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A B S T R A C T

An occupant's window opening and closing behaviour can significantly influence the level of comfort in the
indoor environment. Such behaviour is, however, complex to predict and control conventionally. This paper,
therefore, proposes a novel reinforcement learning (RL) method for the advanced control of window opening and
closing. The RL control aims at optimising the time point for window opening/closing through observing and
learning from the environment. The theory of model-free RL control is developed with the objective of improving
occupant comfort, which is applied to historical field measurement data taken from an office building in Beijing.
Preliminary testing of RL control is conducted by evaluating the control method’s actions. The results show that
the RL control strategy improves thermal and indoor air quality by more than 90% when compared with the
actual historically observed occupant data. This methodology establishes a prototype for optimally controlling
window opening and closing behaviour. It can be further extended by including more environmental parameters
and more objectives such as energy consumption. The model-free characteristic of RL avoids the disadvantage of
implementing inaccurate or complex models for the environment, thereby enabling a great potential in the
application of intelligent control for buildings.

1. Introduction

Indoor comfort, for example, thermal comfort and air quality, have
become major concerns for building designers and operators (Roulet
et al., 2006). The maintenance of these factors is important for im-
proving the level of an occupant’s comfort, health, morale, working
efficiency, and productivity (Shaikh et al., 2013; Singh, 1996). A survey
shows that more than 80% of occupants are satisfied with their thermal
comfort in only 11% of the buildings. For indoor air quality (IAQ), only
26% of the buildings have 80% or more satisfied occupants (Huizenga
et al., 2006). In Denmark, 54% of a group of surveyed inhabitants
claimed that they have at least one problem related to indoor comfort.
A majority of those respondents did not try to search for information on
how to solve the problem (Frontczak et al., 2012). Improving the
comfort level of occupants is therefore urgent for a sustainable society,
and the realisation of it seems to be a joint task between the occupants,
the building designers, and the building management system (BMS).

Thermal comfort is used to manifest the thermal state of a human
within a given environment (Enescu, 2017). According to ASHRAE-55,
the ambient parameter, temperature, is considered as the most relevant

one for thermal comfort (ASHRAE Standard 55, 2017). For IAQ, air
quality index (AQI) - which measures the levels of pollutants in the air –
is often used. Kyrkilis et al. (2007) reported a combination of CO, SO2,
NO2, O3, and PM10 as the five components of AQI. Cheng et al. (2007)
included particulate matter with less than 2.5 μm diameter (PM2.5)
since it can trigger cardiovascular disease-related mortality and non-
fatal events. Control strategies for maintaining thermal comfort and
IAQ at a desired level have been mostly implemented on heating,
ventilation, and air conditioning (HVAC) systems since these have a
direct influence on both the indoor environment and energy con-
sumption. In a building with natural ventilation, however, indoor
comfort depends largely on the control of window opening and closing.
Compared to HVAC systems, the control of windows changes the indoor
environment through naturally exchanging the air with the outdoor
environment and therefore does not demand additional energy.
Nevertheless, arbitrary and customary window control by an occupant
does not guarantee the improvement of the indoor environment. For
example, keeping an open window when the outdoor air quality be-
comes poor may increase the discomfort level. The occupant can easily
fail to sense this slow deterioration of their surroundings. Thus,
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intelligent automation for window control has substantial potential to
increase the level of comfort of an occupant.

Machine learning, a subfield of artificial intelligence (AI), has been
used in buildings research for many years, and has demonstrated its
potential to enhance building performance (Hong et al., 2020). Indeed,
a number of previous studies have applied logistic regression as a
prediction method for the control of window opening and closing be-
haviour. In recent times, a prevalent machine learning technique
known as model-free reinforcement learning (RL) has made break-
throughs in intelligent controls and decision making (Mnih et al., 2013,
2015; Silver et al., 2016, 2017). An RL agent learns how to optimally
act given the environment it interacts with. An early work in this area
for buildings is Mozer’s Neural Network House (Mozer, 1998). In this
groundbreaking piece of work, a residential building’s environmental
parameters and observations of the occupants’ actions are used by an
RL agent for optimally controlling the building system. Other applica-
tions of RL to building energy systems have followed since this work,
for example, in systems such as HVAC (Chen et al., 2019; Fazenda et al.,
2014), lighting (Park et al., 2019), heat pump (Nagy et al., 2018;
Ruelens et al., 2015), water heaters (Ruelens et al., 2014), and battery
and photovoltaic systems (Shi et al., 2017). There are many more such
examples of RL being applied in the building literature, however, as the
scope of this paper specifically concerns the application of RL used for
window control, our focus therefore lies in considering current RL ap-
proaches to this building system.

Although there are existing studies using RL in window operating,
for example, in the control of HVAC systems, particularly for ventilation
purposes (Chen et al., 2018; Dalamagkidis et al., 2007), as well as in a
holistic setting among the four subsystems, HVAC, lighting, blind, and
window systems (Ding et al., 2019), there exists no research regarding
the application of RL in window opening and closing from the aspect of
occupant behaviour. This paper, therefore, aims to fill this research gap.

In this study, we train two RL agents to learn when to open or close
a window in an office building in Beijing, so as to maximise the comfort
level of the indoor environment as measured by a combination of
thermal comfort and IAQ, where, respectively, ambient temperature
and AQI have been used as proxies. A recurrent neural network (RNN)
is used to predict the indoor temperature as a result of an action taken
on the window system. This enables the comparison of the agent's
window opening/closing behaviour, with that of the actual observed
historical occupant window/opening behaviour, under the same en-
vironmental conditions as experienced by the occupant at that time. As
shown in Fig. 1, the contributions of this paper are as follows. We
propose a model-free reinforcement learning method for controlling
windows in office buildings. We optimise the opening and closing of a
window system with regard to maximising a combination of thermal
comfort and air quality – using air temperature and AQI, respectively,
as proxies - where a data-driven approach is used for simulating the
environmental changes. A comparison is made between the window
opening/closing policies of the RL agents and the occupant under

identical conditions using a dataset containing the occupant’s window
behaviour and environmental measurements at that time. A theoretical
basis is established for the future live deployment of the developed
control method in the physical office, and thus for further incorporation
of occupant feedback into its control logic.

The rest of the paper is organised as follows. Section 2 examines
drivers for window opening and closing and respective control methods
used for controlling the indoor environment via window systems. Sec-
tion 3 then briefly introduces the RL method and algorithms used in this
paper. In Section 4, we summarise the data and implementation details,
and in Section 5 the results are discussed. Lastly, we conclude the paper
in the final section.

2. Behaviours of window opening and closing

Occupant behaviour is a complex process and there are many dri-
vers for an occupant to interact with building control. Apart from the
contextual, psychological, physiological, and social factors of a building
occupant, physical environmental factors have been considered as the
most direct driver (Fabi et al., 2012). Since the behaviour of window
opening and closing has a significant impact on both the indoor en-
vironment and energy consumption, understanding the underlying
drivers and modeling methods will contribute to implementing efficient
control techniques.

2.1. Drivers of window opening and closing

Investigation of window opening and closing behaviour can be
conducted in many ways. One approach is to use surveys in the form of
questionnaires. This makes it flexible for the investigator to raise de-
sired questions (Jeong et al., 2016; Nunes de Freitas & Guedes, 2015).
These surveys reveal that most of the time, such behaviour aims at
improving physical feelings and that it varies for different seasons. For
example, opening a window in winter is more explained by air quality,
whereas closing a window in summer may be due to outside noise
(Nunes de Freitas & Guedes, 2015). And a drop in indoor temperature
can explain more the act of window closing than the outdoor tem-
perature in winter (Jeong et al., 2016).

Another approach is to use statistical modeling to explain occupant
behaviour (Haldi & Robinson, 2009; Pan et al., 2019). The probabilistic
paradigm further allows us to monitor the distribution of behaviour in
simulation studies. In an earlier work (Fritsch et al., 1990), it was stated
that the probability of finding a window position depends on the pre-
ceding position of windows. A popular method for studying such be-
haviour is logistic regression analysis. It studies the binary dependent
variables by fitting linearly independent variables and has been com-
prehensively used to model window opening and closing (Andersen
et al., 2013; D’Oca & Hong, 2014; Fabi et al., 2013; Li et al., 2015; Pan
et al., 2018; Rijal et al., 2008; Rijal et al., 2018; Yun & Steemers, 2008).
It can both identify influential factors and predict window opening

Fig. 1. Flowchart of the contributions.
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probabilities. For example, in residential buildings in Denmark, the
probability can be explained by indoor CO2 concentration and outdoor
temperature as the common patterns (Andersen et al., 2013). Large
variations, however, are found between the patterns in naturally ven-
tilated buildings and mechanically ventilated buildings (Fabi et al.,
2013). For office buildings in a natural ventilation season, the outdoor
temperature was identified as the primary driver among other en-
vironmental factors. Another study has found that the trigger point for
occupants’ window opening is to get better thermal comfort and air
quality (Li et al., 2015). Simulation results indicate that during transi-
tion seasons, the probability of window opening in office buildings
follows a normal distribution and increases linearly with the outdoor
temperature growth. Further studies have revealed that factors such as
indoor temperature, occupant arrival and leaving time, presence,
window positions, solar radiation, wind speed, seasons and time of the
day also contribute to explain window operation for office buildings
(D’Oca & Hong, 2014; Pan et al., 2018). In a study of two general
hospital wards conducted in Nanjing, China (Shi et al., 2018), the ef-
fects of air quality (i.e. indoor CO2 concentration and outdoor PM2.5
concentration) and climatic parameters (i.e. indoor/outdoor tempera-
ture, relative humidity, outdoor wind speed, wind direction, and rain-
fall) on window opening/closing behaviour were analysed. Indoor air
temperature and relative humidity were found to be dominant factors
for window opening behaviour. Outdoor temperature was found to be
associated with the probability of window opening negatively during
the cooling season, but positively during the transition and heating
seasons. Indoor relative humidity positively affects the probability of
window opening during the transition season while a negative impact
appears during the cooling and heating seasons.

Logistic regression models have been successfully developed to
predict window opening/closing and have been verified to be promis-
ingly adaptable for an accurate result. Similarly, a Probit analysis also
models the probability of window operations (Yun & Steemers, 2008).
Yun & Steemers monitored data and gave evidence that there is a sta-
tistically significant relationship between window-opening behaviour
patterns and indoor stimulus in summer. For example, a window in an
office that featured a night cooling strategy was always open upon
departure whenever the room temperature was above 23.6 °C.

2.2. Occupant comfort and intelligent controllers

Having understood the drivers, we can single out the control targets
and focus on specific control or automation methods.

Thermal comfort and IAQ have been considered as the most perti-
nent objectives (Andersen et al., 2013; Jin et al., 2015; Li et al., 2015;
Stazi et al., 2017; Tanner & Henze, 2014). The measurement of these
largely depends on the operation of windows via changing the airflow
rate. Thus, an advanced automatic window control method leads to a
consequential change in the indoor environment and hence optimises
the occupant’s overall comfort level in terms of these aforementioned
objectives.

Rijal et al. demonstrated that the adaptive Humphreys algorithm
could assist in achieving more comfortable, lower energy buildings
while avoiding overheating (Rijal et al., 2008) This algorithm can also
be used to adjust CO2 concentration to the desired level while keeping
the operative temperature at a constant (Stazi et al., 2017).

Four algorithms were compared for reducing energy consumption
and improving comfort with regard to smart windows in commercial
buildings (Dussault et al., 2016). The ruled-based controller and the
quasi-optimal controller obtained by the genetic algorithm showed the
best real-time control. It was also pointed out that genetic algorithms
and model predictive control (MPC) are powerful tools that can easily
accept more complex objective functions or scenarios.

When the occupant is involved in the control system, a stochastic
process for occupant behaviour can be modeled following a known
distribution (Tanner & Henze, 2014). Tanner & Henze demonstrated

this by implementing a stochastic MPC. Compared to deterministic
optimal control, stochastic optimisation is more conservative but offers
better performance. In a survey work by Han et al., the benefits of
model-free control in such settings are illustrated from the methodology
point of view (Han et al., 2019).

2.3. Building environment

Both descriptive and analytical methods for finding drivers for
window opening and closing aim to efficiently operate windows so that
the occupants are satisfied. By defining an objective function, we can
design a controller for solving this sequential decision-making problem.
A key issue for a computational agent to develop a control method is the
ability to sense the change in the state of the environment. A common
strategy for achieving this is to use building simulation programs (Li
et al., 2015; Wang & Greenberg, 2015). This approach is fast and
flexible for obtaining data, but cannot guarantee accuracy as occupant
presence presents a significant influence on building performance. In
this paper, we propose a data-driven approach to predict the change in
the indoor environment due to the operation of windows. Distinct from
building simulation programs, a data-driven learning process can gra-
dually improve accuracy. As the model-free RL control method for
improving indoor comfort has not been studied in this way, a prototype
of the prediction-based implementation and its achievement is de-
monstrated.

3. RL and algorithms

Reinforcement learning (RL) essentially looks for best policies in the
process of decision-making over time. The RL agent optimises its ac-
tions through interacting with and learning from the environment. It
learns how to map situations to actions so as to maximise a numerical
delayed reward signal. It doesn’t need to have a “teacher” telling it how
to take an action, rather, it makes decisions via implementing a trial-
and-error search and recognising the delayed reward from the en-
vironment that the agent interacts with (Sutton & Barto, 2018).

The environment gives stochastic feedback to the agent. In most
cases, the environment cannot be modeled accurately and thus model-
free RL techniques such as Q-learning and SARSA are employed as
learning algorithms. Richard Bellman came up with the concept of
Markov decision processes (MDPs) or finite MDPs, a fundamental
theory of RL, to formulate the underlying framework for solving such
problems (Bellman, 1957a).

3.1. Markov decision processes

In a dynamic sequential decision-making process, the state S∈St
refers to a specific condition of the environment at discrete time steps

= …t 0,1, . By realising and responding to the environment, the agent
chooses a deterministic or stochastic action A∈At that tries to max-
imise future returns and receives an immediate reward R∈+Rt 1 as the
agent transfers to the new state +St 1. The reward is usually represented
by a quantitative measurement. Fig. 2 (Sutton & Barto, 2018) shows
how a sequence of state, action, and reward are generated to form an
MDP.

Fig. 2. The interaction between agent and environment in an MDP.
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The Markov property tells us that the future is independent of the
past and depends only on the present. In Fig. 2, St and Rt are the out-
comes after taking an action and are considered as random variables.
Thus, the joint probability density function for St and Rt is defined by,

�= = = = =− −p s r s a S s R r S s A a( , | , ) [ , | , ],t t t t
' '

1 1 (1)

where S∈s s′, , R∈r and A∈a . It can be seen from Eq. (1) that the
distribution of state and reward at time t depends only on the state and
action one step before. Eq. (1) implies the basic rule (or dynamics) of
how the MDP works and one can easily determine the marginal tran-
sition probabilities p s s a( , )' ,

R
� ∑= = = = =− − ∈

p s s a S s S s A a p s r s a( , ) [ , ] ( , , ).t t t r
' '

1 1
'

(2)

Eq. (3) gives the expected reward by using the marginal distribution
of Rt:

R S
� ∑ ∑= = = =− − ∈ ∈

r s a R S s A a r p s r s a( , ) [ , ] ( , , ).t t t r s′1 1
'

(3)

Both Eq. (2) and Eq. (3) are used for solving the optimal value
functions presented in Section 3.2.

3.2. Policies and value functions

A policy π is a distribution over actions given states. It fully defines
the behaviour of an agent by telling the agent how to act when it is in
different states. The policy itself is either deterministic or stochastic
(Sutton & Barto, 2018) and the probability of taking an action, a, in
state s is:

�= = =π a s A a S s( ) [ ].t t (4)

The policy can be considered as a function of actions. The selection
of actions can be achieved by either creating a look-up table (see
Section 3.3) or building an approximation model. The overall goal of RL
is to find the optimal policy given a state.

An optimal policy tries to maximise the expected future return from
time t : = + + + …+ + +G R R Rγ γt t t t1 2

2
3 , where ≤ ≤0 γ 1 is the discount

parameter. The state-value function, v s( ),π and the action-value function,
q s a( , ),π are two useful measures in RL that can be estimated from the
data. We define v s( )π , of an MDP, under policy π , as the expectation of
the return starting from state s:

S� � ∑= = = = ∈
=

∞

+ +v s G S s γ R S s for all s( ) [ ] [ | ], .π π t t π
k

k
t k t

0
1

(5)

In practical applications, v s( )π is more applicable for model-based
problems, that is, problems where a model of the dynamics is known a
priori. Whereas the action-value function, q s a( , ),π is more useful in the
model-free context when the dynamics is not known. Episodic simula-
tions are often used to estimate q s a( , ),π where,

S A

�

� ∑

= = =

= = = ∈ ∈
=

∞

+ +

q s a G S s A a

γ R S s A a for all s and a

( , ) [ | , ]

[ | , ] , .

π π t t t

π
k

k
t k t t

0
1

(6)

The task of finding the optimal policy, π*, is achieved by evaluating
either the optimal state-value function

=v s v s( ) max ( ),
π

π* (7)

or the optimal action-value function

=q s a q s a( , ) max ( , ).
π π* (8)

The way to optimise Eqs. (7) or (8) is to make use of the recursive
relationships between two states in sequential order, known as the
Bellman optimality equation for q s a( , )* (Bellman, 1957b), which is ob-
tained by summating the following,

S
∑= +

∈
q s a r s a γ p s s a q s a( , ) ( , ) ( , )max ( ', ').

s′ a*
'

' * (9)

3.3. Q-learning and SARSA

A straightforward method to find q s a( , )* given a policy π is to
iteratively update the values of q s a( , )π by maximising the sum of the
discounted future returns and the immediate reward, known as the
learning target. In a general iteration process, the new estimate of a
target is updated by summing the old estimate with an error induced by
the incremental observation, namely:

⟵ + −NewEstimate OldEstimate StepSize Target OldEstimate( ).

Different strategies regarding Q-value updates and action selections
yield off-policy and on-policy algorithms. Among those theoretically
convergent-guaranteed algorithms, the off-policy Q-learning and on-
policy SARSA algorithms learn policies efficiently when the state-action
pairs are discrete and the size is moderate. Thus, in this paper, we
consider Q-learning and SARSA as our testing algorithms and examine
their performances in adaptive window controls.

3.3.1. Q-learning
Q-learning (Watkins, 1989) is a value-based tabular method. A look-

up table is built to store all state-action pairs and the corresponding
action-values. When the agent is in a specific state and an action is
selected, i.e. s a( , ), the update for this state-action pair evaluates the
transited state-action pair, i.e. s a( ', '). The subsequent action, a', is taken
such that q s a( ', ') is maximised. As seen in Algorithm 1, the update to a
new action-value is achieved by adding a so-called TD-error,

+ −α R γ Q S a Q S A[ max ( , ') ( , )]
a'

' , to the old action-values. The value

function Q S A( , ) asymptotically converges to q s a( , )* . An ε -greedy ex-
ploration indicates that the agent chooses an action that has maximal
estimated action-value with probability − ε1 , but with probability ε the
agent selects an action at random with equal probability.

Algorithm 1. Tabular Q-learning
Input: discount parameter γ ; step size parameter α ; S A∈s a{ , } { , }; >ε 0 initialised

Q s a( , ).
1: Loop for each episode
2: Initialise S
3: Loop for each time step
4: Choose A from S by e.g., ε-greedy policy

5: Take action A and observe R and ′S

6: ⟵ + + ′ −
′

′Q S A Q S A α R γ Q S a Q S A( , ) ( , ) [ max ( , ) ( , )]
a

7: ⟵S S'
8: Until S is terminal

Output: Q-table

3.3.2. SARSA
Compared to Q-learning, SARSA is more conservative and sensitive

to errors. When the agent of SARSA updates its Q-table, it observes the
successor state and takes an action according to, for example, an ε
-greedy policy (or another exploration method) derived from Q,
whereas Q-learning always looks for the maximum Q-value by evalu-
ating those possible successor actions. Moreover, Q-learning re-selects
the successor actions after updating the Q-table (due to exploration),
which makes the policy of the learning agent distinct from the policy for
updating the Q-table and thus behaves off-policy. The incremental
update in the SARSA algorithm uses all of the elements in

′′S A R S A( , , , , ) to obtain the action-value,

⟵ + + ′ ′ −Q S A Q S A α R γQ S A Q S A( , ) ( , ) [ ( , ) ( , )],

where ′A is derived from an ε -greedy or another exploration method.
Algorithm 2 gives the implementation details of SARSA.
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Algorithm 2. Tabular SARSA
Input: discount parameter γ ; step size parameter α ; S A∈s a{ , } { , }; >ε 0; initi-

alised Q s a( , ).
1: Loop for each episode
2: Initialise S
3: Choose A from S by e.g. ε-greedy policy
4: Loop for each time step
5: Take action A and observe R and S’
6: Choose A’ from S’ by e.g. ε-greedy policy
7: ⟵ + + ′ ′ −Q S A Q S A α R γQ S A Q S A( , ) ( , ) [ ( , ) ( , )]
8: ⟵S S' and ⟵A A'
9: Until S is terminal

Output: Q-table

4. Data and methods

4.1. Data

In this study, data from an office building constructed of reinforced
concrete and brick at a university in Beijing are used. The construction
material of the building is composed of 370 mm common brick with
thermal conductivity 0.6 W/(m·K) and 200 mm polystyrene foam with
thermal conductivity 0.033 W/(m·K). All the offices, shown in Fig. 3(a),
are located on the second floor in the building, whereas the floor spaces
are used for laboratories (Pan et al., 2018). There is one door and one
push-pull south pointing window for the experimental room. As shown
in Fig. 3(b), the window size is 1.5 m × 1.6 m and can be half-open. One
out of ten offices is selected for our experiment. As illustrated in Fig. 4,
the experimental room (No.8 according to the serial number of the
building) is located at the southeast corner with a size of 3.29 m × 3.11
m.

The data collection took place between March 16, 2015 and May 15,
2015. This period in Beijing is the transition season with moderate
outdoor temperature and so natural ventilation is highly preferred. To
facilitate the comparison, the same occupant following the working
routine in the university was in the room during the data collection
period. An earlier work (Pan et al., 2018) gives a detailed description of
the variables and the settings of the sensors. The devices that were used
for collecting the data are highlighted in Fig. 5. An indoor air tem-
perature sensor TR (v1.2) was placed inside the room to avoid direct
sunshine and local heating sources. A portable outdoor meteorological
weather station was put over the roof where outdoor temperature, solar
radiation, AQI, and wind speed and directions are measured. Moreover,
an intelligent human body inductor P100 was used to detect the wa-
velength of the human body. For the days when the room was occupied
for at least 30 min, the daily occupied time ranges from 50 min to 11 h
and has a mean value of 5.5 h. To monitor the window, a displacement
tester was applied to detect and record the position of the window. This
was achieved by the magnetic induction of two dry spring pipes posi-
tioned on the window. The action of opening was recorded when the

window was opened more than 3 cm and the opening period exceeded 3
s.

Indoor temperature (Tin), outdoor temperature (Tout), solar radia-
tion (SR), wind speed (WS), wind direction (WD), and outdoor air
quality index (AQI ) were selected as our environment variables. The
position of the window (Pwindow, open/closed) and the occupancy in-
formation of the room (occupied/unoccupied) were also tracked. Given
that the comfort factors Tin and AQI do not change drastically, each
data record was collected at a time resolution of 10 min, which are
accessible from a data logger. Indoor temperature is the main compo-
nent for thermal comfort. Due to the limitation of the devices and time,
we did not measure other thermal comfort factors, for example, meta-
bolic rate, clothing insulation, radiant temperature, air speed and hu-
midity. Given this, we simplify the factors of thermal comfort by only
considering the most representative factor, temperature. For full fac-
tors, the adjustment of Eq. (10) is straightforward according to the
method from ASHRAE standard 55 (ASHRAE Standard 55, 2017). Since
simplified thermal comfort also generates an interval or zone to in-
dicate discomfort that affects reward in Eq. (10), the simplification has
no impact on our training method compared to comfort with full fac-
tors. Hence, thermal comfort mentioned in this study refers to the
concept with simplified factor.

4.2. Methods

The RL agent optimises its behaviour by exploring a number of
different trajectories as time goes. The observed state at a time point
has a strong correlation to the following states, because the change of
the environment is time-dependent. Instead of simulating the trajec-
tories, we conduct a data-driven approach to mimic the impact on the
environment when an action is made. Among the variables in S , the
indoor temperature is susceptible to the actions taken and so the pre-
diction of it helps to evaluate the future return.

The recurrent neural network (RNN) (Mandic & Chambers, 2001)
makes use of sequential data to make predictions. An RNN has a
memory that stores previous information about what has been calcu-
lated. This is achieved by including the hidden layer that is obtained
from one step earlier as input to the current hidden layer. In Fig. 6, the
information flows of the input I and the output O have been stored and
passed into the hidden layer a. An additional weight matrixWa connects
the hidden layers between two time points by computing the function

= + −a f W I W a( )t t a t1 1 given a nonlinear activation function f . The un-
rolled RNNs share the same weight parametersW W,1 2 andWa across the
entire prediction steps.

Training an RNN is similar to training an ordinary neural network.
By using the backpropagation Through Time (BPTT) method (Werbos,
1990), the gradient for an RNN at each output depends on both the
current input and previous output. The gradient at time t needs to sum
up all previous −t 1 gradients. In practice, the long-term dependency

Fig. 3. Office building (a) and room (b).
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makes BPTT unable to work due to the problem of vanishing or ex-
ploding gradients (Pascanu et al., 2013). A special case of an RNN,
known as Long Short-Term Memory (LSTM), can perfectly avoid this
problem by adding gates to open and close access to the previous in-
formation (Hochreiter & Schmidhuber, 1997). We analyse the results of
our RNN predictive model in Section 5.

Predicting the change in the environment enables the agent to start
learning. To train an RL agent that acts optimally given a certain state,

the state S has to be representative of the environment, thereby giving
the agent the potential to figure out the transition probabilities and
estimated future reward. Hence, both the indoor and outdoor tem-
peratures as well as the AQI have been identified as direct environ-
mental factors that have impacts on the position change of the window.
Wind speed and solar radiation have also been included as factors since
they affect both the airflow rate and ambient temperature. Since the
current position of the window forms the baseline for the agent, this too

Fig. 4. The selected office room.

Fig. 5. Data collection devices: (a) indoor temperature sensor; (b) portable outdoor meteorological weather station; (c) human body inductor; (d) window tester.
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has been included as part of the state components. Furthermore, Gauss
distribution models and logistic regressions have also shown that the
variables T T SR WS AQI, , , ,in out significantly influence window op-
erations (Pan et al., 2018, 2019). We therefore formulate a single state
as a sextuple: = 〈 〉T T SR WS AQI PS , , , , ,in out

window . Dynamic variables
such as airflow rate or variables that have indirect effects to comfort
parameters such as wind direction are excluded from S. As some of the
components of the state are continuous and imperative for making
policies, we have thus discretised these so that the tabular RL algo-
rithms can work.

Given the observed state, the action set, A = Switch Inaction{ , },
consists of only two elements, since we do not measure the degree of
opening. Switch refers to either closing or opening the window de-
pending on the current state. Inaction means keeping the position of the
window unchanged under either scenario. The rationality to formulate
the actions in this way is so that we are able to keep an eye on the
current position of the window as well as track the actual position
change. Given an open window, for example, it is more natural to say
“keep it open” than to say “open the window”.

The reward R reflects the comfort and is composed of both thermal
comfort (as measured by the indoor temperature) and air quality (as
measured by the proxy variable, AQI). We first define the thermal
discomfort, τ , at time t by evaluating the squared difference between
Tin and given thresholds,

= ⎧
⎨⎩

− − ∉τ T T T T T T T
otherwise

[min(| |, | |)] , [ , ]
0,

,t
t
in

UB t
in

LB t
in

LB UB
2

(10)

where TUB and TLB are, respectively, the upper and lower thresholds of
the comfort temperature. Higher outdoor AQI can also bring discomfort
to the occupant. A survey shows that people have an incentive to close
windows for better indoor air quality when high outdoor AQI is de-
tected (Pan et al., 2018). Hence, an additional component of dis-
comfort, σ , is considered when the window is open and the AQI is
higher than a given threshold, where,

= ⎧
⎨⎩

− ∈ ∞σ AQI AQI AQI AQI
otherwise

, ( , )
0,

.t
t LB t LB

(11)

A combination of the normalised thermal and air quality discomfort
components yields the following reward for discomfort,

= −
−

+ −
−

R ω τ τ
τ τ

ω P σ σ
σ σ

min
max min

min
max min

,t
t t

t t
window

t t

t t
1 2 (12)

where the indicator variable, Pwindow, takes zero for a closed window and
one for an open window, and the weight parameters, ≤ ≤ω0 1i , allocate
the importance between the components. An inverse transformation,

= +′R R ξ1/( )t t , where >ξ 0 is some small real number, allows us to

solve the maximisation problem defined in Eq. (9). It should be noted
that unlike the discretised components making up a state, Tt

in and AQIt
in Eqs. (11) and (12) are, respectively, the RNN predictions and the
numerical values from the observations.

5. Results

The results for both indoor temperature modeling given by a trained
RNN, as well as the control performance of the trained RL agents are
discussed in this section. All experiments are conducted in python 3.6.5
using TensorFlow’s (v1.12.0) high-level API, Keras (v2.2.4). These were
implemented on a Single Intel(R) 64-Bit Core(TM) i5-7300U 2.70 GHz
CPU with 16GB RAM.

5.1. RNN predictions

An RNN-LSTM with a single hidden layer of 50 LSTM units and a
dense output layer for predicting inside temperature was trained for the
experimental room. Since opening and closing the window has a direct
effect on the airflow rate and ventilation speed, the rate of change of
indoor temperature may increase after an immediate switch of the
window position. This effect of a change in window position will gra-
dually wear off until the next switch occurs. Therefore, we incorporate
the following lagged - by one time-step – as input variables: Tin, Tout,
SR, WS, Pwindow, WD, time of day, time since a switch to the window was
made, the presence of the occupant, and outdoor humidity.

We use the 70%–30% rule to divide the data into training and va-
lidation sets under the period between March 20 and May 7. Since the
sequential order matters in RNNs, we strictly follow the time series
observations and do not shuffle the data. We further select observations
in a continuous 3-day period (May 12 to May 15) as the testing set. The
training stops when the average losses are not significantly reduced. As
can be seen in Fig. 7, the number of epochs needed for getting a stable
loss is about 40. In our experiments we do not shuffle the data and so
the sequential feature may produce higher loss for unusual observations
in the early stage of training. Nevertheless, this unusual high loss di-
minishes as the number of epochs increases. Moreover, the predicted
Tin s of the 3-day period are compared against the actual values in the
validation set in Fig. 8(a). For almost all time points, the predicted
values are close to the actual values.

Once the RNN-LSTM is trained, we further test its accuracy on a test
set distinct from both the training or validation datasets. The compar-
isons between the actual vs the predicted values are given in Fig. 8(b),
where it can be seen that no significant deviations are found, and hence
the RNN-LSTM predictive model thus trained generalises well to new
inputs. The root mean squared error (RMSE) for the experimental room
is 0.2 °C that is too trivial for the occupant’s sensory-receptors to sense.

Fig. 6. Structure of RNN.
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Thus, the trained RNN-LSTM is verified as a suitable predictive model
for simulating the environment.

5.2. Performance of RL agents

Due to a lack of computational resources, the learning outcomes are
illustrated for a single day (April 8) as a prototype. The occupant spent
eight hours in the room on this day, which is a typical office routine in
China. This same procedure can be applied to any other day, but we do
not see any reason why our agents would behave differently.

Discretisation to the continuous states for our experimental room
and date are shown in Table 1. We restrict ∈ ° °T [20 C, 27 C]in and

∈ ° °T [6 C, 15 C]out to be within the bounds of the actual extreme va-
lues. Considering the lengths between the bounds in the intervals, a
step-size of °1 C is set for both Tin and Tout. In running the tabular al-
gorithms, both the actual and predicted states are numerically rounded
to the nearest endpoints. The distribution of SR is skewed and so we
consider ordinal indicators for representing uneven intervals. The AQI
and Pwindow are binary variables where we only distinguish if AQI is
greater than AQILB or not. We take =AQI 150LB as vulnerable groups of
people start to have aggravation of symptoms of heart and respiratory
diseases when >AQI 150LB , furthermore, outdoor activities are not
recommended when values of AQI are greater than the given threshold
(Jassim & Coskuner, 2017; Jin et al., 2015; Pu et al., 2017). Further, in
Eq. (10) we take = °T 21 CLB and = °T 27 CUB (ASHRAE Standard 55,
2017; Chen et al., 2018; Zhang et al., 2011). There is no obvious best

temperature within this interval. Since we try to establish a general
framework of agent training, we consider the most representative
thresholds for the majority of occupants. Although individual comfort
preference can vary, the consequence of the occupant’s behaviour is
emphasized in this study.

We take 144 time steps as one episode for both Q-learning and
SARSA. To evaluate the learning performances of our agents, we not
only monitor the reward function but we also examine the accumula-
tive number of penalty actions (defined in Table 2) for each epoch.
When the agent is in a specific state, we consider six different scenarios
made by the values of AQI andTt

in. For example, the agents should have
learnt to close the window when >AQI 150t and < °T 21 Ct

in ; opening
under this scenario would result in a penalty. Clearly, the reward
function and the accumulative number of penalties are inversely related
– an increase in the former will result in a decrease in the latter. By the
end of the 20th epoch in Fig. 9, both Q-learning and SARSA are able to
improve their reward functions and reduce their penalties. As stated in
theory, Q-learning has higher variance than SARSA due to following a
different policy to its behaviour policy. As we can see, by the end of
training, SARSA slightly outperforms Q-learning.

We further evaluate the performances of the agents against the ac-
tual occupant. Specifically, we compare the average reward and penalty
per time step for the whole day and three periods when the occupant

Fig. 7. Losses for RNN training.

Fig. 8. 3-day period comparisons: (a) predicted validation sets and actual values; (b) predicted test sets and actual values.

Table 1
Discretization of states.

Variables Minimum Maximum Interval

Tin °20 C °27 C °1 C
Tout °6 C °15 C °1 C
WS m s0 / m s2.5 / m s0.5 /

Table 2
Penalty actions.

>AQI 150t ≤AQI 150t

< °T 21 Ct
in open open

° ≤ ≤ °T21 C 27 Ct
in open –

> °T 27 Ct
in close, when >−

−
−

−
τt τt

τt τt
σt σt

σt σt
min

max min
min

max min
close

open, when <−
−

−
−

τt τt
τt τt

σt σt
σt σt

min
max min

min
max min
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was in the room, namely, 8:25−12:45, 13:25−15:15, and
15:45−17:35. As shown in Table 3, the trained agents give on average
more than 70 in reward for a 24-h period, whereas they reduce to 7.60
in the morning and increase in the afternoon. For the three occupied
periods, the agents give lower average rewards than the 24-h period.
This is because the agents have to compromise the gain when

>AQI 150t and > °T 27 Ct
in .

For the morning period, negligible differences in reward can be seen
between the agents and the occupant, indicating that the agents can
perform at least as good as the occupant. This tiny difference in reward
is due to the prediction of indoor temperatures. If we scrutinize the
actual actions given by both the agents and the occupant in Fig. 10, we
see that the actions in the morning coincide with each other. In the
afternoon, however, the longer time steps with an open window for the
occupant make the reward higher for the agents. An explanation for the
occupant’s irrational behaviour is the inertial thinking from the
morning, failing to sense the gradually increased AQI. The occupant
may have been concentrating on his work and so easily forgot to close
the window. The RL agent, however, is always able to learn from the
environment and keep a level that is close to the 24-h average.

6. Conclusions

The control of windows in naturally ventilated buildings have a
large impact on occupant comfort. Among the comfort factors, better
thermal comfort and IAQ are of most concern for occupants. In typical
Chinese office buildings, occupants may not behave optimally due to
the complex climate and weather, and therefore intelligent control
methods aiming at improving thermal comfort and IAQ become indis-
pensable for smart and sustainable buildings. Previous intelligent con-
trol methods applied to adaptive window control have been based on
models and their performances are therefore heavily dependent on the
accuracy of these models. Furthermore, these models need to be cor-
rected and re-identified as a consequence of a change in the dynamics of
the building caused by, for example, retrofits. Thus, as an alternative
solution which addresses such challenges, we have developed an au-
tomatic control prototype based on reinforcement learning for im-
proving occupant comfort and tested it in a data-driven simulated en-
vironment.

An RNN-LSTM predictive model was used for predicting the indoor
temperature given environmental variables and was verified by a test
set. The high accuracy of the predictive model enabled us to simulate
the actions of an agent in a flexible setting. Two tabular algorithms, Q-
learning and SARSA, were used to train two RL agents whose learned
behaviours were evaluated against the occupant’s historically observed
behaviour. The agents achieved much better policies than that of the
historically observed occupant’s policy measured in terms of both ac-
cumulative reward and penalties. An RL agent aims to maximise cu-
mulative future return instead of the immediate reward at a single time
point. Even though the performance of our trained agents failed to
surpass the average level of the complete learning period for some
specific sub-periods when the room was occupied, the agents still be-
haved close to the average level. This therefore means that tabular al-
gorithms can inherently reduce the variance.

The prototype established in this paper leads to a large number of
novel and valuable topics that are recommended for future works. We
are still at the early stage of understanding the behaviours of window
opening and closing. Human behaviour is indispensable for controlling
the level of comfort in the indoor environment, and with regard to
occupant-centric RL, we believe that occupant feedback will not only
continuously correct the reward function in the process of learning, but
will also increase the actual learning experience. Human effects for
different occupants should be individually treated and they are highly
related to psychological, physiological and social factors of the occu-
pants. To this end, algorithms built for multi-agent cooperative systems
(where agents have a joint action-value function in which the ex-
ploration of new states becomes complex as the number of agents in-
creases) are valuable to explore and adapt accordingly in order to make
them feasible in practice. The comfort level of an occupant is made up
of the four factors, thermal comfort, indoor air quality, lighting, and
noise, and therefore holistic approaches to measuring the comfort level
of occupants should be explored and intergrated in the design of an
intelligent agent. While discretising the state space allows for the ap-
plication of tabular RL methods, in so doing errors may arise. Hence,
solutions for training an agent with a continuous state space are
therefore promising and thus approximation techniques need to be
developed. With advanced computational power, as well as advances in
algorithm design that address the problem of sample efficiency in RL
(Botvinick et al., 2019), high performance is expected.
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