subchannel will send

ignals to the BSs and get the reward r n (t) = r n (t| s = s t n , a = a n (t)) .

s a result, the state transits to a new state s t 
′ 

n through the action

 n ( t ) and continues the above operations until it reaches the max-

mum epoch. In the reinforcement learning, the returned reward

 n ( τ ) is the accumulated and discounted reward that is given by 

 n (τ ) = 

T ∑ 

τ= t 
γ τ−t r n (τ ) , (11)

here γ ∈ [0, 1] is the discount factor and T is the maximum

poch. When γ = 0 , the current reward is considered and for the

ase of γ = 1 , R n ( τ ) equals to the sum of the rewards. 

The objective of the agent is to maximize the expected accu-

ulated reward under the UE’s QoS satisfaction constraints, i.e.,

ax E[ R n (τ ) | s τn ] . If the reward value is the largest, the optimal pol-

cy π ∗
n is obtained, i.e., the highest energy efficiency of all UEs is

chieved with the constraints, which is equal to the problem P2 . 

In order to solve the maximization problem, a value function

 

πn 
n (s τn ) which is the accumulated reward for the policy πn is de-

ned [41] , i.e., V πn 
n (s τn ) = E[ R n (τ ) | s τn ] . By considering the Markov

roperty, V πn 
n (s τn ) can be rewritten as 

 

πn 

n (s τn ) = r (s τn , πn ) + γ�
s τ

′ 
n 

P 

s τn ,s 
τ
′ 

n 

(πn ) V 

πn 

n (s τ
′ 

n ) , (12)

here P 
s τn ,s 

τ
′ 

n 

is the state transition probability from state s τn to

tate s τ
′ 

n . 

Then, a state-action value function (Q-value function) which

haracterize the expected reward for choosing action a n ( τ ) at sys-

em state s τn by following the strategy πn is defined as 

 πn 
(s τn , a n (τ )) = E[ R n (τ ) | s τn , a n (τ )] . (13)

Based on the Bellman’s equation [41] , the optimal Q-value func-

ion can be expressed as 

 π ∗
n 
(s τn , a n (τ )) = r n (s τn , a n (τ )) + γ�

s τ
′ 

n 

P 

s τn ,s 
τ
′ 

n 

(a n (τ )) V 

π ∗
n 

n (s τ
′ 

n ) . 

(14)
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a  
According the Bellman optimality equation [42] , for the

 

π∗
n 

n (s τ
′ 

n ) in (14), which can be obtained as follows 

 

π ∗
n 

n (s τ
′ 

n ) = max 
a 
′ 
n 

Q π ∗
n 
(s τ

′ 
n , a 

′ 
n (τ )) . (15)

Then, combining (14) and (15), the formula (14) can be ex-

ressed as 

 π ∗
n 
(s τn , a n (τ )) = r n (s τn , a n (τ )) 

+ γ�
s τ

′ 
n 

P 

s τn ,s 
τ
′ 

n 

(a n (τ )) max 
a 
′ 
n 

Q π ∗
n 
(s τ

′ 
n , a 

′ 
n (τ )) . (16) 

For the formula (16), P 
s τn ,s 

τ
′ 

n 

(a n (τ )) is very difficult to obtain.

hus, by using the Q-learning algorithm from [41] , the update of

-value function can be expressed as 

 πn 
(s τn , a n (τ )) = (1 − α) Q πn 

(s τn , a n (τ )) + α[ r n (s τn , a n (τ )) 

+ γ max 
a 
′ 
n 

Q πn 
(s τ

′ 
n , a 

′ 
n (τ

′ 
))] , (17) 

here α is the learning rate. 

However, the Q-learning method will select the action which

as the best value and it will overestimate the selected action. In

ddition, the Q-learning method uses the sampling method to se-

ect the state, which will overestimate the sampled state, and the

ap between the sampled state and the unsampled state will be

arger. For the HetNets, it is worth mentioning that it is challeng-

ng to obtain an optimal solution with Q-learning method due to

he large state and action space. That means some states are not

ampled for the large-scale system state space. Thus, in order to

eal with the large-scale system state space, the deep reinforce-

ent learning is investigated to solve the problem, which will be

escribed in detail in the next subsection. 

.2. Multi-agent DQN framework 

A multi-agent DQN method is studied in this subsection. Dif-

erent from the Q-learning method, a DNN is used to estimate the

alues of the Q-value function Q πn (s τn , a n (τ )) . Thus, the Q-function

t time τ approximates Q πn (s τn , a n (τ ) | θ ) , i.e., Q πn (s τn , a n (τ )) ≈
 πn (s τn , a n (τ ) | θ ) , where θ is the weight parameter of the behav-

or network. Then the optimal policy is given by 

∗
n = max 

a 
′ 
n 

Q π ∗
n 
(s τn , a 

′ 
n (τ ) | θ ) . (18)

Due to differences between the data samples, it is hard to get

 smooth learning model. Thus, a target network with the weight

arameter of θ− is considered. For the multi-agent DQN method,

here are two networks, i.e., behavior network and target network.

y using the target network, the learning model for calculating the

arget value y i will be constant with the weight parameter of θ−

or a certain time, which can alleviate the volatility of the learning

odel. In addition, a estimate value can be obtained by the be-

avior network and for the behavior network, which is also called

nline network in some literatures, and the detailed reasons will

e described as follows. 

In the learning process, after a certain number of iterations C ,

he weight parameter θ of behavior network will be synchronized

o the target network, i.e. θ → θ−, then, the next stage of learn-

ng will get started. For the behavior network, the agent will use

he ε-greedy policy to choose action a n ( τ ) and the parameter θ is

pdated for each iteration by using the minimum loss function as

ollows 

 (θ ) = 

∑ 

[(y j − Q πn 
(s n , a n | θ )) 2 ] , (19)

here 

 j = 

{ 

r n ( j) , if SINR 

s j 
′ 

n 

< γ , 

r n ( j) + γ max 
a ′ n ( j ′ ) 

Q πn 
(s j 

′ 
n , a 

′ 
n ( j ′ ) | θ−) , otherwise . 

(20) 
In particular, due to the correlation between the data samples,

t will lead to learning instability, thus the experience replay tech-

ique is applied in the deep Q-learning. The experience replay

ontains two parts: stored data and sampled data. The experience

ata is stored into the memory D by the order of iteration. During

earning, the agent will choose action a n ( τ ), get a reward r n ( τ ) and

urn to next state s τ
′ 

n . Then the vector (s τn , a n (τ ) , r n (τ ) , s τ
′ 

n ) will be

tored into the experience memory. If the memory D is already full,

he new experience data will cover the data which was generated

y the earliest iteration. For the data sampling, the agent selects at

andom a mini-batches of experiences from the replay memory D

o update the parameter θ . If the sampled data is the latest stored

n the memory D , which is similar to online learning, that is why

ome literatures refer to the target network as online network. The

rocess of the DQN strategy is shown in Fig. 2 . By the multi-agent

QN strategy, the best strategy π ∗
n can be derived. 

The detailed process of multi-agent DQN algorithm for joint

ser association and power control is presented in Algorithm 1 . At

Algorithm 1: Multi-agent DQN algorithm for joint user asso- 

ciation and power control. 

1: Input: learning rate α, the parameters of action-value function θ and θ− . 

2: Initialize replay memory D . 

3: Initialize behavior action-value function Q πn 
with weights θ and target 

action-value function Q 
′ 
πn 

with weights θ− , θ− = θ . 

4: repeat 

5: Initialize the starting state s τn . 

6: repeat 

7: Generate a random number x ∈ (0 , 1) . 

8: if x < ε then 

9: Select action randomly; 

10: else 

11: Select the action a n (τ ) characterized by the maximum Q-value, i.e., 

a n (τ ) = arg max 
a n 

Q πn 
(s τn , a n | θ ) ; 

12: end if 

13: Take the action a n (τ ) and observe the next state s τ
′ 

n . 

14: Observe reward r n (τ ) = 

N n ∑ 

i =1 

ηi (τ ) . 

15: Store experience (s τn , a n (τ ) , r n (τ ) , s τ
′ 

n ) in D . 

16: Sample random minibatch of experience (s j n , a n ( j) , r n ( j) , s j 
′ 

n ) from D . 

17: if SINR 
s j 

′ 
n 

< γ then 

18: y j = r n ( j) ; 

19: else 

20: y j = r n ( j) + α max 
a 
′ 
n ( j ′ ) 

Q πn 
(s j 

′ 
n , a 

′ 
n ( j 

′ 
) | θ−) ; 

21: end if 

22: Perform a gradient descent step on (y j − Q πn 
(s j n , a n ( j) ; θ )) 2 with 

respect to the network parameters θ . 

23: Every C steps reset θ− ← θ . 

24: until terminal. 

25: until terminal. 

he beginning, each agent initializes the memory D and the weight

arameters of θ and θ− for behavior network and target network

espectively. Then, the agent initializes the starting state s τn and the

-greed policy is used to select an action a n ( τ ). Next, the agent will

end the information about user association and transmit power

o the environment, if the constraints satisfy, the reward r n ( τ ) and

he next state s τ
′ 

n can be obtained. Otherwise, the agent will not

eplay anything. The experience information (s τn , a n (τ ) , r n (τ ) , s τ
′ 

n )

ill be stored in the memory D . By using the sample random mini-

atch for the memory D , the weight parameter of the behavior net-

ork is updated. When training a certain number of iterations C ,

he parameter of the behavior network will be synchronized to the

arget network. The next stage of learning will begin. 

. Simulation results and analysis 

In this section, the multi-agent DQN algorithm is simulated in

 two-tier HetNet where has one macro BS and some micro BSs.
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Fig. 2. The strategy of DQN. 

Table 1 

Parameters of DQN. 

Parameters Values 

Episodes 200 

Observe steps 500 

The size of minimum batch 50 

Minimum ε 0.0001 

Learning rate α 0.01 

Discount rate γ 0.8 

Replay memory D 5000 

Iterations C 500 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. The energy efficiency versus the different learning rate. 
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There are 25 UEs who are randomly dispersed over the macro BS’s

coverage area with setting as a 200 m × 200 m square. Be-

sides, the micro BSs are also randomly distributed in the consid-

ered area. The maximum transmit power of UEs is 23 dBm and

the total number of subchannels is 15. The pass loss of macro

BS and micro BS are PL 1 = 34 + 40 log 10 (d) , PL 2 = 37 + 30 log 10 (d)

respectively, where d is the distance from a BS to a UE in me-

ters. The log-normal shadowing is 8 dB. The noise power is set as

σ 2 = −174 dBm . 

In order to estimate the Q-function, the DNN is adopted in the

model containing two-hidden layer of fully-connected neural net-

work with 64 and 64 neurons, and an output layer (ActionNum

neurons), where the number of neurons in output layer is deter-

mined by action number in each subchannel. The detailed param-

eters of DQN are listed in Table 1 . 

Firstly, the performance of the DNN with different learning pa-

rameters (such as learning rate and the number of neuron) is stud-

ied. The training efficiency with different learning rate is studied

and the results are included in Fig. 3 . It can be seen that with the

number of episodes increases, the energy efficiency of all UEs is

gradual convergence. Moreover, with the change of learning rate

α, the performance of energy efficiency of all UEs is the best for

α = 0 . 01 than that of α = 0 . 1 , α = 0 . 001 and α = 0 . 0 0 01 . By com-

paring the two cases of α = 0 . 01 and α = 0 . 1 , it can be seen that

when the learning rate α is relatively large, it is not easy to reach

the optimal value. When the learning rate is relatively small, it

may result in local optimum instead of global optimum. Thus, con-
idering practical real-time execution of the algorithm, the learning

ate α is set to 0.01. 

In Fig. 4 , the performance of different numbers of neurons in

NN structure is studied. Fig. 4 shows that as the number of neu-

ons increases, the energy efficiency of all UEs decreases. Due to

he sparsity of the data samples, when the number of neurons be-

omes too large, the optimization problem may result in overfit-

ing and more training time. It can be seen that when the neu-

ons equals 64 and 256 of the first layer, the convergence of the

wo curves is almost the same, while the other cases have the less

erformance on convergence. Therefore, the neurons of the two-

idden layer are 64 and 64, respectively. 

The convergence performance of the multi-agent DQN algo-

ithm is investigated and compared with a classic Q-learning

ramework used in [25] under the scenario that the SINR require-

ent is γ = −10 dB . As shown in Fig. 5 , it can be see that the sys-

em energy efficiency of Q-learning is lower than the system en-

rgy efficiency achieved with the multi-agent DQN method. As the
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Fig. 4. The energy efficiency versus the different numbers of neurons in DNN struc- 

ture. 

Fig. 5. The proof of convergence. 
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Fig. 6. The energy efficiency versus the threshold of SINR with different K . 

Fig. 7. The energy efficiency versus the number of micro BS. 
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pisode increases, the system energy efficiency increases and tends

o convergence for the two schemes. Moreover, the multi-agent

QN algorithm outperforms the Q-learning method on the learning

peed. For the Q-learning method, there is a little improvement in

he system energy efficiency when episode is approximately equal

o 180, while the system energy efficiency tends to be stable when

pisode is approximately equal to 157 for the multi-agent DQN al-

orithm. For the multi-agent DQN algorithm, it is unstable at the

eginning but the instability is reducing as episodes go on, and

hen gradually rises, that is because the agent chooses actions ran-

omly and stores the information into replay memory. Through

everal iterations, the multi-agent DQN algorithm starts to learn

rom the experience. 

Next, the energy efficiency of all UEs is simulated when em-

loying the Q-learning algorithm and multi-agent DQN algorithm

nder different SINR thresholds. The results are included in Fig. 6 .

t can be seen that as SINR threshold of UEs increases, the energy

fficiency of all the UEs decreases. This is reasonable, since more

ower is consumed to achieve a high SINR, which thereby will de-

rease the energy efficiency of all UEs. In addition, as the num-

er of power levels increases, the energy efficiency of all UEs in-

reases. The reason is that as the number of power levels increases,
he agent can select a more suitable transmission power under the

xed user association, thereby improving energy efficiency. For the

ase of K = 1 , the transmit power of UE is equal to the maximum

ransmit power, i.e., P MAX = 23 dB . From the Fig. 6 , when the trans-

it power of UE is maximum, the energy efficiency is the worst. 

Furthermore, the energy efficiency of all UEs for different num-

er of micro BS is investigated. The simulations are done by choos-

ng the SINR requirement γ = −10 dB and K = 3 . The results are

hown in Fig. 7 . To evaluate the performance of the multi-agent

QN algorithm, in addition to the Q-learning algorithm, three

ther schemes, i.e., MTD with Q-learning based PC, Q-learning

ased UA with MTP, MTD with MTP are included as reference. For

TD with Q-learning based PC scheme, a user chooses the min-

mum transmission distance user association scheme and adopts

he Q-learning based power control algorithm. For Q-learning

ased UA with MTP scheme, users adopt the Q-learning based

ser association scheme and transmit using their maximum trans-

it power. Finally, for the MTD with MTP scheme, users choose

he minimum transmission distance user association scheme and

ransmit using their maximum transmit power. From the simula-

ion results, it can be seen that as the number of micro BSs in-

reases, the energy efficiency of all UEs increases at first and then

radually increases. For the Q-learning and MTD with Q-learning
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Fig. 8. The energy efficiency versus the number of UEs. 
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based PC schemes, when the number of micor BS is small, the per-

formance of the Q-learning algorithm is better. As the number of

micro BS increases, the performance of the Q-learning algorithm

gradually deteriorates. The reason is that the space of state and

action becomes larger, and some states are overestimated and un-

sampled. Therefore, in the OFDMA based HetNets, the number of

micro BS should be carefully designed. 

Fig. 8 shows the energy efficiency of all UEs under different

number of UEs. Simulation results show that the multi-agent DQN

algorithm obtains the best performance in terms of the energy effi-

ciency of all UEs through comparison with the other four schemes.

This is because that the multi-agent DQN algorithm optimizes not

only the user association but also the transmit power compared

with the MTD with Q-learning based PC, Q-learning based UA with

MTP and MTD with MTP schemes. By using the DNN, the multi-

agent DQN algorithm can overcome the shortcomings of Q-learning

algorithm, thus the multi-agent DQN algorithm has a better per-

formance than the Q-learning algorithm as in Fig. 8 . For the Q-

learning and MTD with Q-learning based PC schemes, as the num-

ber of UEs increases, the change trend of the two methods is sim-

ilar to the Fig. 7 . This is because that the space of state and action

will grow as the number of UEs increases. In addition, as the num-

ber of UEs increases gradually, the energy efficiency performance

of all UEs for the five simulated schemes decreases. This is because

high user’s number will incur severe interference. 

5. Conclusion 

In this paper, the joint optimization problem of user associa-

tion and power control has been studied in the OFDMA based Het-

Nets. The above resource management problem has been formu-

lated as a maximum long-term uplink energy efficiency of all UEs

under the constraints of maximum transmit power and UE’s QoS

requirements. The multi-agent DQN approach has been utilized to

solve the above MINLFP problem. Different from traditional solu-

tion methods, a small communication information is needed by the

multi-agent DQN algorithm. The convergence of the multi-agent

DQN algorithm is analyzed and it has been shown that the multi-

agent DQN algorithm has a better performance than the classical

Q-learning algorithm on the convergence speed. In addition, the

simulation results are done and show that the multi-agent DQN

algorithm has a better performance on the energy efficiency than

other four schemes, which can improve the energy efficiency of all

UEs effectively. 
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