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Highlights 

 

 Literatures of reinforcement learning regarding occupant behavior were presented;  

 We provided a comprehensive understanding of how the method works;  

 We discussed an overview of implementation requirements and challenges;  

 Future research directions surrounding building control were proposed. 
 

 

  

                  



The reinforcement learning method for occupant behavior in building control: a review 

 

Mengjie Hana, Jing Zhaob, Xingxing Zhanga, Jingchun Shena, Yu Lic 

 
a School of Technology and Business Studies, Dalarna University, Falun, 79188, Sweden 
 
b Leisure Management College, Xi'an Eurasia University, Yanta District, Xi‟an, China 

c Luxembourg Institute of Science and Technology LIST, 5, Avenue des Hauts-Fourneaux, L-

4362, Esch-sur-Alzette, Luxembourg 

 

 
Abstract:  

Occupant behavior in buildings has been considered the major source of uncertainty for 
assessing energy consumption and building performance. Modeling frameworks are usually 
built to accomplish a certain task, but the stochasticity of the occupant makes it difficult to 
apply that experience to a similar but distinct environment. For complex and dynamic 
environments, the development of smart devices and computing power makes intelligent 
control methods for occupant behaviors more viable. It is expected that they will make a 
substantial contribution to reducing global energy consumption. Among these control 
techniques, the reinforcement learning (RL) method seems distinctive and applicable. The 
success of the reinforcement learning method in many artificial intelligence applications has 
given an explicit indication of how this method might be used to model and adjust occupant 
behavior in building control. Fruitful algorithms complement each other and guarantee the 
quality of the optimization. However, the examination of occupant behavior based on 
reinforcement learning methodologies is not well established. The way that occupant 
interacts with the RL agent is still unclear. This study briefly reviews the empirical 
applications using reinforcement learning, how they have contributed to shaping the 
modeling paradigms and how they might suggest a future research direction.  
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1 Introduction 

Building energy consumption amounts to approximately 30%-40% of all energy consumed in 

developed countries [1], [2]. The trend of power demand is still increasing. Not only does this 

increase the operating cost of energy consumption, it also contributes to the increasing 

emission of greenhouse gases. Since buildings are also responsible for one-third of global 

energy-related greenhouse gas emissions [3], developing efficient strategies for reducing the 

consumption of building energy are urgently required in the future. 

Maintaining occupant comfort and use of appliances by occupant generates 80% of building 
energy consumptions [4]. As is well known, occupant behavior is stochastic and complex. 
Even when an advanced modeling method is built to include occupant behavior, it is 
challenging to quickly apply that experience to a similar but distinct environment. There is no 
general scientific standard outlining appropriate model validation techniques especially when 
multiple behaviors are modeled [5]. As an extreme case, in a simulation study of different 
models, occupant behavior with the feature of „random walk‟ results in a very large 
performance gap [6]. It has also been recognized that a building could fail to achieve the 
desired standards and building designers could miss out on the opportunity of optimizing 
building design and control for occupancy [7]. Modeling occupant behavior may help to 
understand and reduce the gap between design and actual building energy performance [8], 
[9]. However, occupant models are usually context dependent [10]. Simply predicting or 
simulating occupant behavior in one setting has its intrinsic challenge in transferring the 
knowledge to a more complex scenario.  
 
Studies of occupant behavior have been grouped into three streams: rule-based models, 

stochastic models, and data-driven methods [11]. It has been discussed that occupant 

behavior models do not represent deterministic events, but move into a field where behaviors 

are described by stochastic laws [12]. Stochastic models consider the occupant behavior to 

be stochastic because behavior varies between occupants and may evolve over time [13]. 

Data-driven methods, however, are conducted without an explicit aim to understand 

occupant behavior [11]. A building‟s physical environment is dynamic and complex. 

Occupants can respond quickly to a change of the environment in a process that is often 

non-stationary. Attempts to model all possible features for building operation systems can be 

intractable and systems accommodating more features often have significant lag times. 

Data-driven methods do not always set up physical models and often use historical data to 

characterize features, including occupant behavior. 

Rather than on the understanding of occupant behavior, intelligent control methods used to 

optimize future reward in building systems seem to be an alternative approach. These create 

an agent that learns from historical behaviors and is trained to adjust the control actions by 

utilizing occupant behavior. The occupant interacts with the building control system via 

presence, actual activity and providing comfort feedback through linked building systems, e.g. 

HVAC, lighting and windows. Thus, an optimal control method integrating building 

performance and occupant impact offers a novel way of modeling. In a control problem, 

generally, an agent is built to complete decision-making tasks in a system to achieve preset 

goal. Building control system, which is a compound of multiple engineering fields, refers to 

centralized and integrated hardware and software networks [14] and considers the 

improvement of energy utilization efficiency, energy cost reduction, and renewable energy 

technology utilization in order to serve local energy loads while keeping indoor comfort [15]. 

Control targets usually include shading systems, window, lighting systems and 

heating/cooling systems. 

A recently realized Markov decision process based machine learning method, known as 

reinforcement learning (RL), can work in both model-based and model-free environments 

                  



[16]. Nevertheless, it is the classic model-free learning algorithms, such as Q-learning and 

     , that makes RL much more attractive and efficient in artificial intelligence applications 

[17]–[20]. The effort to solve deep RL problems, for example [21], [22], opens up the 

possibility of working on large continuous datasets. The distinctive feature of RL is that the 

agent, via trial-and-error search, can make optimal actions without having a supervisor, 

which fits the goal of a control problem.  

These building control systems are able to make decisions based on data-driven modeling 

outcomes. The RL method is able to work in a stochastic environment and to adapt existing 

data to extract underlying logic for decision-making, that is, a data-driven method. The agent 

of RL treats occupant behavior as an unknown factor and learns to adapt itself form what has 

been observed of human interactions. The RL method has been in existence for over 

seventy years, but it was not until the past decade that researchers started to commit 

themselves to expanding its applications. Neither systematic approaches to applying RL on 

occupant behavior nor relevant literature reviews have been analyzed from the 

methodological point of view. The indication for future RL application is still unclear.  

Therefore, the aim of this study is to review the empirical articles on how RL methods have 

been implemented for adjusting occupant behavior in buildings, and provide instructive 

directions for future research. 

Thus, contributions of this study are threefold. Firstly, we present the results of our literature 

search and identify the key points emerging from this research topic in recent years. 

Secondly, we provide a comprehensive understanding of how RL works for building control 

and an overview of its implementation requirements. Finally, we identify the current research 

gap surrounding building control and propose future research ideas for modeling occupant 

behavior. 

In the second section of this study, we present the literature searching scope and the 

outcomes. In Section 3 we briefly introduce the philosophy of RL and its corresponding 

algorithms. Section 4 then analyzes the empirical articles. A discussion is presented in 

Section 5 and Section 6 concludes with some findings and possible new research directions. 

2 Methods and search outcomes 

2.1 Methods 

We conducted our literature search using the search engine Scopus. The first reason is that 

it provides us with multiple document features that we can adjust such as funding details and 

conference information. The second reason is that an interface to the R package bibliometrix, 

an open-source tool for executing science mapping analysis, can be created for conducting 

analytical bibliometrics where three steps are considered for the workflow [23]. In step 1, 

data is loaded and converted to the R data frame. In step 2, the descriptive analysis and 

citation networks are produced; the visualization is made available in step 3.  

Our searching keywords and operations are  

( ( "reinforcement learning"  OR  "Q-learning"  OR  "policy gradient"  OR  "A3C"  OR  "actor-

critic"  OR  "SARSA*" )  AND  "occupant*" ), 

where some prevalent algorithms for RL, for example, Q-learning and policy gradient, are 
also included to guarantee adequate coverage. Adding the wildcard to occupant* ensures 
hits using both singular and plural forms are returned. The same was done for SARSA* 
because there are a number of variants of the SARSA algorithm that can be used for some 
algorithm-specific articles. We exclude the words behavior* or behaviour* because the RL 
agent does not only take action based on particular behaviors, but also adjusts its policy by 

                  



collecting occupant feedback for the control system. We do not limit the search by article 
type or publication year. 
 
2.2 Search outcomes  
 
The original search returns a total number of forty articles. One of the selection criteria was 
that articles where either the occupant behavior or occupancy was explicitly considered as 
an element in a Markov decision process (see Section 3.1) or had an impact on the transition 
of environmental states were included. In other words, an agent that tried to learn the optimal 
control strategy only to satisfy occupant comfort and did not include dynamic interactions 
with the environment was excluded from this analysis. See a relevant review work [24] that 
examined the RL control for occupant comfort for more articles that we exclude here. Careful 
reading of each of the forty articles resulted in thirty-two articles that are considered for this 
analysis. Even though it is not exhaustive, the outcome of this search, we believe, can form a 
representative sample of current understandings within the field. 
 
2.2.1 Publication sources 
The thirty-two documents were published in twenty-three difference sources including 
international journals, conference proceedings and book chapter. A summary of the top five 
publication sources from the search is shown in Figure 1. Most of the articles were published 
in the Elsevier journal Building and Environment, followed by a second Elsevier journal 
Energy and Buildings and the Buildingsys 20191 conference. Each of remaining eighteen 

sources has published one article. Even though full-text articles of some publications are not 
included in the Scopus search engine, the long-tailed Poisson-like distribution for publication 
sources covers a range of topics including energy, building, computer science, optimal 
control, sustainability and engineering. The variety of publication sources establishes a 
multidisciplinary collaborative framework for future studies. We also anticipate that the 
emergence of new publication sources may attract studies of RL for occupant behavior and 

increase public awareness of the topic.  

 
Fig. 1 Top five publication sources 

2.2.2 Publication types, years and citations 

Of the total articles in this search, the earliest was published in 2007. After that, no article 
was published until 2013 (Figure 2). This strongly suggests that difficulties in the 
implementation of complex problems has hindered the development of RL applications. The 
success of many deep learning paradigms in the early 2010s, however, seems to have 
promoted a revival of the use of RL applications, including those in building control. It has 
generated the publication of a number of articles by fusing deep RL for solving complex 
problems. Nevertheless, overall citations are still low. More attention could be paid to this RL 
literature when intelligent control systems for occupants are developed.  

 

                                                             
1
 Full name of the conference: BUILDSYS 2019 - PROCEEDINGS OF THE 6TH ACM INTERNATIONAL CONFERENCE ON 

SYSTEMS FOR ENERGY-EFFICIENT BUILDINGS, CITIES, AND TRANSPORTATION 

                  



 

 

 

Fig. 2 Type and year of publication and number of citations 

2.2.3 Country collaboration 

Collaboration between countries allows researchers to share knowledge, data and research 
infrastructures. The development of RL control for occupant behavior has just started to be 
noticed and needs worldwide collaboration for fast growth. Most historical collaborations 
have been carried out between researchers in the United States and some countries in 
Europe, as well as in China (Figure 3). These three regions/countries will likely take the lead 
in future contributions to the topic. In the meantime their pioneer activity is setting the stage 

for comprehensive impacts from other regions and countries. 

 

                  



Fig. 3 Country collaboration map 

3 The reinforcement learning method 

Various studies have reviewed the classification of different control methods in buildings. For 

example, Shaikh et al. [14] reviewed the intelligent control system for building energy and 

occupant‟s comfort, whereas Dounis and Caraiscos [25] focused on the agent-based control 

system. Aste et al.  [26] summarized the model-based strategies for building simulation, 

control and data analytics. The previous surveys provide a framework of how the different 

methods relate to each other and the pros and cons of each. A generic challenge of 

conventional methods (e.g. PID, on-off, model predictive control, etc.) lies in the difficulty of 

including all unknown environmental factors in the models. Even there is much room to 

increase model performance, complex model specifications usually bring heavy 

computations [27].  

Compared to the conventional methods the RL technique is still not well developed for 

buildings. It has not drawn much attention and the performance of RL algorithms has thus 

not been evaluated yet. Even though Royapoor et al. [28] realized that RL methods are 

notable, a framework of implementations and explorations on efficient RL methods needs to 

be systematically investigated and discussed. 

The shortage of scientific research publications prevents building users, building managers, 

device controllers, energy agencies and other related parties from being aware of the 

neglected technique. An integration with explicit occupant behavior has not been 

comprehensively examined. The curse of dimensionality, the fact that the number of 

representative environment states grows exponentially with complex problems, is an inherent 

problem. Approximate solution methods provide the possibility to overcome this. Deficient 

consideration of it hinders the development of solutions. Thus, the necessity for investigating 

current studies and indicating future studies first requires an overview. 

The idea of RL derives from the concept of “optimal control”, which emerged in the 1950s as 

a way of formulating problems by designing a controller to minimize a measure of the 

behavior of a system over time [29]. Bellman [30] came up with the concept of Markov 

decision processes (MDPs) or finite MDPs, a fundamental theory of RL, to formulate optimal 

control problems. Unlike conventional control methods, RL does not require a model. A 

benefit of a model-free approach is that it simplifies the problem when the system is complex. 

Different from independent and identically distributed (i.i.d.) data that some conventional 

models require, the RL agent receives subsequent reward signals from its actions. Another 

benefit is that the trade-off between exploration and exploitation can be balanced via 

experiment design. Furthermore, a rich class of learning algorithms fused with deep neural 

networks [20] provide a potential for accurate estimation of value functions.  

3.1 Markov decision processes 

In a dynamic sequential decision-making process, the state      of a RL agent refers to a 

specific condition of the environment at discrete time steps        . By realizing and 

responding to the environment, the agent chooses a deterministic or stochastic action      

that tries to maximize future returns and receives an instant reward        as the agent 

transfers to the new state     . A sequence of state, action and reward is generated to form 

an MDP (Figure 4 [24], [29]). 

                  



 

Fig. 4 The interaction between agent and environment in an MDP 

The Markov property highlights that the future is independent of the past and depends only 

on the present. In Figure 4,    and    are the outcomes after taking an action and are 

considered as random variables. Thus, the joint probability density function for    and    is 

defined by: 

       |                 |               , (1) 

where        ,     and    . It can be seen from Eq. (1) that the distribution of state and 

reward at time   depends only on the state and action one step before. From Eq. (1), it is 

straightforward to obtain the transition probabilities     |     and the expected reward 

           |               that are used for formulating the Bellman optimality 

equation in Section 3.3.  

3.2 Policies and value functions 

A policy   is a distribution over actions given states and can be considered as a function of 

actions. It fully defines the behavior of an agent by telling the agent how to act when it is in 

different states. An arbitrary policy targets on evaluating the expected future return when 

making an action   from time  :                        under a given state  , where 

      is the discount parameter, namely: 

 

             |           

                   [∑         |         

 

   

]                       
(2) 

The task of finding the optimal policy in Eq. (2),   , is thus achieved by evaluating the optimal 

action-value function        : 

            
 

         (3) 

3.3 Value-based algorithms 

Strategies to solve Eq. (3) are usually achieved by updating the Bellman optimality equation 
[31]:  

                 ∑     |       
  

         
    

  (4) 

                  



The recursive relationship assists in splitting the current action-value function into the 
immediate reward and the value of the next action. Eq. (4) directly provides us with the 
formulation of value-based algorithms within temporal-difference method 2 , where either 
tabular methods or approximation methods can be adopted for obtaining       . There is 
always an explicit state exploration of state-action space for value-based algorithms. 
  
For problems with small and discrete state or state-action sets, it is preferable to formulate 
the estimations using look-up tables with one entry for each state or state-action value. The 
tabular method is easy to implement and guarantees convergence [29]. The tabular Q-
learning algorithm [32] is the most common RL algorithm used in building control [24]. Easy 
implementation and accurate solutions make it robust in different building control problems. 
Other tabular algorithms include tabular SARSA, i.e. the so-called state–action–reward–
state–action, value-iteration, and policy-iteration.  
 
For large MDP problems, we do not always want to see separate the trajectory of each entry 

in the look-up table. The parameterized value function approximation  ̂                

gives a mapping from the state-action to a function value, for which there are many mapping 

functions available, for example, linear combinations, neural networks, and so on. It 

generates the state-actions that we may not directly observe. A common way of updating the 

weight vector,    is the gradient descent, which yields deep Q-learning. Algorithms like 

         and fitted Q-iteration can also be found in the earlier studies. More recently 

developed value-based algorithms [33] have also provided a great number of opportunities 

for training the agent in a more flexible way. 

3.4 Policy-based and actor-critic algorithms 

Another way to solve large MDP or continuous state RL problems is to apply the policy-

based method [34], where the policy is explicitly represented by its own function 

approximator, independent of the value function, and is updated according to the gradient of 

expected reward,  

                    , (5) 

with respect to the policy parameters  .      is the total reward for a given trajectory  , 

representing the interactions between the agent and the environment in an episode.       

depicts the probability of getting a specific   from a stochastic environment under fixed  . 

The approach to finding optimal   can be converted to solve the maximization problem using 

gradient ascent with regard to a set of parameters θ, for example, the weights and biases in 

a neural network. The policy-based method has an innate exploration strategy and the 

variance of the gradient is large for episodes with long time steps. Some recent algorithms 

such as Proximal Policy Optimization [35] and Trust Region Policy Optimization [36] have 

been developed for complex problems. Subtracting a baseline   from      may reduce the 

variance while keeping the gradient still unbiased. One option is to apply the state-value 

           |      to the policy gradient methods, known as an actor-critic algorithm. 

These algorithms work with parameterized policies by relying exclusively on value function 

approximation [37]. In practice, the actor-critic algorithms use deep neural networks to 

estimate the value function [38], [39]. 

3.5 RL for building control 

                                                             
2
 The Monte Carlo method and dynamic programing method are also value-based. See [29] for more details. 

                  



It has been challenging to apply the trained RL agent to buildings irrespective of the type 

occupant behavior due to rigorous training requirement, control security and robustness, and 

the ability of method generalization [40]. However, real implementations may validate and 

improve the method by observing reliable state transitions and reward signals. Appropriate 

specifications of state, action and reward in MDP have significant impacts on learning 

outcomes and practical settings.  

The states partly determine the complexity of RL control problems. In building applications, 

states are mostly defined by the variables that are associated to physical environment and 

weather condition for a building, for example, outdoor temperature, airflow rate, indoor CO2 

level and so on. Sufficient changes of state variables will alter indoor comfort level and 

energy use, which also updates building environment for RL agent to take action. Accurate 

representation of states will lead to efficient training process and avoid curse of 

dimensionality. For continuous state or state with large number of levels, building 

environment becomes too complex to get fully explored. Dimension reduction is an 

alternative way for resolving the problem [41]. However, it is a collaborative work between 

building management expert and data scientist to figure out applicable state representation. 

The action of an agent is taken based on observed state and the action levels can also affect 

the problem complexity. For a building system, controlling HVAC (heating, ventilation, and air 

conditioning) is the most complicated due to various components and control levels [40]. 

Actions like setting constant temperature set point or airflow rate will cause high energy use, 

because room occupancy change, outdoor environment and pre-heating/cooling strategy 

may also generate effects to HVAC performance and energy use.  Actions of an RL agent do 

not only try to immediately improve current reward, but also aim to maximize future return. 

For simpler control problems, for example, window opening/closing [42], action can also be 

generalized to a continuous domain, which requires more efforts on making acceptable 

simplifications. 

Two types of rewards have been examined in most of the studies: comfort level and energy 
saving. It seems that occupant comfort gets more priorities when optimization is considered 
for these two contradictory factors in developed areas. Nevertheless, reward is more related 
to contextual, psychological, physiological, and social background of an occupant. Using 
same comfort criteria to different individuals will bring bias to learning process. It is also 

reasonable to take     indicating that time factor will not give any discount to future comfort. 
 
4 Empirical articles of RL control for occupant behavior 

In this section, we will scrutinize the RL applications in two categories: those where occupant 
behavior or occupancy is explicitly characterized as a state, action or reward in the MPD; and 
those which not use occupant behavior to directly train an agent, but interact with the 
environment by adjusting the state transition, estimating the disturbance of reward, providing 

feedback and changing occupancy schedules. 

4.1 Occupant behavior in MDP 

Nine representative articles were selected to illustrate the first category of applications. Their 
workflows are summarized in Table 1 where occupant behavior or occupancy interacting with 
RL agent will be examined in detail. We also present a breakdown of the specific state, 
action, reward and algorithms each application uses.  

There is always some doubt when selecting state variables. Selecting too many will increase 

the learning inefficiency exponentially while selecting too few will not fully depict the Markov 

property. Thus, evaluating the computation power and model accuracy should be considered 

for making a selection balance. Looking at the actions made on the building systems, the 

                  



main interventions have been taken with the HVAC system, which directly contributes to 

affecting occupant thermal comfort and indoor air quality. It is not surprising that comfort and 

energy consumption are the most studies objectives, represented by reward, for different 

learning tasks. Incorporating learning efficiency to the reward also provides us with 

innovative method in designing the experiment [43].  

Table 1 Occupant behavior in MDP 

References state action reward algorithms 

Jia (2019) 
[44]  

occupancy, room 

temperature, weather, 
time of day, energy 
consumption 
 

supply air 
temperature 

energy and 
comfort 

policy 
gradient 

Park (2019) 
[45]  

occupancy, light 
switch position, indoor 
light level, time of a 
day 
 

switching lights 
on/off, doing 
nothing 

energy  and 
comfort 

value iteration 
 

Valladares 
(2019) [46] 

number of people, 

indoor/ ambient 
temperature, levels of 
CO2, PMV index, etc. 
 

setting 
temperature 
and ventilation 
system 
 

CO2 levels, 
PMV index, and 
power 
consumption 

deep Q-
learning and 
double Q-
learning 
 

Marantos 
(2019) [47] 

occupant’s existence, 
number and activity, 

indoor/outdoor 
temperature, humidity, 
solar radiation, etc. 
 

temperature 
set-point 

thermal comfort 
and energy 

Neural Fitted 
Q-iteration 
 

Kazmi 
(2018) [43] 

environment including 
occupant behavior, 

embodied energy 
content of vessel, 
heating mechanism 
 

reheating the 
storage vessel 
or not 

comfort, energy, 
exploration 
bonus 

Model-based 
RL 
 

Lee (2018) 
[48]  

occupant’s feeling of 
cold, comfort, and hot 

occupancy, 
occupant’s 
overriding the 
set point 
 

point tracking 
error and 
energy 

policy 
gradient 
 

Zhang 
(2018) [49]  

occupancy, day of the 
week, hour of the day, 
outdoor air 
temperature, outdoor 
air relative humidity, 
etc. 
 

supply water 
temperature set 
point 

energy demand 
and indoor 
thermal comfort 

Asynchronous 
Advantage 
Actor-Critic 
(A3C) 
 

Barrett 
(2015) [50]  

occupancy, room 

temperature; outside 
temperature 

turning on/off 
heating turning 
on/off cooling 

indoor 
temperature, 
energy 
 

Q-learning 

Fazenda 
(2014) [51]  

time that the system 
has been in operation, 
lifetime desired for the 

on/off 
heating/cooling:, 
temperature set 

user interaction 
of thermal 
comfort, energy 

Q-learning 
with function 
approximator 

                  



system, heating on/off points, opening 
windows 

 

 

4.1.1 Occupant behavior as a state for HVAC control 

Most of the applications focused on controlling HVAC by setting occupancy as the state [44], 

[46], [47], [50]. This was because the occupant‟s schedule usually followed a fixed routine or 

could be predicted with stochastic models. For example, Barrett and Linder [50] developed a 

HVAC control system by including the prediction of occupancy, where a modified Bayes rule 

was applied. Initial prior probability and environmental experience were used to obtain the 

posterior probability. The predicted occupancy followed a multinomial distribution of 

occupancy for specific times and returned a binary outcome of true and false.  

One of the recent studies [44] added expert experience when they considered occupancy as 
one of the states to control HVAC, where the availability of state-action pairs helped to 
initialize the neural network and expert policy was used as a baseline for better policies. 
Valladares et al., [46] believed that occupant has strong influence on CO2 level and included 
the number of occupants as one of their states, arguing that CO2 control requires additional 
fresh air from the outside environment and increases HVAC loading. Simulations were 
carried out in their initial study using between 2-10 occupants, a number that was extended 
to 60 occupants in a subsequent study. A pre-training loop was used for the exploration of 
state-action pairs to guarantee that the agent was able to observe sufficient information for 
deep Q-learning. Combined with supervised learning for estimating energy consumption 
given occupant activity, Marantos et al., [47] developed a Neural Fitted Q-iteration, where the 
Q function was represented in parametric form by a multi-layer perceptron.  

4.1.2 Occupant behavior other than as a state for HVAC control 

In addition to setting occupancy as the state, Zhang and Poh [49] also used a smart phone 

app to collect thermal preferences from the occupants. The RL agent figured out the control 

policy by using the collected feedback. A Bayesian model calibration was implemented for 

heating energy demand and average indoor air temperature before training RL agent. The 

training was carried out in OpenAI Gym with customized design, which provides them with 

flexible options to build an RL agent.   

Besides occupancy, other studies used occupant‟s feeling of cold, comfort, and hot as a 
state. One simulation-based work [48] also included occupancy, as represented by uniform 
distribution, and the occupant‟s override at a set point, as actions. A sample average method 
was developed for approximating the gradient, a method that was shown to be applicable for 
complicated stochastic problems. The occupant‟s interaction with the thermostat was also set 
as the reward in one study, where the behavior of the occupant was simulated with “out”, 
“working”, and “uncomfortable” [51]. All of these studies, however, are based on the 
assumption that occupant behavior stays constant. If occupants change their behavior from 
time to time, the learning outcomes demonstrated here may fail to work.  
 
4.1.3 Control for lighting and vessel 

Two of the studies used lighting and vessel control respectively as a way to explore occupant 
behavior. In a study of lighting control [45], occupant was detected by smart device. Their 
feedback on the control was collected through a survey. RL agent was able to gather the 
information and the learning were continuously updated to adapt the control parameters via 
occupant interactions. It has been discussed that the developed method can also control a 
dimmable light. For vessel control [43], future occupant behavior was modeled as an 
uncontrollable environmental factor for hot water consumption. This was because of the 

                  



limitations of the prediction model. Nevertheless, the study did show that specific behavior 
can be learnt from data and that the RL agent was able to adapt the policy. 
 
4.2 Indirect influence of occupant behavior on MDP 

In contrast to the studies that directly characterize occupant behavior in MDP, there are 

various ways for the occupant to influence the building control method. The RL agent in 

these studies optimizes its policy not by taking occupant behavior as an immediate input to 

MPD, but by measuring its indirect effect on the system. A summary of the literatures 

generates three categories for understanding occupant behavior: occupancy, actual behavior 

and providing feedback to the control system. For MDP, occupant behavior can have an 

effect on changing the state or state transition. In most of the studies, occupant behavior can 

be modeled as a stochastic factor to adjust the reward. Only a few studies associated 

occupant behavior with action. Detailed references for each application are shown in Table 2. 

For the building systems, HVAC is the mostly examined one, because it makes a substantial 

contribution to occupant thermal comfort and indoor air quality. RL controls for lighting, 

window and vessel, for example, are relatively uncommon in the existing literature; this gap 

should be addressed in future studies.  

Table 2 Indirect influence on MDP 

Interactions 
MDP 

State/state transition Reward Action 

Occupancy - HVAC ([52]–[56]); HVAC 
and window ([57]); HVAC, 
lighting, blind and window 
([58]) 
 

- 

Actual behavior Vessel ([59]–[61]); PV 
system ([62]); Lighting 
([63]) 
 

HVAC ([53], [64]); Vessel 
([65]); Space heating ([66]); 
Lighting ([63]) 
 

HVAC ([67]) 

Feedback - HVAC([68], [69]) - 

 

4.2.1 Actual behavior and state 
 
Actual behavior includes any activities that occupants carry out to interact with the building 
system, for example, using hot water, turning on the light, and opening the window. The 
stochastic behavior will lead to frequent updates of the state in the Q-table. As some studies 
show, the inclusion of actual behavior in controlling vessels seems to be a viable approach 
[59]–[61]. Occupant behavior together with current state and action, contributing to the state 
transition, can be modeled as a stochastic time series sequence using real world occupant 
behavior when the RL agent develops its policy [61]. Occupant behavior was considered as a  
perturbations of the vessel states: energy content inside the storage vessel and temperature 
[59]. The state transitions were modeled based on this assumption. Higher hot water 
consumption might require shorter episodes to preserve occupant comfort. A SARIMA model 
learned occupant behavior, with adjustments for the seasonality of individual occupant 
demand.  Similarly, individual occupant behavior, or consumption profiles, was modelled, 
which defines vessel state transitions [60]. Occupant models were built to offer additional 
insight into individual occupant behavior types and were used for clustering households. The 
SARIMA models also provided reliable predictions for houses with regular consumption 
patterns. Non-stationary, nonlinear and highly irregular consumption profiles were dealt with 
using the additional bias term. In these case, different occupant behavior might be the 
reason for the variance of energy savings.  

                  



 
The RL method has also been applied to photovoltaic systems. In [62], stochastic occupant 
behavior capturing tap water use was included in a heat pump buffer model. It was counted 
as energy loss to the environment. The tap water model used historical data to relate 
occupant behavior to hot water demand. This historical data was used to construct a 
conditional probability, but it could also be used to generate samples of occupant behavior. 
Besides the stochastic occupant behavior associated with hot water consumption, other 
behaviors, such as those associated with the use of cooking appliances, lighting, washing 
machines entertainment devices and other electrical loads, could also be studied. Occupant 
behavior is the result of complex decisions that are dependent on unpredictable personal 
factors. One study used  a hidden Markov model (HMM) to demonstrate occupant behavior 
around light usage, where a RL was applied without the need to consider hidden states [63]. 
The authors considered the whole building as a set of spaces and for each space the 
occupant occupied a HMM. 

 
4.2.2 Actual behavior and reward 
 
The studies reviewed here also show that occupant behavior can affect the reward. For 
example, using hot water and having the lights on at the same time can increase energy 
consumption. When the RL agent specifies the reward, insufficient consideration of human 
activities can lead to errors. Because it is very challenging to develop explicit physical 
models that are both accurate and fast, deep RL (DRL) algorithms are necessary to adapt for 
occupant activities [64]. A deep deterministic policy gradient was developed for a HVAC 
system in [53]. Occupant behavior was concluded to affect the reward in two ways. First, the 
system was set to occupied and unoccupied periods. The unoccupied spaces did not have to 
maintain thermal comfort. Second, variable-air-volume boxes controlling the volume of 
conditioned air were installed based on the set points set by the occupants. These provide 
more accurate air temperature controls. The percentage of discomfort occupants in the 
experiment experienced was represented by averaging the sensor readings from the boxes. 
In this study, the authors used a long-short-term-memory (LSTM) method to model historical 
HVAC operational data in order to build a training environment for the DRL agent to interact 
with. In the LSTM, the environment took the state and the action chosen by the DRL agent 
as inputs and returned the new state and reward for action as outputs. The DRL agent was 
able to learn the optimal control policy for a HVAC system by interacting with the training. 
 
For studies that considered heating systems, the profiles of individual occupant behavior 
were averaged and then applied to simulate the results  [65]. When this was done the 
SARSA(λ) algorithm was then able to learn the desired behavior – the occupant‟s domestic 
hot water use - to enhance the heating cycles. The results, however, showed a large 
difference in the number of heating cycles between the individual and averaged profiles. This 
was due to individual occupant behavior. Occupants‟ clothing insulation and activity level, 
such as sitting, cooking or sleeping, were used to calculate Predicted Mean Vote (PMV)  [66]. 
The simulations considered the number of occupants and their metabolic rate. Typical 
behaviors during the week (working or studying during the day, eating dinner at home) and 
activities during the weekend were also simulated to evaluate energy consumption. Because 
occupants may feel and act differently and wear different clothes, room temperature has to 
be adjustable to obtain good thermal comfort. 
 
4.2.3 Occupancy and reward 
 
Occupancy is a more general concept where actual occupant behavior is not formulated. A 
number of occupancy detection methods have been be developed [70]–[72]. From these 
techniques, it is now possible to identify if a room is occupied or not and how many 
occupants it has. Like actual behavior, the level of occupancy is also a stochastic factor to be 
rewarded. In one study of HVAC systems, the transition function of the MDP was assumed 

                  



unknown to the agent [52]. The occupants were assumed to affect the CO2 concentration 
and to generate heat emission. When the occupancy level changed, the RL agent had sense 
this change and adjust the CO2 levels and temperature accordingly. The reward, including 
CO2, thermal and energy, was calculated based on a negative sigmoid function. More simply, 
the indoor air quality was modeled in proportion to the number of occupants [54], where a 24 
hour period was used to form an episode in which the number of occupants in a building 
could change. In the simulation, two peak periods for the number of occupants and CO2 
concentrations were found, one at approximately 9:00 am and one at 7:00 pm. 
 
Besides air quality, one of the studies examined thermal comfort in a single-family residential 
home [55]. The authors assumed that the occupants were at home between 6pm and 7am 
the next day and that the house was unoccupied between 7am and 6pm. Thus, the RL agent 
tried to keep a desired temperature range whenever the occupants were at home, and 
remained indifferent to home temperature when the occupants were out. The setting led to a 
straightforward setback strategy that turned the system off when the occupants were out and 
turned it back on once the occupants were at home. Occupancy schedules and counts were 
used as a future disturbance in another recent study [56]. By the end of the experiment, the 
agent was able to perform well, irrespective of the number of occupants. In this study, 
occupancy count was not an initial part of the model the authors used for the real test. When 
examining the results, however, they found that the amount of cooling required varied 
drastically with the number of occupants and so occupancy count was added to their 
subsequent calculations. Another approach is to replace default occupancy schedules with 
actual occupancy schedules collected from real target buildings [58]. This system was 
installed in a test building and the collection of accurate occupancy pattern data at the zone 
level was then obtained. The RL control system developed in this case could also accept 
occupants‟ feedback allowing it to train the agent where only minor modifications were 
needed. 
 
4.2.4 Feedback and reward 
 
Providing comfort feedback to the control system makes RL agents react more efficiently. 
Even though comfort standards, for example thermal comfort [73], can help RL agents to 
figure out the appropriate comfort level, this can be challenging because of data availability 
and individual variation. 
 
In one study an adaptive occupant satisfaction simulator was used as a measure of user 
dissatisfaction that originated from the direct feedback of the building occupants [69]. Every 
time a signal from the simulator became available, the simulator was updated to incorporate 
the new information. It should be noted that this study was the earliest publication in our 
document set. The learning speed was slow and the agent was still making errors after four 
years of training. For example, it was still turning on the heating in summer and cooling 
during winter. This may have been because the exploration was not enough. It may also 
have been because the use of the recursive least-squares algorithm       requires high 

computational demands and large amounts of memory. Further training should eliminate 
these wrong decisions. On the positive side, this study clustered thermal conditions to 
produce homogeneous environments, where the classification was implemented to predict 
the level of thermal comfort by using the state space, including clothing insulation, indoor air 
temperature and relative humidity [68]. A confusion matrix was then created to evaluate its 
performance. It formed a function mapping the state to the reward, which enabled the 
occupant‟s feedback to be collected by the RL agent for HVAC control. This approach was 
able to reach the optimal policy from any start state after a certain number of episodes. The 
authors pointed out that when new occupant provides feedback to the agent, the model 
needs to be calibrated for new training. 
 
4.2.5 Actual behavior and action 

                  



 
There are a limited number studies considering occupant behavior as an indication to action, 
because optimal action is usually learnt by the agent. One exception is to make 
recommendations [67]. Occupants‟ historical location and the shift schedule of their arrival 
and departure times was used for operational recommendations. The occupants‟ location 
preferences, consisting of the distribution of time over the spaces, were extracted.by using 
historical data. Location data was also extracted for the arrival and departure times of each 
occupant. The occupants could change location after receiving a move recommendation. 
The Q-table was maintained for learning both move and shift schedule recommendations.  
 
4.3 Training RL agent with deep neural networks 
 
Curse of dimensionality refers to high number of levels for state variable or continuous state, 
which hinders efficient exploration of the state space and leads to insufficient learning. In 
Table 3, three simplification methods have been compared for their pros and cons. For 
value-based methods with continuous state, variable discretization take a set of single values 
to represent the whole state space [50], [54], [63]. However, including too many such type of 
variables may easily lose important information in the data and increasing the size of the 
data will not help to compensate the loss. On the other hand, dimension reduction aims to 
utilize all dimensions in the variable space to extract principal features that are in relatively 
low dimensions [41]. Although larger amount of data can utilize more information and extract 
more representative features, bridging the extracted features to the original values is not 
straightforward and thus the policies may be misleading. 
 

Table 3 Comparison of simplification methods 

 benefit weak point 

variable discretization  easy to implement; problem 
can quickly become simple 

may lose important information 

dimension reduction able to capture all features inaccurate description to original 
data 

function approximation efficient for really complex 
problem 

not easy to find perfect function 

 
Artificial neural networks are widely used for nonlinear function approximation. It is a network 
of interconnected units that have some of the properties of neurons, the main components of 
nervous systems. Function approximation avoids to create a look-up table to store action 
values. Instead, approximate value is represented as a parameterized function. Actions are 
quickly generated by using a neural network to map the state into a set of action-value pairs 
[51]. The number of hidden layers in a neural network is associated to the degree of 
nonlinear transformations. High number of hidden layers indicate more sophisticated 
mathematical modeling and better mapping ability, which is also called deep neural network 
(DNN). A direct application is to extend Q-learning to deep Q-learning where the demand of 
data is high [46], [64]. Insufficient data input to DNN is not able to optimize thousands of 
parameters in DNN. Thus, high quantity and quality of data guarantees the convergence of 
the loss function for a DNN. An alternative way to overcome the data insufficiency is to apply 
transfer learning technique by freezing most layers of a deep neural network that are pre-
trained on data from other source. The model can be then re-trained with much less trainable 
parameters from the target data. The performance of this transfer learning deep neural 
network model will keep improving over time while more operational data are streaming into 
the model [74]. For policy-based implementations [53], [56], [75], the parameters in the policy 

network,  , connect the DNN layers in Eq.(5). Unlike deep Q-network, policy network maps a 
state to an action that maximizes the expected reward from sampled trajectories. Training 
policy DNN requires intensive experiments to generate actual behaviors, which is time-
consuming and costly in terms of data collection. In Section 5, we will discuss the details of 
implementing an alternative off-policy strategy. 

                  



 
4.4 The algorithms 
 
Algorithm selection is problem dependent. For problems with small state-action space, value 
based algorithms are preferred because the optimization can converge quickly. For problems 
with large state-action space, creating a table to update learnt action values is not feasible. 
For building control applications, it is common to adopt continuous variables such as 
temperature, solar radiation, and occupancy duration for the analysis. Discretization to such 
variables may    mitigate the problem, but can also generate bias. Thus, variants of Q-
learning algorithms and policy-based algorithms have emerged as ways to achieve more 
exploration to the state space. As seen in Figure 5, tabular Q-learning is still the most 
commonly used algorithm any more, but the relative frequency of this has reduced in recent 
years compared to earlier work [24]. The variants of Q-learning, for example Q-learning with 
approximation, and policy-based algorithms now also supply various strategies for dealing 
with continuous state. The class of actor-critic algorithms seem to be an alternative approach; 
more applications need to be developed. 
 
4.5 Keywords 
 
The growth of authors‟ keywords in recent years depicts how the topic in this study has 
evolved. In Figure 6, we present keyword growth by using the loess smoothed occurrence. 
Loess is a nonparametric regression strategy for fitting smooth curves to empirical data [76]. 
The phase “deep reinforcement learning” is a subclass of RL algorithms. “Deep” in this case 
refers to the number of layers in a neural network. A shallow network has one so-called 
hidden layer and a deep network has more than one. Training deep neural networks usually 
requires a large amount of data and extensive computing resources. Thus, a deep RL agent 

will outperform over the long run [77]. For the control target, “energy” and “thermal comfort” 

are the most relevant words and are also likely to be important topics for future study.  
 

 

                  



 
Fig. 5 Algorithms used in the literatures 

 

 
Fig. 6 Keywords growth 

5 Discussions 
 

Before training an RL agent, one of two strategies must be selected: on-policy or off-policy. 
For on-policy training, the agent learning and interacting with the environment is the same. 
For value-based methods, it estimates the value of the policy being followed. SARSA is on-
policy when the agent starts from a state, makes an action, receives a reward, and is 
transited to next state. Based on the new state, the agent takes an action. The process will 
be conservative and sensitive to errors, but will be efficient when the exploration penalty is 
small. On the other hand, agents trained by off-policy are different from those interacting with 
the environment. Off-policy methods can find the optimal policy even if the agent behaves 
randomly. Thus, ignoring the interacting agent‟s policy may lead to a suboptimal policy when 
most of the rewards are negative. For policy-based methods, there is also a need to consider 
the gains of applying off-policy learning, because the problems can emerge with large or 
continuous state-action space and exploration is not feasible. The agent interacting with the 

environment is usually making policies under the parameter setting    that differs from   for 
the agent to be trained. Approximations can be made by importance sampling [78] in order to 
get the gradient. Thus, when an agent is exploring in error-insensitive systems, SARSA may 
be the preferred option. Agents that do not explore should use Q-learning.  
 
Another issue that needs to be considered is the actual implementation of collecting 
occupant behavior. On-policy for policy-based methods can only update its gradient when 
actual actions are made and      are observed. Actual deployment of devices in buildings 

should be able to provide frequent reward and state signals to the agent. Moreover, the 

repetition of the signals‟ provision allows the agent to update policy parameter  . This is still 
a challenge, not only for devices but also for the occupant to remember to repeatedly react in 

                  



the same environment so that more sampled trajectories can be collected. Thus, shifting to 
off-policy methods makes learning more efficient for complex control tasks. 
 
6 Conclusions 

 
This study has briefly reviewed the reinforcement learning methods for building control that 
incorporate occupant behavior. Since RL methods assume that the agent interacts with a 
stochastic environment and works in a data-driven fashion, they are of great importance 
when forming intelligent building systems where occupant behavior has a significant 
influence on building performance.  
 
Historical publications on this topic were searched for in Scopus to understand the 
publication sources, types, years, citations and country collaborations of the existing 
published literature. It can be seen that, because of the success of deep reinforcement 
learning in game playing, the number of publications in this field has been growing. The topic 
covers multiple disciplines including energy, building, computer science, optimal control, 
sustainability and engineering. Integration of diverse domain knowledge may accelerate the 
construction of more intelligent systems. However, the current number of citations is not high 
and international collaborations are still only between a small number of countries. Thus, joint 
efforts should be made in order to strengthen the research around the topic. 
 
In this study, we first analyzed those studies that examined occupant behavior within the 
MDP framework. Most of the studies we examined considered occupant behavior as a state 
for controlling HVAC systems. It is likely that this will remain the focus of new and upcoming 
work. The rest of the literature can be grouped into three categories regarding the ways of 
interaction: occupancy, actual behavior and providing feedback where occupant behavior 
poses an indirect effect on MDP. The reward is the MDP element that is most sensitive to 
occupant behavior, which makes it essential to design the reward in an efficient way [79], 
because for occupants with different profiles, their preferences for comfort factors will vary 
[80], [81]. 
 
Over the course of this review we have noticed that the classical tabular Q-learning algorithm 
has become insufficient for building control with stochastic and complex occupant behavior. 
Adopting a Q-table to store action values may yield an unreliable policy. As more 
approximation algorithms have been applied to actual studies, future research should be able 
to implement, test and verify these in different scenarios. We also compared simplification 
method and highlighted the function approximation with deep neural network due to the 
curse of dimensionality. Finally, we discussed some of the issues to be taken into 
consideration when using off-policy strategy. The implementation of off-policy control 
requires frequent signal collection from the occupant. 
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