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Abstract

While addressing supply chain planning under uncertainty, Robust Optimization (RO) is regarded as an 
efficient and tractable method. As RO involves calculation of several statistical moments or maximum / 
minimum values involving the objective functions under realizations of these uncertain parameters, the 
accuracy of this method significantly depends on the efficient techniques to sample the uncertainty 
parameter space with limited amount of data. Conventional sampling techniques, e.g. 
box/budget/ellipsoidal, work by sampling the uncertain parameter space inefficiently, often leading to 
inaccuracies in such estimations. This paper proposes a methodology to amalgamate machine learning and 
data analytics with RO, thereby making it data-driven. A novel neuro fuzzy clustering mechanism is 
implemented to cluster the uncertain space such that the exact regions of uncertainty are optimally 
identified. Subsequently, local density based boundary point detection and Delaunay triangulation based 
boundary construction enable intelligent Sobol based sampling to sample the uncertain parameter space 
more accurately. The proposed technique is utilized to explore the merits of RO towards addressing the 
uncertainty issues of product demand, machine uptime and production cost associated with a multiproduct, 
and multisite supply chain planning model. The uncertainty in supply chain model is thoroughly analysed 
by carefully constructing examples and its case studies leading to large scale mixed integer linear and 
nonlinear programming problems which were efficiently solved in GAMS framework.  Demonstration of 
efficacy of the proposed method over the box, budget and ellipsoidal sampling method through 
comprehensive analysis adds to other highlights of the current work.

Keywords: Uncertainty Modelling; Supply chain Management; Data driven Robust Optimization; Neuro 
Fuzzy Clustering; Multi-Layered Perceptron
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1. Introduction

Supply Chain (SC) Planning aims at predicting optimal future requirements through effective coordination 
among key business units and successful integration of activities undertaken by the enterprises, to balance 
supply and demand over a time horizon (Simchi-Levi et al., 2004). Several issues in today’s fierce 
competition, such as shrinking resources, rising cost, short product life, customer’s changing preference 
with demand variability, technology obsoleteness and market globalization are causing threat to many 
companies leading them to invest in SC. It becomes more realistic to consider the presence of uncertainty 
during planning a SC owing to the volatile market conditions, where enterprises must meet customer 
satisfaction under such changing environments (Santoso et al., 2005). Mathematically, this can be expressed 
as an optimization problem i.e.  , where f represents objective function and g min

𝐱
{[f(𝐱,𝐮)]:g(𝐱,𝐮) ≥ 0}

represents the set of constraints and both these objective and constraints can be functions of , showing 𝐮
uncertain parameter and x, showing the decision variable. Examples of uncertain parameters in SC include 
price, cost of raw material, interest rate, currency exchange rates, penalties, demands, machine uptime, 
safety stock level at inventories, delivery time between echelons, rate of production and process conversion 
etc.(Reid and Sanders, 2019). Conventionally, uncertainty in industrial supply chains is handled by 
overestimation or over-design of the capacities so that disturbances due to uncertainties can be absorbed 
(Chernobai et al., 2006). Another popular approach in industry is to make use of nominal values of the 
uncertain parameters and solve the deterministic formulation(Long et al., 2012). However, the former leads 
to a very costly design whereas the latter, though relatively agile, either tends to miss opportunity or over 
produces during uncertain parameter values higher and lower than the assumed nominal value, respectively. 
Most popular software providing solutions to supply chain problems neglect the effect of uncertainties in 
parameters for the ease in analysis of the results and solve a deterministic model. Hence, there is a need for 
development and usage of efficient uncertainty handling methods while solving SC planning problems.

Several uncertainty handling methods e.g. Stochastic Programming (SP) (Guillén et al., 2005), fuzzy 
programming (FP) (Mitra, 2009), Chance Constrained Programing (CCP) (Mitra, 2009), Robust 
Optimization (RO) (Vallerio et al., 2016), etc., are in popular use in academics and research to perform 
optimization under uncertainty. Scenario based stochastic programming approach has been utilized to 
model Supply chains having discrete as well as continuous uncertain parameters with known probability 
distribution (Hammami et al., 2014). In one variant of this algorithm, namely scenario based two stage 
stochastic programming (TSSP), decision variables are divided into two sets: variables that are independent 
of uncertain parameters (“here and now”) and the variables that are dependent on the uncertain parameters 
(“wait and see”). In the first stage, “here and now” variables are decided before the realization of the 
uncertain parameters (Guillén et al., 2005; Shapiro, 2011). To deal with infeasibility due to stochastic nature 
of uncertain parameters, the “wait-and-see” variables are selected in recourse manner. The combined effect 
of the first stage costs and the expected value of stochastic second stage cost is minimized to find the “here 
and now” variables. Recourse function can include uncertainty as binary, integer, non-linear variable or 
parameter with multiple time periods and hence planning horizon variations due to stochastic parameter 
can be resolved (Georgiadis et al., 2011). Novel versions of established algorithms such as Bender’s 
decomposition  (Keyvanshokooh et al., 2016), L-shaped algorithm (Rajgopal et al., 2011), Dantzig-Wolfe 
decomposition approach (Dantzig, 1998), fix-and-relax coordination (Abdelaziz et al., 2007) and LR 
algorithm (Aghezzaf, 2005) have been developed to handle difficult instances of stochastic programming 
problems. The limitation to this approach is the exponential increase in problem size with the increase in 
number of uncertain parameters and their assumed scenarios of realizations, leading to immense 
computational expense and suboptimal solution within the given time frame. Even the decomposition of 
the problem into multiple stages might be quite difficult at times. 

 
When relaxation of one or more constraints are allowed due to the presence of uncertainty, constraints 
having uncertain parameters can be modified defining some probability of constraint satisfaction associated 
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with them and thereby introducing reliability of the obtained solutions (Govindan et al., 2017). Here, the 
original chance constraints, having uncertain parameters, are transformed into their deterministic equivalent 
forms using probability concepts. CCP can be joint or individual based on the nature of correlation exists 
among the uncertain parameters. The deterministic equivalent form can be non-linear in nature due to the 
involvement of mean and variance terms of the uncertain parameters, where the property of convexity can 
be restricted (Mitra et al., 2008). The size of the equivalent deterministic problem is generally manageable 
even in the presence of a large number of uncertain parameters unless the probability of constraint 
satisfaction is set to be very high (i.e. very close to unity). However, going by the definition of a robust 
solution, which is a fixed decision variable vector that should remain feasible irrespective of the realization 
of the uncertainty in the parameters (Rajgopal et al., 2011), the solutions obtained by CCP may not be 
robust always. So, robust optimization is an alternate way to handle optimization under uncertainty (OUU) 
problems and might be extremely important under situations where the cases of constraint violation are 
highly restricted. 

In RO formulation, generally, the stochastic nature of the parameters is made available in terms of data 
collected over a broad period of time and the stochastic optimization problem is converted into an equivalent 
deterministic problem, known as the robust counterpart (RC), where the stochastic objective functions and 
constraints are computed for various realizations of uncertain parameters. As this needs sampling from the 
uncertain parameter space, a significant RO based research was focused on how to sample the uncertain 
space more effectively. The earliest attempts by Soyster provided a computationally tractable approach 
with guaranteed feasibility, where the uncertain space is approximated by the box defined by the bounds of 
the uncertain set (Soyster, 1973). To improve upon the nature of over-conservative decisions in the box 
approach, ellipsoidal uncertainty sets have been introduced (El Ghaoui et al., 1998), that simplifies the 
robust counterpart model into a conic quadratic problem with linear constraints. Further improvements 
include the combination of interval, ellipsoidal and adjustable polyhedral uncertainty sets that can help a 
decision maker to obtain solutions better than the box uncertainty (Bertsimas and Sim, 2004; Gregory et 
al., 2011). Data driven RO based supply chain network design (SCND) for large scale waste water sludge 
to biodiesel conversion is developed by Mohseni and Pishvee (Mohseni and Pishvaee, 2020) for case study 
based in Iran. Utilizing support vector clustering (SVC), the uncertainty sets are constructed in this work 
that yielded more realistic results compared to that of the conventional uncertainty set. SVC has been used 
in another network planning model (Shang et al., 2017) based on piece wise linear kernel functions. Here, 
the geometry of uncertain data was captured by solving quadratic programming and the resultant convex 
uncertainty set has been shown to result in solutions with less conservatism. Instead of SVC, Ning and You 
(Ning and You, 2018) applied principal component analysis (PCA) for the uncertain data to extract 
distributional information of uncertainties using kernel density estimation techniques. Applicability of this 
algorithm was checked against applications involving model predictive control, batch production 
scheduling and process network planning. A Bayesian non parametric Dirichlet process mixture model 
(Ning and You, 2017) combined with variational inference algorithm has been developed through four level 
optimization framework. The conservatism is reduced by accounting the data’s correlation, asymmetry and 
multimodality. To solve this multi-level model, column and constraint generation algorithms are proposed 
and applied to batch process scheduling and SC network planning. 

Thus, from the aforementioned literature study, the specific knowledge gap can be identified as follows:
 The combination of machine learning concepts, RO for uncertainty handling and application to 

supply chain is rare to find. 
 Moreover, the existing uncertainty sets such as box, budget, ellipsoidal, etc. have fixed geometric 

shapes and may not be flexible enough for handling sparse and discontinuous uncertain data. 
Further, the prevailing studies based on reducing the conservatism of RO solutions, are specific to 
the case studies considered and may or may not work for all the supply chain models.



5

 The techniques that are used to analyze the uncertain data (such as SVC, PCA, etc.) are applicable 
for handling only non-overlapping data sets, which is not always the case and most of these 
techniques by themselves suffer with some major drawbacks such as fixing the cluster number 
beforehand, less interpretable features of given data and so on, which make the overall algorithm 
less efficient. Particularly, in supply chain models, there are high chances that the uncertain data is 
over-lapping, owing to the varying cost components, sudden change in demand or other external 
factors.

 From the studies done till now, it is evident that there is a significant need of accurate data based 
sampling strategies that can provide true representation of uncertain space, which is generic in 
nature and devoid of heuristics to maximize the efficiency. 

 Moreover, for application in Supply Chain Models (SCMs) which host significantly large number 
of uncertain parameters, these methods should work without constraints on dimensionality of the 
problem. 

The current work addresses the issues mentioned above and fills the knowledge gap by presenting a techno-
economic SC model with better uncertainty handling capability via supervised and unsupervised machine 
learning concepts. The contribution and novelties of the work are listed below: 
 Utilizing the worst-case scenario out of several realizations of uncertain parameters that are obtained 

by efficiently sampling the uncertain parameter space using a new methodology called Data-Driven 
RO (DDRO), the overall formulation provides an envelope of resilient and feasible SC operation under 
uncertainty.

 The DDRO algorithm uses a new parameter free Fuzzy C-Means clustering algorithm along-with RO, 
which amalgamates the ideas of machine learning and RO to solve Supply Chain Planning problems 
under Uncertainty (see section 3.2 for detailed technique). In DDRO algorithm, compact and flexible 
uncertainty sets are constructed for sampling. The proposed technique is utilized to explore the merits 
of RO towards addressing the uncertainty issues of product demand, machine uptime and production 
cost associated with a multiproduct and multisite supply chain planning model. Comprehensive 
comparison among the box, budget and ellipsoidal sampling method and the proposed technique adds 
further value to the proposed work. 

 Even if the uncertain data is sparse and discrete, the proposed data driven technique fills those gaps by 
generating the data points within the engulfed uncertain boundaries providing high accuracy. 

 As the number of samples generated from the uncertainty set is one of the important factors that impacts 
the quality of the solution in RO, the effect of sample size in the uncertain parameter space has been 
studied systematically and compared with conventional budget, box and ellipsoidal uncertainty set 
based RO to find the variation in cost for the SC.

In this paper, section 2 describes the midterm planning model of McDonald and Karimi (McDonald and 
Karimi, 1997), which is then followed by the detailed explanation of the technique and algorithm used for 
the data driven robust optimization in section 3. The results and discussion section describes the considered 
examples and its case studies and presents elaborate analysis of effect of data-driven sampling on supply 
chains under uncertainty in section 4. Finally, the work is summarized and concluding remarks are enlisted 
in section 5.

2. Formulation and Model used

2.1 Midterm Supply Chain Model and Optimization problem formulation

Supply Chain networks generally comprise several entities beginning with raw material supplier, 
production or manufacturing facilities, inventories or warehouse with distribution centers and customers or 
end users. Given the architecture of the network among these entities, a planning model is supposed to 
estimate the variables such as raw material procurement, downstream mass supply for inventories and 
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customer, inventory needed to mitigate stock-outs, transport to be used etc. over a planning horizon. The 
model has two Supply Chain (SC) layers e.g. Manufacturing site and Customer Market. This example of 
SC (Fig. 1) manufactures 34 products p1 to p34. Products p1 - p23 are produced at facility site s1 having 
demands only from market 1, whereas the products p24 - p34 are produced at facility site s2 having demands 
from market 2. Each facility has single unit for manufacturing with separate source of raw material suppliers 
and delivers products at two different markets as shown in Fig. 1. The inventory layer is not separate and 
is combined with the manufacturing unit. Out of 23 products from facility s1, 11 products namely p1, p4, p6, 
p8, p10, p12, p14, p16, p18, p20 and p22 act as resource materials for products p24 - p34 respectively. Products p1 
- p23 from facility s1 form 11 sets of product families F1 - F11 as shown in Fig. 1. The planning horizon is 
considered for one year with 12 periods, with each period representing one month. 

Fig. 1. Supply chain diagram with raw material, intermediate and finished product flow

Table 1. Notations of the parameters present in Planning model.
S. No Symbol Name Definition

1 FCf,u,l,t 
Fixed Production 

Cost
Fixed cost of producing unit quantity of product 

family f using machine u at site l during time period t.

2 VCp,u,l 
Variable 

Production Cost
Variable cost of producing product p manufactured by 

machine u at site l.
3 RCp,l Raw material Cost Unit cost of Raw material p consumed at site l.

4 HCp,l,t 
Inventory Holding 

Cost
Inventory Cost associated with storing unit quantity of 

Product p at site l during time period t.

5 TCl,c Transportation Cost Cost associated with transporting the products from a 
site l to market / customer c.

6 TCl,l′ Transportation Cost Cost associated with transporting the products from a 
site l to another site . l′

7 PCp.l Penalty Penalty for dipping below safety target of product p at 
site l.
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8 μp,c Revenue Revenue per unit product p sold to customer c.

9 Rp,u,l,t Rate of production Effective rate of producing product P on machine u at 
site l during time period t.

10 MTu,l,t Machine Uptime Time for which machine u can be made available at 
site l during time period t.

11 Dp,c,t Product Demand Demand for product p at market / customer c during 
time period t.

12 IL
p,l,t Safety stock target Safety stock target for product p at site l during time 

period t. 

13 MRLf,u,l,t
Minimum Run 

length
Minimum Time for which machine u may be run at 

site l to produce product family f during time period t.

Table 2. Notations in Planning model which serve as decision variables in MILP formulation.
S. 
No Symbol Name Type Definition

1 Bf,u,l,t 
Binary 

Variable Integer {0, 1} i.e. Whether unit quantity of product family f using 
machine u at site l during time period t is produced or not.

2
  Pp,u,l,t 

/ 
Pp′,u,l,t

Production 
Variable Real Amount of final/ intermediate product p manufactured by 

machine u at site l during time period t.

3 Cp,l,t 
Consumption 

Variable Real Amount of Intermediate Product / Raw material p 
consumed at site l during time period t.

4 Ip,l,t 
Inventory 
Variable Real Amount of Product p stored at site l during time period t.

5 Sp,l,c,t 
Supply 

Variable Real Amount of Product p supplied from a site l to market / 
customer c during time period t.

6 CIP
p,l,l′,t

Consumption 
Variable Real Amount of Intermediate Product p which was brought from 

site  and consumed at site l during time period t. l′

7 I∆
p,l,t

Inventory 
Variable Real

Amount of Product p which needs to be added to Inventory 
so as to reach the safety stock target  at site l during IL

p,l,t
time period t.

8 I ―
p,c,t

Inventory 
Variable Real

Amount of product p by which the agglomerated supply 
from all sites at the inventory missed the demand in market 
c during time period t.

9 Tp,u,l,t 
Run Length 

Variable Real Time for which machine u was run at site l to produce 
product p during time period t.

10 Tf,u,l,t 
Run Length 

Variable Real Time for which machine u was run at site l to produce 
family f during time period t.

The planning model formulates a linear cost function involving the costs of raw material consumption, 
production, inventory and transportation along with loss functions such as the revenue loss due to missing 
demand. The cost function needs to be minimized with respect to several constraints in form of linear 
inequalities, representing the limitations of supply chains in real world. The notations used are defined in 
Tables 1 and 2 while the Supply Chain Model (SCM) is described by equations 1- 19. The indices used in 
the SCM are defined as follows: p – product, f – family of products, u – machine, l – site / site, c – customer 
/ market and t – time period. P signifies the product set such that, where RM is raw P =  {PRM ∪ PIP ∪ PFP}, 
materials, IP is intermediate products and FP is finished products.  is cross set indicating product p is Φp,f
member of family f.  is yield adjusted amount of raw or intermediate product p that must be consumed βp′,p,l
to produce a unit of intermediate or finished product p' at site l. 
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Cost function:
∑

f,u,l,tFCf,u,l,tBf,u,l,t + ∑
p,u,l,tVCp,u,lPp,u,l,t + ∑

p,l,tRCp,lCp,l,t +
  (1)∑

p,l,tHCp,l,tIp,l,t + ∑
p,l,c,tTCl,cSp,l,c,t + ∑

p,l,l′,tTCl,l′CIP
p,l,l′,t + ∑

p,l,tPCp,lIΔ
p,l,t + ∑

p,c,tμp,cI ―
p,c,t

Eq 1 represents the cost function to be minimized, which is the sum of fixed cost, variable cost, raw material 
cost, inventory holding cost, transportation cost, penalty cost and revenue lost respectively.  

Manufacturing constraints:

 (2)Pp,u,l,t = Rp,u,l,tTp,u,l,t    ∀ p ∈ P\PRM

 (3)∑
pTp,u,l,t ― MTu,l,t ≤ 0

 (4)∑
fTf,u,l,t ― MTu,l,t ≤ 0

 (5)Tf,u,l,t = ∑
p ∈ Φp,f

Tp,u,l,t

 (6)Cp,l,t = ∑
p′ ∋ βp′,p,l ≠ 0

βp′,p,l∑uPp′,u,l,t   ∀ p ∈ P\PFP

 (7)Cp,l,t = ∑
l′CIP

p,l,l′,t   ∀ p ∈ PIP 

Eq 2 calculates the production as the product of production rate and machine run time. The total run time 
of machine will always be less than machine available time as given by Eqs 3 and 4. As per Eq 5, the run 
time for family of product can be represented by sum of run time for single products. Eq 6 models the 
consumption of raw or intermediate material using the bills of material. Raw materials from external 
supplier are taken for consumption and are assumed to be available based on demand. Intermediate product 
consumed at site l supply must come from same site or another site l` in the same time period as represented 
by Eq 7.  

Supply chain constraints:

  (8)Ip,l,t = Ip,l,t ― 1 + ∑
uPp,u,l,t ― ∑

l′CIP
p,l,l′,t ― ∑

cSp,l,c,t   ∀ p = P\PRM

 (9)I ―
p,c,t ≥ I ―

p,c,t ― 1 + Dp,c,t ― ∑
lSp,l,c,t   ∀ p ∈ IFP

 (10)∑
l,t′ ≤ tSp,l,c,t′ ≤ ∑

t′ ≤ tDp,c,t′   ∀ t ∈ T

 (11)I∆
p,l,t ≥ IL

p,l,t ― Ip,l,t   ∀ p ∈ IFP

Eq 8 shows the basic material flow balance where the inventory at current time period is sum of inventory 
at the previous time period plus the production happened in the current time period minus outflow of 
intermediates to other plants minus shipments of finished product to the customers at the same time period. 
Eq 9 shows the cumulative customer shortfalls between demand and supply, where shortfall from previous 
time period is carried to the next time period. Cumulative demand for the current time period can be fulfilled 
by the supply from previous time periods also as per Eq 10. Eq 11 gives the inventory constraint, indicating 
that current inventory at production site  should always by equal to or less than the inventory safety Ip,l,t
level  , such that safety stock shortage value  should be positive or zero.  IL

p,l,t I∆
p,l,t

Lower bound constraints:

 (12)Pp,u,l,t,Tp,u,l,t,Tf,u,l,t,Cp,l,t,Sp,l,c,t,Ip,l,t,I ―
p,c,t,CIP

p,l,l′,t,I∆
p,l,t ≥ 0

Eq 12 clearly indicates the decision variables to be either positive or zero, due to model physicality in real 
time. 

Upper bound constraints:
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 (13)Pp,u,l,t ≤ Rp,u,l,tMTu,l,t

 (14)Tp,u,l,t ― MTu,l,t ≤ 0

 (15)Tf,u,l,t ― MTu,l,tBf,u,l,t ≤ 0

 (16)Tf,u,l,t ― MRLf,u,l,tBf,u,l,t ≥ 0

 (17)I∆
p,l,t ≤ IL

p,l,t

 (18) Sp,l,c,t ≤ ∑
t′ ≤ tDp,c,t′

 (19)I ―
p,c,t ≤ ∑

t′ ≤ tDp,c,t′

The quantity produced will always be less than machine available time (which is always more than the 
actual machine run time as Eq 14 and 15) multiplied by the production rate as given by Eq 13. Eq 16 shows 
that the time run by the machine should be greater that minimum run time for family of products. Eq 17 
states that the inventory safety level should be greater than safety stock shortage. As given by Eq 18 and 
19 for model feasibility, the demand should be greater than supply and demand missed. 

In the aforementioned deterministic model, uncertainty is introduced at two levels by considering the 
stochastic nature of parameters present in constraint functions and objective function. The uncertainty in 
product demand influences the constraint equations 9, 10, 18 and 19, while the uncertainty in machine 
uptime parameter influences the constraint equations 3, 4, 13, 14 and 15. Finally, the uncertainty in 
objective function (equation 1) is introduced by considering the variable production cost to be stochastic. 
In the present work, data driven RO (DDRO) technique is adopted to solve the optimization problem under 
uncertainty. In the next section, details on DDRO is presented. The data used for solving the mid-term SC 
model can be found in the supplementary file attached. 

3. Data-Driven Robust Optimization (DDRO)
3.1 Overview of Robust optimization formulation 

A generic form of stochastic optimization can be presented by Eq 20, where f is the objective function and 
g represents the set of constraints and both of these objective and constraints can be functions of  and x, 𝐮
where u corresponds to the vector of uncertain parameters (bounded),  denotes the decision variable set 𝐱
(bounded). This is opposed to the deterministic formulation where variability in the uncertain vector u is 
not considered and assumed the vector u as constant. In RO, the presence of uncertain vector u in objective 
and constraint functions is treated in two stages. First, the constraints are handled by defining a robust 
feasible solution. A solution, which remains feasible under all realizations of uncertain vector u, is called 
as the robust feasible solution. Next, among the robust feasible solutions, one can find a solution, called the 
worst-case, where the maximum value of the objective function under several realizations of uncertain 
parameters is minimized as presented by the Eq 21. This is called the equivalent deterministic robust 
counterpart (RC), where supremum among feasible set is calculated first in the uncertain space and then 
minimized across the decision variable space (Gorissen et al., 2015). 

 [20]min
𝐱

{[f(𝐱,𝐮)]:g(𝐱,𝐮) ≥ 0}

 [21]min
𝐱

{𝑠𝑢𝑝
 𝐮  [f(𝐱,𝐮):g(𝐱,𝐮) ≥ 0]}

The supremum in Eq. 21 is calculated using the samples drawn from the uncertainty set , which contains u
all possible realizations of uncertain parameters.
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Fig 2. Schematic of solution procedure for Robust Counterpart formulation (worst-case: Eq. 21)

The algorithm of the worst-case RO formulation has been shown in Fig 2. First the value of x is initialized 
randomly. Now, keeping the decision variables x fixed, various instances of u are considered from the 
uncertainty set to calculate the constraint and objective function values. If all the constraints are satisfied, 
then from the set of robust feasible solutions, the maximum or the worst objective function value is chosen. 
Next, an optimization solver (e.g. CPLEX or DICOPT) improves the overall objective with respect to 
the decision variable set x over several iterations till the termination criteria (e.g. maximum number of 
iterations) are satisfied. Even after trying different values of x, if constraints are found violated, then 
solution is termed as infeasible. In this study, the uncertainty is assumed in one of the cost components e.g. 
production cost (Eq 1), which makes the objective function stochastic in nature. Other uncertain parameters 
considered in this study include demand (Eq 9, 10, 18, 19) and machine uptime (Eq 3, 4, 13, 14, 15).

Analogously, the best-case RO formulation corresponding to Eq. (20) can be defined as shown in Eq. 22, 
where the infimum of the robust feasible set is computed using several instantiations of uncertain 
parameters obtained from the uncertainty set. 

 [22]min
𝐱

{inf
 𝐮  [f(𝐱,𝐮):g(𝐱,𝐮) ≥ 0]}

For calculating the respective supremum and infimum values efficiently in Eq. 21 and Eq. 22, the cardinality 
of the uncertainty set needs to be sufficiently large, which demonstrates the importance of chosen 
uncertainty set and the ability to generate samples efficiently from the uncertain parameter space. Box, 
budget, ellipsoidal and polyhedral sets are commonly deployed uncertainty sets in literature. However, none 
of them ensures complete removal of regions, where the original uncertain data is not present. Such type of 
inaccurate sampling from uncertain space leads to loss of accuracy and deviation in solution of Eq 21 and 
22, thereby generating over conservative results, especially when the data given is less in number and 
scattered in the entire uncertain space (Gorissen et al., 2015). Moreover, the given uncertain data may not 
necessarily follow any well-behaved statistical distribution and the data set might be discontinuous in 
nature. Another practical problem when this data set is coming from real life, mostly, the number of data 
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points present in this set is relatively less in number. Owing to these drawbacks and issues existing with the 
existing uncertainty sets, there is a need to design a new algorithm, which has the capability of efficient 
identification of the right uncertain parameter set and sampling accurately from the identified uncertain 
parameter space. In this regard, a novel framework called Data-driven RO (DDRO), which is proposed for 
handling the optimization under uncertainty in SC models is presented in the next section. 

3.2 Data-Driven RO (DDRO) 

This section explains the novel methodology for constructing flexible and compact uncertainty set followed 
by efficient sampling from the engulfed uncertain parameter space as described below.

A. The sparse, scattered and discrete data is clustered using an effective unsupervised machine 
learning algorithm, called Neuro Fuzzy C-means clustering (NFCM) (Pantula et al., 2020).  By 
mapping the input data to the membership function using artificial neural network (ANN), NFCM 
converts large scale optimization problem in Fuzzy C-means clustering (FCM) to small scale. This 
enables the usage of global optimization algorithms such as, genetic algorithm (GA) for clustering 
the data efficiently. Further, the NFCM algorithm enables the estimation of optimal number of 
clusters by optimizing an internal cluster validation index (Pantula et al., 2020). 

B. After the data in the uncertain space is clustered, the following steps are performed for each of the 
cluster.
1. The local density (LD) of all the points is calculated by identifying the number of points that lie 
within a threshold radius.
2. The boundary points are detected using LD such that the points having relatively less LD lie in 
the outer space of cluster.
3. Next, the boundary points are linked using Delaunay triangulation (Fortune, 1992) for creating 
a continuous boundary of the cluster.
4. Subsequently, a hypercube is generated using the maximum and minimum points along each 
dimension of the cluster boundary. 
5. New sample points are generated within the hypercube by means of Sobol sampling (Sobol, et 
al., 2011) for ensuring uniform sampling within the uncertain space.
6. The Sobol points that are inside the boundary are preserved while those lying outside the 
boundary are eliminated.  

C. The samples thus generated using B1 – B6 for each cluster thus forms the new uncertain data set, 
which is used in worst and best-case RO formulations as mentioned in Section 3.1.

Therefore, in case of DDRO, the unnecessary regions of sampling are eliminated intelligently by combining 
unsupervised machine learning (i.e., NFCM) with density-based boundary point detection and Delaunay 
triangulations such that the unnecessary regions of sampling are eliminated to a maximum possible extent. 

The pictorial representation of data-driven, box, budgeted (with budget ) and ellipsoidal uncertainty = 1
sets is shown in Fig. 3. The black colored points in Fig. 3 represent the given data for two uncertain 
parameters  and the dotted lines signify the boundary of the uncertainty set within which the (u1and u2)
sampling has to be performed. It can be observed that in case of box, budgeted and ellipsoidal uncertainty 
sets (Fig. 3 (a), (b) and (c)), the regions of sample picking include some unnecessary regions, that is, empty 
regions inside the uncertainty set (dotted lines). On the other hand, the uncertainty set designed in DDRO 
(Fig. 3 (d)) ensures drawing of samples only from the regions where the given uncertain data is present.
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Fig. 3. Comparison of box, budgeted and DDRO uncertainty sets where black colored points represent the 
given data for 2 uncertain parameters and the dotted lines denote the boundary of the uncertainty set 

within which sampling would be performed (a) Box uncertainty set (b) Budgeted uncertainty set (Budget 
= 1) (c) Ellipsoidal uncertainty set (d) DDRO uncertainty set.

4 Results & Discussion

This section presents several case studies. The first case (case 1) is an instance of a multi-production site, 
multi-market supply chain planning model, where demands of products produced from one of the markets 
are assumed to be uncertain. Considering the deterministic demand values as their means, a  20% deviation 
in demand values is assumed to generate the ranges of the uncertain parameters and within this hyperspace, 
the uncertain data has been created synthetically in 3 different clusters using combination of several 
Gaussian distributions. This represents that the data is not present everywhere in the uncertain space i.e. it 
is scattered and limited in number in the uncertain space symbolizing the nature of realistic data. Accurate 
transcription of the uncertain data space is going to be the key differentiating factor among several 
uncertainty sets (box, budget, ellipsoidal and the proposed approach) used. Similar approach has been 
followed for generating uncertain data in other cases as well.  In the next case (case 2), demands of products 
produced from both the markets are subjected to uncertainty. The extent of uncertainty has been further 
intensified in case 3, where along with demand, machine uptimes at both the sites are considered uncertain. 
Lastly, case 4 oversees the effect of uncertainty in objective function by considering the production cost as 
uncertain variable along with demand and machine uptime. In all these cases, the number of data points 
used for sampling the uncertain space has been varied from 500 – 10000 to show the effect of sampling on 
the final results whereas the ideal case used for comparison has been generated using 20000 data points 
only inside the clusters. Each case study is elaborated in the following sections. 

4.1 Example 1-Case 1

First, the case of the supply chain facing uncertainty in demands from the products p1 - p23 of only market 
1 is considered. This brings in modifications in Eqs 9, 10, 18 and 19 as several instances of uncertain 
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parameter i.e. demand realizations are to be incorporated in them. After modifying the above equations, 
new Eqs 28, 29, 30 and 31 are obtained, where the subscript k represents the instances of uncertain 
realizations for demand data. Representing a scenario of cyclical demand, the demands values of all 
products as reported in the original work (McDonald and Karimi, 1997) are modified by 300% for the 6th 
and 12th time periods and by 20% for the rest of the time periods. This kind of sudden hike in demand might 
be helpful in simulating Bullwhip effect of supply chains, which is about storing inventory up the supply 
chain to handle sudden hike in demand in future. Keeping the demand values of products p24 - p34 as 
deterministic, only the demand values of products p1 - p23 are perturbed as mentioned in the beginning of 
this section. Also, the machine uptime is kept 70% of the deterministic values presented in the original 
work. Since the demand parameter in every month is considered uncertain, 12 sets (12 months) of 23 
dimensional (23 products) uncertain parameters were considered. The formulated MILP problem consisting 
of Eqs 1 to 8, 28, 29, 11 to17, 30 and 32 was solved in GAMS using CPLEX solver and the objective 
function values are shown in Table 3 for varying number of sampling points k in the uncertain parameter 
space. The problem has 132 binary variables, 8163154 single equations and 23298505 non zero elements. 
The computational time taken for clustering using NFCM algorithm is 0.98 seconds (for a fixed architecture 
of Artificial Neural Network). For the entire proposed uncertainty set in Data-driven RO, the computational 
time is 3.4 seconds (along-with clustering) while that of box, budget and ellipsoidal uncertainty sets are 
1.64, 2.1 and 2.26 seconds respectively. The times reported here correspond to generation of fixed number 
of sample points. However, the computational time differs by very minimal amount (~milliseconds) on 
variation of sample sizes from 500 to 10000. Thus, it can be observed that the difference in computational 
times is not quite large on comparing the existing uncertainty sets with the proposed uncertainty set.

 [28]I ―
p,c,t ≥ I ―

p,c,t ― 1 + Dp,c,t,k ― ∑
lSp,l,c,t   ∀ p ∈ IFP

 [29]∑
l,t′ ≤ tSp,l,c,t′ ≤ ∑

t′ ≤ tDp,c,t′,𝑘   ∀ t ∈ T

 [30] Sp,l,c,t ≤ ∑
t′ ≤ tDp,c,t′,𝑘

 [31]I ―
p,c,t ≤ ∑

t′ ≤ tDp,c,t′,𝑘

Table 3. Comparison of cost function values obtained through box, budget, ellipsoidal and proposed 
method with respect to ideal value for case study 2

Data 
points Box

box 
absolute 
deviation Budget 

Budget 
absolute 
deviation Ellipsoidal 

Ellipsoidal 
absolute 
deviation DDRO

DDRO 
absolute 
deviation

Ideal 
value

500.00 19159.67 196.97 19157.75 195.05 19138.65 175.95 18398.17 564.53
1000.00 19241.95 279.25 19222.81 260.11 19197.49 234.79 18550.08 412.62
3000.00 19524.00 561.30 19537.67 574.97 19485.11 522.41 18731.62 231.08
5000.00 19626.57 663.87 19651.25 688.55 19598.32 635.62 18779.87 182.83
10000.00 19667.15 704.45 19701.25 738.55 19628.68 665.98 18822.74 139.96

18962.70

When the objective values for box, budget, ellipsoidal and proposed DDRO are compared for various 
number of uncertain data points i.e. from 500 to 10000 in Table 3, it is observed that initially DDRO is 
under-estimating the ideal value and subsequently, it approaches the ideal value as the number of data points 
increases. However, other approaches, like box, budget and ellipsoidal uncertainty set based RO, over-
estimate the desired ideal solution irrespective of the sample size considered. The reason underlying this 
phenomenon lies is the way uncertain data realizations are being sampled from these sets. In case of box, 
budget and ellipsoidal uncertainty sets, the sampled data points either consider unnecessary regions or miss 
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out the regions, where the original or given uncertain data exists. Specifically, it is observed that the existing 
uncertainty sets have less ability to deal with non-uniform, uneven sparse uncertain data, which in turn 
increases the respective solution variance and deviation from ideal values. On the contrary, in case of 
DDRO, the Neuro Fuzzy C-means clustering algorithm used, ensures better identification of the regions to 
be sampled through clustering the given uncertain data efficiently, along-with estimation of cluster number. 
Further, owing to the law of large numbers, with the increase in data points, the accuracy of RO solution 
was found to be improving on implementation of DDRO. 

Also the point to be notice here that the RO problem solved in the paper is of minimization worst case in 
nature, where worst case scenarios results are shown in table and figure. Here, first the supremum value of 
objective function is selected from various uncertain instances and then sent to the optimization solver for 
minimization. For the box, budget and ellipsoidal sets, the variance is already increasing with data points 
and effect of finding the supremum among the various instances further aggravates the situation providing 
over estimated values.

The patterns of decision variables in response to the variations in demands can be seen in Fig. 4. Out of 23 
products from site , product  is chosen to show the trend, when the uncertain parameter space of 23 s1 p1
dimensions is sampled with 500 points. It can be observed from Fig. 4 that apart from being the finished 
product,  is also the raw material for producing the product  at site  In this case study, the demand p1 p24 s2.
of products produced at is considered to be certain. Responding to the unusual surge in demands at 6th s2
and 12th month, no production is observed till the 7th month. The trend of production continues till the 12th 
month where a surge in production is observed again. The reason for no production at the initial time periods 
can be attributed to the fact that the production cost is substantially higher than the inventory cost. Because 
of this reason, the optimizer opted to clear the initial inventory first rather than going for fresh production. 
However, since there is a penalty associated with the inventory going below safety level, optimal plan 
recommended production in time period between 7th to 11th month such that the safety level of inventory is 
maintained. Despite the fact that penalty is added for the 12th month for not meeting the safety level of 
inventory, the optimal plan suggested clearing the 12th month inventory and surged production only to meet 
the unusually high demand in 12th month. 
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Fig. 4. a) Uncertain demand with 300% hike at 6th and 12th time periods and 20% at other time periods. 
The effect of uncertain demand parameter is shown on 5 sets of decision variables (moving left to right) – 
b) inventory c) inventory below safety d) production e) run-length f) intermediate pattern over horizon for 
product p1, for 500 data points in Case study 1. The blue, orange, indigo, grey and yellow bars represent 

the results for box, budget, ellipsoidal, proposed methodology and ideal solution respectively. 
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Fig. 5. a) Uncertain demand with 300% hike at 6th and 12th time period and 20% at other time periods. 
The effect of uncertain demand parameter is shown on 5 sets of decision variables (moving left to right) – 
b) inventory c) inventory below safety d) production e) run-length f) intermediate pattern over horizon for 

p24, for 500 data points in Case study 1. The blue, orange, indigo, grey and yellow bars represent the 
results for box, budget, ellipsoidal, proposed methodology and ideal solution respectively.

Fig. 5 shows the trends for product p24 for 500 data points. The effect of demand increase at the 6th and 12th 
time period can be observed clearly. Inventory patterns for product p1 and p24 are quite different. Since the 
cost for inventory going below safety level for p24 is higher than that of p1 and storage cost of p24, the 
strategy adopted by the optimizer in this case is to maintain the inventory at the safety level starting from 
beginning till 11th month and then let the inventory be released completely to avoid higher production cost 
at the 12th time period. To meet the surge in demand of p24 at 6th time period, the inventory is insufficient, 
and this additional load is taken up by production which is visible by the corresponding production profile. 
Rest of the profiles are following the expected patterns expressed in the constraint equations and as 
described for the product p1.
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Fig. 6 presents the supply chain predictions for product p18 when 500 points were sampled in the uncertain 
space. A noteworthy point here is the difference between the trends of box, budget, ellipsoidal and the 
proposed uncertainty handling algorithm. 

The anomalous trend in bars is clearly visible in inventory, production and run length patterns at times t11 
and t12 in Fig 6. If one observes closely for inventory pattern, production pattern and run length pattern in 
Fig 6, the blue bar (box set) seems to be closer to ideal solution at 11th month time period. The main reason 
for this is consideration of less number of data points i.e. 500. For less number of data points, box, budget, 
ellipsoidal were giving less deviation from the ideal values, but the results become more reliable and 
prominent only on consideration of more instantiations of uncertain parameters, as per the law of large 
numbers in probability theory, i.e. approximately 10000 sample points in this case study (see Table 3). With 
such a high number of uncertain samples, it was observed that DDRO generated better solutions (closer to 
that of ideal solution) as compared to other techniques. The anomalous trend is further justified when it is 
observed in Fig. 7, which plots the trends for p18 for 3000 sample points, where the solution for box deviates 
more with respect to ideal value. Also from Fig 6 and Fig 7, the proposed DDRO bar shows values close to 
ideal, which indicates the working efficiency of proposed DDRO even when the sample points are less (500 
with respect to 3000 data points) and is able to manage with spare data points.
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Fig. 6. a) Uncertain demand with 300% hike at 6th and 12th time periods and 20% at other time periods. 
The effect of uncertain demand parameter is shown on 5 sets of decision variables (moving left to right) –

b) inventory, c) inventory below safety, d) production, e) run-length and f) intermediate pattern over 
horizon for product p18, for 500 data points in Case study 1. The blue, orange, indigo, grey and yellow 

bars represent the results for box, budget, ellipsoidal, proposed methodology and ideal solution 
respectively.
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Fig. 7. a) Uncertain demand with 300% hike at 6th and 12th time periods and 20% at other time periods. 
The effect of uncertain demand parameter is shown on 5 sets of decision variables (moving left to right) –

b) inventory, c) inventory below safety, d) production, e) run-length and f) intermediate pattern over 
horizon for product p18, for 3000 data points in Case study 1. The blue, orange, indigo, grey and yellow 

bars represent the results for box, budget, ellipsoidal, proposed methodology and ideal solution 
respectively.

4.2 Example 1- Case 2

This is the second case study for SC uncertainty, where uncertainty is inculcated in product demand for all 
the products from p1 to p34, for both sites as given by Eqs 28, 29, 30 and 32. The uncertain space now is of 
34 dimensions (34 products) spanned over 12 months. The MILP problem was solved in GAMS using 
CPLEX solver and the cost function values are shown in Table 4 for varying number of sample points k 
in the uncertain parameter space. The problem has 132 binary variables, 8163154 single equations and 
23298505 non zero elements and takes 46.594 sec of execution time to find the optimized solution. One 
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can observe from Table 4 that with increase in uncertain parameters from 23 to 34 in the system compared 
to case study 1 (Table 3), the objective value increases showing its effect on worst-case analysis. 

Table 4. Comparison of cost function values obtained through box, budget, ellipsoidal and proposed 
method compared to the ideal value for case study 3

Data 
points Box

Box 
absolute 
deviation Budget 

Budget 
absolute 
deviation Ellipsoidal 

Ellipsoidal 
absolute 
deviation DDRO

DDRO 
absolute 
deviation

Ideal 
value

500.00 23489.96 202.57 23447.80 160.41 23421.96 134.58 22577.46 709.92
1000.00 23568.84 281.46 23580.97 293.58 23489.75 202.37 22789.78 497.61
3000.00 23927.12 639.74 23934.14 646.76 23889.47 602.09 22991.68 295.70
5000.00 23976.00 688.62 23991.79 704.41 23907.98 620.60 23064.59 222.79
10000.00 23992.44 705.06 24021.86 734.48 24002.44 715.06 23487.89 200.51

23287.38

From Table 4, one can observe that the proposed DDRO objective values are moving closer to ideal values 
with increase in number of data points. However, for box, budget and ellipsoidal sets, the objective values 
are moving away from ideal values. The reason for this trend is similar to the previous case study 1. 

Fig. 8 presents the predictions for product p18 for 3000 data points. Behavior of most of the products remains 
the same except few, which are affected by the uncertainty at the site 2. Due to surge in demand at 6th 
month, and insufficient inventory, the production also jumps maintaining inventory at safety level to avoid 
penalty. Run-length pattern follows trend similar to production. At 12th month, when demand is the highest, 
all the inventory is used, and to meet the left over demand, the productions at 11th and 12th month are used. 
In order to avoid the situation, where supply might not meet the market demand, the production might 
happen ahead in time at 11th in anticipation of a sudden surge in demand at 12th time period. One can see 
inventory below safety for 12th month similar to previous cases. It is interesting to note here that when the 
sample size is increased from 500 to 3000, proposed methodology corrects its solution and emulates very 
closely the trend predicted by the ideal solution, whereas the solution obtained by box, budget and 
ellipsoidal sets-based RO, deviates from the ideal values. Compared to the blue (box) and orange (budget) 
bars, the closeness of grey bars (proposed method) to yellow bar (ideal) can be easily seen for inventory, 
production, run length, supply and intermediate patterns.
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Fig. 8. a) Uncertain demand with 300% hike at 6th and 12th time periods and 20% at other time periods. 
The effect of uncertain demand parameter is shown on 5 sets of decision variables (moving left to right) –

b) inventory, c) inventory below safety, d) production, e) run-length and f) intermediate pattern over 
horizon for product p18, for 3000 data points in Case study 2. The blue, orange, indigo, grey and yellow 

bars represent the results for box, budget, ellipsoidal, proposed methodology and ideal solution 
respectively.

4.3 Example 1-Case 3

In this case, machine uptime is also considered uncertain along with the demand uncertainties. There are 
two machines, one at each manufacturing site. Along with the 34 products of the previous case (case 2), 2 
more uncertain parameters one each for two of the machine uptimes give a total of 36 uncertain parameters 
spanned over 12 months. Eqs 32 to 36 are added in the deck of equations by modifying the Eqs 3, 4, 13, 14 
and 15 with sub script k indicating instances of uncertain parameter realizations. The MILP problem formed 
is solved in GAMS using CPLEX solver. Further, the problem size is now increased to 132 binary 
variables, 13082170 single equations and 31396885 non zero elements and is executed in 53.11sec to find 
the optimized solution. 
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 (32)∑
pTp,u,l,t ― MTu,l,t,k ≤ 0

 (33)∑
fTf,u,l,t ― MTu,l,t,k ≤ 0

 (34)Pp,u,l,t ≤ Rp,u,l,tMTu,l,t,k

 (35)Tp,u,l,t ― MTu,l,t,k ≤ 0

 (36)Tf,u,l,t ― MTu,l,t,kBf,u,l,t ≤ 0

Table 5.  Comparison of cost function values obtained through box, budget, ellipsoidal and proposed 
method compared to ideal value for case study 4

Data 
points Box

Box 
absolute 
deviation Budget 

Budget 
absolute 
deviation Ellipsoidal 

Ellipsoidal 
absolute 
deviation DDRO

DDRO 
absolute 
deviation

Ideal 
value

500 23611.2 210.3946 23578.5 177.6496 23411.8 10.91358 22855.4 545.39
1000 23664.5 263.6146 23647.9 247.0326 23598.9 198.0126 23071.9 328.96
3000 24054.8 653.9336 24001.2 600.3786 23955.8 554.9816 23075.4 325.47
5000 24249.09 848.2526 24109.75 708.9136 24002.42 601.5816 23168.92 231.92
10000 24275.09 874.2526 24129.53 728.6906 24001.16 600.3196 23198.78 202.06

23400.84

The results are presented in Table 5. The differences among box, budget, ellipsoidal and the proposed 
algorithm for sampling uncertain space are clearly visible as the objective values obtained using the 
proposed sampling is found relatively closer to the ideal values. The proposed method is shown to 
underestimate the objective function in a minimization setup whereas the other methods are consistently 
shown to overestimate the solution. The reason for this trend remains the same as explained in the previous 
case study 1.

The patterns of decision variables in response to the variations in machine uptime and demands combined 
can be seen in Fig. 9. This figure shows the effect of adding machine uptime uncertainty with respect to the 
previous case study where there is no machine uptime consideration. The product p18 is an intermediate 
product. Hence the inventory pattern becomes valuable feature for final product formation from p18. In 
response to the demand increase at 6th time period, inventories till 5th time period are used to meet the 
demand and hence no production can be seen till 4th time period as inventory cost is less compared to the 
production cost. Optimizer suggested some production at 5th time period, in case inventory is insufficient. 
Further, to meet the demand surge at 12th month, inventory till 11th month is used completely along with 
additional production at the same time period. No inventory and production at the 12th month have been 
observed to avoid unnecessary extra inventory and production cost. The inventory pattern for 5th time period 
shows the effectiveness of proposed method (grey bar) compared to budget (red bar) and box (blue bar) as 
grey bar is almost equal to yellow bar (ideal solution). Higher values appearing at the 5th and 11th month for 
the budget (orange bar) and the box (blue bar) approach indicate lack of accuracy in those methods for 
sampling the uncertain parameter space. These differences in production and inventory patterns visible in 
Fig. 9 compared to Fig. 8 are due to consideration of additional uncertainty in machine uptime. Inventory 
below safety can be seen at 12th time period as it was in the previous cases, but for 6th to 10th time periods, 
values are shown prominently large for the box approach. This action increases the penalty cost resulting 
in higher objective function values for this approach compared to the budget and the proposed DDRO 
method. 
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Fig. 9. a) Uncertain demand with 300% hike at 6th and 12th time periods and 20% at other time periods. 
The effect of uncertain demand parameter is shown on 5 sets of decision variables (moving left to right) –

b) inventory, c) inventory below safety, d) production, e) run-length and f) intermediate pattern over 
horizon for product p18, for 3000 data points in Case study 3. The blue, orange, indigo, grey and yellow 

bars represent the results for box, budget, ellipsoidal, proposed methodology and ideal solution 
respectively.

4.4 Example 1- Case 4

The final case study involves uncertainty in objective function by considering the production cost  VCp,u,l,k
as uncertain (see Eq 37 obtained from Eq 1 with k instances of uncertain data points). Product demand and 
machine uptime uncertainties are also included in the constrain functions. Hence, 34 uncertain parameter 
values are added due to uncertainty in production cost for all products along with 34 uncertain parameters 
from demand and 2 uncertain parameters for machine uptime at two production sites making a total of 70 
uncertain parameters. There are 132 binary variables, 13082170 single equations and 31396885 non-zero 
elements in this formulation and it takes 54.67 sec to find the optimal solution. The entire model follows 
MILP formulation, but due to the usage of inbuilt functions smin for the worst-case implementation under 
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GAMS environment, non-linearity gets introduced during implementation and this is solved using 
DICOPT solver in GAMS. 
∑

f,u,l,tFCf,u,l,tBf,u,l,t + ∑
p,u,l,tVCp,u,l,kPp,u,l,t + ∑

p,l,tRCp,lCp,l,t +
  [37]∑

p,l,tHCp,l,tIp,l,t + ∑
p,l,c,tTCl,cSp,l,c,t + ∑

p,l,l′,tTCl,l′CIP
p,l,l′,t + ∑

p,l,tPCp,lIΔ
p,l,t + ∑

p,c,tμp,cI ―
p,c,t

Table 6. Comparison of cost function values obtained through box, budget, ellipsoidal and proposed 
method compared to ideal value for case study 5

Data 
points Box

Box 
absolute 
deviation Budget 

Budget 
absolute 
deviation Ellipsoidal 

Ellipsoidal 
absolute 
deviation DDRO

DDRO 
absolute 
deviation

Ideal 
value

500 21390.0 190.4482 21354.8 155.3212 21247.2 47.65423 20460.5 739.0068
1000 21485.7 286.2452 21502.8 303.3442 21356.4 156.8512 20668.3 531.2178
3000 21860.9 661.4022 21858.4 658.8652 21741.2 541.7012 20907.3 292.2298
5000 22042.86 843.3612 22017.47 817.9682 21894.46 694.9532 20982.37 217.1328
10000 22079.74 880.2372 22047.18 847.6732 22004.26 804.7552 21009.86 189.6428

21199.5

Table 6 indicates that the cost function values obtained through the DDRO method are closer to the ideal 
values compared to those obtained by the box and the budget approach showing a similar trend as obtained 
in the previous case studies. The proposed algorithm gives value closer to the ideal value with increase in 
the number of data points used to sample the uncertain space. The values of cost function are increased 
gradually from case 1 to case 3 (see Table 3, 4 and 5), but decreased for case 4 due to the consideration of 
uncertainty in the production cost. The figures involving the SC parameters have similar patterns as those 
presented earlier. 

4.4.1 Effect of uncertain data points and parameters on computation time.

From Table 7 one can observe that across the columns, as number of uncertain parameters are increased for 
each case study, the computation time also increase. Also, across the row, as number of data points increases 
from 500 to 10000 the computational time increases. Hence both i.e. number of data points and number of 
uncertain parameter have effect on computational time. 

Table 7. Computational time for simulation runs for DDRO 

Case 1 demand 
uncertainty at 
market 1, p1 to p23 
(sec)

Case 2 demand 
uncertainty at 
both markets, p1 
to p34 (sec)

Case 3 demand 
+ machine 
uptime 
uncertainty 
(sec)

Case 4 demand + 
machine uptime + 
production cost 
uncertainty (sec)

500 5.30 4.94 4.41 9.19
1000 7.88 7.78 9.75 13.77
3000 23.45 24.52 29.59 29.61
5000 42.88 46.59 53.11 54.67
10000 97.80 100.09 124.78 131.39



26

4.5 Example 2 

Next, a continuous variable optimization under uncertainty problem expressed in terms of a set of algebraic 
equations (Eq 38 to 41) has been used to study the effect of proposed DDRO technique with respect to the 
box, budget and ellipsoidal sets. Here, there are three decision variables  in the decision 𝑥1,𝑥2 and 𝑥3
variable set x and the uncertain parameter set u is composed of  with 20% variance. The 𝑢1 and 𝑢2
minimization objective with constraint equations are solved using CPLEX solver in GAMS. The Table 
8 shows the objective values for different uncertainty sets and various sampling points from 500 to 10000. 
It can be observed that for the proposed DDRO, the objective values are moving close to ideal value with 
increasing number of data points, whereas for box, budget, ellipsoidal sets, the values are deviating away. 
The reason for such behavior is same as explained in example 1 case study 2.  

Cost function :    [38] 5𝑥1 +3𝑥2 +4𝑥3
 

    [39](1 + 𝑢1 + 2𝑢2)𝑥1 + (1 ― 2𝑢1 + 𝑢2)𝑥2 + (2 + 2𝑢1)𝑥3 ≤ 18

   [40](𝑢1 + 𝑢2)𝑥1 + (1 ― 2𝑢1)𝑥2 + (1 ― 2𝑢1 ― 𝑢2)𝑥3 ≤ 16

      [41]―1 ≤ 𝑢1,𝑢2 ≤ 1

  [42]―19 ≤ 𝑥1 ≤ 12
  

      [43]―16 ≤ 𝑥2 ≤ 0

   [44]―3 ≤ 𝑥3 ≤ 0

Table 8. Comparison of cost function values obtained through box, budget, ellipsoidal and proposed 
method with respect to ideal value for case study example 2

Data 
points Box

Box 
absolute 
deviation Budget 

Budget 
absolute 
deviation Ellipsoidal 

Ellipsoidal 
absolute 
deviation DDRO

DDRO 
absolute 
deviation

Ideal 
value

500 -1428.25 89.598 -1469.87 47.973 -1498.17 19.678 -2161.27 643.421
1000 -1400.88 116.962 -1414.38 103.465 -1420.38 97.465 -1821.74 303.89
3000 -1329.18 188.662 -1358.75 159.095 -1372.37 145.475 -1739.45 221.605
5000 -1319.63 198.218 -1339.76 178.083 -1363.42 154.425 -1647.86 130.018
10000 -1314.47 203.38 -1328.21 189.635 -1348.78 169.065 -1597.85 80.009

-1517.85

4.5 Example 3 
Here, a supply chain warehouse inventory problem is solved (Dantzig, 2016), where items are stocked to 
sell at a later date. The uncertainty u is kept in initial stock units  which can vary between zero 𝑖𝑛𝑖𝑠𝑡𝑜𝑐𝑘𝑡
to hundred units. The warehouse can store maximum hundred units in each quarter indicating profit is to 
be gained when buying at low price and selling at higher price at appropriate time in four quarters 
annually. The objective function here is to minimize the total , by identifying the decision variable x 𝑐𝑜𝑠𝑡
i.e. number of buying , stocking  and selling  units at each quarter. The storage cost 𝑏𝑢𝑦𝑡 𝑠𝑡𝑜𝑐𝑘𝑡 𝑠𝑒𝑙𝑙𝑡

 is kept $1 per quarter per unit, with selling price  of $ 10, 12, 8, 9 in each quarter per 𝑠𝑡𝑜𝑟𝑒𝑐𝑜𝑠𝑡 𝑝𝑟𝑖𝑐𝑒𝑡
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unit.  The problem is solved in GAMS using CPLEX solver. From Table 9, it is observed that as the 
data points increases from 500 to 10000, the DDRO gives values closer to ideal values compared to the 
box, budget and ellipsoidal methods. The nature of solution obtained is similar to previous examples.

       [45]𝑠𝑡𝑜𝑐𝑘𝑡 = 𝑠𝑡𝑜𝑐𝑘𝑡 ― 1 + 𝑏𝑢𝑦𝑡 ― 𝑠𝑒𝑙𝑙𝑡 + 𝑖𝑛𝑖𝑠𝑡𝑜𝑐𝑘𝑡

   [46]𝑐𝑜𝑠𝑡 = ∑
𝑡𝑝𝑟𝑖𝑐𝑒𝑡(𝑏𝑢𝑦𝑡 ― 𝑠𝑒𝑙𝑙𝑡) + 𝑠𝑡𝑜𝑐𝑘𝑡 𝑠𝑡𝑜𝑟𝑒𝑐𝑜𝑠𝑡 

   [47]0 ≤ 𝑖𝑛𝑖𝑠𝑡𝑜𝑐𝑘𝑡 , 𝑠𝑡𝑜𝑐𝑘𝑡 ≤ 100

   [48]0 ≤ 𝑏𝑢𝑦𝑡 ,  𝑠𝑒𝑙𝑙𝑡 ≤ 1000 

Table 9. Comparison of cost function values obtained through box, budget, ellipsoidal and proposed 
method with respect to ideal value for case study example 3

Data 
points Box

Box 
absolute 
deviation Budget 

Budget 
absolute 
deviation Ellipsoidal 

Ellipsoidal 
absolute 
deviation DDRO

DDRO 
absolute 
deviation

Ideal 
value

500 -288.20 12.61 -289.36 11.45 -290.36 10.45 -315.39 14.58
1000 -285.69 15.12 -285.94 14.87 -286.76 14.05 -313.56 12.75
3000 -284.47 16.34 -284.73 16.08 -284.82 15.99 -312.13 11.33
5000 -280.98 19.83 -281.54 19.27 -281.84 18.97 -309.95 9.14
10000 -278.62 22.19 -278.85 21.96 -279.83 20.98 -306.68 5.87

-300.81

5 Conclusion

In this work, the mid-term supply chain planning problem under various SC parameter uncertainty has been 
solved using data driven robust optimization. The slot-based planning model of McDonald and Karimi 
(McDonald and Karimi, 1997) is adopted for constructing various uncertain scenarios and analyzing the 
effect of uncertain parameters on the planning model. The model has three echelons i.e. supplier, 
manufacturer and the market. Few products from one manufacturing unit acts as intermediate material for 
product generation at another manufacturing site. Supplier has two nodes supplying two manufacturing 
units and these two manufacturing units finally satisfy demand of two different market units respectively. 
Overall aim of the MILP SC model is to reduce the overall cost of operation of the SC with satisfaction of 
production, logistics, inventory and safety stock constraints. The uncertainty in SC parameters was 
introduced in demand, machine uptime and production cost to study the effect of stochasticity on the SC 
performance. 

The proposed uncertainty handling method utilizes the power of machine learning algorithms to build data 
driven RO technique for identifying and sampling the uncertain parameter space more accurately to 
generate superior performance compared to the conservative results of conventional approaches. The data 
points in the uncertain space are first clustered (via NFCM based ANN+FCM) and their boundary points 
are marked using local density (LD) measure. The obtained boundary points are joined using Delaunay 
triangulation for creating outer envelope of each cluster, within which the Sobol sampling is used for 
generation of uncertain parameter realizations. The verification of proposed DDRO technique has been 
done, not just on supply chain model of (McDonald and Karimi, 1997), but also on other examples such as 
one from continuous decision variable domain and another supply chain warehouse inventory model 
(Dantzig, 2016). The examples clearly demonstrate the importance of efficient sampling in the uncertain 
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parameter space when the data points are less in number and scattered in nature, which might be difficult 
to approximate using known statistical distributions. Across all examples, it is observed that the increase in 
number of uncertain sampling data points (500 to 10000) improves closeness of objective function values 
to the ideal value for proposed data driven RO as compared to the box, budget and ellipsoidal methods due 
to the accurate transcription of uncertain parameter space by the proposed method. The method is also 
shown to be scalable for large number of uncertain parameters.   
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