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A B S T R A C T   

In emergency situations, disaster relief organizations are faced with the difficult decision of how to allocate 
scarce resources in an efficient manner in order to provide the best possible relief action. This paper aims to 
provide an analytical model that will help relief organizations in reducing human suffering following a disaster 
while maintaining an acceptable level of cost efficiency. A mathematical model is introduced to optimize the 
relief distribution problem which considers the social cost —the total sum of logistics and deprivation costs. The 
fuzzy nature of the deprivation cost function is addressed with possibilistic mixed integer programming with 
fuzzy objectives to reflect variation in deprivation costs perceptions. The model is solved using the Rolling 
Horizon method in a sequence of iterations. In each iteration, part of the planning horizon is modeled in detail 
and the rest of the time horizon is represented in an aggregated manner. The model is tested both empirically and 
on a case study of internal displacement in northwest Syria. Computational results showed that considering the 
demographic structure in affected areas and reflecting it to the deprivation cost function helped to reach better 
prioritization in distribution of commodities. The rolling horizon methodology is also found to be efficient in 
solving large scale instances and in capturing the dynamic changes in demand and supply parameters.   

1. Introduction 

Natural and man-made disasters are increasing in frequency 
throughout the world while the number of people affected as well as the 
cost of responding are growing considerably (CRED, 2015). Prior to the 
last decade, most research on disaster management and emergency relief 
preparedness could be found in areas other than logistics and supply 
chain. “Much of the research in the disaster management field is tar
geted to public servants, government agencies, and insurance firms 
charged with responding in times of crisis and has traditionally focused 
on crises such as hurricanes, earthquakes, flooding, and fires” (Hale & 
Moberg, 2005). There is still great potential for enhancing disaster op
erations management through the use of analytical tools, and thus 
improving the positive impact on those affected. When compared to 
business logistics, scientific knowledge about humanitarian logistics 
(HL) is still emerging. Nevertheless, the high numbers of losses that 
accompany natural disasters encourage effective contributions of the 
scientific community to reduce human suffering (Zary et al., 2014). 
Researchers attempt to adapt analytical formulations developed for the 
commercial sector to the humanitarian framework. However, the 
adaptation has some limitations where commercial and humanitarian 

logistics are radically different and capturing the complexity of HL via 
analytical formulations designed for traditional logistics could be un
reasonable (Holguín-Veras et al., 2012). 

The introduction of social cost based objective functions by Holguín- 
Veras et al. (2013) is an approach among significant contributions in 
modeling humanitarian logistics. Such costs are experienced by relief 
groups who are involved in the relief supply plan as well as beneficiaries 
who are impacted by the plan. The term deprivation cost (DC) is used to 
express the economic value of the human suffering caused by the lack of 
access to a good or service (Holguín-Veras et al., 2012). Therefore, the 
social cost to the relief group is assessed as logistical cost whereas the 
impact on the beneficiaries is measured as the effects of the relief supply 
on their DC. Pérez-Rodríguez & Holguín-Veras (2016) developed orig
inal mathematical inventory allocation models to maximize the benefits 
resulting of distributing critical supplies to populations in need in the 
aftermath of disasters based on the welfare economics and social costs 
function. Their results establish a promising basis for future model 
development in this area. Since then, a considerable research effort has 
been made to develop econometric and proxy approaches to model the 
deprivation cost function and use it in different HL applications; as 
summarized in (Shao et al., 2020). 
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This paper attempts to contribute to the deprivation cost literature by 
considering the differences in deprivation vulnerability among different 
individual groups within the affected population. The basis and exper
imentation of the paper is inspired by the humanitarian crisis of inter
nally displaced persons (IDPs) in Syria after the start of the prolonged 
civil war in 2011. The Needs and Population Monitoring (NPM) program 
conducted by UN partners about Syrian IDPs provided an assessment of 
vulnerability with regard to specific groups that exhibit a greater sus
ceptibility to risk. These groups include children, women and mentally 
or physically challenged individuals. “Female headed households, minor 
headed households, households including a disabled individual among 
their members, and households where more than 2/3 of their members 
are dependents (less than 14 or over 65) were considered as vulnerable” 
(NPM, 2018). Households in which more than one of the above condi
tions applied were considered extremely vulnerable. These character
istics were selected according to OCHA Humanitarian Needs Overview 
(HNO) Guidelines published in 2018 (NPM, 2018). The Humanitarian 
Needs Assessment Program in Syria (HNAP) reported that the current 
assistance prioritizes recently IDPs with rapid response mechanisms. 
This can lead to shortcomings in regards to the compounded vulnera
bility of long-term displaced households, who may themselves face 
compounded risks of assistance exclusion. HNAP (2019a) analysis 
revealed that there is very little difference between the rates of 
vulnerable households receiving assistance compared with fulfilment 
rates for non-vulnerable households; which highlights the practical gap 
in adopting vulnerability based distribution models. 

This research contributes to the existing models by prioritizing 
vulnerable individuals for urgent assistance. The relief distribution 
among different demand nodes is formulated as a possibilistic mixed 
integer programming (MIP) with fuzzy objective function. The possi
bilistic model aims to minimize the risk of higher deprivation cost 
(perceived by vulnerable people), and minimizing the most possible 
value (perceived by average typical individuals) while maximizing the 
possibility of lower deprivation cost. Furthermore, unlike many existing 
literature works, assumptions like equal shipment sizes per node as in 
Pérez-Rodríguez & Holguín-Veras (2016); or assuming the unit of supply 
to be sufficient to fulfil demand of an affected area as in Yu et al. (2018), 
are relaxed in the current model. Moreover, shortage in demand corre
sponding to each deprivation time is defined as a continuous variable. 

The remainder of this paper is organized as follows. Section 2 re
views state-of-the-art literature on humanitarian logistics and depriva
tion cost models. Section 3 addresses the basic formulation of the post- 
disaster relief distribution problem under the objective of minimizing 
total social costs; which adapts and improves upon literature models.. 
Section 4 extends the proposed model by introducing a possibilistic 
mathematical programming with fuzzy deprivation cost. Section 5 an
alyzes the experimental results and implications. Section 6 comprises a 
case study on humanitarian relief response for IDPs in Northwest Syria. 
Finally, Section 7 presents conclusions and gaps for future research. 

2. Literature review 

In the past few decades, humanitarian logistics started to attract the 
attention of researchers due to the increasing frequency of disasters and 
conflict situations (Habib et al., 2016). Over the past 35 years there has 
been immense growth in this research field. Goldschmidt & Kumar 
(2016) reported that the number of academic articles about HL pub
lished per year in the indexed journals has considerably grown since 
1980 to reach 165 publications per year as of 2014. This has motivated 
many authors to conduct literature surveys summarizing the work done 
so far and highlighting potential areas for further investigation. Exam
ples of literature review include Caunhye et al. (2012) who reviewed 
optimization models in emergency logistics and categorized them into 
two classes: pre-disaster and post-disaster models. The pre-disaster op
erations consist mainly of facility location, stock pre-positioning, and 
evacuation. The post-disaster operations involve relief distribution, 

routing and casualty transportation. In addition, models for traffic 
control and lifeline rehabilitation were reviewed. Areas such as capacity 
planning, manpower management, facility repair, debris removal, and 
vaccination of unharmed people to prevent the spread of epidemics were 
highlighted as gaps for future investigation and have found considerable 
attention later in the recent HL literature. 

Zary et al. (2014) presented a comprehensive analysis of the hu
manitarian logistics research from the beginning of the twenty first 
century (2001) up to (2014). Their review was carried out by analyzing 
the citation and co-citation of related articles in order to provide valu
able information about the knowledge network among studies in this 
area. Kara & Savaşer, (2017) studied and synthesized humanitarian lo
gistics literature based on operations research problems faced in the 
disaster management cycle with more focus on research conducted in 
the last 10 years. Other reviews that can be referred to for comprehen
sive literature on humanitarian logistics include: (Safeer et al., 2014; 
Anaya-Arenas et al., 2014; Özdamar & Ertem, 2015; Habib et al., 2016; 
Goldschmidt & Kumar, 2016; Gutjahr & Nolz, 2016; Sabbaghtorkan 
et al., 2020). In addition, a recent literature review on research progress 
on deprivation cost based humanitarian logistics can be found in (Shao 
et al., 2020). In this brief review, focus is paid on articles relevant to the 
work conducted. The following paragraphs will respectively review 
research related to the choice of the objective function used in the relief 
distribution models within the humanitarian context with special 
attention to deprivation cost function; fuzzy optimization and its use in 
humanitarian logistics literature, and the methodologies of modeling 
dynamic decision making over time. 

2.1. Deprivation cost and objective functions for HL models 

The objective function is crucial to decide how to compromise con
tradicting goals and optimally allocate limited resources. Attaining high 
levels of service in the affected regions may require unfeasibly large 
logistical expenses. On the other hand, minimizing logistic costs without 
considering the influence on beneficiaries could negatively affect their 
welfare (Holguín-Veras et al., 2013). Just before the introduction of 
deprivation cost functions by Holguín-Veras et al. (2013), it should be 
noted that most of the relief distribution models aimed to optimize one 
or more of the following objectives: (1) minimizing the transportation or 
operational cost; (2) minimizing the travel time, flow time, or number of 
late deliveries; (3) minimizing the travel distance; (4) minimizing cu
mulative and weighed unmet demand or maximizing the satisfied de
mand; (5) maximizing the distribution network reliability and security; 
and (6) maximizing the equity for the satisfied demand. A summary 
about models under each objective function can be referred to in 
Özdamar & Ertem (2015). Gralla et al. (2014) grouped the above- 
mentioned objectives into three main groups of criteria, namely (I) ef
ficiency criteria, (II) effectiveness criteria, and (III) equity criteria. 
Gutjahr & Nolz (2016) refine these classes by dividing the group 
“effectiveness” into subgroups including response time, travel distance, 
coverage, reliability and security; while “efficiency” means cost- 
efficiency with the different cost components. 

Holguín-Veras et al. (2013) suggested the use of social cost, i.e., the 
total sum of logistics and deprivation costs, as the best objective function 
to represent the economic value of the human suffering related with lack 
of access to a good or service in the aftermath of disasters. Gutjahr & 
Nolz (2016) used the term distress to refer to the social or psychological 
costs. The introduction of social cost function provides a promising 
foundation for modeling a reliable objective function in case of HL. This 
encouraged scholars to study the deprivation cost function both from 
theoretical and application perspectives. Shao et al. (2020) classified 
research work on deprivation cost function into two classes: state-of-the- 
art and state-of-the-practice. The state-of-the-art of deprivation costs 
refers to the theoretical development including the theoretical proposal 
and new assessment techniques on the theoretical proposal; proposition, 
definition and characteristic analyses of new concepts and theories. The 
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state-of-the-practice, on the other hand, refers to evidence of the 
development of a range of applications for the concept (Shao et al., 
2020). 

2.1.1. Modeling the deprivation cost function 
Holguín-Veras et al. (2016) studied several economic evaluation 

techniques and came to the conclusion that contingent valuation (CV) 
and stated choice (SC) are preferred to measure the human suffering. 
They based their CV on willingness to pay (WTP) and willingness to 
accept (WTA) measures and integrated the value of life in their model to 
express the maximum deprivation cost. They also removed the effect of 
ability-to-pay to avoid bias and unfairness. Multiple linear regression 
with least square method was adopted to model the data given by the 
empirical research method. 

Cantillo et al. (2018) introduced a mixed logit (ML) model as a type 
of discrete choice econometric models (DCMs) to capture the influence 
of socioeconomics variables and random variations among individuals. 
They explained part of the heterogeneities in the preferences of in
dividuals; where their experiments suggest that: (1) the margin impact 
of deprivation time is slightly greater for women than men, (2) elderly 
people (age group >50 years) are more sensitive to deprivation time 
than young people, and (3) more presence of children in the household 
provides higher moral obligations. These results are consistent with the 
UN partners’ reports and their definition to vulnerable households – as 
discussed in the introduction section. 

Macea et al. (2018a) evaluated economic impacts of water depriva
tion in humanitarian relief distribution and combine discrete choice 
modeling with stated preference techniques to estimate the changes in 
the individuals’ welfare. Their experimental results showed that the 
deprivation time significantly affects the individuals’ stated choices 
while the effect of socio-economic characteristics were found negligible. 
Macea et al. (2018b) went a step forward in estimating more explana
tory deprivation cost functions by analyzing the influence of psycho
logical factors in addition to the demographic and socio-economic 
characteristics. They revealed that risk perception, safety culture, and 
confidence in emergency response system have an important impact on 
deprivation cost estimations. 

Apart from the econometric valuation, Wang et al. (2017) proposed a 
new method for quantifying human suffering by means of numerical rate 
scale (NRS) inspired by clinical assessment applications. They studied 
how deprivation levels change based on deprivation time, relief com
modity, and previous experience with disasters. Respondents were first 
asked to give pairwise comparisons on their preferences for receiving 
commodity a or b after different deprivation times. Then they were 
asked to give a rate scale from 1 to 10 to express their suffering under 
different scenarios. Curvilinear regression was used to model the 
deprivation cost function for tents, food, and medicines. 

2.1.2. Applications of deprivation cost based models in HL 
It is observed that the problem types discussed using deprivation cost 

cover almost any application in the entire HL research field with no 
reported disadvantages in any particular area in HL research (Shao et al., 
2020). Among the applications where deprivation cost function is 
applied in HL areas are: facility location e.g. (Pradhananga et al., 2016; 
Loree & Aros-Vera, 2018; Ni et al., 2018; Chapman & Mitchell, 2018; 
Cotes & Cantillo, 2019), inventory allocation and relief distribution e.g. 
(Das & Hanaoka, 2014; Pérez-Rodríguez & Holguín-Veras, 2016; Rivera- 
Royero et al., 2016), inventory pre-positioning e.g. (Kelle et al., 2014; 
Condeixa et al., 2017; Ni et al., 2018), resource allocation (Yu et al., 
2018); transportation network (Moreno et al., 2018; Paul & Wang, 2019; 
Cantillo et al., 2019; Gralla & Goentzel, 2018; Rivera-Royero et al., 
2020), and casualty rescuing and transportation (Zhu et al., 2019). 

Some interesting extended models include Gutjahr & Fischer (2018) 
who questioned whether the deprivation cost minimization results in 
achieving equity and proposed to extend the deprivation cost objective 
by adding a term proportional to the Gini index of inequity. Zhu et al. 

(2019) proposed the relative deprivation cost and defined it as the dif
ference between deprivation costs in two disaster regions. They assigned 
priorities to diverse injury degrees based on the probability of survival 
after the relief intervention. Keshvari Fard et al. (2019) estimated the 
deprivation cost that can be avoided by fulfilling transportation relief 
mission to maximize the potential of alleviating human suffering. Huang 
& Rafiei (2019) extended Huang et al. (2015) and Pérez-Rodríguez & 
Holguín-Veras (2016) work by comparing different equity measures, 
namely in fulfillment rates, arrival times and deprivation times under 
different supply and demand relationships. Then, the trade-offs between 
equity and efficiency were investigated. Sakiani et al. (2020) developed 
an inventory routing model and dynamic redistribution of relief goods in 
post-disaster operations. They categorized the relief supply to consum
able and durable goods and reuse the durable commodities when 
applicable. 

2.2. Fuzzy HL models 

Fuzzy modeling has the advantage of handling the subjective un
certainty and thus has been used for the extension of many decision 
making quantitative models. There is no need to generalize reality to fit 
it into classes; rather the degree of membership to the category is given 
(Vitoriano et al., 2013). Among the few fuzzy models in the HL literature 
are the following examples. Tzeng et al. (2007) proposed a fuzzy multi- 
criteria LP model for a relief distribution system aiming to optimize 
three objectives: minimizing costs, minimizing travel time and maxi
mizing the satisfaction of demand nodes, some of which might be 
difficult to reach. Their model maximizes the membership function for 
the satisfaction of the multiple yet contradicting objectives using fuzzy 
linear programming (FLP). Adivar and Mert (2010) optimized a simple 
relief distribution system in which donor countries provide relief items 
collected at collection points. These items are shipped to points of de
livery in disaster affected countries. The type of uncertainty considered 
is related to imprecise information concerning the quantity of items 
provided by the donor countries, the procurement items cost at donor 
country level, and the potential delay at collection point level. The au
thors dealt with the uncertainty by employing a fuzzy model to consider 
both the uncertain parameters and the credibility. 

Rodriguez et al. (2010) designed a Decision Support System (DSS) for 
aiding humanitarian organizations based on fuzzy logic. Their DSS, 
called SEDD, focuses on providing an estimation of the effects after a 
disaster strikes; i.e., when there is a lack of reliable knowledge on the 
real magnitude of the emergency. Given a disaster-type and the affected 
area, SEDD makes use of the data stored in the EM-DAT database to 
predict the number of casualties, injured, homeless, affected, and the 
total damage value. The data, technological, and infrastructure re
quirements make SEDD particularly useful and accessible to NGOs. 

Tofighi et al. (2016) developed a novel mixed possibilistic – sto
chastic model to cope with different sources of uncertainty in HL 
network design problem. The model copes with two major sources of 
uncertainties including random disaster scenarios at post-disaster and 
fuzzy scenario-independent and scenario-dependent parameters in 
disaster relief operations. Zahiri et al. (2017) proposed a Multistage 
Possibilistic Stochastic Programming (MSPSP) method which relaxes the 
subjectivity of probabilities and allows possible perturbation in their 
values as fuzzy probabilities. It also enables these values to be updated in 
such a manner that avoids inconsistent values and keeps the summation 
less than one. Random fuzzy variables are used to treat the scenario 
dependent variables. A real case study on post-disaster relief distribution 
in Tehran was presented to validate the model. 

Fuzzy logic is also integrated in multi-criteria decision making in the 
humanitarian aid context. Ismail and Quinteros (2015) developed a 
hybrid AHP fuzzy TOPSIS model for prioritizing humanitarian aid ac
tivities provided by the humanitarian relief foundation (IHH) to Syrian 
refugees in Turkey. Boltürk et al. (2016) solved the HL warehouse 
location selection problem using hesitant fuzzy-AHP method and 
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applied it to select the best warehouse location of a relief agency in an 
earthquake prone area in the northwest of Turkey. 

In a related context, fuzzy logic has been widely employed in socio- 
economic studies to estimate the deprivation index as a measure for 
multi-dimensional poverty. For some examples, please refer to: (Belhadj, 
2012; Najjary et al., 2016; Chakravarty, 2019; and others). The research 
presented in this paper aims to utilize the fuzzy formulation for 
modeling the uncertainty in the deprivation cost objective function 
which, to the best of our knowledge, has not been addressed in the 
literature. Lai and Hwang (1992) possibilistic linear programming 
approach, as discussed in Section 4.1, has been used. 

2.3. Modeling dynamic decision making in the HL context 

One important aspect of research associated with the current work is 
the methodologies used to model and solve dynamic decision making 
problems over time. The time space network, a network in which each 
node in a directed graph is associated with a specific time period, has 
been approved to support humanitarian operations scheduling and is 
widely used in the literature (e.g. Yan et al., 2014; Yan & Shih, 2009; 
Afshar & Haghani, 2012). Yu et al., (2018) developed a dynamic pro
gramming model, an optimization over simple recursion, for a multi- 
period resource allocation dispatch problem designed to address the 
disaster response phase, with special attention paid to the human 
suffering resulting from delays in relief deliveries. The Rolling Horizon 
(RH) approach is another effective method to capture the dynamic na
ture of humanitarian logistics (Balcik et al., 2008; Huang et al., 2015). 
“RH is a reactive scheduling method that solves iteratively the deter
ministic problem by moving forward the optimization horizon in every 
iteration; assuming that the status of the system is updated as soon as the 
different uncertain or not accurate enough parameters became to be 
known” (Silvente et al., 2015). The most common application of the 
rolling horizon approach is found in the field of lot sizing planning and 
production scheduling (e.g. Clark, 2005; Araujo et al., 2007; Tiacci & 
Saetta, 2012). Some other examples are found in the field healthcare 
supply facility location and distribution (Mete & Zabinsky, 2010) and 
humanitarian relief operations (Salmerón & Apte, 2010; Huang et al., 
2015; Rivera-Royero et al., 2016; Sakiani et al., 2020). 

In summary, the literature review shows that Humanitarian logistics 
and deprivation cost modeling have recently been extensively addressed 
both from theory and practice perspectives. However, some gaps and 
potential for new extensions can still be recognized. In this paper, the 
advantage of fuzzy modeling to handle subjective uncertainty is utilized 
to reflect the variances in perceiving deprivation cost by different groups 
of individuals; which have not been studied in the literature. While most 
of existing literature use stochastic based formulation to model uncer
tain parameters, the type of uncertainty (vagueness) under study is 
subjective and depends on individuals’ perceptions more than proba
bility of occurrence. Therefore, it is more appropriate to characterize the 
problem as possibilistic rather than probabilistic. Furthermore, unlike 
most of related researches which focus on natural disasters, this paper is 
inspired by the humanitarian crisis resulted from conflict and man-made 
situations. 

3. Problem description and formulation 

The model and methodology provided in this research are intended 
to be used by independent aid organizations. The focus is on the lower 
end of the humanitarian relief chain, i.e., the distribution subsystem 
covering local distribution centers and demand nodes at the affected 
area. In other words, the research considers a relief agency which de
cides upon distributing critical relief commodities from supplier points 
(or distribution centers) i ∈ SN to a set of demand points j ∈ DN. The 
demand nodes are assumed to have their own store areas and can thus 
serve as transshipment nodes to transfer relief to other demand nodes if 
needed. Decisions include the quantities, order, transportation mean, 

number and types of needed vehicles, routes, and time of deliveries from 
each supply or transshipment node to each of the demand nodes. The 
model formulates for multiple transportation modes m ∈M; i.e., 
different ways by which goods are transported from one node to the 
other through land, air or sea. An undirected graph Gm associated with 
each transportation mode can be defined to represent the inventory 
routing and aid distribution problem under study; where Gm = (N; Am) 
with a set of nodes N =DN ∪ SN and a set of arcs Am = {(i; j): i; j ∈N; 
i ∕= j} (Espejo-Díaz & Guerrero, 2019). Each arc (i, j) has an associated 
non-negative finite value τij

m which represents the travel time between 
nodes i and j using the path (i,j) through mode m. The travel time for 
infeasible arcs is set as infinity. Finally, fleets of vehicle types k ∈ Km are 
available for each mode m; with a defined maximum load capacity Qkm 

and transportation cost per time unit Ckm. 
The proposed model aims to control the flow of multiple commod

ities c ∈ C, (e.g, water, food, nonfood items (NFI)) in a multiperiod time 
horizon after the occurance of a disaster or in an emergency situation. 
Let Dcit be the demand of node i for commodıty c at time period t = 1, 2, 
… T; and as

cit be the supply of commodity c received from external re
sources to a node i at time t. The length of the time period depends on the 
planning scale and the frequency of commodities’ consumption. It can 
be expressed in hours, days or any fixed duration of time. In the current 
model, one time unit is assumed to equal 12 h (half day). Note that the 
external supply is either received as scheduled replenishments to supply 
nodes or as local donations to demand nodes. Note also that the demand 
might change with time due to possible displacement of affected in
dividuals among nodes during the planning horizon. Relief delivery 
decisions are taken while considering existing inventories, if any, in the 
local distribution points or at the affected areas. Therefore, the problem 
is similar to the vendor managed systems (Pérez-Rodríguez & Holguín- 
Veras, 2016), in which the centralized suppliers (in this case, the relief 
agencies) are responsible for satisfying the demands from several cus
tomers (the beneficiaries in the case of humanitarian logistics). The ul
timate goal a relief agency seeks in the aid distribution process is to 
alleviate the suffer of affected people by minimizing the deprivation 
costs while ensuring transportation and distribution cost efficiency. 

Before introducing the model formulation, some methodological and 
conceptual foundations are provided in Sections 3.1 through 3.3; 
respectively discussing the basic concept of deprivation cost function 
and its formulation, a new proposed way to capture unmet demand per 
deprivation time and model it as a continuous variable, and some notes 
on the need of adding arc capacity constraints to the aid distribution 
model. 

3.1. A brief introduction on social and deprivation cost operators. 

In their analysis to the appropriate objective function in the HL 
context, Holguín-Veras et al., (2013) study the impact of the relief dis
tribution of critical supplies from biological, philosophical, and eco
nomic points of view. Their main concluding result was that Post- 
Disaster Humanitarian Logistics (PD-HL) models must be based on 
welfare economics, which is the field of economics that studies the 
impact of the resources allocation to ensure that all related impacts are 
accounted for. This implies considering impacts of the distribution 
strategy on the relief group itself and the beneficiaries of affected pop
ulations through explicitly considering the social cost minimization in 
the models’ objective functions. 

To evaluate the social cost, two mathematical operators were 
introduced in (Holguín-Veras et al., 2013): Ω*

T(X,T) and Γ*
T(X,T) 

respectively denoting the total logistics and deprivation costs. The 
setting X is an ordered sequence of relief deliveries to different demand 
nodes. The deprivation cost at node i at time t is equal to the accumu
lation of individual costs: Γi(X,t) = γg

(
θg, dit

)
πit∀i ∈ DN. Where, Γi(X,t) is 

the deprivation costs experienced at node i at time t as a result of 
employing the sequence of delivery activities X; γg

(
θg, dit

)
is standard 
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deprivation cost function with parameter vector θg; dit is the deprivation 
time for node i at time t, πit is the population size of node i at time t. Note 
that this is a simplified version of the deprivation cost which assumes 
that the population πit are observationally identical and equally affected 
by deprivation and lack of access to different commodities. Therefore, 
individuals’ socioeconomic characteristics were not considered as a 
factor in formulating the deprivation cost function. See Section 2.1 for 
extended literature formulations of the deprivation cost. 

Obviously, the value of the function Γi(X,t) drops to zero when a 
delivery which is large enough to fulfill the needs of all individuals is 
received at time t. If the delivery partially covers the demand of node i, 
deprivation costs drop to zero for population receiving the relief assis
tance, and continue to increase for those who did not. For simplification, 
Pérez-Rodríguez & Holguín-Veras, (2016) assumed that the supply is 
received with fixed shipment sizes where the shipment is large enough 
to serve all beneficiaries in a node for at least one period of time. They 
broke up nodes with large number of beneficiaries to smaller nodes the 
maximum demand of which equals the shipment size. As an improved 
way to deal with the partially fulfilled demand, Huang and Rafiei (2019) 
categorize individuals into three groups; individuals who receive the 
relief items in the same period of demand; individuals who do not 
receive the relief items in the requested period but receive it within the 
time window; and individuals who could not fulfil their demand due to 
scarce resource. As the model aims to minimize the deprivation cost and 
hence deprivation time, the last group of people would be served as the 
first group in the next actual period (Huang & Rafiei, 2019). 

The current model relaxes the assumption of equal shipment sizes 
and their sufficiency to fulfil the demand for one time period in a de
mand node. Furthermore, instead of using binary variables to capture 
the delivery time for the most recent supply and calculate the depriva
tion time since then, this paper defines the shortage as a number of units 
for each deprivation time as will be discussed in Section 3.2. This would 
help to reduce the computational burden resulting from the binary 
variables. It also provides more realistic representation to the relief 
delivery process. 

3.2. Modeling the unmet demand per deprivation time 

If the received relief does not satisfy the demand, people in charge in 
the demand points can distribute it in such a manner that the demand for 
each individual is partially covered or priority is given to vulnerable 
individuals. For example, the general director of the HIHFAD, an active 
responding organization to Syria crisis, reported that their strategy is to 
reach all affected communities with some aid better than nothing. They 
avoid having a comprehensive response to one community that might 
deprive other communities (personal communication, March 13, 2020). 
In the current formulation, it is assumed that people in charge of relief 
distribution are able to track the demand fulfilment for each individual 

and priority is given for those who have been deprived for a longer time 
within the same node. 

Holguín-Veras et al. (2013) criticized models that consider mini
mizing the unmet demand as the objective function for the relief dis
tribution optimization models as they generally assume additive 
demands at the beneficiary nodes. This means that the total unsatisfied 
demand accumulated over the last past time periods can be satisfied 
once sufficient supply is received. Obviously, in humanitarian relief 
models the demand over time cannot be additive which essentially in
validates the objective pursued in that formulation. The model pre
sented in this paper follows a similar reasoning of Huang and Rafiei 
(2019) and overcomes the above-mentioned limitation by defining the 
shortage in demand and the corresponding deprivation time for this 
shortage to calculate the deprivation cost accordingly. The priority is 
thus given to nodes which have a shortage for longer time even if the 
unmet demand is less than that of other nodes which have less depri
vation time. To illustrate this, Fig. 1 graphs the deprivation cost vs. the 
unmet demand for three deprivation times: 20 h, 30 h, and 40 h. The 
deprivation cost formula Γc(d) = 0.19(e0.126d) provided in Holguín- 
Veras et al. (2016) for the drinkable water deprivation is borrowed here 
for illustration purposes. The formula assumes that the deprivation cost 
increases exponentially with the increase of deprivation time; with the 
multiplier and exponent parameters reflecting the criticality of the relief 
commodity. As the figure indicates, the cost is more sensitive to the 
deprivation time than the number of unmet units and the total depri
vation cost for 100 units and 40 h of deprivation equals that of 350 and 
1200 units for 30 and 20 h of deprivation; respectively. 

The parameter γcd = Γc(d) − Γc(d-1) can be defined as the marginal 
deprivation cost associated with unsatisfying the demand of commodity 
c for one individual at the time period [d − 1,d]. Let the variable ed

cit be the 
shortage in supply (i.e., unsatisfied demand) as number of units of 
commodity c at node i that have not been satisfied for d time periods at 
time t. For example suppose that the total demand of commodity c for 
node i at time t − 1 is 50 units and that the delivered supply at time t is 
only 30 units; then e1

cit = 20 units. If the number of units delivered at 
time t+1 is only 10 units, it is assumed that these 10 units will go to 
individuals who have not received the supply at time t. 
Hencee2

cit+1 = 10 units ; and e1
cit+1 = 30 units. The number of individuals 

at node i who are deprived from commodity c for d periods at time t is 
thus u− 1

c ed
cit , where u− 1

c is the reciprocal of the average individual con
sumption of commodity c per time unit. 

3.3. Vehicle flow capacity (arc capacity) 

In the context of humanitarian logistics and emergency operations, 
involved agencies work to ensure the application of simplified inspec
tion and customs procedures in order to speed up the delivery of the 
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Fig. 1. Deprivation cost vs. unmet demand for different deprivation time units.  
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humanitarian assistance. This increases the capacity of the relief flow 
and improves the responsiveness. However, in some cases of post-conflict 
humanitarian operations, authorities may impose restrictions on the 
inspection process that limit the capacity of the relief flow through the 
conflict area entry borders. An example for this limitation on the flow 
capacity is the “Cross Border” relief program from Turkey to Syria where 
the number of trucks to cross the border is limited to 22 trucks per day 
(Jardanko Bjelica, supply chain officer - IOM-Turkey, personal 
communication, May 17, 2017). 

For a generalized formulation, it is assumed that some of the arcs 
between supply and demand (or transshipment) nodes are located in 
critical zones and are thus subjected to flow capacity constraints. Let A’

m 
be the set of capacity constrained arcs linking nodes in the transportation 
network with mode m, Gm

ijt be the capacity of arc (i,j) expressed as the 
number of standardized vehicles of mode m at time t. Let also gm

k be an 
index used to standardize the different types of vehicles (k) within 
transportation mode m in terms of size and time needed for inspection 

and processing. For example, gm
k = 2

(

respectively gm
k = 1

2

)

for a huge 

(small) truck which needs processing time twice (half) as the processing 
time needed for an average sized truck. The formulation of the arc ca
pacity constraint is provided in inequality (3.8) in the next section. 

3.4. Model formulation 

This section provides the mathematical formulation of the described 
problem in the light of the above-mentioned foundations. It starts with 
listing the assumptions based on which the model was built, followed by 
symbolic notations, objective function, and constraints formulations. As 
the current model is an extension to Pérez-Rodríguez (2011) and Pérez- 
Rodríguez & Holguín-Veras (2016), some of the sets, parameters, no
tation as well as the formulation basis of some constraints are adapted 
from these resources. 

3.4.1. Assumptions 

– It is assumed that people in charge of relief distribution have suffi
cient knowledge about locations of demand nodes, total number of 
beneficiaries at each node, transportation networks, rate of con
sumption, the amount and type of goods needed, as well as the 
possible external supplies and donations to distribution centers or 
demand nodes.  

– Deprivation cost is represented as a function of deprivation time only 
(exponential DC as introduced by Holguín-Veras et al. (2016) is 
assumed and linearized for simplification). At this part of the 
formulation (crisp objective formulation) beneficiaries are assumed 
to be identical in terms of their needs and perception to deprivation.  

– The impact of deprivation is assumed to diminish once the demands 
are fulfilled (non-hysteric deprivation cost function).  

– Backordering for unmet demand is not allowed.  
– Vehicles are allowed to wait in nodes and to pick-up commodities 

from any distribution center or transshipment node in the system.  
– Demand nodes can be used as transshipment points to transfer 

commodities among vehicles.  
– People in charge of relief distribution are able to track the demand 

fulfilment for each individual and priority is given for those who 
have been deprived for a longer time within the same node. 

3.4.2. Notation  

Sets 

T Number of time periods in the planning horizon; 
DN Set of demand nodes which can also serve as transshipment nodes, DN ⊂ N; 
SN Set of supply nodes such local distribution centers, warehouses, … etc. 

SN ⊂ N; 

(continued on next column)  

(continued ) 

Sets 

N Set of all relief network nodes, N = DN ∪ SN; 
M Set of transportation modes; 
Am Set of all arcs linking different nodes using the transportation mode m ∈ M; 
A’

m  Set of capacity constrained arcs linking nodes in the transportation network 
through mode m 

C Set of relief commodities to be distributed during the planning horizon T; 
Km Set of vehicle types in the transportation mode m ∈M; 
Model Parameters 
uc  Rate of consumption for commodity c ∈ C, i.e., the quantity of commodity c 

required to sustain a person for one time period; 
τm

ij  Travel time needed to pass arc (i,j) ∈Am using transportation mode m ∈M; 
tmax
c  Maximum deprivation time up to which a person can survive without 

commodity c ∈ C; 
Qkm  Load capacity for vehicle type k ∈ Km; in transportation mode m ∈M; 
ckm  Travel cost per unit of time for vehicle type k ∈ Km to travel through 

transportation mode m ∈M; 
wc  Unit weight of commodity c ∈ C; 
as

cit  Amount of commodity c ∈ C received from external sources to node i ∈N at 
time t, (e.g., scheduled replenishments to supply nodes or donations to 
demand nodes). 

Γc(d) Cumulative deprivation cost per individual; associated with not having 
commodity c for d time periods. 

γcd  Γc(d) − Γc(d − 1), i.e., the marginal deprivation cost per individual; 
associated with not having commodity c during period [d-1, d], d ∈ 1…tcmax  

av
kmit  number of vehicles type k ∈ Km, mode m ∈M, added or removed from the 

fleet at node i ∈ N at time t 
Dcit Demand of node i ∈N for commodity c ∈ C at time t 
Gm

ijt  Capacity of arc (i,j) ∈Am expressed as the number of standardized vehicles of 
mode m ∈M at time t 

gm
k  An index used to standardize the different types of vehicles k ∈ Km within 

transportation mode m ∈M in terms of size and time needed for inspection 
and processing. 

Decision variables 
xcm

ijt  Amount of commodity type c ∈ C sent from node i to node j, (i,j) ∈Am, at time 
t, using transportation mode m ∈M; 

Icit Inventory level, i.e., amount of commodity type c ∈ C carried over from time t 
to time t + 1 at node i ∈N; 

Ykm
ijt  number of vehicles type k ∈ Km, mode m ∈M, routed from node i to node j; (i, 

j) ∈ Am at time t 
Vkm

it  number of vehicles type k ∈ Km, mode m ∈M, positioned at node i ∈N at time 
t 

ed
cit  shortage in supply (i.e., unsatisfied demand) as number of units of 

commodity c at node i that have not been satisfied for d time periods at time t  

3.4.3. Objective function 
The objective function seeks to minimize the social cost, i.e., the total 

sum of transportation cost and deprivation cost as indicated by formula 
(3.1). 

minimize
∑

m∈M

∑

k∈Km

∑

(i,j)∈Am

∑T

t=1
ckmτm

ij Y
km
ijt +

∑

i∈DN

∑

c∈C

∑T

t=1

∑min(t− 1,tmax
c )

d=1
u− 1

c ed
cit(γcd

− γc,d− 1)

(3.1) 

The first term calculates the transportation cost considering the 
travel cost per time unit, number and types of vehicles scheduled in arc 
(i,j) and travel times between nodes i and j via transportation mode m. 
The second term is a linearization to the deprivation cost function. The 
incremental increase in the individual’s deprivation cost when deprived 
from commodity c for one extra time unit from d − 1 to d is expressed as 
(
γcd − γc,d− 1

)
and summed over the time periods. The term u− 1

c ed
cit ex

presses the number of individuals who are deprived of commodity c, for 
d time periods as of time t. The deprivation status of individuals in each 
node is assumed to be checked at the beginning of time period t. 
Therefore, the planning horizon is discretized and is expressed as 
number of time periods. Note that this section presents the crisp 
objective function expressing the most possible deprivation cost value 
(perceived by average typical individuals); while Section 4 presents the 
fuzzy objective function considering deprivation costs for different 
groups of individuals. 
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3.4.4. Constraints 
Formulating the relief distribution problem can be thought as a 

combination of three sub-problems: (a) the allocation of critical com
modities from distribution centers to affected nodes; (b) the allocation of 
commodities to vehicles; and (c) the vehicle routing problem. Pérez- 
Rodríguez & Holguín-Veras (2016) provided an ideal mathematical 
formulation combining the aforementioned sub-problems. However, the 
complexity of such a model is high and needs simplification or heuristic 
methods to be solved (Pérez-Rodríguez, 2011). One way to reduce the 
computational burden while still maintaining the problem characteris
tics is to regard routing decisions as a secondary problem as proposed by 
Haghani & Oh (1996) and Yi & Özdamar (2007) and used by Pérez- 
Rodríguez (2011). In their formulation, vehicles are modeled as com
modities flowing in a minimum cost network rather than by binary 
variables. This might require additional post-processing step to extract 
the vehicle routes from the optimal flows but still helps to solve the 
problem more efficiently. The current model formulation adopts the 
same approach in (Haghani & Oh, 1996; Yi & Özdamar, 2007; and 
Pérez-Rodríguez, 2011) which allocates vehicle to nodes as a separate 
problem and links it with commodity flow decisions. Therefore, three 
types of constraints are provided: commodity flow constraints, vehicle 
flow constraints, and constraints linking commodity with vehicle flows. 
A fourth set of constraint related to the transportation arc capacity is 
also introduced in the following. 

Commodities flows 

Ici,t− 1 + aS
cit = Icit +

∑

m∈M

∑

(i,j)∈Am

xcm
ijt ∀i ∈ SN, c ∈ C, t ∈ 1⋯T (3.2)  

ed
cit≥Dci,t− d − Ici,t− d −

∑t’=t

t’=t− d+1

(

as
cit’ +

∑

(j.i)∈A

∑

m∈M
xcm

ji,t’ − τm
ji

)

−

(
∑min(t− d,tmax

c − d)

l=1
ed+l

cit

)

∀c

∈C; i∈DN; t=1,⋯T; d=1,⋯,min(t,tmax
c )

(3.3)  

Ici,t− 1 + as
cit +

∑

m∈M

∑

(j.i)∈Am

xcm
ji,t− τm

ji
− Dci,t− 1 = Icit +

∑

m∈M

∑

(i.j)∈Am

xcm
ijt −

∑min(t− 1,tmax
c )

d=1
ed

cit ∀i

∈ DN, c ∈ C, t ∈ 1⋯T
(3.4)  

Ici,t− 1 + as
cit +

∑

m∈M

∑

(j.i)∈Am

xcm
ji,t− τm

ji
≥ Icit +

∑

m∈M

∑

(i.j)∈Am

xcm
ijt ∀i ∈ DN, c ∈ C, t

∈ 1⋯T
(3.5) 

Vehicle flows 

Vkm
i.t− 1 + av

kmit +
∑

(j,i)∊Am

Ykm
ji,t− τm

ji
= Vkm

it +
∑

(i,j)∊Am

Ykm
ijt ∀i ∈ N, k ∈ Km, m ∈ M, t

∈ 1...T
(3.6) 

Constraint linking commodity and vehicle flow: 
∑

c
wcxcm

ijt −
∑

k
QkmYkm

ijt ≤ 0 ∀(i, j) ∈ Am, m ∈ M, t ∈ 1...T (3.7) 

Transportation arch capacity 
∑

k
gm

k Ykm
ijt ≤ Gm

ijt ∀m ∈ M, (i, j) ∈ A’
m, t ∈ 1,⋯, T (3.8) 

Definition of commodity flow variables 

xcm
ijt ≥ 0; Icit ≥ 0; ed

cit ≥ 0 ∀c ∈ C; i ∈ N(i, j) ∈ Am, m ∈ M, t ∈ 1...T, d

∈ 1,⋯, tmax
c

(3.9) 

Definition of vehicle flow variables 

Ykm
ijt ≥ 0 and integer; Vkm

it ≥ 0 and integer i ∈ N(i, j) ∈ Am, k ∈ Km, m

∈ M, t ∈ 1...T
(3.10) 

Constraints (3.2) through (3.5) balance the commodity flow and 
denote the shortage of supply for each deprivation time. External sup
plies received at supply nodes at a given time period are partially 
distributed to demand nodes upon needs and the remaining is stored for 
next time periods (constraint 3.2). The number of unmet demand units 
which have been unavailable for d deprivation time periods is defined in 
constraint (3.3) as the demand at time t − d minus available inventory at 
that time minus all supplies received during the period [t − d + 1,t]. The 
fourth term in the right hand side of inequality (3.3) represents the sum 
of shortage in demand for longer deprivation than d time units. Note that 
transshipment to other nodes is not included in constraint (3.3) based on 
the assumption that a node does not send to other nodes unless it has 
excess capacity. Supply excess is either stored or sent to other nodes as 
explained in equation (3.4). If the demand at time t is greater than the 
available supply, the difference between demand and supply is regarded 
as shortage and stored in the shortage variable with the corresponding 
deprivation time. To better illustrate this, recall the example in Section 
3.2 which assumes that the demand for commodity c at a given demand 
node i for time periods 1 to 3 is Dci1 = Dci2 = Dci3 = 50 units. Assuming 
no stock available in the node at time t = 1 and the total amount 
received at time t = 2 and t = 3 is 30 units and 10 units respectively. 
Formula (3.3) will give the shortage at t = 2 for one deprivation time 
period as e1

ci2 = 50 − 30 = 20 and shortage at t = 3 for two deprivation 
time periods as e2

ci3 = 50 − 30 − 10 = 10; whilee1
ci3 = 50 − 10 − e2

ci3 = 30. 
Plugging the values in equation (3.4) at time t = 3 gives 0+10 − Dci3 

= 0+0 − e1
ci3 − e2

ci3; i.e., 10 − 50 = − 10 − 30 = − 40 which is the total 
shortage in demand at time t = 3. If the received supply is larger than 
demand, all shortage variables at timet will drop to zero and the excess 
capacity is either stored or sent to other nodes. However, constraint 
(3.4) does not necessarily imply that a node cannot store or send to other 
nodes a larger amount than the amount it already has or received at time 
t. Therefore, constraint (3.5) is added to the formulation to guarantee 
feasibility. Constraint (3.6) models the vehicle flow in a similar way of 
balancing commodity flow. Constraint (3.7) links the commodity flow 
with the vehicle flow considering the commodity weight and vehicle 
capacity limits. Note that depending on the commodities and packing 
characteristics, the weight parameter can be replaced with the volume 
and the vehicle capacity can be expressed by the maximum allowable 
volume instead. Constraint (3.8) models the transportation arc capacity 
as discussed in Section 3.3. Finally, constraints (3.9) and (3.10) 
respectively model the non-negativity condition for decision variables 
and integrality of vehicle flow variables. 

4. Possibilistic MIP with fuzzy deprivation cost 

In this section, an approach to model possibilistic mathematical 
programming with fuzzy deprivation cost is introduced. Section 4.1 
provides a preliminary background and describes Lai & Hwang (1992) 
as a basis to the current model formulation. Section 4.2 adapts Lai and 
Hwang’s fuzzy approach to model and solve the possibilistic relief dis
tribution problem with fuzzy deprivation cost function. 

4.1. Review of possibilistic linear programming with imprecise objective 
coefficients (Lai & Hwang 1992) 

The possibilistic linear programming (PLP) model employed in this 
paper consider the case of imprecise objective function the coefficients 
of which are presented as triangular fuzzy numbers (TFN). Consider the 
cost minimization problem (4.1): 
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min
∑

i
cixi s.t. x ∈ X{x|Ax ≤ b and x ≥ 0} (4.1)  

where ci = (cl
i, cm

i , ch
i ), with cl

i, cm
i , ch

i are respectively the lowest, most 
likely, and highest value of the cost fuzzy number. Instead of minimizing 
the three objectives corresponding to each cost component simulta
neously, the model is solved for following three objectives: minimize 
z1 = cmx, maximize z2 = [cmx – clx] and minimize z3 = [chx – cmx]. By 
doing so, the triangular shape is maintained (normal and convex) and 
the triangular possibility distribution is pushed in the direction of the 
left-hand side. In other words, the aim is to maximize (minimize) the left 
(right) skewness of the triangular fuzzy number. See Fig. 2. 

Lai & Hwang (1992) suggest that maximizing region (I) and mini
mizing region (II) in Fig. 2 respectively result in maximizing the possi
bility of lower cost and minimizing the risk of higher costs. Clearly, 
solution A would be superior to solution B. The solution methodology is 
to find the positive ideal solution (PIS) for each of the objectives above i. 
e., min z1, max z2, and min z3 and the negative ideal solution (NIS) by 
solving for max z1, min z2, and max z3. The linear membership function 
of these objective functions is computed as: 

μZ1 =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1 if Z1 < ZPIS
1

ZNIS
1 − Z1

ZNIS
1 − ZPIS

1
if ZPIS

1 ≤ Z1 ≤ ZNIS
1

0 if Z1 > ZNIS
1  

μZ2 =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1 if Z2 > ZPIS
2

Z2 − ZNIS
2

ZPIS
2 − ZNIS

2
if ZPIS

2 ≤ Z2 ≤ ZNIS
2

0 if Z2 < ZNIS
12

(4.2)  

μZ3 is similar to μZ1. 
Finally, the optimal solution that compromises the three objectives is 

obtained by a single objective formulation aiming at maximizing the 
minimum membership value the solution has with respect to the three 
objectives, i.e, maxminiμzi

: i = 1, 2, 3 and x ∈ X. The LP formulation 
defines the decision variable λ as the minimum membership value μZi 
and is to be maximized in the objective function (see model 4.3); where 
x ∈ X expresses the set of feasible solution. 

Maxλ; s.t. μZi ≥ λ, i = 1, 2, 3 and x ∈ X, λ ≤ 1 (4.3)  

4.2. Relief distribution possibilistic mathematical model with fuzzy 
deprivation cost 

The proposed possibilistic MIP with fuzzy deprivation cost function 
tries to partially account for the perceptual variation for individual 
groups and the influence of socio-economic characteristics on the degree 
of vulnerability to deprivation. To illustrate the fuzzy deprivation cost, 
we consider the fuzzification of thr deprivation cost formula assumed in 
Holguín-Veras et al. (2016), Γ(d) = β1eβ2d, where d is the deprivation 
time and β1 and β2 are the model parameters derived empirically based 

on the WTP and WTA econometric valuation measures when individuals 
are deprived from critical commodities. For high priority products, the 
values for β1andβ2 are assumed to be 0.19 and 0.12 respectively (Hol
guín-Veras et al., 2016). Setting β1 and β2 as fuzzy triangular numbers; 
say (0.17, 0.19, 0.21) and (0.11, 0.12, 0.13), the behavior of the 
deprivation cost function will be as shown in Fig. 3. For example at 
deprivation time d = 35 hr, Γ(d) = (11.3,18,28.2) as the membership 
function indicates. 

In this model the Lai and Hwang (1992b) approach described in 
Section 4.1 is used to deal with imprecision in the objective function 
coefficients. The rationale behind choosing this fuzzy approach is to 
increase the responsiveness of our model and attain fairness by high
lighting the priority not only based on the expected deprivation cost 
value but also considering the vulnerability toward deprivation of some 
items for specific population groups or under given conditions. Consider 
for example the human suffering if deprived from three different com
modities: drinkable water, blankets, and hygiene materials which are all 
essential supplies in the aftermath of any disaster. Age, health status, 
and weather conditions justify the differences in evaluating the depri
vation cost for the water and blankets. Children, elderly people, and 
those with health conditions may be more vulnerable to deprivation 
than young healthy people. On the other hand, hygiene materials are 
almost of the same importance for all people. To give priority for pro
tecting vulnerable people, the proposed model considers minimizing the 
difference between the highest estimate and the nominal value of the 
deprivation cost as one of the optimization criteria. 

Let γ̃cd = (γl
cd, γcd, γu

cd) and γ̃c,d− 1 = (γl
c,d− 1, γc,d− 1, γu

c,d− 1) be the fuzzy 
deprivation cost associated with not satisfying the demand of com
modity c for one individual during the time periods [d − 1, d] and 
[d − 2, d − 1] respectively. To find the termγcd − γcd− 1 which appears in the 
objective function, an appropriate fuzzy subtraction operator that 
matches the characteristics of the current model is needed. For any two 
triangular fuzzy numbersÃ and B̃, the standard fuzzy subtraction gives 
Ã − B̃ = (Al − Bu, A − B,Au − Bl) and Ã/B̃ = (Al/ Bu, A/B,Au/ Bl) (Chen, 
1985). According to the standard fuzzy arithmetic operations, Ã − Ã ∕= 0 

and ̃A/̃A ∕= 1.However, in optimization and many applications, it can be 

desirable to have crisp values for Ã − Ã and Ã/Ã, i.e., the crisp values 
0 and 1 respectively (Gani & Assarudeen, 2012). Furthermore, applying 
the standard subtraction operator may result in a negative deprivation 
cost which is considered as illogical to the studied model. Therefore, this 
study uses Gani & Assarudeen (2012) new fuzzy subtraction operator 

Ã − B̃ = (Al − Bl, A − B,Au − Bu). The necessary existence condition for 
this operator is thatAu − Al ≥ Bu − Bl. It is clear from Fig. 3 that the 
spread of the triangular fuzzy deprivation cost increases as we move 
forward in the deprivation time and the condition is hence satisfied. 
Thus, the termγ̃cd − γ̃cd− 1 = (γl

cd − γl
cd− 1, γcd − γcd− 1, γu

cd − γu
cd− 1) is used. To 

integrate the fuzzy objective function with the current model, the 
following assumptions are set: 

4.2.1. Assumptions 
It is assumed that the required input data to the model imple

mentation is available. In particular:  

– The demographic and health characteristics of the population at each 
demand node are assumed to be known and easy to estimate. The 
population at each node is thus assumed to be classified, according to 
their characteristics, into three classes: invulnerable, average, and 
vulnerable individuals. This is represented by defining the parame
ters pl

ci and ph
ci respectively expressing the percentage of mildly and 

highly vulnerable groups (people at low and high risks) with respect 
to commodity c at node i. NPM and HNO criteria for household 
vulnerability, described in Section 1, provide good guidelines for 
classifying affected population. See case study in Section 6. Fig. 2. Lai and Hwang’s approach to solve “minimize cx”.  
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– The deprivation cost for each commodity is also assumed to be 
estimated as a TFN in the form ̃γi = (γi

l, γm
i , γh

i ). Where γm
i is the most 

likely cost or the expected deprivation cost for a typical individual 
(with moderate age, good health condition, average living standard, 
etc.). γi

l is the minimum possible deprivation cost for a given com
modity for people with high potential capacity to endure depriva
tion. In contrary, γi

h is the maximum possible deprivation cost and 
normally is associated with people at high risks such as elderly 
people or individuals with medical issues. Furthermore, for some 
types of non-basic commodities, it is expected that people with high 
living standards are more affected by deprivation and thus have 
higher deprivation costs. 

4.2.2. Steps to implement the possibilistic LP with fuzzy objective 
parameters: 

The methodology employed in this section has a slight modification 
to Lai and Hwang’s approach described in Section 4.1. Namely, instead 
of solving for maxz1, minz2, and maxz3 to find the NIS, which results in 
unbounded solutions, the values of z1, z2, and z3 are evaluated for each 
of the looked-for objective functions and the PIN and NIS are evaluated 
as stated in steps 1 and 2. Furthermore, weight is assigned to each 
objective by forcing the membership of the solution to that objective to 
exceed a predefined threshold (steps 3 and 4). 

Step1: Solve the original LP model three times for the three objective 
functions: minimize z1, maximize z2, and minimize z3, where z1, z2, 
and z3 are given as: 

z1 =
∑

m

∑

k

∑

(j,i)∈Am

∑T

t=1
ckmτm

ji Y
km
ijt +

∑

c∈C

∑d=tmax
c

d=1

((

γcd − γc,d− 1)
∑

i∈DN

∑T

t=1
u− 1

c ed
cit

)

(4.4)  

z2 =
∑

c∈C

∑d=tmax
c

d=1

∑
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(

pl
ci

[(

γcd − γc,d− 1

)

−
(
γl

cd − γl
cd− 1

)
]
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t=1
u− 1

c ed
cit

)

(4.5)  

z3 =
∑

c∈C

∑d=tmax
c

d=1

∑

i∈DN

(

ph
ci

[(
γu

cd − γu
c,d− 1

)
−

(

γcd − γc,d− 1

)]
∑T

t=1
u− 1

c ed
cit

)

(4.6) 

Since the transportation cost is expressed as a crisp function, it only 
appears in z1 = cmx, and omitted in z2 = [cmx – clx] and z3 = [chx – cmx]. 
In each run and for every objective, find the values of the resulting z1, z2, 
and z3 according to the equations above. In other words, evaluate the 
resulting z1n, z2n, and z3n with n is the index for the run number related 
to objective function n. 

Step2: Find the positive ideal solution (PIS) and negative ideal so
lution (NIS) for each z value, where: zPIS

1 = minn(z1n), zNIS
1 = maxn(z); 

zPIS
2 = maxn(z2n), zNIS

2 = minn(z2n); and zPIS
3 = minn(z3n), zNIS

3 =

maxn(z3n)

Step3: Find the compromised solution that balances the three ob
jectives by solving the following LP model: 

Max λ;
s.t. μZi ≥ θi + λ, i = 1, 2, 3

χ ∈ X, θi + λ ≤ 1
(4.7)  

where χ ∈ X is the set of constraints for the original problem. That is, 
equations (3.2 through 3.10). The parameter θi is defined to add weight 
for each objective or provide a minimum value for the extent to which 
the objective is satisfied. For example, if the focus is on minimizing the 
crisp objective function, then increase θ1 compared with θ2 and θ3. 
Similarly, if the focus is on minimizing the risk for higher cost, increase 
θ3 and so on. The membership function for each objective, μzi, is defined 
in equation (4.2). 

Step 4: If necessary, adjust the parameter θi and check the effect of 
this adjustment on the final solution and how it is reflected on 
prioritizing the distribution activities. 

5. Model implementation and experimentation 

This section discusses the model implementation and describes 
computational experimentation on randomly generated instances. Sec
tion 5.1 presents the methodology to implement the proposed model 
formulation using the RH solution algorithm. Section 5.2 describes the 
experimental instances generation. Sections 5.3 and 5.4 respectively 
present and discuss the computational results for the original model 
with crisp objective function and the results of the possibilistic LP with 
fuzzy objectives. The analysis presented in this section is reflected to a 
real case study of internally displaced persons (IDPs) in Northwest Syria 
in Section 6. 

5.1. Solution methodology using rolling horizon approach 

The planning horizon is the length of time into the future that is 
accounted for in the humanitarian relief plan being optimized. Since the 
complexity of the proposed MIP model increases with the increase of the 
number of time periods in the planning horizon, the rolling horizon 
approach provides an efficient way to solve such large scale optimiza
tion problems by decomposing the planning horizon into two parts: 
scheduled and unscheduled horizons. The former refers to early time 
periods for which a detailed plan is to be maintained while an aggregate 
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plan is provided for the latter. In other words, in the scheduled horizon 
all problem constraints should be detailed and valid whereas in the 
remaining time periods a rough estimate of the capacity allocation is 
sufficient without paying attention to the details of vehicle routes. 
Therefore, the integrality constraint for the number of vehicles is 
violated and fractional values are allowed in the unscheduled horizon 
which will be rescheduled later during the algorithm. The idea is thus to 
reduce the number of detailed periods and partially deploy the detailed 
window; where only part of the scheduled horizon is implemented. The 
algorithm then rolls forward internally and the parameters are updated 
for the next scheduled horizon until a complete solution is obtained for 
the original planning horizon. Fig. 4 demonstrates the RH algorithm 
applied to the current model with the notations listed in Table 1. 

The algorithm starts with initializing the parameters and setting the 
steps count to zero. The model objectives and constraints are generated 
as in the basic model except the violation of the integrality constraint for 
the number of vehicles in t > StC + ScH. Since the linear relaxation of 
some integral variables will cause an optimistic solution which is obvi
ously less than the real objective value, extra cost has been added for 
transferring items with relaxed vehicles. The capacity of vehicles 
belonging to the relaxed planning duration has also been reduced. This 
is temporary and approximate compensation for the unrealistic 
enhancement in the objective value resulting from relaxing some vari
ables. By doing so, the model avoids unnecessary postponement of de
mand fulfillment to later periods in the unscheduled horizon. The 
partially relaxed model is then solved and only the solution for the step 
size (the implementation period Δ) is stored in the solution array. The 
next decision point is then found as the step count plus the step size and 
the same process is repeated until the step count plus step size is greater 
than or equal to the planning horizon. Finally, the model calculates the 
overall objective function based on the stored solution array and com
putes the percent relative difference of the exact or best bound. If the 
relative difference is satisfactory the algorithm stops, otherwise, RH 
parameters are tuned and the algorithm is run again. 

It should be noted that the parameters tuning and comparison with 
best bound is performed for the purpose of experimentation and algo
rithm’s parameters setting. In reality since the model is periodically fed 
with new information about real supply and demand, there is no benefit 
of comparing solution with best bound given the estimated supply and 
demand data. The choice of parameters such as length of scheduled 
horizon and step size could be based on periodicity of information up
date instead. To illustrate the benefit of the RH method when the model 
parameters are dynamic and unstable, an illustrative example is briefed 
in box 1. The example compares the objective value when solving a 
simple problem based on supply and demand pre-estimations with the 
objective value resulted from applying the RH approach which updates 
the model parameters with actual values once available. 

5.2. Experimental instances generation 

The model is tested on two groups of instances. Small sized instances 
consist of five nodes (two supply and three demand nodes), two relief 
commodities, two vehicle types, and the planning horizon is 8 time 
periods. The large sized instances include 15 nodes (3 supply and 12 
demand nodes), three commodities, two vehicle types and the planning 
horizon is 14 time periods. Although generated randomly, the supply 
and demand parameters were governed by some rules to cover a wider 
range of possibilities as explained below.  

– Demand: For each demand node j the initial population size is 
chosen randomly between 500 and 3000 people. The possible in
ternal displacement among nodes and the allowance for mortality 
are accounted for by updating the population size at every node after 
each time period. The increase / decrease in the population size per 
time period is chosen randomly and ranges from − 100 to 100. The 

demand per commodity is then calculated by multiplying the pop
ulation size by average consumption per capita.  

– Supply: The initial inventory at supply nodes as well as the external 
supply received at supply or demand nodes are generated randomly 
in a manner which satisfies a predefined supply/demand (S/D) ratio. 
For each commodity, four levels of demand satisfaction were 
defined: 100%, 75%, 50% and 35%. Therefore, instances that cover 
all possible combinations of the satisfaction level for different com
modities are generated. For large instances there are three com
modities and hence the number of combinations is 43 = 64. For small 
instances there are two commodities resulting in 42 = 16 combina
tions. The time periods at which external supplies take place were 
also selected randomly in the planning horizon.  

– Transportation Vehicles: It is assumed that the number of available 
vehicles at supply nodes is sufficient to cover all distributions and is 
randomly generated accordingly.  

– Travel Time among nodes: The distance, expressed as travel time, 
between every two nodes is generated randomly between 0.5 and 3 
time units. (One time unit is assumed to equal 12 hrs.). 

The instance generation criteria described above are inspired by 
Pérez-Rodríguez & Holguín-Veras (2016) who tested their inventory 
allocation model empirically for instances with different service levels 
expressed by the ratio between available inventory at supply nodes and 
total demand at affected areas. The assumption that vehicles at supply 
nodes is sufficient to cover all distributions is reasonable for humani
tarian distribution problems because, unlike commercial supply chains, 
responders must rely on volunteers and local vehicles to transport sup
plies (Pérez-Rodríguez & Holguín-Veras, 2016). Other problem param
eters are fixed for all instances and assumed as shown in Table 2. 

Note that the assumption of deprivation cost function for drinkable 
water was borrowed from Holguín-Veras et al. (2016) and adapted for 
the definition of time unit (12 hrs). For other commodities, the param
eters of the deprivation cost function are adjusted to roughly reflect the 
priority of the commodity with respect to drinkable water priority. 

5.3. Results and discussion (for crisp objective function) 

The model is run over the generated instances using Gurobi opti
mizer 8.1 - Java interface. The planning horizon is fixed with 14 time 
periods for large instances and 8 time periods for small instances. The 
scheduled horizon and step size are tuned during the run to reach the 
pre-specified threshold for the relative difference from the exact/ best 
bound values. For small sized instances, three random instances are 
generated for each S/D combination resulting in a total of 48 instances. 
The average relative deviation from the exact solution as well as solution 
times are reported for each combination. The results are satisfactory and 
the relative deviation did not exceed 0.22% in all combinations (See 
Table 3). Although solution times for the exact method were reasonably 
small, the RH approach showed a considerable improvement in the so
lution time without much sacrifice of optimality. The benefit of using RH 
can, however, be more justified with large instances where exact solu
tions are not available. The results showed that the level of resource 
scarcity expressed by S/D ratio, does not have significant effect on the 
algorithm performance and solution time. In fact, the complexity of an 
instance depends on the problem setting defined by the travel time 
among nodes, times for expected supply deliveries, the dynamic nature 
of the demand patterns and route availabilities. This justifies why some 
instances require more time to be solved by exact methods than others. 

For large sized instances the original mixed integer programming 
model with default branch and bound solution is first run and the run 
stops when the gap between the lower bound and best found upper 
bound is reasonably small (0.5% – 1%). The RH model is then run and 
the results are compared with the best found bound by the branch and 
bound method. The scheduled horizon and step size parameters are 
tuned during the run to improve the deviation from the best found 
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bound. The RH algorithm succeeded to reach the target threshold of 2% 
or less in 45 instances (i.e., 70% of the total instances). Even with in
stances that exceeded the deviation threshold, the relative difference 
between RH solution and best upper bound was around 10% which is 
reasonable. For the branch and bound solution to reach the targeted gap, 
it took an average of 30 – 60 min for each instance. The solution time for 
the RH method largely depends on the choice of the scheduled horizon 
and step size. For the experimental instances with the reported de
viations from the best bound, it took an average time of 5–15 min per 
instance. 

Fig. 5 shows the best-found objective function using the RH approach 
and compares it with the best bound for the original MIP model. 
Expectedly, as the S/D ratio decreases, the total social cost increases. 
This is reflected in Fig. 5 as the scarcity of supply increases when we 
move forward in the instance index as described in Table 3. Although the 
performance of the branch and bound approximation is slightly superior 
to the RH performance, the advantage of the RH approach lies in: (1) its 
computational efficiency and (2) the benefit of updating the dynamic 
status of the model parameters once revealed. Since a considerable part 
of integer variables is relaxed in the unscheduled horizon during each 
stage, the time to solve the RH is much less than finding a good solution 
bound in the regular branch and bound approach. For the benefit of the 
RH method when the model parameters are dynamic and unstable, see 
the illustratıve example previously discussed in box 1. 

5.4. Results and discussion of the possibilistic MIP model 

The procedure described in Section 4.2 is implemented to represent 
the fuzzy deprivation cost. A deprivation function Γ(d) is assumed as 
Γ(d) = β1eβ2d, where d is the deprivation time. Three relief commodities 
are assumed in the experimental examples: drinkable water, food, Non- 
Food items (NFI). Inspired by the deprivation cost function defined for 
drinkable water commodity in Holguín-Veras et al. (2016), the fuzzy 
parameters for each commodity are assumed considering the level of 
essentiality for each commodity as in Table 4. 

The model is verified and validated by running it on the generated 
instances described in Section 5.2 and the findings are consistent for all 
instances giving a good indication on the model validity. The output of 
the model is expressed as possible values of each objective function 
alongside their membership function. An example is given in Fig. 6 
where the solid lines present the linear membership function for each 
objective as described in equation (4.2). This can be used to estimate the 
resultant total social cost expressed as an interval (in the given example 
[55000, 450000]). It can also be represented as a TFN considering that 

the parameters ̃β1,
̃β2 where originally expressed as TFNs. See the 

dashed-line triangle in Fig. 6.b. 
To evaluate the effect of objectives’ weights, the model was run with 

different configurations of the parameters (ϴ1, ϴ2, ϴ3). For example, in 
the result shown in Fig. 6.b, (ϴ1, ϴ2, ϴ3) = (0, 0, 0) indicating that the 
three objectives are of the same level of importance. Running model 
(4.7) resulted in optimum λ = 0.6 meaning that each objective is satis
fied at least with 60%. Fig. 7 shows the resultant solution if (ϴ1, ϴ2, ϴ3) 

= (0.3, 0, 0.5) which gives the highest weight to z3 and the least to z2. 
Running the model with this ϴ configuration has resulted in λ = 0.35. 
This means that the membership for the first objective satisfaction is 
(0.3 + 0.35 = 0.65). The memberships for second and third objectives 
are 0.35 and 0.85; respectively. Therefore, the compromised objective 
function = [80,000; 236,500] or as TFN, (80,000 98,000 236,500). That 
is, with increasing the weight for z3 over z1 and z2, the maximum 
possible cost is reduced by 213,500 cost units, whereas the minimum 
possible cost is increased by 35,000 cost units. 

The choice of (ϴ1, ϴ2, ϴ3) is also reflected on the percentage of de
mand satisfaction at each demand node and hence helps in attaining a 
higher level of equity by considering the different levels of vulnerability 
for each individuals group. For example, if the demographic character
istics at node i indicate vulnerability of a larger group than node j; 
increasing the weight of the third objective (associated with minimizing 
the maximum possible cost) will give higher priority to cover demand at 
node i than node j. Fig. 8 compares the percentage of demand satisfac
tion in three nodes of a random instance. The characteristics of popu
lation in the three nodes for the given example are assumed to follow the 
distribution given in Table 5. 

The percentage of demand satisfaction at each node is calculated by 
dividing the total supply received at the node during the planning ho
rizon by the total demand at the same node. The purpose of this com
parison is only to find out the effect of objectives’ weights on defining 
the priorities of distribution rather than studying the factors affecting 
the distribution decisions. For example, at ϴ configuration (0,0,0) the 
reason that node 1 receives more supply than node 3 can be explained by 
several factors such as the ease of accessibility of node 1. Another 
possible reason is that the demand of node 3 increased at the end of the 
planning horizon compared with its beginning which indicates less 
deprivation time. What concerns here is that all the factors are fixed and 
only ϴ setting is changed. 

Since node 3 has the highest percentage of people at high risk, the 
percentage of demand satisfaction at node 3 increases from 46% to 68% 
when ϴ3 is increased from 0 to 0.5. Similarly, for node 1 which has the 
highest percentage of people at low risk. Increasing ϴ2 from 0 to 0.5 
slightly affects the demand satisfaction at node 1 from 83% to 75% 
where, on average, one unit shortage at node 1 has less cost than that at 
other nodes. To generalize the findings, the model is run over the 
generated random instances described in Section 5.2 (after generating 
random percentages for population classes at each node) and the per
centage of demand satisfaction is analyzed for different ϴi values where 
the observation above is verified for the majority of instances. Such 
findings support the claim that possibilistic LP with fuzzy objectives can 
have some useful practical implications for better achievement of equity 
and risk reduction. It is hoped that this extension partially overcomes 
the inequality gap of minimum deprivation cost based models high
lighted by Gutjahr & Fischer (2018). However, it is worthy to assess the 
level of equity for the demand nodes considering their population de
mographic distribution with the new fuzzy representation of the 
objective function using standard equity measures in the literature. This 
can be a highlighted extension for further investigation. 

In the next section, the validity of the model is tested on a practical 
case study describing the relief supply to internally displaced people in 
Northwest Syria. 

6. Case study – Internal displacement in northwest Syria 

Halfway through the eighth year of conflict and violence, the hu
manitarian situation in Syria remains dire. A total of 5.9 million Syrians 
have been internally displaced and more than 5.7 million Syrians live as 
refugees seeking protection (HNAP, 2019a). The intensive ground 
fighting between non-state armed groups (NSAGs) and Government of 
Syria (GoS) forces as well as airstrikes and shelling, since late January 
2020, continued to affect communities in Idleb area and western Aleppo 
governorates. “The humanitarian situation for people in northwest Syria 

Table 1 
parameters’ notation for the rolling horizon approach.  

Parameter Explanation 

PH Length of the planning horizon 
ScH Length of the scheduled horizon (assumed to be fixed) 
StS Step size: number of time periods in the scheduled horizon to be 

implemented before moving to next decision point. 
StC Steps count: number of time periods counted so far. In other words, 

number of time periods in which the solution is implemented and fixed 
so far. 

ε  Threshold for the percent relative difference between the objective 
value resulted from rolling horizon and exact or (best bound) objective 
value.  
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Box 1 
Illustrative example - The benefit of RH in dynamic parameters settings. 
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is at the most critical points due to ongoing hostilities, harsh winter 
conditions, and existing needs that were already severe; highlighting the 
provision of humanitarian assistance as immense priority” (OCHA, 
2020). HNAP (2020) conducted a population assessment in north-west 
Syria on 1st March 2020, collecting data at the community level 
which was then been disaggregated by those displaced since 1 December 
2019. Fig. 9 visualizes the total number of IDPs as well as the recently 
displaced individuals as of Feb. 2020. The map highlights rural Idleb and 
northwest Aleppo to have the highest displacement burden and will 
therefore be the focus of this analysis. 

The prolong crisis in Syria allowed the acting humanitarian parties to 
reach a comprehensive and effective organization of relief programs 
therein. Led by UNHCR, the Camp Coordination and Camp Management 
(CCCM) cluster coordinates the efforts of active member organizations 
providing assistance in northwest Syria. CCCM cluster activities focus on 
informing the humanitarian community on the needs in IDP Sites, 
tracking IDP movements and coordinating the provision of multi- 
sectoral assistance in IDP Sites (UNHCR, 2019). The information used 
in this study depends on published reports issued by UN acting parties as 
well as interviews with NGO’s and humanitarian agencies such as: IOM- 
Turkey, HIHFAD, OCHA, and HNAP program officers. 

The CCCM Cluster_ IDP Sites Integrated Monitoring Matrix (ISIMM), 
January 2020 is used to estimate the demand in each sub-district in rural 
Idleb and northwest Aleppo. Vulnerability of IDP households is also 
analyzed in each sub-district by identifying the number of Female- 
headed households, number of disabled persons, and percentage of 
minors per household. We aggregated and disaggregated some of the 
statistics in some districts/ sub-districts depending on the displacement 
burden for analysis purposes. Fig. 10 presents the network of distribu
tion centers and demand points based on the information provided by 
HIHFAD relief agency as well as the CCCM cluster reports. The location 
of each node and distances between nodes are taken from google maps 
(with adding 30 mins for unloading at each node). 

Three relief commodities are analyzed: ready to eat (RTE) food ra
tions, emergency food baskets, and hygiene kits. Table 6 shows the total 

Table 2 
Fixed parameters for experimental instances.  

Parameter Value 

Transportation cost / time unit 
(ckm) 

For large vehicles: c11 = 120 monitory units 
per time period 
For small vehicles: c21 = 80 monitory units per 
time period 

Vehicle capacities (Qkm) For large vehicles Q11 = 2000 kg 
For small vehicles Q21 = 1000 kg 

Weight per unit of commodities 
(wc) 

1 unit of water w1 = 1 L = 1 kg 
1 Food meal w2 = 0.5 kg 
1 hygiene kit w3 = 0.8 kg 

Deprivation cost(Γc(d)) For waterΓ1(d) = 0.25(e1.62d)  
For food mealsΓ2(d) = 0.12(e1.07d)  
For hygiene kitsΓ3(d) = 0.05(e0.58d)  

Consumption per capita (uc) u1 = 3 L water / day → 1.5 L / time unit 
u2 = 2 meals / day → 1 meal / time unit 
u3 = 1 hygiene kit / week 

Maximum allowable deprivation 
time (tcmax) 

t1max = 3 days for water = 6 time units 
t2max = 5 days for food = 10 time units 
Unlimited for hygiene kits  

Table 3 
% Deviation of RH results with respect to exact solution for small instances.  

Instance 
# 

S/D 
ratio 
for C1 

S/D 
ratio 
for C2 

Average 
Solution time 
by exact 
method (Sec) 

Average 
Solution 
time by RH 
method 
(Sec) 

Average % 
deviation of RH 
obj. value w.r.t 
exact obj. value 

1 to 3 1 1 14 2  0.05% 
4 to 6 1 0.75 134 4  0.22% 
7 to 9 1 0.5 31 1  0.02% 
10 to 12 1 0.35 4 2  0.16% 
13 to 15 0.75 1 6 1  0.11% 
16 to 18 0.75 0.75 10 1  0.15% 
19 to 21 0.75 0.5 2 2  0.08% 
22 to 24 0.75 0.35 13 1  0.11% 
25 to 27 0.5 1 15 2  0.12% 
28 to 30 0.5 0.75 14 2  0.03% 
31 to 33 0.5 0.5 13 2  0.16% 
34 to 36 0.5 0.35 80 2  0.07% 
37 to 39 0.35 1 6 2  0.02% 
40 to 42 0.35 0.75 5 1  0.12% 
43 to 45 0.35 0.5 73 3  0.10% 
46 to 48 0.35 0.35 10 3  0.13%  

Fig. 5. Branch and bound upper bounds vs. RH objective values.  

Table 4 
Fuzzy parameters of the deprivation cost function for each commodity.  

Commodity β1  β2  

1 (0.21, 0.25, 0.35) (1.55, 1.62, 1.85) 
2 (0.07, 0.12, 0.15) (0.85, 1.07, 1.21) 
3 (0.05, 0.07, 0.15) (0.33, 0.58, 0.9)  
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number of IDPs in each demand node as well as number of IDPs with 
food and hygiene kits need. The type of shelter is added to estimate the 
best type of food supply (e.g. we assume that RTE are supplied to tented 
shelters whereas food baskets to buildings and container shelters). The 
total demand is estimated by reviewing the percent of needs coverage in 
each relief sector which are published in the aforementioned reports. 

Planners should be aware that displacement in north-west Syria is 

highly–fluid. Therefore, at any given time numbers may signifıcantly 
vary to what has been reported. CCCM and HNAP continually work to 
update fıgures to match rapidly changing mobility dynamics (HNAP, 
2020). This highlights the benefit of using the rolling horizon (RH) 
approach to cope with the dynamic updates. 

The computational case study is designed using the information re
ported above with few assumptions regarding the missing information. 
For the supply side, OCHA has published figures about their total supply 
and interventions during February both in food and hygiene sectors as a 
response to above mentioned demands; one can refer to (OCHA, 2020) 
for supply data. Furthermore, it is assumed that the local community 
participates in 5% of the supply through family-to-family support. Pa
rameters such as transportation cost and maximum truck capacity have 
been set based on NGOs interviews whereas the boxes volumes of each 
commodity were standardized and assumed as shown in Table 7. The 
standard RTE ration box is sufficient for one family for 3–5 days while 
both food basket and hygiene kits are sufficient for two weeks. Holguín- 
Veras et al. (2016) formula for deprivation cost function is used after 
adjusting the function parameters to adapt the type of commodities 
under study and the definition of the time unit. 

Since the security situation is unstable and is always at risk, relief 
agencies tend to send only one truck until it reaches its final destination 
to make sure no obstacles before sending the next truck. This puts lim
itations on the maximum number of trucks that can be sent in the day 
shift; especially between nodes in different governorates i.e., Aleppo and 
Idleb. This is reflected by imposing constraint (3.8) for arcs connecting 
Afrin distribution center with demand nodes in Idleb and for arcs con
necting Bab-al-Hawa with Aleppo sub-districts. 

A case of a relief agency working to respond to demand data in 
Table 6 is studied. The planning horizon is one week (14 time units) 
during which some random changes (displacement from node to node or 
newly displaced comers) are assumed. The supply reported in (OCHA, 
2020) covers approximately 80% of food needs and 69% of hygiene 
needs. We assume that this supply has received to the distribution 
centers in different time units during the planning horizon. At each time 
period, the demand is updated as the demand minus supply received in 
the previous period plus (minus) the demand of new comers (leavers). 
The demand of the original group who already received supply is 
updated at the end of the consumption sufficiency period (e.g. after 
three days for RTEs). Figs. 11 and 12 respectively show the resultant 
percentage of demand coverage at each demand node by the end of the 
planning horizon and average deprivation cost per household experi
enced during all time periods in the planning horizon. 

Although not equally covered, the results show no exclusion or sig
nificant under-fulfilment for any node. However, at early stages in the 
planning horizon, the deprivation cost in all nodes is relatively small and 
there are no much differences between nodes, putting more weight on 
the transportation cost. This justifies the early fulfilment (lower average 
deprivation cost) of closer nodes to the distribution centers such as south 
Dana and Markez Harim compared with Jesr al-shoghour which is the 
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Table 5 
Classification of population with respect to their vulnerability at risk.  

Node % of individuals at 
low risk 

% of average typical 
individuals 

% of vulnerable 
individuals (at high risk) 

1 35% 60% 15% 
2 10% 70% 20% 
3 12% 28% 60%  
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farthest point and exhibits the highest average deprivation cost per 
household. After few time periods the increase of deprivation cost in Jesr 
al-shoghour is higher than the difference in transportation cost which 
forces the model to give it priority in next periods. In some sense, the 
model outperforms other models aiming to minimize unsatisfied de
mand or external costs without the inclusion of the deprivation cost 
which may exclude or disregard difficult-to-access nodes. In another 

sense, however, an explicit adoption of equity criteria is still needed to 
further minimize the differences of average deprivation cost among 
different nodes. 

Vulnerability of IDPs in each nodes is evaluated by analyzing the 
demographic characteristics in each community according to CCCM 
published reports. The population segment of the age group between 14 
and 45 is regarded as the less vulnerable individuals. Highly vulnerable 

Fig. 9. Internal displacement in northwest Syria, HNAP (2020).  

Fig 10. Relief distribution network in northwest Syria.  
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groups include female-headed and minor-headed households, house
holds with disabled individuals, and households with more than three 
minors or independents in the family. Table 8 shows an approximate 
classification of IDP households according to their vulnerability. 

The possibilistic LP model is run considering the fuzzy deprivation 
cost function in Table 7 and IDPs classification in Table 8. The results 
described in Section 5.4 were consistent with case findings; where 
changing the weight of the three objectives z1, z2, and z3, explained in 
Section 4.2, has a noticeable impact on improving demand coverage and 
average deprivation cost; especially for nodes with highly vulnerable 
individuals such as Jesr al shoghour. 

7. Conclusions and future work 

In this paper an optimization model for relief allocation decisions in 
the aftermath of a disaster or conflict situation has been introduced. The 
model aims at improving the responsiveness and robustness of the hu
manitarian supply chain. The paper introduces extensions for some 

models in the literature which provided a mathematical foundation on 
modeling the human suffering as a deprivation cost function. The ex
tensions are focused on providing an alternative presentation to the 
deprivation cost as a function of the unmet demand as well as ac
counting for the perceptual variations to deprivation through intro
ducing fuzzy deprivation cost formulation. Possibilistic mixed integer 
programming approach is used to deal with the fuzzy objective function 
coefficients in an attempt to minimize the risk of higher cost and mini
mize the most possible cost value while maximizing the possibility of 
lower cost. To capture the dynamic aspects of humanitarian logistics, the 
distribution model is based on a time space network formulation and the 
solution methodology is built on the rolling horizon approach. This is 
especially suitable for real time decision support in the humanitarian 
relief response. 

The computational analysis is based both on randomly generated 
instances and a real case study of IDPs in northwest Syria. The generated 
instances cover a wide range of possible scenarios regarding resource 
availability. The experimental results approved the efficiency of the 
proposed model and its adaptability to the dynamic parameters change. 
The fuzzy objective formulation provides a more realistic representation 
of the human perception to deprivation by considering the characteris
tics of different groups of individuals and hence their vulnerability to 
risk. Computational results show that possibilistic LP formulation with 
fuzzy representation to the deprivation cost helps to achieve a higher 
level of equity by reprioritizing the delivery decisions based on the ur
gency of need and individuals’ vulnerability. The proposed approach 
can be practically useful to overcome the gap highlighted by HNAP in 
distributing reliefs to IDP’s in Syria, where their analysis showed no 
differences between rates of vulnerable households receiving assistance 
and non-vulnerable households. 

The model can be further improved upon by considering the uncer
tainty in the model’s other parameters such as supply, demand, and 
travel time. The author is currently working on research to integrate 
robust optimization with uncertain supply, demand, and travel time 
with the current possibilistic LP model. This paper assumes that the 
deprivation cost is already estimated. Techniques and methods to esti
mate the deprivation cost -as the economic value of human suffering 

Table 6 
IDPs and their needs in different camps at northwest Syria.  

Governorate Demand point 
name 

Included sub-districts / communities Type of shelters Total number of 
IDP’s 

IDPs with food 
needs 

IDPs with Hygiene 
kits needs 

Aleppo Al Bab Al bab- Al Raie Tented shelters 21,012 502 0 
Azaz Azaz – Suran 55% tented shelters 

40% containers and 
tents 
5% mixed tents and 
buildings 

146,795 58,859 68,999 

Jabel Samaan Jrablus - Atareb 96% tented shelters 
4% mixed tents and 
buildings 

46,847 10,153 27,762 

Idleb North Dana Atmah – Aqrabat – Qah – Mashhad Ruhin 22% tented shelters 
78% mixed tents and 
buildings 

291,142 254,927 20,921 

South Dana Bab al Hawa – Deir Hassan – Hezreh – Hezri – Tal 
karameh – Sarmadah – Kafr Rayan 

48% tented shelters 
48% mixed tents and 
buildings 
4% Buildings 

270,827 79,475 185,201 

Markez Harim Salqin – Markez Haim - Armanaz 70% tented shelters 
30% mixed tents and 
buildings 

38,989 38,989 38,949 

Ma’arat Misrin Kelly – Hazano -Maaret Elekhwan – Haranbush 40% tented shelters 
60% mixed tents and 

111,567 94,585 95,080 

Jesr Al- 
Shoghur 

Badama – Janudiye – Darkoush 37% tented shelters 
63% mixed tents and 
buildings 

38,551 38,283 3,343 

Markez Idleb Bennsh + Markez Idleb 90% tented shelters 
10% mixed tents and 
buildings 

7,096 7,096 4,545  

TOTAL 972,826 582,869 444,800  

Table 7 
Case study parameters.  

Parameter Value/formula 

Transportation Cost $250 per hour for smaller trucks 
$400 per hour for larger trucks 

Truck capacity 20 ft truck, with dimensions (19′6′′ × 7′8′′ × 7′2′′) and 
volume capacity 1016 ft3 

40 ft truck, with dimensions (39′ × 7.8′ × 7.8′) and volume 
capacity 2400 ft3 

Supply box 
dimensions 

RTE rations (8.5′′ × 17.5′′ × 13.5′′) = 1.16 ft3 

Food baskets (12.2′′ × 20′′ × 16.1′′) = 2.3 ft3 

Hygiene kit (15.5′′ × 12.5′′ × 9.5′′) = 1.06 ft3 

Deprivation Cost 
(crisp) 

For food supply 0.15e1.2d 

For hygiene kits 0.07e0.58d 

Deprivation Cost 
(fuzzy) 

For food supply AeBd , A = (0.1,0.15,0.25), B =

(1.05, 1.2,1.55)
For hygiene kits AeBd, A = (0.04,0.07,0.1),B = (0.38,0.58,
0.85)
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resulting from the lack of access to a good or service -for different groups 
of IDPs is highlighted as an area for future research. 
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Table 8 
Classification of IDPs households with respect to their vulnerability at risk.  

Demand node less vulnerable average highly vulnerable 

Al bab 13% 80% 7% 
Azaz 11% 72% 17% 
Jabel Samaan 12% 82% 7% 
Dana N 11% 68% 21% 
Dana S 11% 78% 11% 
Markez Harim 9% 80% 10% 
Maaret Misrin 10% 72% 18% 
Jesr Al shoghour 12% 62% 26% 
Markez Idleb 8% 70% 22%  
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