
Journal Pre-proofs

Power structure and profitability in a three-echelon supply chain facing sto-
chastic demand

Kenji Matsui

PII: S0360-8352(21)00150-9
DOI: https://doi.org/10.1016/j.cie.2021.107246
Reference: CAIE 107246

To appear in: Computers & Industrial Engineering

Received Date: 30 July 2020
Revised Date: 9 January 2021
Accepted Date: 15 March 2021

Please cite this article as: Matsui, K., Power structure and profitability in a three-echelon supply chain facing
stochastic demand, Computers & Industrial Engineering (2021), doi: https://doi.org/10.1016/j.cie.2021.107246

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover
page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version
will undergo additional copyediting, typesetting and review before it is published in its final form, but we are
providing this version to give early visibility of the article. Please note that, during the production process, errors
may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2021 Published by Elsevier Ltd.

https://doi.org/10.1016/j.cie.2021.107246
https://doi.org/10.1016/j.cie.2021.107246


1

Power structure and profitability in a three-echelon supply chain facing 

stochastic demand

Kenji Matsui

Graduate School of Business Administration, Kobe University, 2-1, Rokkodaicho, Nada-ku, 

Kobe, Japan

E-mail address: kmatsui@b.kobe-u.ac.jp

Telephone and fax: +81 78 803 6908



2

> We investigate how power structure influences supply chain 
profitability. > We consider a three-echelon supply chain facing stochastic 
demand. > We show the next results, which are significantly different 
from previous insights. > The first-mover advantage is completely lost in a 
stochastic environment. > The last-mover advantage always arises in a 
stochastic environment.
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Power structure and profitability in a three-echelon supply chain facing 
stochastic demand*

ABSTRACT

     In this paper, we investigate how the order in which supply chain members demand 

their respective margins, which is often called power structure, influences their profitability 

in a three-echelon supply chain facing stochastic demand. We consider a typical 

three-echelon supply chain consisting of an upstream firm, a midstream firm, and a 

downstream firm. Previous supply chain models examining power structure have shown the 

conventional result that a supply chain member that sets a price or margin earlier generates 

a higher profit in a deterministic environment; that is, firms achieve higher profits in the 

order of the first-mover, the second-mover, and the third-mover who set margins in a 

three-echelon chain. Here, the first-mover, second-mover, and third-mover mean the supply 

chain member who sets its margin first, second, and third, respectively. Our stochastic 

model suggests the starkly contrasting result that the expected profit under demand 

uncertainty is higher in the order: (i) in a wide range of circumstances, the third-mover, the 

first-mover, and the second-mover who demand margins or (ii) in a narrower range of 

circumstances, the third-mover, the second-mover, and the first-mover. That is, the range of 

exogenous parameters leading to the first case is broader than that leading to the second 

case. The result indicates that the first-mover advantage is completely lost and, instead, the 

last-mover advantage always arises in a stochastic environment. Currently, power in supply 

chains tends to shift from upstream firms to downstream firms. However, our results warn a 

supply chain member in a stochastic environment that if assuming leadership to set its price 

or margin just because it has the power to do so, the member can ultimately harm itself and 

reduce its own profit.

Keywords: supply chain management; power structure; stochastic demand; game theory

* This paper has been included in the Working Paper series of the author's affiliated 
university. Please do not quote or cite the paper without prior permission from the author 
before publication.
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1. Introduction

     Power structures underlying supply chains involving various firms pursuing 

respective profits are now becoming an issue of critical importance that attracts the 

attention of both practitioners and academics. In multi-echelon supply chains distributing 

consumer products, the order of pricing is usually the same as the order of shipping 

products; namely, supply chain members sequentially set respective selling prices in order 

from the upstream to the downstream. Recently, however, large-scale retailers often require 

margins for products from suppliers before suppliers determine their margins or wholesale 

prices. Previous empirical studies have also provided real-life cases in which large-scale 

retailers require guaranteed profit margins from various suppliers (e.g., Lee and Rhee, 

2008). The price leadership exerted by downstream retailers is also found in agricultural 

product markets, in which upstream manufacturers are forced to become price takers 

(Kuiper and Meulenberg, 2004). Such a price leadership change is caused by power shifts 

from upstream manufacturers to downstream retailers. Huge retailers such as Tesco, 

Carrefour, and Walmart tend to be stronger competitors, playing more predominant roles 

than firms in upstream echelons (Ertek and Griffin, 2002).

     Given these real-life cases, there exist two types of models involving 

decision-making by supply chain members in the industrial engineering literature. The first 

type of model describes a traditional supply chain in which firms from the upstream to the 

downstream sequentially choose their prices along the chain (e.g., Anderson and Bao, 2010; 

Jeuland and Shugan, 1983; McGuire and Staelin, 1983). Meanwhile, the second type of 

model assumes that firms constituting supply chains choose not prices but their margins 

(e.g., Choi, 1991; Luo et al., 2017; Xia and Gilbert, 2007). In the second type of model, the 

firm assuming leadership to determine a margin is viewed as having greater power. From 

this perspective, several studies have examined how the order in which supply chain 

members demand their respective margins, which is often called power structure, affects 

the profitability of channel members.

     Previously, a two-echelon supply chain, which is typically composed of either a 
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supplier and a manufacturer or a manufacturer and a retailer, has most frequently been 

considered to examine power structures in the industrial engineering literature. Recently, 

however, power structure in a three-echelon supply chain has also created interest among 

both academics and practitioners, because a three-echelon supply chain is often used as a 

useful distribution system.1 As a real-life example for such a three-echelon supply chain, 

the regulation called the three-tier system is imposed on companies selling alcoholic 

beverages in most states of the United States (Gundlach and Bloom, 1998). The basic 

structure of this system is that producers can sell their products only to wholesale 

distributors who then sell to retailers, and only retailers may sell to consumers. Moreover, 

the number of echelons in distribution channels tends to be larger in Asian countries than in 

the United States. As an example of a three-echelon supply chain, Cheng et al. (2021) refer 

to Laoganma Flavor Food, which is a prominent processed food company in China 

distributing products to Walmart. Laoganma distributes its chili sauce to a Walmart 

supermarket in Shanghai via a local distributor. Hence, Cheng et al. (2021) consider 

Laoganma, the local distributor, and Walmart as a real-life case of a three-echelon supply 

chain, modeling the strategic interaction between them as a Stackelberg game. Because 

such three-echelon supply chains exist in reality, it is worth studying how much total profit 

generated in a three-echelon supply chain environment—where each supply chain member 

can decide its timing to demand its margin—is obtained by each supply chain member.

     Given that power structures underlying supply chains are rapidly changing, this paper 

explores how the order in which supply chain members demand their respective margins 

influences their profitability in a three-echelon supply chain under demand uncertainty. We 

consider a three-echelon supply chain consisting of an upstream firm, a midstream firm, 

and a downstream firm. Existing supply chain models examining power structure in the 

literature have shown the conventional result that a member who sets its price or margin 

earlier in a supply chain generates a higher profit in a deterministic environment. Namely, 

1 The term three-echelon supply chain is often referred to as three-level supply chain or 
three-tier supply chain (Lan et al., 2018), all of which have the same meaning.
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firms generate higher profits in the order of the first-mover, second-mover, and third-mover 

who set margins in a three-echelon chain. However, our stochastic model shows the starkly 

contrasting result that the expected profit in a stochastic environment under demand 

uncertainty is higher in the order of (i) the third-mover, first-mover, and second-mover who 

demand margins in a wide range of circumstances, or (ii) in a narrower range of 

circumstances, the third-mover, second-mover, and first-mover. That is, the range of 

exogenous parameters leading to the first case is broader than that leading to the second 

case. The result indicates that the first-mover advantage is completely lost and, instead, the 

last-mover advantage always arises under demand uncertainty. Although power currently 

tends to shift from upstream firms to downstream firms along supply chains, our results 

warn a supply chain member under demand uncertainty that if assuming leadership to set its 

price or margin just because of having power, the member can ultimately harm itself and 

reduce its own profit.

     The logic behind the results above is laid out as follows. By observing the margin 

demanded by an earlier decision-maker, a later decision-maker can make a more precise 

inference about stochastic demand, thereby determining a more appropriate margin. 

Therefore, the last-mover achieves the highest profit among the three firms. Meanwhile, the 

rationale for the result that the second-mover achieves the lowest profit in most 

circumstances can be explained by using insights gained in the game theory literature. In a 

multi-echelon supply chain where supply chain members set their respective margins, the 

margins determined by the members have a negative correlation, meaning that one supply 

chain member decreases its margin if another member increases its margin (Choi, 1991). 

Moreover, first-mover advantage arises when the decision variables of players in a 

noncooperative game have a negative correlation (Gal-Or, 1985a). Therefore, when each 

supply chain member determines its margin, the margins have a negative correlation and 

hence the first-mover advantage arises in a deterministic environment. Furthermore, it is 

also known that this negative correlation in a deterministic environment can change to a 

positive correlation in a stochastic environment. That is, whereas the decision variables 
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between the first-mover and the third-mover maintain their negative correlation, both the 

decision variables between the first-mover and the second-mover and those between the 

second-mover and the third-mover change to a positive correlation, respectively, in a 

stochastic environment (Shinkai, 2000). Hence, the positive correlation of decision 

variables induces the second-mover to lessen its incentive to increase its margin in our 

model, because if the second-mover required a high margin, the retail price would be raised 

too high and the resulting supply quantity would fall substantially from the optimal level, 

which would in turn reduce its own profit. Consequently, the second-mover becomes 

unable to demand a high margin in a stochastic environment, which induces its expected 

profit to fall to the lowest level.

     In our model, each of the three supply chain members determines its margin based on 

its demand forecast. Because we assume these decisions are made sequentially, there are 

several cases classified by which of the three members constituting a three-echelon supply 

chain is the first-mover, second-mover, and third-mover, respectively. The major purpose 

of this paper is to derive the expected profit of each supply chain member in each case (i.e., 

sequence) and to determine the ranking of the profit by the sequence. As will be elaborated 

in the next section, this paper is the first to develop a stochastic model involving demand 

uncertainty to investigate the relationship between the order of decisions and profitability in 

the context of multi-echelon supply chain management.

     The remainder of the paper is organized as follows. Section 2 provides a review of 

the literature related to game-theoretic models examining power structures underlying 

supply chains. Section 3 delineates the settings of our three-echelon supply chain model. 

Section 4 first presents a preliminary model without demand uncertainty, confirming that a 

first-mover advantage arises in a deterministic environment. Subsequently, we proceed to 

construct a main stochastic model under the presence of demand uncertainty, deriving 

supply chain members' optimal strategies and expected profits in equilibrium. In Section 5, 

we conduct a numerical investigation to confirm that numerical results support the message 

derived from the analytical model. Section 6 concludes.
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2. Literature review

     To date, a number of supply chain management studies have investigated the impacts 

of price leadership, also called power structure, on profitability in supply chain members 

based on game theory (e.g., Chakraborty et al., 2018; Chen et al., 2016, 2018, 2019; Choi, 

1991; Edirisinghe et al., 2011; Li and Chen, 2018; Li et al., 2018a, 2018b, 2019a, 2019b, 

2020; Liu and Ke, 2020; Lou et al., 2020; Luo et al., 2017; Matsui, 2017, 2018, 2019, 2020; 

Pan et al., 2010; Shi et al., 2020; Wei et al., 2013; Xia and Gilbert, 2007; Yan et al., 2017, 

2020; Yang et al., 2018; Yu et al., 2017, 2020; Zheng et al., 2019). Choi (1991) investigates 

pricing decisions made by one retailer and two manufacturers. The following three 

scenarios describing different power structures are modeled and examined: (i) the 

manufacturer Stackelberg game, (ii) the retailer Stackelberg game, and (iii) the vertical 

Nash game. His research is a seminal study examining how supply chain members' profits 

depend on the power structure, and later studies thereafter consider that a channel member 

assuming price leadership has the most power. Pan et al. (2010) consider a supply chain 

involving one manufacturer and two retailers, and one involving two manufacturers and one 

retailer. They show that the power in the supply chain affects which of a wholesale price 

contract or a revenue-sharing contract is more profitable under the two respective scenarios. 

They also compare equilibrium results achieved by the contracts. Edirisinghe et al. (2011) 

investigate how the stability of a supply chain depends on channel power, in which two 

asymmetric manufacturers sell differentiated products via one common retailer. They 

specifically consider eight types of power structures in which the two manufacturers act as 

a Stackelberg leader and a follower. They show that power imbalance causes substantial 

reduction in supply chain total profit and that a more stable power balance achieves higher 

profits. Consequently, they conclude that a structure in which firms have equal power 

attains the highest supply chain stability and performance. Wei et al. (2013) examine price 

decisions made by two competing manufacturers and one retailer constituting a supply 
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chain selling two complementary products. They consider three power structures; that is, (i) 

the vertical Nash game, (ii) the manufacturer Stackelberg game, and (iii) the retailer 

Stackelberg game. In addition, they assume that the two manufacturers can make sequential 

decisions in the two Stackelberg games, obtaining wholesale and retail prices in 

equilibrium. Luo et al. (2017) consider a supply chain in which vertically differentiated 

products of a superior product and an average product are sold by two manufacturers to a 

retailer. Here, because the quality of the superior product is higher than that of the average 

product, the superior product provides a consumer with higher utility than the average 

product. They describe vertical competition between the retailer and the two manufacturers 

as well as horizontal competition between the manufacturers. They demonstrate that if one 

of the two manufacturers is the late-mover to set its price, it can profit from learning the 

rival's price. While Luo et al. (2017) are especially associated with the current paper 

because they show the second-mover advantage arising in a supply chain, they assume a 

deterministic rather than a stochastic environment. Departing from the previous work 

described, the present paper reveals that the late-mover advantage arises in a supply chain 

facing stochastic demand by introducing uncertainty into a model involving power 

structure. Chakraborty et al. (2018) consider a two-echelon supply chain where consumer's 

demand depends on both retail price and marketing activity expensed by supply chain 

members. They examine power structure in a supply chain consisting of a manufacturer and 

a retailer who play a Stackelberg game. They find that while the follower position in the 

game is more advantageous for a firm to earn a larger profit, the leader position is less 

advantageous. Moreover, they show that neither a wholesale price contract nor a revenue 

sharing contract coordinates the supply chain. They finally develop a hybrid revenue and 

cost sharing contract that coordinates the supply chain. Chen et al. (2018) investigate the 

order of pricing decisions made by two competing retailers when they allow product returns 

from consumers. They find that the equilibrium order of decisions depends on a retailer's 

handling cost and salvage value of a returned product compared with those of the other 

retailer. Consequently, they show that a returns policy significantly influences the 
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equilibrium power structure between the two retailers. Li et al. (2018b) investigate the 

influence of product substitutability and channel status on pricing decisions in two 

distribution channels under different leadership scenarios. They show that channel members 

always increase their profitability from taking the leader's position regardless of the 

competition and asymmetric related channel status. Moreover, they show whether the 

channel leader has the incentive to take the leader's position depends on the asymmetric 

relative channel status. Li et al. (2019a) investigate the power structure in a dual-channel 

supply chain consisting of a manufacturer and a retailer that provides services. They find 

that a showrooming effect enables the supply chain to improve profitability if a retailer 

determines its service level at a late timing. Moreover, they demonstrate that as the 

showrooming effect becomes greater, such a late decision of the service allows the supply 

chain to earn a higher profit. Yan et al. (2020) investigate an e-commerce platform that 

plays a role as a retail intermediary and provides trade credit to a capital-constrained 

supplier in the upstream. Their model describes price competition between this e-retailer 

and the supplier in a dual-channel supply chain. They show that the e-retailer obtains 

first-mover advantage by announcing its price earlier than the supplier.

     Game-theoretic models have also been developed describing multi-echelon supply 

chains in the industrial engineering literature (e.g., Cheng et at., 2021; Lan et al., 2018; Liu 

et al., 2013; Panda et al., 2017; Santibanez-Gonzalez and Diabat, 2016; Zhao et al., 2019). 

Liu et al. (2013) investigate the impact of partial information sharing in a three-echelon 

supply chain consisting of a manufacturer, a distributor, and a retailer. Partial information 

sharing means that while information is shared between the distributor and the retailer, it is 

not shared between the distributor and the manufacturer. Based on these settings, they 

explore circumstances in which information sharing between the retailer and the distributor 

improves the profitability of the manufacturer, showing that such partial information 

sharing does not necessarily benefit the manufacturer. Lan et al. (2018) assume a three-tier 

supply chain in which a manufacturer distributes products to a retailer under demand 

uncertainty, through two asymmetric distributors. They derive the optimal ordering policy 
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and equilibrium prices determined in the supply chain. They demonstrate that the 

dual-channel supply chain benefits both the manufacturer and the retailer if demand 

uncertainty is sufficiently high and that coordination among the distributors and the retailer 

is achieved through competition between the two distributors. Zhao et al. (2019) apply a 

system dynamics approach to design a simulation model describing a three-echelon supply 

chain consisting of one business unit, one distribution center, and one maintenance outlet. 

They assume that the business unit and the distribution center are operated by one company 

and thus regarded as one supplier. They focus on the coordination between the distribution 

center and the maintenance outlet in order to propose a contract to enhance these two 

parties' profits. Consequently, they provide a contract through numerical analysis that 

enhances the profits of both the distribution center and maintenance outlet.

     Table 1 summarizes overall information from the related literature, clarifying the 

main features of the present paper compared with existing studies. The table shows that 

previous studies related to the issue addressed in the present paper can be classified on 

several dimensions. First, there are two types of models involving optimal decision-making 

by supply chain members in response to certain market demand levels, which are classified 

as deterministic models and stochastic models. Second, there are two types of supply chain 

models, two-echelon models and three-echelon models. Third, there are models that 

investigate how the power structure affects supply chain profitability and models that do 

not focus on the power structure but examine only Nash or Stackelberg games in supply 

chains. Hence, Table 1 clarifies that only the present paper simultaneously addresses all 

three issues, namely power structure, stochastic demand, and the three-echelon supply 

chain.

[Table 1]

     The above overview of the literature shows that a number of existing supply chain 

management papers investigate the issue of power structure underlying supply chains. 

Nevertheless, to our knowledge, none of the previous work points out that the conventional 

wisdom—namely, that a supply chain member assuming leadership and hence making its 
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decision earlier achieves higher profitability—significantly changes under the presence of 

demand uncertainty. It is therefore worth highlighting that, using a rigorous game-theoretic 

framework, the current paper is the first to show that leadership in a supply chain does not 

necessarily lead to an improvement in profitability in a stochastic environment.

3. Settings

     In this section, we describe settings and assumptions used in our model. Table 2 

summarizes the notations used in our model. As illustrated in Figure 1, we consider a 

three-echelon supply chain consisting of one upstream firm, one midstream firm, and one 

downstream firm, denoted U, M, and D, respectively.2 The upstream firm incurs a variable 

cost denoted by c to produce a unit of its product. The product is sold from the upstream 

firm to the midstream firm at wholesale price pU, from the midstream firm to the 

downstream firm at wholesale price pM, and from the downstream firm to consumers at 

retail price pD. Our model also assumes a make-to-order (MTO) system, in which the price 

or margin is the only decision variable and supply quantity is thus immediately adjusted in 

response to order quantity, following previous game-theoretic models in the literature (e.g., 

Lu et al., 2019; Yue and Liu, 2006).3

[Table 2]

[Figure 1]

     We assume the next linear demand schedule following supply chain models in the 

2 There are real-life cases that correspond to a three-echelon supply chain. For example, a 
supply chain consisting of a manufacturer, a wholesaler, and a retailer corresponds to our 
model setting. Another example is a chain consisting of a supplier, a manufacturer, and a 
retailer.
3 Note that the seminal work on power structure by Choi (1991) demonstrates that the 
first-mover advantage arises in an MTO system; that is, a firm that determines its margin 
earlier achieves a higher profit in a deterministic environment. Therefore, our finding that 
first-mover advantage is completely lost in a stochastic environment with the MTO system 
is completely the opposite of the conventional insight from the literature.
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literature (e.g., Gal-Or, 1985b; Li, 2002; Wang and Zhuo, 2020; Zhang and Zhang, 2020).4

q = a + e – b pD,                                                       (1)

where q is quantity and b is a positive constant. The intercept of the demand function 

consists of a deterministic part, a, and a stochastic part, e. While a is a positive constant, e 

is a random variable distributed with a mean of 0 and a variance of V.

     Because the objective of this paper is to investigate the power structure underlying a 

supply chain, we assume that the firms choose their respective margins following previous 

models in the literature (e.g., Choi, 1991; Edirisinghe et al., 2011; Pan et al., 2010).5 Let 

mU, mM, and mD represent the margin of the upstream firm, the midstream firm, and the 

downstream firm, respectively, which are defined as:

mU  pU–c                                                            (2)

mM  pM–pU                                                           (3)

mD  pD–pM.                                                          (4)

     Eliminating pU and pM from Equations (2), (3), and (4) yields the following equation:

pD = mU+mM+mD+c.                                                    (5)

     Substituting Equation (5) into Equation (1), we rewrite Equation (1) as:

q = a+e–b(mU+mM+mD+c).                                               (6)

     Equation (6) indicates that the following single equation describes the profits of the 

4 We derive the linear-form inverse demand function of Equation (1) if the utility function 
of a consumer denoted by U is specified as:
U = ((a+e)q–q2/2)/b.
Given this function, consumer surplus denoted by S is stated as:
S = U–pDq = ((a+e)q–q2/2)/b–pDq.
The consumer maximizes S by solving S/q = 0, which gives Equation (1). See Ingene and 
Parry (2004, Chapter 11) for more details about the derivation process of the demand 
function from the utility function and the application of the functions to distribution 
channel issues.
5 The assumption that margins are decision variables for supply chain members is also 
congruent with industry practices and insights gained in previous empirical studies. 
Krishnan and Soni (1997) provide real cases of retailer Stackelberg games, in which 
large-scale retailers require manufacturers to offer guaranteed profit margins. Moreover, 
Cotterill and Putsis (2001) provide empirical evidence that a Nash game well describes the 
strategic interaction across channel members, in which a downstream firm determines a 
margin simultaneously when an upstream firm does likewise in several product categories.
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three channel members:6

    (i = U, M, or D).                      (7)  cmmmbeam DMUii 

U, M, and D denote the profit of the upstream, the midstream, and the downstream firm, 

respectively.

     We assume in our Stackelberg game that a firm determines its margin after obtaining 

a private signal, which is the information concerning the stochastic part (e) of the intercept 

in the inverse demand function, but before the actual demand (a+e) is realized. Although 

the true value of the random variable, e, is unknown to all firms, each firm predicts the 

value by using its information-gathering technology. Specifically, each firm observes the 

value of its private signal fi on e (i = 1, 2, 3). Henceforth, let a number or subscript 1, 2, or 

3 denote the supply chain member who sets its margin first, second, and third, respectively. 

Firm 1 initially determines its margin m1 after observing the private signal f1. Second, Firm 

2 determines its margin m2 after observing the private signal f2 and Firm 1's margin m1. 

Finally, Firm 3 determines its margin m3 knowing the private signal f3, and Firms 1 and 2s' 

margins m1 and m2. Hence, Firm 2 (Firm 3) use the margin of m1 (m1 and m2) as well as its 

private signal f2 (f3) to infer private signal(s) of the firm(s). Therefore, each firm determines 

its margin as the decision variable and all combinations of the decision sequence, classified 

by which firm decides earlier and which firm decides later, are considered and examined in 

our model.

     Following the literature (e.g., Li, 2002), we also make an assumption regarding the 

posterior expectation of e, which is the demand disturbance. Assume that fi, which is 

conditional on e, be independent and identically distributed random variables as follows:

6 If other expenses like holding cost per unit were considered in our model, then the cost 
would simply be added and included in the marginal cost because we assume an MTO 
system. Stated differently, if the upstream firm were assumed to incur holding cost per unit 
additionally, the variable c would include not only marginal production cost but also 
holding cost per unit, which means that the variable c would consist of the two cost factors. 
If the midstream or the downstream firm were assumed to incur such a cost per unit, the 
cost could simply be deducted from their margin per unit and the main result in this paper 
on the effect of the decision sequence on profitability ranking would never change due to 
the assumption of the MTO system.
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E(fi|e) = e, var(fi|e) =   (i = 1, 2, 3).                                    (8)

Therefore, each firm obtains a private signal that is an unbiased value of the demand.

     Next, the law of iterated expectations indicates that E(fi) = E(E(fi|e)) = E(e) = 0 and 

E(e2) = var(e) + (E(e))2 = V hold. We also have:

E(fi
2|e) = var(fi|e) + (E(fi|e))2 =                                          (9)

var(fi) = E(fi
2)–(E(fi))2 = E(E(fi

2|e)) = E( + e2) = V +                       (10)

E(fi fj) = E(E(fi fj|e)) = E(E(fi|e)E(fj|e)) = E(e2) = V        (i  j)              (11)

E(e fi) = E(E(e fi|e)) = E(e E(fi|e)) = E(e2) = V.                             (12)

     We also assume that there exist constants denoted by Greek letters , , , , and , 

with subscript numbers described by the following linear equations.7

E(e|f1, f2, f3) = 0 + 1f1+ 2f2 +3 f3                                      (13)

E(e|fi, fj) = 0h + ih fi + jh fj   ((h, i, j) = (1, 2, 3), (2, 3, 1), (3, 1, 2))  (14)

E(e|fi) = 0i +1i fi  (i = 1, 2, 3)                       (15)

E(fh| fi, fj) = 0h + ih fi + jh fj ((h, i, j) = (1, 2, 3), (2, 3, 1), (3, 1, 2))  (16)

E(fj| fi) = 0ji +ji fi ((i, j) = (1, 2), (2, 3), (3, 1))          (17)

We have the posterior expectations of e and the signals given in Equations (13)–(17) in the 

following lemma. (All proofs are shown in the Appendix.)

Lemma 1.  The following equations hold.

E(e|f1, f2, f3) = V(f1+f2 +f3)/(+3V)

E(e|fi, fj) = V(fi+fj)/(+2V)   ((i, j) = (1, 2), (2, 3), (3, 1))

E(e|fi) = Vfi/(+V)   (i = 1, 2, 3)

E(fh| fi, fj) = V(fi+fj)/(+2V)  ((h, i, j) = (1, 2, 3), (2, 3, 1), (3, 1, 2))

E(fj| fi) = Vfi/(+V)   ((i, j) = (1, 2), (2, 3), (3, 1))

7 Examples of the prior-posterior distribution functions satisfying the assumption of the 
linearity in Equations (13)–(17) include the Normal-Normal, Gamma-Poisson, and 
Beta-Binomial distributions (DeGroot, 1970). Because we need to restrict the intercept of 
the demand function, a+e, to be nonnegative, the latter two distributions are appropriate, in 
which both e and fi (i = 1, 2, 3) have a positive support.
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4. Analytical results 

4.1 Preliminary result: Deterministic environment

     Before analyzing the main stochastic model under demand uncertainty, we provide 

relationships between the order of firms' decisions on margins and their profitability under 

a deterministic environment. The next theorem summarizes the result.

Theorem 1.  In a deterministic environment in which e = 0 holds, firms' strategies on 

margins constituting the equilibrium are:

m1
* = (a–bc)/(2b),  m2

* = (a–bc)/(4b),  m3
* = (a–bc)/(8b).

The resulting equilibrium profits are:

1
* = (a–bc)2/(16b),  2

* = (a–bc)2/(32b),  3
* = (a–bc)2/(64b).

The equilibrium profits indicate that the following inequalities hold.

1
* > 2

* > 3
*.

     Theorem 1 proves that the ranking of profitability is the same as the order in which 

firms set their respective margins, which is the conventional result that has been shown in 

the literature. That is, a firm achieves a higher margin or profit by setting its margin at its 

earliest time. This theorem gives the reason for why previous studies, focusing on power 

structures under a deterministic environment, consider that a channel member assuming 

leadership in determining a margin or price has the most power. In the following section, 

we will prove that this conventional result is reversed in a stochastic environment.

4.2 Main result: Stochastic environment

     In this section, we proceed to analyze the main stochastic model, deriving firms' 

optimal strategies and expected profits in equilibrium. In general, multiple equilibria can 

arise in a sequential-move game played by three players under uncertainty. Because this 
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paper aims to investigate how the order in which the margins are set affects optimal actions 

in the three-echelon supply chain, we employ the Stackelberg perfectly revealing 

equilibrium as the equilibrium concept. Specifically, Gal-Or (1987) shows that the 

functions of the equilibrium strategies must be monotonic with respect to signal(s) to 

ensure that a perfectly revealing equilibrium exists.8 Because Equation (7) indicates that 

Firm i's expected profit is the quadratic function with respect to mi, the function forms of 

the margins, m1, m2, and m3, must be linear.9 Given that each strategy is linear with respect 

to demand signal, we assume that m1
* = A0+A1f1, m2

* = B0+B1f2+B2m1, and m3
* = 

C0+C1f3+C2m1+C3m2.10

     Because the model developed in the paper is classified as a dynamic noncooperative 

incomplete information game, the algorithm of backward induction is used to solve 

stochastic optimization problems. That is, we sequentially solve optimization problems 

from a later stage to an earlier stage to derive the total optimal solution, because multiple 

players who have different objective functions separately choose their respective decisions, 

which engenders mutual dependence relationships. The following proposition shows the 

linear (affine) strategies constituting the equilibrium.

Proposition 1.  The equilibrium margin strategies are stated as:

8 In this paper, an algorithm proposed by Gal-Or (1987) is applied to identify the 
equilibrium of an incomplete information game. The decision variable controlled by firms 
in Gal-Or's model is quantity, not price or margin. Nonetheless, the algorithm proposed by 
Gal-Or (1987) is helpful because she proves that all players perfectly reveal their signals 
through a linear strategy including a player's private signal, which constitutes a separating 
equilibrium. Namely, Gal-Or (1987) proves that every player is unable to strategically 
revise its strategy for the purpose of "fooling" rivals at a pure strategy equilibrium in an 
incomplete information game.
9 We focus only on the linear-form strategies, because Gal-Or (1987) proves that all players 
perfectly reveal their signals through a linear strategy including a player's private signal, 
which is called a perfect revealing equilibrium.
10 Because only a linear strategy is considered to derive the perfect revealing equilibrium, 
each strategy is linear with respect to demand signals and margins. We calculate A0, A1, B0, 
B1, B2, C0, C1, C2, and C3 by using profit-maximizing conditions for the three supply chain 
members.
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     The following corollary follows from Proposition 1 after a simple calculation.

Corollary 1.  The following inequalities hold:

E(m3
*) > E(m1

*) > E(m2
*).

     The next proposition summarizes the firms' ex ante expected profits in equilibrium.

Proposition 2.  Firms' expected profits in equilibrium are:
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     From Proposition 2, we yield the next theorem summarizing the central result in this 

paper.

Theorem 2.  The following inequalities hold depending on exogenous parameters.

Case (i): E(3
*) > E(1

*) > E(2
*)    if (a–bc)2 > V(–9V2+2V+42)/(9V2+15V+62)
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Case (ii): E(3
*) > E(2

*) = E(1
*)    if (a–bc)2 = V(–9V2+2V+42)/(9V2+15V+62)

Case (iii): E(3
*) > E(2

*) > E(1
*)   if (a–bc)2 < V(–9V2+2V+42)/(9V2+15V+62)

     Observe that Theorem 2 sharply contrasts with the result in Theorem 1. That is, the 

main result in a stochastic environment shows a significantly different result from the 

benchmark result in a deterministic environment. Remember that Theorem 1 suggests that 

the order of the profit earned by the three supply chain members is simply the same as the 

order of members setting margins under the absence of uncertainty. In contrast, Theorem 2 

suggests that under a wide range of circumstances corresponding to Case (i), the expected 

profit is higher in the order of the third-, the first-, and the second-mover, which is the same 

as the order of the margins shown in Corollary 1.11 In a narrow range of circumstances 

corresponding to Case (iii), the expected profit is higher in the order of the third-, the 

second-, and the first-mover, which is different from the order of the margins in Corollary 

1. That is, the range of exogenous parameters leading to Case (i) is broader than that 

leading to Case (iii). Theorem 2 suggests that, in any case, the first-mover to demand its 

own margin at the earliest time never generates the highest profit among the three members. 

This result sharply contrasts with Theorem 1 in a deterministic environment, which has also 

been demonstrated in the literature investigating power structures in supply chains.

     Because a manufacturer needs to sell products wholesale to a reseller downstream 

unless it executes direct selling to end consumers, it cannot in general become the last 

mover in a supply chain. Our result suggests that because the last-moving supply chain 

member can correctly infer demand information that the first- and second-moving members 

11 The reason why Case (i) in the theorem includes much wider circumstances than Case 
(iii) is explained as follows. In the condition of the inequality distinguishing the three cases, 
the left-hand side, (a–bc)2, is positive. Hence, a necessary condition for the existence of the 
parameters for Case (iii) is that the right-hand side of the inequality, V(–
9V2+2V+42)/(9V2+15V+62), is positive. The necessary and sufficient condition 
derived from solving this value being positive is calculated approximately as  > 1.27V; 
that is, the variance of the noise of the demand signal is at least larger than the variance of 
demand itself, which is a quite restrictive condition.
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have from observing the margins they have set, the last-moving member achieves the 

highest margin and profit. Therefore, such an upstream manufacturer should be aware that 

it is unable to benefit from its price leadership under demand uncertainty. For example, as 

referred to in the introduction, if a food or beverage manufacturing company faces 

stochastic demand when selling its products to a retailer like Walmart via a distributor, 

price leadership is not advantageous to the manufacturer.

     Next, we provide the logic behind how our central result described by Theorem 2 is 

derived. Basically, a later decision-maker can make a more precise inference about 

stochastic demand by observing the margin demanded by an earlier decision-maker, thereby 

determining a more appropriate margin. Hence, the third-mover gains an advantage of 

drawing demand information from the margins set by the first- and second-movers, thereby 

achieving the highest profit. Next, let us consider a rationale for why the second-mover has 

a disadvantage in most circumstances as shown in Case (i) in Theorem 2. First, the 

distribution channel model by Choi (1991) demonstrates that in a multi-echelon supply 

chain where supply chain members set their respective margins, the margins have the 

characteristics of strategic substitutes. These strategic substitutes mean that if a player 

increases its decision variable in a noncooperative game, another player decreases its 

decision variable in response, implying a negative correlation between the decision 

variables determined by players. At the same time, strategic complements are exactly the 

opposite of strategic substitutes, such that if one player increases its decision variable, 

another player also increases its decision variable. Therefore, the variables characterized by 

strategic complements have a positive correlation. Using these concepts, Gal-Or (1985a) 

proves that first-mover advantage arises when the decision variables are characterized by 

strategic substitutes. Therefore, in our model context, these previous studies indicate that 

when each supply chain member determines margins, the margins are characterized by 

strategic substitutes and therefore the first-mover advantage arises in a deterministic 

environment.

     Based on these basic insights, Shinkai (2000) provides the rationale for why a 



22

second-mover does not necessarily generate the second largest payoff in a general 

incomplete information game, while he considers not a supply chain but a horizontal 

triopoly in which three firms compete to sell products. Specifically, Shinkai (2000) proves 

that strategic substitutes in a deterministic environment can change to strategic 

complements in a stochastic environment. That is, whereas the decision variables between 

the first-mover and the third-mover remain strategic substitutes, both the decision variables 

between the first-mover and the second-mover and those between the second-mover and the 

third-mover change to strategic complements in a stochastic environment. Applying this 

insight by Shinkai (2000), we understand that only the second-mover lessens its incentive 

to increase its margin in our model context, because if the second-mover set a high margin, 

the retail price would be raised too high and the resulting supply quantity would 

substantially fall from the optimal level, which would reduce its own profit. Consequently, 

the second-mover becomes unable to demand a high margin in a stochastic environment, 

which in turn induces its expected profit to fall to the lowest level in our power structure 

model where each firm sets its own margin.

5. Numerical investigation

     So far, we have derived basic results of our model in analytical forms. Given the 

analytical results, we conduct numerical investigation in this section to confirm that they 

are numerically supported. Specifically, we substitute certain values into the exogenous 

parameters in the condition of (a–bc)2 ⋛ V(–9V2+2V+42)/(9V2+15V+62) that classifies 

the three equilibrium cases in Theorem 2, thereby examining under which sets of 

exogenous parameters leads to which of the three cases.

     Figure 2 illustrates the numerical results. Specifically, it shows the region that leads 

to each case in Theorem 2 by fixing the value of (a–bc)2 on the left-hand side of the 

condition of (a–bc)2 ⋛  V(–9V2+2V+42)/(9V2+15V+62) and drawing the implicit 

function against the horizontal axis and the vertical axis of V and , respectively. Hence, 
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Figure 2 shows which specific values of V and  lead to Case (i): E(3
*) > E(1

*) > E(2
*) 

or Case (iii): E(3
*) > E(2

*) > E(1
*) in Theorem 2. The figure contains three panels in 

which (a–bc)2 is set as 1, 10, and 100 in Panels A, B, and C, respectively. (a–bc)2 is 

interpreted as the profitability for the entire supply chain, because the demand functional 

form of Equation (1) suggests that if a is larger and b or c is smaller, the supply chain can 

charge a higher price with incurring lower cost given a fixed amount of demand. Hence, the 

profitability for the supply chain is lower in the order of Panel A, B, and C.

[Figure 2]

     Let us first look at the result shown in Panel A. The panel shows that Case (i) arises 

in the region below the curve while Case (iii) arises in the region above the curve. We also 

observe that the area below the curve is larger and hence there exist more possible 

combinations of  and V leading to Case (i) than those leading to Case (iii).12 In addition, 

Case (iii) never arises in the region of V < 1.5 because the vertical line of V = 1.5 is an 

asymptotic line of the curve. Hence, Panel A suggests that for Case (iii) to arise, the 

variance of the stochastic part of the intercept in the demand function (i.e., V) must be 

approximately at least larger than the squared deterministic part of the intercept in the 

demand function (i.e., a2), which is a strict condition. Furthermore, Panel A also suggests 

that when V is equal to, for example, 3, Case (iii) arises only when  > 9.93, which is also a 

quite strict condition because the variance of the information obtained by a firm () must 

be significantly higher than the variance of the demand itself (V). Namely, there are two 

strict conditions for Case (iii) to arise in equilibrium.

     Figure 2 also suggests that as the profitability of (a–bc)2 increases from Panel A to B 

and then to C, the curve that separates the two regions of Cases (i) and (iii) shifts to the 

upper right. Nevertheless, every panel shows that, in any case, it is a necessary condition 

for Case (iii) to arise that V must be large enough to exceed (a–bc)2 and  must be large 

enough to exceed V. Since these conditions are quite strict as discussed above, the 

12 We confirm this result because the whole region of Case (iii) fits completely at least 
above the 45 degree line of  = V in the figure.
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numerical results suggest that Case (iii) rarely arises, which is consistent with the argument 

in footnote 11.

     To summarize the numerical results in this section, first, Case (i) in Theorem 2 arises 

in most circumstances whereas Case (iii) rarely arises. That is, we confirm the result that 

the second-mover has the lowest profit among the three firms in most circumstances. 

Moreover, the first-mover advantage is completely lost whereas the last-mover advantage 

instead always arises in all the range of exogenous parameters in a stochastic environment. 

Consequently, we conclude that our analytical results are supported by the numerical 

results.

6. Conclusion

     This paper investigates how the leadership or followership of firms constituting a 

three-echelon supply chain to demand margins influences their profitability. Conventional 

wisdom from preceding research examining power structure suggests that when multiple 

firms constitute a simple multi-echelon supply chain, the firm assuming leadership to 

determine its margin achieves a higher profit in a deterministic environment (e.g., Choi, 

1991; Luo et al., 2017). Stated differently, it has traditionally been shown that a channel 

member can make a greater profit by determining its margin as early as possible. This paper 

has demonstrated that this conventional result never holds in a stochastic environment 

under demand uncertainty. In particular, we have demonstrated that in a three-echelon 

supply chain, firms have higher expected profit in the order of the last mover, the first 

mover, and the second mover under most circumstances in a stochastic environment. Under 

exceptional circumstances, firms earn higher expected profit in the order of the 

third-mover, the second-mover, and the first-mover. Hence, the first-mover never generates 

the highest profit in any case under uncertainty.

     This result based on the rigorous game-theoretic approach yields managerial 

implications useful to multi-echelon supply chain members. For example, let us assume a 
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realistic three-echelon supply chain in which the upstream, the midstream, and the 

downstream firms are a supplier, a manufacturer, and a retailer, respectively. If the three 

firms set their respective prices or margins in the order of shipping the product, the 

manufacturer that intermediates between an upstream supplier and a downstream retailer 

faces the risk that its margin is the lowest among the supply chain members under a wide 

range of environments. To avoid a reduction in its profit, the manufacturer can use the 

insight gained from our model; namely, the manufacturer should demand its margin later or 

earlier than the other two firms.

     Compared with existing deterministic models, our proposed stochastic model also 

yields theoretical contributions. As the number of echelons increases within a supply chain, 

the variance of information on uncertain demand tends to rise as it moves up the supply 

chain from bottom to top, which is known as the bullwhip effect. Previous research suggests 

that information sharing among supply chain members plays a role as an effective solution 

to mitigate the bullwhip effect and improve supply chain performance (e.g., Lee et al., 

1997). The existence of the bullwhip effect evidences that how to deal with demand 

uncertainties has become an important issue facing general multi-echelon supply chains. 

Our conclusion that the timing of decisions affects profitability under uncertainty is of 

theoretical use for firms tackling such a practical problem.

     It should be noted that our approach has both strengths as well as limitations. One 

limitation of our game-theoretic approach is that real-life business practices that are very 

complex cannot be minutely incorporated into an analytical model. That is, if we 

considered more complex business practices, it would become even more difficult to derive 

analytical results in the form of explicit mathematical expressions, especially in a stochastic 

problem involving demand uncertainty. However, there is one strength that outweighs this 

weakness. As clearly shown in the forms of theorems in this paper, the incomplete 

information game model provides managerial insights that can be used for practical 

decision-making under uncertainty. For example, while it is well known that a firm 

constituting a three-echelon supply chain should determine its margin as early as possible 
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in the absence of demand uncertainty, this paper yields the practical implication that a 

supply chain member should not heedlessly assume the leadership of decision-making in 

the presence of demand uncertainty. As such, a game-theoretic model provides implications 

that support practical decision-making, which is undoubtedly the strength of this approach.

     Finally, we explore future possible research directions before closing the paper. 

While our model assumes a three-echelon supply chain that practically prevails in real-life 

supply chain environments, we can also consider a more general multi-echelon supply 

chain composed of more than three layers. Because our results indicate that the 

second-mover advantage or disadvantage depends on exogenous parameters, whether 

supply chain members other than the first- and the last-movers in a multi-echelon supply 

chain have any advantage or not is ambiguous until we formulate and solve such a model. 

While this extension is interesting in this respect, it would require a substantial 

reconstruction of the present model, altering and making it a completely new one. Hence, 

this development is another issue that is reserved for a future study.

Appendix

Proof of Lemma 1.  Ericson (1969) proves the following relationship concerning linear 

posterior expectations.

  ifeE |

. (A1)                   eEeefERfeefEefE iiii var/1|var/var/1|var/1/|var/1 

Equation (A1) is restated as follows with use of E(e) = 0, var(e) = V, and Equation (8).

                                                 (A2)   VVffeE ii  /|

     Next, we have the following expectations with the use of Equation (17):

                  (A3)           2
0|| ijiijiijiijiji fEfEffEfEfffEEffE  

.                                      (A4)      ijijiijj fEffEEfE   0|

With use of E(fi) = 0, E(fi fj) = V, and E(fi
2) = V+ indicated by Equations (10) and (11), we 
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solve Equations (A3) and (A4) for 0ji and ji to yield 0ji = 0 and ji = V/(V+). Substituting 

these two values into Equation (17) gives:

.                                                (A5)   VVfffE iij  /|

     Next, the following equation holds because of the law of iterated expectations and 

Equation (14).

                          (A6)      ijjhiihhijii ffEffffeEEfeE ||,|| 0  

Substituting Equation (A5) into Equation (A6), we have:

.                                    (A7)     VVfffeE ijhiihhi /| 0

Because Equation (A7) holds for (h, i, j) = (1, 2, 3), (2, 3, 1), (3, 1, 2), we have 0h = 0 and 

ih = jh = V/(+2V) by solving Equations (A2) and (A7) for (0h, ih, jh).

     Furthermore, the following equation holds because of the law of iterated expectations 

and Equation (13).

         (A8)        ihhijjiiii ffEffEfffffeEEfeE |||,,|| 0321  

Substituting Equation (A5) into Equation (A8), we have:

.                               (A9)       VVfffeE ihjiii /| 0

     Because Equation (A9) holds for (h, i, j) = (1, 2, 3), (2, 3, 1), (3, 1, 2), we have 0 = 0 

and 1 = 2 = 3 = V/(+3V) by solving Equations (A2) and (A9) for (0, 1, 2, 3).

     Finally,  holds from       ijjhiihhijihih ffEfffffEEffE ||,|| 0  

Equation (16). Substituting Equation (A5) into this equation yields 

. This equation is equal to         VVffffffEEffE ijhiihhijihih /|,|| 0

. Noting that this relationship holds for (h, i, j) = (1, 2, 3), (2, 3, 1), (3, 1, 2), we  VVf i /

have  and . Substituting these values into Equation (16) 00 h  VVjhih 2/  

gives E(fh| fi, fj) shown in this lemma.   □

Proof of Theorem 1.  Since e is equal to 0 in a deterministic environment, we substitute e 

= 0 into Equation (7), rewriting profits as:

                                   (i = 1, 2, 3).  cmmmbamii  321

Following backward induction, we initially maximize 3 with respect to m3 by solving 
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3/m3 = 0, yielding:

m3 = a–b(m1+m2+c)/(2b).                                            (A10)

After substituting Equation (A10) into 2, we maximize it with respect to m2 by solving 

2/m2 = 0, obtaining:

m2 = a–b(m1+c)/(2b).                                               (A11)

Lastly, we substitute Equations (A10) and (A11) into 1 and maximize it with respect to m1 

by solving 1/m1 = 0, yielding:

m1 = (a–bc)/(2b).                                                 (A12)

Substituting Equations (A10)–(A12) into 1, 2, and 3 gives 1 = (a–bc)2/(16b), 2 = (a–

bc)2/(32b), and 3 = (a–bc)2/(64b). These equilibrium profits show that 1 > 2 > 3 

obviously holds. In addition, note that all second-order conditions in this proof are met 

since objective functions are quadratic and concave with respect to the margins.  □

Proof of Proposition 1.  Using backward induction, we first consider the maximization of 

the expected profit of Firm 3. Based on Equation (7), the expected profit conditional on the 

signal for Firm 3 is:

.                              (A13)   2133213 ,,| mmfcmmmbeamE 

Note that Firm 3 maximizes its expected profit after observing f3, m1 and m2. The first-order 

condition is:

                          (A14)
   

  .0,,|2

,,|

213321

2133213
3








mmfeEmmma

mmfcmmmbeamE
m

Taking note that Firm 3 correctly infers the signals of f1 and f2 by observing m1 and m2 set 

beforehand, we obtain the reaction function from Equation (A14) as:

m3
* = .                                 (A15)   2/,,| 32121 fffeEmma 

Then, the margin m3 is conjectured as linear with respect to information variables; namely, 

m3
* = C0+C1f3+C2m1+C3m2. Inserting this margin into the left-hand side of Equation (A15) 

yields:
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C0+C1f3+C2m1+C3m2 = .                  (A16)   2/,,| 32121 fffeEmma 

Using Lemma 1, we restate Equation (A16) as:

C0+C1f3+C2m1+C3m2 = .           (A17)     2/3/32121 VfffVmma  

Because Equation (A17) holds regardless of the values of m1, m2, and f3, the following four 

equations must be met:

,                                  (A18)

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,                                                   (A19) 
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,                                    (A20)  
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.                                           (A21)  
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     As the next step, Firm 2 determines its margin m2
* to maximize E(2(m1, m2, S3( f3, 

m1, m2), e) | f2, m1). Because Lemma 1 and the linearity of S3 indicate that the expected 

profit is quadratic in m2 and linear in m1 and f2, Firm 2's first-order condition gives m2
* = 

S2( f2 , m1) = B0+B1f2+B2m1. Because this equation must hold regardless of the values of f2 

and m1, the next three equations must be met:

                             (A22)     
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     Lastly, Firm 1 maximizes E(1(m1, S2( f2 , m1), S3( f3 , m1, S2( f2 , m1)), e)| f1). The 

first-order condition is:

   11 / mE       3220030 1121 CBCAcCCBba 

           +f1( ) = 0.         VVCCBbCBCbA /11112 1313221
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Because the first-order condition holds regardless of the realized value of f1, the next two 

equations should be met:

                       (A25)      01121 3220030  CBCAcCCBba

.               (A26)         0/11112 1313221  VVCCBbCBCbA

Solving Equations (A18)–(A26) for A0, A1, B0, B1, B2, C0, C1, C2, C3, we yield:

A0 =      VbbcaV 22/

A1 =      VVbfV 22/1
2

B0 =        VVbbcaV 232/2

B1 =      VVbfV 232/2
2

B2 =       VV 32/2

C0 =      VbbcaV 32/

C1 =   VbVf 32/3

C2 =    VV 32/

C3 = .   VV 2/23 

Substituting the nine equations into m1 = A0+A1f1, m2 = B0+B1f2+B2m1, and m3 = 

C0+C1f3+C2m1+C3m2 yields the equilibrium strategies m1
*, m2

*, and m3
* shown in this 

proposition.  □

Proof of Corollary 1.  Proposition 1 indicates that the following inequalities hold.

E(m3
*)–E(m1

*) = (3V2+12 V +42)(a–bc)/(8b(2V +)(3V +)) > 0

E(m1
*)–E(m2

*) = 3V2(a–bc)/(4b(2V +)(3V +)) > 0.  □

Proof of Proposition 2.  After inserting the equilibrium margin strategies in Proposition 1 

into Equation (7), we substitute E(e2) = V, E(e) = 0, and Equations (10)–(12) into the 

expected profit of the three firms, thereby yielding the equilibrium expected unconditional 

profits.  □

Proof of Theorem 2.  From Proposition 2, we have the following:
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E(3
*)–E(1

*) =

(      222 41232523 bcaVVVVV  

+ )/( ) > 0 4322342 4832070052445   VVVVV     22 3264   VVVb
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3232
429615925


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The last equation indicates that E(1
*) ⋛  E(2

*) if (a–bc)2 ⋛ V(–

9V2+2V+42)/(9V2+15V+62). These relationships prove this theorem.    □
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Table 1. Comparison with the literature

literature power structure information structure number of echelons

deterministic stochastic two-echelon three-echelon

Choi (1991), Xia and Gilbert (2007), Edirisinghe et al. 
(2011), Wei et al. (2013), Chen et al. (2016), Luo et al. 
(2017), Chakraborty et al. (2018), Li and Chen (2018), Li 
et al. (2018a, 2018b, 2019a, 2019b, 2020), Liu and Ke 
(2020), Matsui (2017, 2018, 2020), Yu et al. (2017, 
2020), Yang et al. (2018), Zheng et al. (2019), Lou et al. 
(2020), Shi et al. (2020), Yan et al. (2020)

  

Yan et al. (2017), Chen et al. (2018, 2019), Matsui (2019)   

Santibanez-Gonzalez and Diabat (2016), Panda et al. 
(2017), Cheng et al. (2021)  

Liu et al. (2013), Lan et al. (2018), Zhao et al. (2019)  

This paper   
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Table 2.  Notations.

pU wholesale price from the upstream firm to the midstream firm

pM wholesale price from the midstream firm to the downstream firm

pD retail price from the downstream firm to end-consumers

mU margin of the upstream firm (mU  pU–c)

mM margin of the midstream firm (mM  pM–pU)

mD margin of the downstream firm (mD  pD–pM)

q quantity

c marginal production cost

a deterministic part of demand intercept

e stochastic part of demand intercept

b slope of the demand function

V variance of e

fi signal of demand information obtained by Firm i

 variance of fi conditional on e

U profit of the upstream firm

M profit of the midstream firm

D profit of the downstream firm

U subscript representing the upstream firm

M subscript representing the midstream firm

D subscript representing the downstream firm

1 subscript representing the first-mover

2 subscript representing the second-mover

3 subscript representing the third-mover
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Figure 1.  Supply chain structure.

Upstream firm

Consumers

Midstream firm

sell price (pU  mU+c) demand (q)

Downstream firm

demand (q)

demand (q)

price (pM  mU+mM+c)

price (pD  mU+mM+mD+c)

sell

sell

margin (mU)

margin (mM)

margin (mD)



41

Figure 2.  Numerical results.

Panel A: (a–bc)2 = 1

Panel B: (a–bc)2 = 10

Panel C: (a–bc)2 = 100

Note: We fix the value of (a–bc)2 at 1, 10, and 100 in Panels A, B, and C, respectively, 
drawing the curve that separates the equilibrium cases in Theorem 2 against the 
horizontal and vertical axes of V and . E(1

*), E(2
*), and E(3

*) represent the 
equilibrium expected profits of the first-mover, second-mover, and third-mover, 
respectively.
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