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a b s t r a c t

In this paper, we investigate mobile edge computing (MEC) networks for intelligent internet of
things (IoT), where multiple users have some computational tasks assisted by multiple computational
access points (CAPs). By offloading some tasks to the CAPs, the system performance can be improved
through reducing the latency and energy consumption, which are the two important metrics of
interest in the MEC networks. We devise the system by proposing the offloading strategy intelligently
through the deep reinforcement learning algorithm. In this algorithm, Deep Q-Network is used to
automatically learn the offloading decision in order to optimize the system performance, and a neural
network (NN) is trained to predict the offloading action, where the training data is generated from
the environmental system. Moreover, we employ the bandwidth allocation in order to optimize the
wireless spectrum for the links between the users and CAPs, where several bandwidth allocation
schemes are proposed. In further, we use the CAP selection in order to choose one best CAP to assist the
computational tasks from the users. Simulation results are finally presented to show the effectiveness
of the proposed reinforcement learning offloading strategy. In particular, the system cost of latency
and energy consumption can be reduced significantly by the proposed deep reinforcement learning
based algorithm.

© 2020 Elsevier B.V. All rights reserved.
1. Introduction

In recent years, there has been a great progress in the devel-
pment and application of wireless communication systems [1,2],
nd many new techniques have been proposed to speed up the
ata rate of wireless communication. Among these techniques,
elaying technique is one of the most promising techniques to en-
ance the communication quality, and it can work in many pro-
ocols such as decode-and-forward (DF) and amplify-and-forward
AF). In addition, cognitive technique is also very attractive [3,4],
ince it can help utilize the spectrum resources very effectively [5,
]. Moreover, multiple antenna technique can help enhance the
ransmission data rate [7,8], and its newest form of massive

✩ This work was supported in part by the NSFC (No. 61871139), in part by
the International Science and Technology Cooperation Projects of Guangdong
Province (No. 2020A0505100060), by the Science and Technology Program of
Guangzhou (No. 201807010103), in part by the research program of Guangzhou
University (No. YK2020008), by the Project of Shandong Province Higher Ed-
ucational Science and Technology Program (No. J18KA315) and the Shandong
Provincial Natural Science Foundation of China (ZR2018MF002).

∗ Corresponding authors.
E-mail addresses: 2111806073@e.gzhu.edu.cn (R. Zhao),

injie1023@163.com (X. Wang), xiajunjuan@gzhu.edu.cn (J. Xia),
sfan2019@126.com (L. Fan).
ttps://doi.org/10.1016/j.phycom.2020.101184
874-4907/© 2020 Elsevier B.V. All rights reserved.
multi-input multi-output (MIMO), which can help improve the
transmission data rate by ten or hundred times [9].

With the development and allocation of wireless communica-
tion systems, especially about the fifth-generation (5G) networks,
there has been a great progress in the development of internet of
things (IoT), which can also support the development of smart
cities. In IoT systems, the nodes can not only communicate with
each other, but also have the ability to store the data and com-
pute. Among the IoT systems, the technique of wireless caching is
quite important, since it can help improve the user’s experience
quality substantially [10,11]. Fortunately, the storage cost has
been decreasing very rapidly due to the development of storage
technique. Besides the wireless caching technique, the technique
of mobile edge computing (MEC) plays a very important role in
the IoT-based systems [12–14], where the nodes can compute the
tasks assisted by the near-by nodes instead of remote cloud. In
this way, the latency and energy consumption can be reduced
substantially.

Driven by the development of big data and deep learning,
there has been a trend in the development of intelligent systems,
such as the intelligent IoT. In [15,16], the deep convolutional
neural networks (CNNs) were incorporated into the conventional
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detectors such as the maximum likelihood detector (MLD), zero-
forcing (ZF), and minimum mean square error (MMSE) detec-
tors, and it can be found that the detection performance can
be improved significantly. In [17,18], shows a good application
of machine learning in flight delay prediction and basic im-
age analysis. In [19], deep learning (DL) has been introduced
into automatic modulation classification (AMC) due to its out-
standing identification performance. In [20], the Q-learning based
intelligent algorithms have been proposed to protect the commu-
nication from the smart attacker, which can operate in spoofing,
eavesdropping, interfering and silent modes. In [21], the authors
extended to study the intelligent secure algorithms for the wire-
less communication systems in many application scenarios, such
as the non-orthogonal multiple-access (NOMA) systems, imper-
fect channel estimation and multiple levels of primary users in
cognitive networks. In [22,23], the deep reinforcement learning
were incorporated into the strategy game such as the Weiqi and it
can be found that the improved the winning rate of the machine.
In particular, in 2016, ‘‘Alpha Go’’ adopted a deep reinforcement
learning framework to defeat human go players.

In this paper, we study MEC networks for intelligent IoT,
where multiple users have some computational tasks assisted
by multiple computational access points (CAPs). By offloading
some tasks to the CAPs, the system performance can be improved
through reducing the latency and energy consumption, which
are the two important metrics of interest in the MEC networks.
We devise the system by proposing the offloading strategy in-
telligently through the deep reinforcement learning algorithm. In
this algorithm, deep Q-network is used to automatically learn the
offloading decision in order to optimize the system performance,
and a neural network (NN) is trained to predict the offloading
action, where the training data is generated from the environ-
mental system. Moreover, we employ the bandwidth allocation in
order to optimize the wireless spectrum for the links between the
users and CAPs, where several bandwidth allocation schemes are
proposed. In further, we use the CAP selection in order to choose
one best CAP to assist the computational tasks from the users.
Simulation results are finally presented to show the effectiveness
of the proposed reinforcement learning offloading strategy. In
particular, the system cost of latency and energy consumption
can be reduced significantly by the proposed deep reinforcement
learning based algorithm.

The organization of this paper is given as follows. After the
introduction in this section, we will discuss the system model of
MEC networks as well as the linearly weighted cost in Section 2.
Then, we introduce how to intelligently optimize the system
performance by using the DQN as well as the bandwidth allo-
cation and CAP selection in Section 3. Section 4 will present the
simulation results and conclusions are finally made in Section 5.

2. System model

In the paper, we consider the problem of offloading strategy
design for MEC network, in order to determine how many tasks
to computed by the CAPs. To further enhance the system per-
formance, the bandwidth allocation is studied to optimize the
wireless bandwidth among users and CAPs. Moreover, we con-
sider the problem of CAP selection to choose one best CAP among
multiple ones to assist the computation. Specifically, the system
model is shown in Fig. 1, where we consider a task offloading
network with N users {un|n = 1, 2, . . . ,N} and M CAP nodes
{em|m = 1, 2, . . . ,M}. All users have only one antenna while the
MEC nodes have multiple antennas. For each user un, we assume
that the computational task {ln|n = 1, 2, . . . ,N} can be arbitrarily
divided into two parts: one part to be computed at local while
the other part to be offloaded to the CAP. In Fig. 1, the user u
n
Fig. 1. System model of MEC network with multiple users.

irstly selects an optimal MEC node to offload the task ln through
he channel parameters. After that, the user un determines an
ffloading strategy, give by

n = [αn,1, αn,2, . . . , αn,m, . . . , αn,M ], (1)

where m ∈ {1, . . . ,M} and the corresponding component αn,m ∈

[0, 1] represents the percentage of the task ln to be offloaded to
the MEC node em. Since the users only select one MEC node to
offload tasks, there is at most one element greater than zero in
the offloading strategy vector αn. We denote the offloading ratio
as

An =

M∑
m=1

αn,m. (2)

Note that the offloading strategy αn includes the following three
offloading scenarios:

(1) An = 0, In this scenario the task ln is computed at local.
(2) An > 0, In this scenario An percents of the task ln is of-

floaded to the MEC node em while the rest (1−An)percents
of task is computed at local.

(3) An = 1, In this scenario the task ln is computed at the CAP
node em.

We assume that the channels follow Rayleigh flat fading. Then,
the transmission data rate from the un to MEC node em can be
obtain from the Shannon theory as [24]

Cn,m = Wn log2
(
1 +

Pn
tran|hn,m|

2

σ 2

)
, (3)

where Wn is bandwidth of the wireless un-em link, hn,m CN (0, 2)
denotes the channel gain of the un-em link, Pn

tran represents the
transmit power at the user un, and σ 2 is the variance of the
dditive white Gaussian noise (AEGN) at the CAP nodes.

.1. Local-computing model

We denote the computing capability (i.e., number of CPU
ycles per second) at the user un as fn. Then, the local computation
ime can be obtain from the [12] as

n
local =

ln (1 − αn,m) γ ω, (4)

fn,m
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where γ is the conversion coefficient frommillion bits to bits, and
ω is the number of cycles required for the CPU to compute per bit
of task. In addition, the local computational energy consumption
can be obtain from the [12] as

En
Local = T n

localP
n
local, (5)

where Pn
local is the computational power at the user un.

2.2. Computing-offloading model

The transmission time consumed for the offloading link from
un to em can be described as

T n
tran =

ln
Cn,m

αn,m γ ω. (6)

Similarly, the transmission energy consumption for the user un
an be described as
n
tran = T T

localP
n
tran, (7)

here Pn
tran denotes the transmit power at the user un. Since

he CAPs generally have steady energies, the computational con-
umption can be ignored for the CAPs. Moreover, the computation
ime at the CAP node em can be denoted by

m
e =

ln
Fn,m

αn,m γ ω, (8)

where Fn,m denotes the computational capacity allocated for the
user un by the MEC node em. Since the size of the transmitted
data returned is small enough, feedback latency and energy con-
sumption can be ignored to simplify the problem. Therefore, we
formulate the total system latency as

Ttotal =

N∑
n=1

(
T n
local + T n

tran + Tm
e

)
. (9)

n addition the total energy consumption is formulated as

total =

N∑
n=1

(
En
local + En

tran

)
. (10)

ote that minimizing both the total latency and the total energy
onsumption is a multiple objective optimization problem, which
s however very complicated to implement in practice. To sim-
lify the problem, and facilitate theoretical analysis, we consider
linear weighted objective function instead, which is given by

m = λTtotal + (1 − λ)Etotal, (11)

here λ ∈ [0, 1] is a weight factor. In short, the optimiza-
tion problem of minimizing total latency and the total energy
consumption is expressed as

min
{αn,m,Wn}

Φm (12)

s.t. C1: αn,m ∈ [0, 1]

C2:
∑
n∈N

Wn = Wtotal,

. System optimization

The main objective of this paper is to minimize the weighted
ost Φm. In order to achieve this goal, we firstly optimize the
andwidth allocation, and then we optimize the offloading strat-
gy based on the allocated bandwidth. Finally, we give the CAP
election strategy based on the results of offloading strategy and
andwidth allocation.
Fig. 2. Reinforcement learning model.

3.1. Bandwidth allocation optimization

In this part, we employ three bandwidth allocation criteria to
assist the users and meanwhile to reduce the system weighted
cost Φm. The simplest bandwidth allocation strategy is the uni-
form allocation, which has the lowest computational complexity.
In this criterion, Wn is identical for each user un, given by

Wn =
Wtotal

N
. (13)

This bandwidth allocation strategy is independent of specific
channel conditions and task length. In order to incorporate the
task length in to the bandwidth allocation, we present bandwidth
allocation criterion II as,

Wn =
ln
L
Wtotal, (14)

hich indicates that the allocated bandwidth Wn depends on the
task length of users.

Besides these two criteria, we future consider another dy-
namic bandwidth allocation strategy, which is related to the task
offloading. Let i denote the number of iteration in the offloading
process, and we use αi

n,m to represent the updated task alloca-
tion strategy. Based on αi

n,m, we obtain a dynamic bandwidth
allocation strategy as,

Wn =
αi
n,m∑N

n=1 αi
n,m

Wtotal (15)

3.2. DQN-based resource allocation

After allocating bandwidth for a given CAP node, we will
continue to optimize the offload strategy to reduce the system
cost Φm. Due to the complexity of resource allocation and task
scheduling in MEC networks, it is hard to apply the traditional
optimization methods solve this problem. Fortunately, the recent
reinforcement learning technology has shown good results in
solving mobile strategy problems, and it can be recognized as
an ideal technology to optimize task offloading strategy in MEC
networks.

3.2.1. RL
As shown in Fig. 2, the framework of reinforcement learning

consists of an agent and the corresponding environment which
the agent interacting. In this scenario, each MEC node is viewed as
an agent and everything except the MEC nodes is regarded as the
environment. The agent makes decisions by observing the change
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Fig. 3. Structure of the deep neural network.

f states. Reinforcement learning is an unsupervised learning
echnology, for which the agent can find the optimal behavior
equence via on-line learning. The agent repeatedly interacts with
he environment by trial and error. Eventually, the agent modifies
ts own strategy to adapt to different environments to accomplish
asks.

In RL, it is of vital importance to design a proper reward func-
ion the specific decision problem, with the purpose to reward
ppropriate behaviors with respect to the current state. In this
aper, we design the reward function as,

=

{
1, if ( Φt - Φt−1 ) is larger than zero
−1, other , (16)

here Φt and Φt−1 denote the total cost at time slot t and t − 1,
espectively.

The task offloading process can be regarded as a Markov
ecision process(MDP) for during the time domain. Let S =

{l1α1,m, l2α2,m, . . . , lNαN,m} be the state space and A = {α1,m, α2,m,

. . . , αN,m} be the action space. The set of feasible actions for the
state St ∈ S is At

S , which is a subset of A. The transformation
from St to St+1 with an specific action At follows the probability
P(St+1|St , At ). The action is decided by a policy π : S → A. The
policy is obtained by training the agent through reinforcement
learning.

3.2.2. DQN
The traditional reinforcement methods such as Q-learning and

Sarsa learning have a common feature, which is to use tables
to store state value functions. However, for the general task
offloading problem, the value function cannot be saved in the
form of table due to huge state dimensions. Therefore, we choose
DQN to solve the task offloading problem. Compared with Q-
learning, DQN uses a deep neural network(DNN) with parameters
ω as a value function approximator to solve the task offloading
problem. As shown in Fig. 3, we take state s as the input of the
DNN. The DNN consists of an input layer H i, the k shared hidden
layers {H1,H2, . . . ,Hk}, and an input layer H i

j . In order to get the
next action, we set a greedy selection strategy on the output of
the DNN, with probability ϵ to select a random action a, which
can be described as follows,

A =

{
random, when the probability is ϵ

argmina(Q (st , a; ω)), when the probability is 1 − ϵ
(17)
There is a certain correlation between the interaction sequence
and the state action in RL. If we train the neural network directly,
the effect of the model will not be good as expected. To solve this
problem, we adopted the experience replay structure proposed by
DeepMind team in NeurIP in 2013.

The replay buffer includes two parts: the collecting samples
and the sampling samples. The collected samples are stored in
replay buffer according to the time sequence. If the replay buffer
is full of samples, them the new samples will overwrite the oldest
sample in time sequence. Generally speaking, a batch of samples
will be randomly sampled from the cache evenly for learning, and
the training effect will be more stable. At the same time, a sample
will be trained many times to improve the sample utilization rate.

Note that the traditional reinforcement learning updates the
status value based on the return value of the current time and
the next estimated value. But the instability of the data causes
the neural network training results to fluctuate at each iteration.
These fluctuations will be reflected at the next iteration, and
hence the training result is difficult to be stable. In order to deal
with the deviation in temporal difference and reduce the impact
of correlation, we need to decouple the two parts as much as
possible. Hence, we introduce the target network. Firstly, the two
models use the same parameters before the training. Secondly,
during the training process, behavior network is responsible for
interacting with the environment and getting interaction sam-
ples. Then, in the learning process, the target value is calculated
by target network, and the target value is obtained by comparing
the estimated values of the target network and then the behavior
network, and the behavior network is updated. Finally, when the
iterations reach a certain number, the parameters of the behavior
network are synchronized to the target network, and the next
stage of learning can be carried out. Similar to the supervised
learning, we define the loss function of the DQN as the variance
between the target value Qtarge and the predicted value Q (s, a : ω)
weights ω to minimize the loss,

Lossω = ((r − γ argmina(Q (s′, a′
; ω′))) − Q (s, a : ω))2 (18)

Therefore, the target value is fixed in a certain period of time
through the target network and the target network reduces the
volatility of the model eventually.

The process of DQN algorithm is described in Algorithm 1. The
main steps are as follows.

(1) Using a neural network with a parameter of ω as the
approximator of Q value.

(2) Defining a loss function using the mean square error of the
Q value.

(3) Calculating the gradient of loss function for the parameter
ω.

(4) Using Stochastic Gradient Descent(SGD) to optimize the
parameters.

3.3. CAP selection

After optimization of bandwidth allocation and offloading, in
order to further reduce the system cost Φm we performed a
CAP selection operation. In this work, we propose a method for
choosing the best CAP to help users perform calculations.

For this MEC network, the user firstly sends some pilot signals,
from which the MEC estimates the associated channel parame-
ters. Then, the channel which has the smallest gain is measured
among the N channels,

θm = min {|h1,m|
2, |h2,m|

2, . . . , |hN,m|
2
}. (19)
m∈[1,M]
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Algorithm 1 DQN-Based MEC network Resource Allocation
ptimization

Input: user task l,radio bandwidth resource Wtotal, computing
capability of users and CAP nodes
Output: task offloading result a
Initialize replay memory D to capacity N
Initialize action-value function Q with weight ω

Initialize target action-value function Q̂ with weights ω′
= ω

initialize states s1
for t = 1,T do
with probability ω select a random action at

at =

{
random, ϵ

argmina(Q (st , a; ω)), 1 − ϵ

Perform at in the environment, observe the reward r and the
next state st+1
Store transition (st ,at ,rt ,st+1) in D
Sample random minibatch of transitions (si,ai,ri,si+1) from D
yi = ri + argmina(Q̂ (s′t , a

′
; ω′)

Performing gradient descent
Interval C step to update Q̂ = Q

end for

Each CAP is associated with of θm. From the set {θm|1 ≤ m ≤

}, we select one best CAP which has the largest θm among M
nes,
∗

= argmax θm. (20)

. Simulation results

In this part, we use several bandwidth allocation strategies
nd CAP selection methods to evaluate the proposed optimization
lgorithm. All channels in the network experience Rayleigh flat
ading. If not specified, the transmit and computing powers at
he users are set to 2 W and 3 W, respectively. The deep neural
etwork has two hidden layers. The CPU of each CAP has the
ame computing power with computational capacity of 6.3×108

ycle per second (cyc/s). Moreover, the six users have different
omputational capacities, which are set to 1.4 × 108 cyc/sec,
.21×108 cyc/s, 0.95×108 cyc/s, 0.13×108 cyc/s, 0.53×108 cyc/s
nd 0.52 × 108 cyc/s, respectively. The task sizes of the six users
re set to 5.3 Mb, 3.5 Mb, 4.6 Mb, 3.0 Mb, and 4.2 Mb, respectively.
n further, the total bandwidth of the wireless links is set to 10
Hz, so that Btotal = 10 MHz.
Fig. 4 shows the convergence of the proposed DQN algorithm,

here M = 2, N = 5, and Btotal = 10 MHz. For the convinced of
otation, we used ‘‘R-DQN’’, ‘‘L-DQN’’, and ‘‘E-DQN’’ to represent
he DQN with the bandwidth allocation based on the offloading
atio in the iteration, bandwidth allocation by the sub-task length
nd equal bandwidth allocation, respectively. From (4), we can
ee that the DQN with several bandwidth allocation schemes con-
erge swiftly, and after 8000 iterations, system can achieve stable
erformance. Moreover, the performance of L-DQN is better than
hat of E-DQN, as L-DQN in corporates the length of sub-tasks
nto the bandwidth allocation process. In further, we can find
hat R-DQN outperforms E-DQN and L-DQN, indicating that the
ffloading ratio in the iterative process can help allocation the
ireless bandwidth very effectively.
In Fig. 5, we show the relationship between the system cost Φ

nd several offloading strategies and the weight factors λ, where
= 2, N = 5, and λ varies from 0.1 to 0.9. In Fig. 5 we use

All-Local’ and ‘All-CAP’ to represent that the tasks are computed
ocally and by the CAPs, respectively. The equal bandwidth allo-

ation scheme is adopted in Fig. 5. From this figure, we can find
Fig. 4. Convergence of the DQN algorithm versus iteration.

Fig. 5. Comparison of the three offloading strategies versus the weight factor λ.

that the proposed E-DQN outperform the ‘All-Local’ and ‘All-CAP’
for various values of λ, indicating that the proposed scheme can
efficiently utilize the computational resources among the users
and CAPs. Moreover, the cost of ‘All-CAP’ is smaller then that of
‘All-Local’ when λ is small, as using the CAPs to compute the tasks
can help reduce the energy consumption. On the contrary, when
λ is large, ‘All-CAP’ becomes course them ‘All-Local’, simple the
transmission latency becomes the bottle neck of the system cost.

Fig. 6 shows the impact of number users on the system cost
with several offloading strategies, where M = 2 and N varies
from 1 to 6. For performance comparison, we present the cost
of the proposed ‘E-DQN’, ‘All-Local’ and ‘All-CAP’ in this figure.
From Fig. 6, we can find that the system costs increases with
a larger value of N, as more users give more burden of the
computational tasks on the system. Moreover, for various values
of N, the proposed ‘E-DQN’ outperforms the ‘All-Local’ and ‘All-
CAP’, which further validates the effectiveness of the proposed
scheme in scheduling the computational resources in the system.

Then, we investigate the impact of the computational capa-
bility of the CAP on the cost. From Fig. 7, we can observe that
the maximum and minimum CPU frequency of the set to CAP
are 6.3 × 108 cyc/sed and 4.1 × 108 cyc/se, respectively. The
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Fig. 6. Comparison of the three offloading strategies versus the number of users.

Fig. 7. The computing capability of MEC.

erformance of ‘All-Local’ computing and ‘All-CAP’ computing are
till the worst. We can observe that when E-DQN, E-DQN or
-DQN algorithm is adopted, the average energy consumption
f the system decreases when the computing capability of the
ervers increases, because these three schemes can upload more
asks to the CAPs. The results indicate that offloading tasks to the
AP server can be completed faster, thereby reducing the cost.
e can also observe that user’s offloading rates increase as the

omputational power of the edge server increases. This indicates
hat when the user finds that the computing resources of the CAP
re sufficient, the user is more willing to upload more tasks to the
AP.
In Fig. 8, we compare the cost performances of the several

ffloading strategy versus the wireless bandwidth, where M = 2,
= 5, and the bandwidth Btotal varies from 2 GHz to 9 GHz. We

an find from Fig. 8 that for various values of Btotal, the proposed
E-DQN scheme outperforms the ‘All-Local’ and ‘All-CAP’, which
further validates the effectiveness of the proposed offloading
strategy. Moreover, unlike the ‘All-local’, the proposed E-DQN and
‘All-CAP’ have better performances when the value of Btotal be-
omes larger. This is because greater bandwidth can help reduce
ransmission delays and transmission energy consumption.
Fig. 8. Comparison of the three offloading strategies versus the bandwidth Wtotal .

Fig. 9. Comparison of the CAP selection method with E-DQN versus the weight
factor λ.

In Fig. 9, we show the effect of CAP selection on the system
cost performance versus the weight factor λ, where M = 2, N
= 5, and Btotal = 10 MHz. For comparison, we plot the result of
random CAP selection in Fig. 9 as a benchmark. As observed from
Fig. 9, we can find that for various of λ, the CAP selection scheme
outperforms the random selection scheme, since the former can
exploit the wireless links for improving the transmission latency
and energy consumption. The validity of the proposed research
in this work is further verified.

5. Conclusions

This paper studied MEC networks for intelligent IoT, where
multiple users have some computational tasks assisted by mul-
tiple CAPs. We devised the system by proposing the offloading
strategy intelligently through the deep reinforcement learning
algorithm. In this algorithm, Deep Q-Network was used to au-
tomatically learn the offloading decision in order to optimize
the system performance, and a neural network (NN) was trained
to predict the offloading action, where the training data was
generated from the environmental system.
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Moreover, we employed the bandwidth allocation in order
to optimize the wireless spectrum for the links between the
users and CAPs, where several bandwidth allocation schemes
were proposed. In further, we used the CAP selection in order
to choose one best CAP to assist the computational tasks from
the users. Simulation results were finally presented to show the
effectiveness of the proposed reinforcement learning offloading
strategy. In particular, the system cost of latency and energy
consumption could be reduced significantly by the proposed deep
reinforcement learning based algorithm.
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