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A B S T R A C T   

With the emergence of advanced manufacturing and Industry 4.0 technologies, there is a growing interest in 
coordinating the production and distribution in supply chain management. This paper addresses the production 
and distribution problems with sequence dependent setup time for multiple customers in flow shop environ
ments. In this complex decision-making problem, an efficient scheduling approach is required to optimize the 
trade-off between the total cost of tardiness and batch delivery. To achieve this, three new metaheuristic algo
rithms such as Differential Evolution with different mutation strategy variation and a Moth Flame Optimization, 
and Lévy-Flight Moth Flame Optimization algorithm are proposed and presented. In addition, a design-of- 
experiment method is used to identify the best possible parameters for the proposed approaches for the prob
lem under study. The proposed algorithms are validated on a set of problem instances. The variants of differential 
evolution performed better than the other compared algorithms and this demonstrates the effectiveness of the 
proposed approach. The algorithms are also validated using an industrial case study.   

1. Introduction 

Due to globalization of supply chains and advancement in informa
tion systems, the modern manufacturing industry has been experiencing 
pressure to adapt globalization and improve customer satisfaction to 
maintain their competence in the market (Cheng, Leung, & Li, 2015; 
Choi, 2015; Rahman & Nielsen, 2019). In order to maintain this 
competitive edge, manufacturers are shifting their production systems 
from make-to-stock production system to make-to-order (MTO) pro
duction system, where customers have the flexibility to order custom
ized products. More specifically, automobile, computers and electronics, 
telecommunications, automobile, machinery, furniture, food processing 
and textile industries are following this trend (Chen, Huang, Luo, & 
Wang, 2015; Rahman, Sarker, & Essam, 2017; Wang, Luo, Liu, & Yue, 
2017). With the development of e-commerce business, customers can 
order their products using MTO production system for products (e.g., 
furniture, clothes, cars) of their choice from different locations and the 
manufacturers will be required to manufacture and deliver the products 

to the customers in a timely fashion. This problem is more realistic under 
difficult situations (e.g., COVID-19) in which customers were unable to 
go for shopping physically. So, in such scenarios having an efficient MTO 
based-manufacturing supply chain is essential. 

In MTO industries, production process starts after receiving orders 
from the customers and distribute the products to the customers (Wang 
et al., 2017). A customer sets a due date for order(s) and expects to 
receive the products on or before that time. To maintain a desired 
customer satisfaction level, manufacturers are recommended to deliver 
the products as soon as they are completed in a production line to avoid 
any tardiness (i.e., deliver the product after due date). However, it is 
often found that it is more economical to dispatch some products in 
batches and to minimize the costs associated to the customer delivery 
although it affects the tardiness in practice (Liu, Zhou, & Yang, 2017; 
Mazdeh, Rostami, & Namaki, 2013). Hence, the production managers 
have to coordinate both production scheduling and delivering the final 
product to the customers in a timely and cost-effective manner (Chen 
et al., 2015). In other words, there should be a tradeoff between the 
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tardiness cost and delivery costs when making managerial decisions. 
However, most of the scheduling literature for MTO systems for supply 
chain only concerns about scheduling of products and avoids the 
decision-making process of customer delivery in the supply chain. As a 
result, the solution generated by those approaches may result in high 
delivery costs and the production business may run with suboptimal 
solutions. 

The permutation flow shop scheduling problem (PFSP) is a well- 
known scheduling problem in many manufacturing industries (Rah
man, Janardhanan, & Nielsen, 2019; Rahman, Sarker, & Essam, 2015a; 
Rahman, Sarker, & Essam, 2018). Furthermore, a realistic and inter
esting extension of PFSPs is the PFSPs with sequence dependent setup 
times (SDSTs), where each product needs additional setup time in each 
machine before processing another product in the same machine (Ruiz, 
Maroto, & Alcaraz, 2005). 

Notably, these studies considered a restricted assumption that cost 
associated with product delivery is negligible (Ruiz & Maroto, 2005). 
Therefore, like other production layout (e.g., single machine or multi- 
machine production line), existing scheduling approaches ignores the 
impact of delivery costs in flow shop based MTO industries. Although 
there are some studies available which considers integrating production 
with distribution in PFSPs for MTO industries, however to the authors’ 
best knowledge, studies with the same problem with SDST is not re
ported from the literature. 

In order to address the academic research gap and practical chal
lenges, this paper presents the following contributions to the field of 
flow shop scheduling problems: firstly, a mixed integer non-linear pro
gramming model (MINLP) is developed for the considered problem, 
which is an extension of the model proposed by Wang et al. (2017) by 
considering SDST to the problem. Secondly, three meta-heuristic-based 
solution approaches have been proposed to solve the proposed problem. 
The proposed algorithms are tested on a real-life case study to demon
strate the effectiveness of the algorithms. 

Since classical PFSP has proven to be strongly NP-hard (Ruiz & 
Maroto, 2005), the problem under study, is considerably more difficult 
to solve. Over the last few decades, exact techniques, such as branch and 
bound algorithm (Bansal, 1977) and integer programming approach 
(Selen & Hott, 1986), can only solve classical PFSPs with small number 
of machines effectively. Thus, researchers have focused on developing 
meta-heuristic techniques for solving classical PFSPs. The detailed 
literature review of the meta-heuristic algorithms presented in (Ruiz & 
Maroto, 2005) for solving classical PFSPs and its variants reveals two 
main concerns in the literature.  

• No single algorithm is suitable for solving all type of PFSPs problems 
with reasonable solution quality and computational times.  

• Even though there are some algorithms that has shown enhanced 
performance, their solutions may be far from the optimal or lower 
bound solutions (if known). 

The first point relates to the no-free-lunch theorem for optimization, 
which is defined as the performance of all search algorithms perform 
exactly the same when they search for an extremum of a cost function 
and when averaged over all possible cost functions (Ho & Pepyne, 2002; 
Wolpert & Macready, 1997). The second point is the consequence of NP- 
hard problems. As neither of these concerns can be satisfied, there is a 
need to develop meta-heuristic techniques that may be able to solve 
PFSPs effectively, since it has an outstanding track record in solving 
complex scheduling problems (Li, Janardhanan, Tang, & Ponnambalam, 
2019; Rahman & Nielsen, 2019; Rahman, Sarker, & Essam, 2015b). 
Furthermore, there are no alternative algorithms available in the liter
ature to solve the problem under study. Therefore, major contribution of 
this paper is to utilize metaheuristic algorithms such as Differential 
Evolution (DE), Moth Flame Optimization (MFO) and Lévy-Flight Moth 
Flame Optimization (LFMFO) algorithms to solve the problem under 
study. The proposed algorithms aim to optimize the total cost by 

scheduling products while considering SDST in flow shop so that the 
products are delivered with optimized total costs. As there are no 
benchmark data available for the problem under study, the performance 
of the proposed algorithms is evaluated using a set of realistic problem 
instances and a case study from a sanitaryware industry. 

The reminder of the paper is organized as follows. The next section 
presents the overview of the background study of the research topics 
related to this research. Section 3 formulates the studied problem. The 
solution approaches are discussed in Section 4 for solving the model, 
while Section 5 presents the numerical studies and Section 6 presents a 
case study. Finally, in Section 7, the research findings are concluded 
along with future research directions are discussed. 

2. Related works 

Despite their widespread applications in manufacturing, until 
recently, integrated production scheduling with distribution problems 
in MTO industries for supply materials have not been widely studied. 
However, motivated by the importance of integrating this decision- 
making process, some studies have been dedicated to focus on produc
tion scheduling problems with batch delivery for different production 
layout (e.g., single machine and multi-machine) in recent years. In this 
section, a review on production scheduling approaches for MTO based 
supply chain is presented, with a special emphasis on PFSPs. 

Most of the related works on production and batch delivery sched
uling problems has focused on the single-machine and the parallel- 
machine environments. For the first time, Cheng and Kahlbacher 
(1993) introduced the single machine production and delivery sched
uling problem in supply chain to the scientific community. They made a 
computational study on that problem and proved that minimization of 
the total cost of holding and distribution is NP-hard, but polynomial 
solvable for equal weights. Yang (2000) studied the extension of this 
problem with generalized due dates. Hamidinia, Khakabimamaghani, 
Mazdeh, and Jafari (2012) developed an integer programming approach 
and a genetic algorithm (GA) with the objective of minimization of the 
sum of earliness, tardiness, inventory holding, and distribution costs. 
The solutions outperformed the traditional algorithm. More recently, 
Ahmadizar and Farhadi (2015) extended this problem by considering 
product release dates and due date time windows, they presented a non- 
linear mathematical model and also provided the mathematical model 
by linearizing the objective functions and constraints. Mazdeh et al. 
(2013) proposed a branch and bound algorithm with a local search 
approach to solve the single-machine batch delivery scheduling problem 
and proposed a non-linear programming model. For parallel machine 
environments, Wang and Cheng (2000) developed a dynamic pro
gramming (DP) algorithm to optimized the total cost of total flow time 
and distribution cost. Hybridized DP with shortest processing time rule 
for solving identical parallel machine scheduling problem with batch 
delivery was proposed later (Wan & Zhang, 2014). Liu and Lu (2016) 
studied two identical-parallel-machine scheduling problems with batch 
delivery with machine availability constraints. The objective of mini
mizing the time by which all the jobs gets delivered was considered. 
Guo, Zhang, Leung, and Shi (2016) proposed a bi-level evolutionary 
algorithm to integrating production and distribution decisions for un
related parallel-machine environment and also proposed a bi-level 
mixed integer non-linear program. The proposed approach is superior 
to other algorithms used for comparisons. To simplify the problem, most 
of the research studies on single machine and parallel machine pro
duction and distribution scheduling problems assumed a single 
customer in supply chain. Considering the reality, this is however a 
restrictive assumption and therefore some recent studies considered the 
production and delivery scheduling problems with multiple customers 
in supply chain, such as (Mazdeh et al., 2013) (Ahmadizar & Farhadi, 
2015; Cakici, Mason, & Kurz, 2012; Hamidinia et al., 2012; Selvarajah & 
Zhang, 2014). 

The classical PFSPs have been widely studied in the literature. In 
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1954, Johnson proposed an optimal algorithm for solving two machine 
and special three machine classical PFSPs (Johnson, 1954). It is proven 
that more than three machine classical PFSPs is NP-hard (Garey, John
son, & Sethi, 1976). To solve large problems, researchers have proposed 
heuristic and metaheuristics algorithms (Kizilay, Tasgetiren, Pan, & 
Gao, 2019; Ruiz & Maroto, 2005; Ruiz, Maroto, & Alcaraz, 2006; 
Zobolas, Tarantilis, & Ioannou, 2009). In classical PFSPs, n products (i. 
e., jobs) are processed by m machines, where each machine has to follow 
the same operational order of products and each product. Over the past 
few decades, most of the studies about PFSPs focus on scheduling a set of 
products on a set of machines while minimizing the makespan as the 
objective (Öztop, Tasgetiren, Eliiyi, Pan, & Kandiller, 2020). Makespan 
is the time difference between the start time of the first product in the 
first machine and the finishing time of the last product in the last 
machine. 

SDST is an interesting extension of PFSPs, which is studied as an 
extension of classical PFPS or as a hybrid PFSPs (each stage of produc
tion line has multiple machines) (Allahverdi, 2015; Li, Li, Gao, & Meng, 
2020). The research of SDST-PFSP scheduling is widely at the academic 
level, since it has also applied in several engineering fields, e.g., steel 
industries (Han, Tang, Zhang, & Cao, 2020; Sbihi, Bellabdaoui, & 
Teghem, 2014; Sbihi & Chemangui, 2018), electronics industries (Hidri 
& Gharbi, 2017), digital dental laboratory (Valizadeh, Fatahi Valilai, & 
Houshmand, 2019), paper industry (Ruiz & Maroto, 2006), etc. 
Although these studies consider solving production scheduling problem 
with SDSTs in flow shop environment, they do not consider the delivery 
problem in their study. 

As discussed in the previous section, these studies assume that the 
time or cost of delivery is zero in MTO systems. To address this gap, 
recently some researchers have focused on addressing production 
scheduling with batch delivery problem in flow shop environments. 
Mazdeh et al. (2013) studied an integrated production and distribution 
scheduling problem for two machine flow shops to minimize the total 
sum of weighted number of tardy products and delivery cost. Chen et al. 
(2015) proposed genetic algorithm for solving a synchronized sched
uling problem of production simultaneity and shipment punctuality in a 
two-stage assembly flowshop system. Kazemi, Mazdeh, and Rostami 
(2017) proposed a hybrid imperialist competitive algorithm for solving 
two stage assembly scheduling problem within batch delivery systems. 
In their research, they considered variable processing and assembly 
times for all products for two customers. Wang et al. (2017) proposed 
two heuristics, namely Earliest Due Date (EDD), minimum slack-based 
heuristic, and a GA hybridized by variable neighborhood search and 
teaching–learning algorithm to determine the minimal tardiness cost 
and minimal distribution cost for batch delivery to multiple customers. 
Mishra and Shrivastava (2018) proposed a Jaya algorithm and 
Teaching-Learning Based Optimization algorithm for a flow shop 
scheduling problem where penalty cost and inventory cost are taken into 
consideration. Other than that, they consider the machine sequence 
independent batch set up time within their model to simulate the 
automotive industry. 

In summary, from the related works on scheduling literature on MTO 
industries, it can be seen that the above-mentioned studies have limi
tations and restrictive assumptions. These assumptions are as follows: 
(1) scheduling approaches on classical PFSPs ignores the delivery costs 
in their models, and (2) research works on single machine, parallel 
machine, and flow shop environments did not consider SDSTs in the 
models. As a result, these assumptions isolate the studies on MTO based 
production systems from real-life flow-shop based production environ
ments, and therefore in this study, the main aim is to address these 
limitations by considering the above-mentioned factors. From the 
literature, it can be also seen that authors have applied both non-linear 
as well as linear programming models to solve the problem of this type. 
Since non-linear and linear models are reported to be very time 
consuming, use of heuristics and metaheuristic strategy is very common 
in the literature. Based on these above-mentioned reasons, 

metaheuristics have been applied in this study and details of these are 
presented in the following sections. 

3. Problem description and mathematical model 

In this section, the production scheduling and batch delivery prob
lem in flow shop considering SDSTs are described and necessary as
sumptions are discussed. 

3.1. Problem statement 

SDST-PFSP with batch delivery in supply chain is a process that in
volves integrated decision making for both production and delivery in 
supply chain. As discussed in Section 2, several attempts have been 
made to model the PFSPs without considering the impact of distribution 
aspect in the model. However, one may argue that the effectiveness of a 
production scheduling model depends on simplicity in validity of the 
model and universality of the model itself (Sbihi et al., 2014). Thus, 
there is no universal methodology that represents that SDST-PFSP with 
batch delivery in supply chain since each problem depends on the 
considered problem case. Moreover, the existing models developed for 
solving PFSPs and SDST-PFSP are more restrictive with respect to the 
real-life manufacturing supply chain environments. Therefore, in this 
study, authors have developed a generic production planning model for 
the SDST-PFSP with batch delivery in supply chain, where: (1) pro
duction scheduling part of the problem can be seen as PFSP for sched
uling products based on customer order while considering the setup 
times (both initial and sequence dependent setup times), and (2) dis
tribution part of the problem deals with the decision making on how to 
form batches (for same or different customers) based on due date of 
customer and their distance from the factory and other customers in the 
system. Both parts of the problem should be dealt in an integrated 
manner to ensure that total costs in supply chain in minimized. 

3.2. Problem Definition 

PFSPs with batch delivery to multiple customers’ in supply chain 
addresses to the integration of production and distribution cost within 
the permutation flow shop environment. The proposed algorithms will 
solve two interdependent sub problems that are the permutation flow 
shop scheduling in the production stage and the multiple customers 
batch delivery system in the distribution stage with the minimum cost. 
To define the permutation flow shop problem with batch delivery to 
multiple customers, the constraints and assumption made are as follow:  

• Within production stage: All products from customers are released 
simultaneously to the permutation flow shop at time, t = 0. Each 
machine can only process one product at a time and have identical 
product processing sequence for every subsequent machine. Every 
product must be processed on every machine before considered as 
completed. Pre-emptive production is not allowed. The production 
and delivery operations run under ideal conditions, i.e. there is no 
interruption during production.  

• Within distribution stage: There are enough vehicles to dispatch 
the completed products to the customers. Each batch delivery does 
not have a quantity or distance limit. Each delivery is sent to a 
particular customer only. Customers are geographically located in 
different places and the delivery time and cost from the production 
floor to a customer are fixed. 

In this research, the sequencing of products and the grouping of 
products to be distributed to the customer through batch delivery are the 
two operational decisions that are to be integrated to obtain the optimal 
or best results of minimizing the total cost. 
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3.3. Mathematical model of the problem 

To further describe and explain the system to study the effect of each 
parameters to the objective function of the algorithm, a mixed integer 
non-linear programming (MINLP) model including the parameters and 
decision variables of the studied PFSP are defined in Table 1. 

Based on the presented indices, parameters and decision variables in 
Table 1, the objective function to minimize the total cost of tardiness and 
delivery cost is shown in Equation (1). This helps to obtain the optimal 
production and distribution decision schedule. 

TotalCost = min
∑l

b=1

∑f

i=1

∑n

j=1
αij × max{0, yib × xπjb × (ATib − dij)}+

∑l

b=1

×
∑f

i=1
(yib × DCib)

(1) 

subject to: 

Cπ11 ≥ Pπ11 (2)  

Cπj1 ≥ Cπj− 11 +Qπ1 jk + Sπjjhk+Pπj1, j = 2, 3, ..., n (3)  

Cπ1k ≥ Cπ1(k− 1) +Pπ1k +Qπ1 jk + Sπjjhk, k = 2, 3, ...,m (4)  

Cπjk ≥ max
{

Cπj− 1k,Cπj(k− 1)
}
+Pπjk +Qπ1 jk + Sπjjhk, j, h = 2, 3, ..., n; k

= 2, 3, ...,m (5)  

∑l

b=1
xπjb = 1, ∀j = 1, 2,⋯, n. (6)  

∑l

b=1
yib = 1, ∀i = 1, 2,⋯, f . (7)  

∑f

i=1
yib = 1, ∀b = 1, 2,⋯, l. (8)  

ATib ≥ yib ×

{

max
j=1,2,⋯,n

{
xπjb × Cπjm

}
+DTi

}

,∀i = 1, 2,⋯, f ; b = 1, 2,⋯l.

(9)  

Cπjk,ATib > 0i = 1, 2,⋯, f ; b = 1, 2,⋯l; j = 1, 2,⋯n. (10)  

Constraint 2 (expressed by Equation (2)) express the equation for the 
completion time of product π1 in machine k = 1,2,⋯,m. Constraint 3 
states that the completion time of the subsequent (n − 1) product on the 
machine after adding the initial setup time and sequence dependent 
setup time are the first sets of constraints that are crucial to the proper 
calculation of the makespan calculation for Equation (1). Constraint 4 
and Constraint 5 works similarly by providing the completion time of 
the first product and the remaining (n − 1) products respectively for all 
other machines. In the distribution stage, Constraint 6 shows that every 
finished product received can be allocated to a single batch only, this 
means that one product cannot be delivered twice to the customer. The 
constraint also indicates that it is possible to have the maximum batch 
delivered as the number of products received. Subsequently, Constraint 
7 guarantees that for each customer, there is at least one batch delivered 
in the distribution stage. While Constraint 8 ensures that all the products 
in the same batch belong to one customer only. Constraint 9 provides the 
constraint of batch arrival time to the customer, where it is the sum
mation of latest completion time of the last product in the same batch 
and the delivery time. Finally, Constraint 10 ensures that the completion 
time and arrival time will always be a non-negative value. 

3.4. An example problem 

An example problem for the problem under study is discussed in this 
section. Fig. 1 presents a Gantt chart of a schedule for this problem. In 
this example, two customers order eight products, where customer 1 
places 3 products (i.e., product 1–3) and customer 2 places 5 products 
(product 4 to product 8). All these products are processed in a two- 
machine flow shop. As shown in Fig. 1, the sequence of product in this 
schedule is 6–4-2–7-1–8-5–3. Therefore, each machine follows this 
sequence to process all products. The set of input data for the example 
problem are listed in Table A1 to Table A4 (in Appendix). Table A1 
consists of the input data relevant to the production stage, which 

Table 1 
Indices, Parameters and Variables of the permutation flow shop problem.  

Indices 
i  Customer index,i = 1,2,⋯, f .
j  Product index,j = 1,2,⋯,n.
k Machine Index,k = 1,2,⋯,m.

b  Batch index,b = 1,2,⋯, l.

Parameters 
πj  jthproduct in the sequenceπ = π1,π2,⋯,πj  

Pπjk  Processing time of the productj on machine k, j = 1,2,⋯,n; k = 1,2,⋯m.  
Qπ1 jk  Initial setup time of jth product in machine k, given that jth product is placed 

in the first position of the sequence, i.e.,π1  

Sπj jhk  Sequence dependent setup time of the jth product, if it is processed after hth 
product (j ∕= h) on machine k, j = 1, 2,⋯, n; k = 1,2,⋯,m. If jth product is 
placed in πj th position, then hth product must be placed in πj− 1th position in 
the sequence. Also, jth product cannot be placed in the first position of the 
sequence, i.e., πj∕=1.  

DTi  Delivery time from the factory to the customeri.
DCib  Delivery cost to customer i per batch.  
dij  Due date of product j of customer i.  
αij  Tardiness cost per unit of product j for customeri.   

Decision variables 
Cπjk  Completion time of product πj on machinek  
xπj b  1 if the jth product of the πthsequence assigned to batchb; 0 otherwise.  
yib  1 if batch b contains the products of customer i, 0 otherwise.  
ATib  Arrival time of batch b at customeri.   

Table 2 
Nomenclature and definition for MFO.  

Nomenclature Definition 

Moth Candidate solutions 
Moth Position Problem’s variable (such as combinations) 
Moth Fitness Fitness of the candidate solution in the current iteration. 
Flame Best moth positions obtained from previous iterations. 
Flame Fitness Best fitness obtained from previous iterations.  

Table 3 
Selected parameters.  

Algorithm Parameter Level 

DE Population Size 200 
Iteration 200 
Crossover Factor 0.8 
Mutation Scale 0.4 

MFO Population Size 200 
Iteration 200 

LFMFO Population Size 200 
Iteration 200 
Moth- Lévy factor 0.2 

GA Population Size 200 
Iteration 200 
Crossover Factor 0.8 
Mutation Scale 0.4  
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includes processing time and due dates of the products in each machine; 
while Table A2 shows the input data relevant to the distribution stage, 
which includes the delivery cost and delivery time to each customer. 
Based on Table A3 and Table A4 shows the setup time for the first 
product on each machine and sequence dependent setup time for 
different product sequence. Fig. 1 shows the legend of the initial setup 
time, sequence dependent setup time and processing time of each 
product. Note that product 2, 5, and 8 are ordered by customer 1 and rest 
of the products are ordered by customer 2. Note that initial setup is 
defined as the time to setup for a product at the beginning of production. 

Fig. 1 also suggests that the products are transferred in batches. 
As described in the introduction section (Section 1), PFSPs with 

production and batch delivery to multiple customers has two integrated 

Table 4 
Rank measurement of different algorithms using Friedman test.  

Dataset Group DE MFO LFMFO GA  

rand/1 rand/2 best/1 best/2 current-to-best/1 current-to-pbest/1    

Small 4.042 4.000 3.625 4.875 3.333 4.250 7.125 6.792 6.958 
Medium 5.958 5.667 4.250 3.625 4.958 4.375 5.750 4.708 5.708 
Large 4.083 4.833 5.250 4.750 3.750 4.500 5.500 5.750 6.583 
Average 4.694 4.833 4.375 4.417 4.014 4.375 6.125 5.750 6.417  

Fig. 1. A Gantt chart of the example problem.  

Table A1 
Input data relevant to production stage.  

Customer 
number, F 

Product 
number, 
n 

Unit 
tardiness 
cost, αij 

Due date 
of each 
products, 
dij 

Processing Time in 
different machine of 
flowshop, PTπjk     

Machine 
1 

Machine 
2 

1 1 6 15 7 2 
1 2 3 20 8 5 
1 3 3 8 3 4 
2 4 2 19 7 3 
2 5 14 25 2 5 
2 6 9 9 5 2 
2 7 3 21 1 1 
2 8 8 12 6 2  

Table A2 
Input data relevant to distribution stage.  

Customer 
number, 
F 

Delivery cost per batch to 
the ith customer, DCi 

Transportation time to deliver a 
batch to a customer, DTi 

1 8 6 
2 5 8  

Table A3 
Input data relevant to initial setup time for first product in the flow shop.  

Setup time for the first product in a sequence in a machine 

Product Machine 1 Machine 2 

1 11 3 
2 8 3 
3 10 14 
4 2 13 
5 10 15 
6 1 1 
7 13 2 
8 8 7  
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decision-making process, namely sequencing the products and grouping 
products into batches for delivery. Therefore, as shown in Fig. 2, the 
solution of the problem can be represented by a (3 × n) matrix. The top 
row in the matrix is a permutation of n products, indicating the product 
processing sequence. The products need to be split into suitable number 
of batches, and therefore the second row is an array of batch indices, 
determining the assigned batch for each product. The bottom row pre
sents the customer indices, to whom the products (in batches) are 
delivered. According to assumption (3), a batch contains the products 
for the same customer. Considering equation (1) and relevant data for 
this problem, the objective function (total cost) calculated for this 
schedule is$1531. 

Total cost calculation for sequence dependent setup time (following 
equation (1) 

Totalcost, $ = [(9 × max{0, (19+ 8) − 9})+ (2

× max{0, (19+ 8) − 19})]+ 5+ 3

× max{0, (19+ 6) − 20})+ 8+ 3

× max{0, (30+ 8) − 21})+ 5+ [(6

× max{0, (54+ 6) − 15})+ (3

× max{0, (54+ 6) − 8})]+ 8+ [(8

× max{0, (50+ 8) − 12})+ (14 × max{0, (50+ 8) − 25})]+ 5  

= 162+ 16+ 5+ 51+ 5+ 15+ 8+ 270+ 156+ 8+ 368+ 462+ 5 = $1531  

4. Methodology 

This section discusses the methodology and details of the proposed 
algorithms such as Differential Evolution (DE), Moth Flame Optimiza
tion (MFO) and Lévy-Flight Moth Flame Optimization (LFMFO) algo
rithm for single objective optimization applied to solve the problem 
under study. 

4.1. Differential evolution algorithm 

Differential evolution (DE) algorithm is an efficient and robust 
evolutionary algorithm introduced by Storn and Price (1997). DE has 
been extensively applied to solve real world problems that are combi
natorial in nature such as traveling salesman problem, job shop sched
uling and machine layout design problem (Nearchou & Omirou, 2006; 
Onwubolu & Davendra, 2006). DE uses operators similar to genetic al
gorithm. Due to the simplicity of implementation, faster convergence 
and few parameters to fine tune, this algorithm has been selected for 
solving the considered problem. 

DE algorithm proposed in this research uses similar framework as 
conventional DE algorithm while adapted to process PFSPs, the pseu
docode used during the coding process is as follows:  

Algorithm 1: Differential Evolution for Single Objective Optimization 

Input: Vector product processing time for each machine, delivery time and 
distribution cost for customers, tardiness cost. 
Output: Schedule with near optimal Total Cost. 
begin 

Step 1(read files) 
retrieve input data; 

(continued on next page) 

Table A4 
Sequence dependent setup time for the two machine flowshop.  

Sequence Dependent Setup Time in Machine 1  
Product 1 Product 2 Product 3 Product 4 Product 5 Product 6 Product 7 Product 8 

Product 1 0 6 5 10 5 4 1 5 
Product 2 10 0 8 2 2 3 4 9 
Product 3 7 8 0 10 1 8 5 1 
Product 4 10 6 10 0 1 2 10 2 
Product 5 1 7 7 6 0 6 8 1 
Product 6 3 4 10 6 10 0 4 9 
Product 7 10 1 3 4 9 7 0 7 
Product 8 2 10 7 2 5 9 3 0  

Sequence Dependent Setup Time in Machine 2  
Product 1 Product 2 Product 3 Product 4 Product 5 Product 6 Product 7 Product 8 

Product 1 0 3 7 6 10 3 2 10 
Product 2 10 0 5 2 5 3 1 5 
Product 3 3 10 0 9 4 4 10 8 
Product 4 1 3 10 0 1 1 7 6 
Product 5 1 8 4 1 0 9 10 1 
Product 6 8 3 9 6 5 0 9 2 
Product 7 4 1 7 4 8 9 0 5 
Product 8 1 1 4 4 6 6 3 0  

Product 

number

6 4 2 7 1 8 5 3

Batch number 1 2 2 1 1 1 2 1 

Customer 

number 

2 2 1 2 2 1 1 2 

Fig. 2. An example of feasible schedule.  
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(continued ) 

Algorithm 1: Differential Evolution for Single Objective Optimization 

Step 2 (Initialization) 
generate individuals with randomized schedules in the form of matrix; 

Step 3 (Evaluate) 
evaluate the initialized individual based on the objective functions; 

Step 4 (Stopping rule) 
stop function = false; 

If Current Iteration ≤Maximum Iteration, then 
go to step 5 
Elseif Current Iteration >Maximum Iteration, then 
Stop the algorithm; 
end 

Step 5 (Mutation) 
Generate mutant vectors based on chosen mutation strategy. 

Step 6 (Crossover) 
Randomize floating point for every individual, then compare to crossover 

factor; 
If individual number ≤crossover factor, then 
pair the individuals into sets of parent individuals; 
perform two-point crossover; 
Elseif individual number >crossover factor, then 
do not perform crossover on the schedule; 
end 

Step 7 (Evaluation) 
evaluate the trial individuals based on the objective functions; 

Step 8 (Selection) 
Compare and choose the trial individuals against parent individuals; 
update the iteration count and go to step 4; 

end 
report best schedule and the Total Cost.   

In Differential Evolution (DE), the mutant vectors vi = {vi
1, vi

2, …, vi
D } are 

generated through the mutation operation. There are many mutation 
strategies and operators developed and studied by other researchers 
with varying results. In this research work, the six most popular muta
tion strategies are identified are used for comparison and based on the 
variants proposed by Vincent, Ponnambalam, and Kanagaraj (2014) and 
Nearchou and Omirou (2006). 

DE/rand/1v = x(G)

r1 +F∙
(

x(G)

r2 − x(G)

r3

)
(11)  

DE/rand/2v = x(G)

r5 +F∙
(

x(G)

r1 + x(G)

r2 − x(G)

r3 − x(G)

r4

)
(12)  

DE/best/1v = x(G)

best +F∙
(

x(G)

r2 − x(G)

r3

)
(13)  

DE/best/2v = x(G)

best +F∙
(

x(G)

r1 + x(G)

r2 − x(G)

r3 − x(G)

r4

)
(14)  

DE/current − to − best/1v = x(G)

i +F∙(x(G)

best − x(G)

i )+F∙(x(G)

r1 − x(G)

r2 ) (15)  

DE/current − to − pbest/1v = x(G)

i +F∙
(

x(P)best − x(G)

i

)
+F∙

(
x(G)

r1 − x(G)

r2

)

(16) 

In the six variants of popular mutation strategies described in 
Equation (11) to Equation (16), r1, r2, r3, r4, and r5 are the schedules of 
different individuals within the current populations, F refers to the scale 
factor for the magnitude of the vectors.x(P)

best , x
(G)
best shows the best vector in 

the current and global population. In this work, the process used for 
encoding the vectors in DE is based on the work reported in (Nearchou & 
Omirou, 2006; Vincent et al., 2014). In this research, all six variants 
described are implemented and their performance are compared with 
the other optimization algorithms. The process used for encoding the 
vectors in DE is based on the work reported in (Vincent et al., 2014). 
After mutation, the crossover operation is performed between two 
parent vectors to form trial vectors. The working principle for the se
lection of the parent for crossover operation is similar to the method 
used in mutation process. A randomly generated floating number be
tween the constraint [0, 1] is assigned to each individual in every 

iteration and determines whether the individual (uj
i,G) is chosen for 

recombination operation as shown in the logic below in Equation (17). 

uG
i =

{
uj

i,G, if randj(0, 1) ≤ CR

v(G)

i , else
(17)  

where i = 1, 2 … NP; j = 1, 2… D; and Crossover Factor, CR ∈ [0, 1] are 
the parameters for the crossover rate. NP denotes the number of popu
lation, randj [0, 1] is a uniformly distributed random number, which is 
called for each jth component,v(G)i is the best mutation individual in the 
population, uG

i is the trial vector for the crossover operation. When 
multiple pairs of parent individuals are chosen, they are assigned 
randomly in pairs to form couples. In this research, the single point 
crossover is chosen as the crossover method. This is done by randomly 
picking a point on the parent individuals’ chromosomes as the desig
nated crossover point. Part of the parent chromosomes are swapped 
between the partner’s chromosomes. Forming two sets of newly formed 
trial vectors inheriting part of the chromosomes from both parents. 
Fig. 3 gives an example of single-point crossover. 

After the parent chromosomes are paired, a crossover point is 
determined randomly to be swapped between the parents. The swapping 
process ensures that the offspring chromosomes retain some information 
from both parents. After the crossover operation is completed, the newly 
formed trial vectors are then evaluated and the fitness of the current 
population is compared to the previous population. The encoded vectors 
which violate the constraints are repaired using the procedure reported 
in (Vincent et al., 2014). 

Selection is the mechanism used in DE algorithm to determine 
whether the trial vector replaces the parent vector according to the 
criterion from the objective function. The working principle of the se
lection mechanism within a DE algorithm remains the same regardless of 
the different DE algorithms proposed in most research works as shown in 
(Nearchou & Omirou, 2006; Santucci, Baioletti, & Milani, 2016; Zhou & 
Wu, 2019). This is done by comparing the fitness of individuals from 
current trial vector and target vector from previous iterations, the in
dividuals with the greatest fitness are chosen as the parents for the next 
iteration. The selection operator is performed as shown in Equation (18). 

xG+1
i =

{
xG

i , iff
(
xG

i

)
≤ f (uG

i )

uG
i , else

(18)  

4.2. Moth flame optimization algorithm 

Motivated by the flight pattern of moths towards artificial lights such 
as flame at night, Mirjalili (Mirjalili, 2015) proposed a swarm intelli
gence metaheuristic algorithm known as Moth Flame Optimization 
(MFO). This algorithm is inspired by the flight pattern of moths towards 
light sources at night. Conventionally, the moths maintain a fixed 
perpendicular angle with respect to the light source from the moon, 
which is also known as ‘traverse orientation’. The large distance be
tween the moon and moth ensures the moth can efficiently navigate long 
distance during the night. However due to urbanization, the moths often 
mistaken the artificial light source as the moon, prompting the moths to 
fly in a traverse orientation based on the percieved light source. This 
causes a spiral flight pattern, slowly converging towards the artificial 
light source due to the short distance between the moth and the light 
source. MFO has been implemented to solve various real-world opti
mization problems such as optimizing power flow (Buch, Trivedi, & 
Jangir, 2017), and optimizing economic order quantity (Khalilpourazari 
& Khalilpourazary, 2019). Eventhough few researchers have reported 
using MFO in solving combinatorial optimizational problems (Ghobaei- 
Arani et al., 2020; Mohseni, Brent, & Burmester, 2019; Rashid, Rose, 
Mohamed, & Romlay, 2019), there is lot of scope for implementing MFO 
for such problems. In this paper, the encoding pocedure used is based on 
the procedure utilized for DE. To the authors knowledge, research done 
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by AbdElhamid, Helmi, and Ziedan (2018) is one of the few research 
directed towards implementing MFO to solve a well known Travelling 
Salesman Problem. The nomenclature used in MFO are provided as 
shown in Table 2. 

Similar to DE algorithm, the solutions from the set of moths are 
represented in a matrix as shown in Equation (19), while the corre
sponding fitness values of each moths are stored in the array as shown in 
Equation (20). 

Moth,M =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

m1
1 m2

1 ⋯ ⋯ mD
1

m1
2 m2

2 ⋯

⋮ ⋮ ⋮

m1
n m2

n ⋯

⋯ mD
2

⋮ ⋮

⋯ mD
n

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(19)  

MothFitness,OM =

⎡

⎢
⎣

OM1
OM2

⋮
OMn

⎤

⎥
⎦ (20)  

where n is the number of moths and D refers to the number of bits within 
the solution vector. Each moth, m = 1,2, … n with dimension D produces 
a fitness value returned from the objective function. The moth fitness, 
OM are arranged according to the moth position vectors. Note that the 
flame, F and flame fitness, OF are similar to the moth and moth fitness as 
shown in Equation (21) and Equation (22). 

Fig. 3. Illustration of Single Point Crossover Method.  
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Flame,F =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

F1
1 F2

1 ⋯ ⋯ FD
1

F1
2 F2

2 ⋯

⋮ ⋮ ⋮

F1
n F2

n ⋯

⋯ FD
2

⋮ ⋮

⋯ FD
n

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(21)  

Flame Fitness,OF =

⎡

⎢
⎣

OF1
OF2

⋮
OFn

⎤

⎥
⎦ (22) 

The differences between the moths and flames are that moths act as 
the active search agents that moves within the solution space; while the 
flames are the best positions obtained by the moths over iterations. As 
the moths discover a position with better fitness than the current flame, 
the flame is updated to the position of the newly found best flames. This 
process repeats until all of the moth either converges into a single true 
best result or the iteration reached the maximum limit. The pseudo-code 
of MFO is presented to illustrate the processes in MFO algorithm.  

Algorithm 2: Moth Flame Optimization for Single Objective Optimization 

Input: Vector product processing time for each machine, delivery time and 
distribution cost for customers, tardiness cost. 

Output: Schedule with near optimal Total Cost. 
begin 

Step 1(read files) 
retrieve input data; 

Step 2 (Initialization) 
generate initial moths with randomized schedules in the form of matrix; 
Step 3 (Evaluate) 

evaluate the initialized moths based on the objective function; 
Step 4 (New Moth Position Calculation) 

Perform calculation for number of flames, t and r; 
Update number of flames, t and r; 
Perform calculation for new moth positions; 

Step 5 (Evaluation) 
evaluate the new moth position based on the objective function; 

Step 6 (Selection) 
compare the new moth position against flame; 
update best positions as flames for next iteration; 
Iteration = Iteration + 1; 

Step 7 (Stopping rule) 
stop function = false; 

If Current Iteration ≤Maximum Iteration, then  
go to step 4 
Elseif Current Iteration >Maximum Iteration, then  
Stop function toggle true; return; 
end 

end 
report best schedule and the Total Cost.  

An adaptive mechanism of reducing the number of flames over the 
course of iterations is used to ensure the exploitative quality of MFO 
algorithm. This is done by utilizing the Equation (23), where the number 
of flames reduces gradually as shown in Fig. 4. 

Number of flames = round
(

PopSize − 1∙ PopSize − 1
MaximumIteration

)

(23) 

Note that as the iteration approaches maximum iteration, the flame 
converges into the single best flame found. This allows the trend of 
gradual decrement in number of flames over iteration allow a balance in 
exploration and exploitation of the search space, where the moths move 
towards the position with the greatest fitness. The update motion of the 
moth as the active search agent is described as a logarithmic spiral with 
the conditions:  

1. The initial point of the spiral motion starts from the moth.  
2. The destination of the spiral motion is the position of the flame.  
3. The fluctuation of the range of spiral should not go beyond the search 

space. 

With these conditions as consideration, the equation of logarithmic 
spiral used in MFO algorithm is defined as Equation (23). 

Spiral, S
(
Mi,Fj

)
= Di∙ebt∙cos(2πt) +Fj (24)  

MothtoFlameDistance,Di = |Fi − Mi| (25)  

t = (a − 1)∙
(

− 1
MaximumIteration

)

(26)  

a = − 1+ Iteration∙
(

− 1
MaximumIteration

)

(27)  

b = Unif (0.0, 1.0) (28) 

Equation (24) presents the equation of logarithmic spiral of the moth 
positional update with the constraints and information from Equation 
(25) to Equation (28). The distance between the assigned moth flame 
pairs are calculated using Equation (25); while Equation (26) to Equa
tion (28) describes the adaptive variables that provide slight random
ness as the moths approaches the flame. 

4.3. Lévy-flight moth flame optimization 

Lévy-Flight Moth Flame Optimization Algorithm (LFMFO) is the 
implementation of the random motion of the Lévy-Flight function to 
improve the exploration and convergence rate of the conventional Moth 
Flame Optimization Algorithm (Mirjalili, 2015). This is because Lévy- 
Flight has the prominent properties of increasing the diversity of pop
ulation, effectively allowing the algorithm to jump out of the local 

Fig. 4. Trend of number of flames over iterations in Moth Flame Optimization.  
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Fig. 5. Average BRPE and ARPE for all problem sizes: (1) DE/rand/1, (2) DE/ 
rand/2, (3) DE/best/1, (4) DE/best/2, (5) DE/current-to-best/1, (6) DE/ 
current-to-pbest/1, (7) MFO, (8) LFMFO, (9) GA. 
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optimum point (Li, Janardhanan, Tang, & Nielsen, 2016). The ran
domized motion of the Lévy-Flight motion plays an important role in the 
exploration and exploitation properties of the LFMFO algorithm to 
optimize complex problems (Kamaruzaman, Zain, Yusuf, & Udin, 2013; 
Trivedi, Kumar, Ranpariya, & Jangir, 2016), more effectively. The hy
bridization of Lévy-Flight function into Moth Flame Optimization is 
performed by inserting a probability of a moth individual to perform 
Lévy-Flight motion or the spiral motion from the conventional MFO 
(Mirjalili, 2015) (Trivedi et al., 2016) (Kamaruzaman et al., 2013), 
where the probability randomly chooses moth individual to perform the 
Lévy-Flight function after the position is updated to further enhance the 
global search ability to provide more successful results for multimodal 
functions (Li et al., 2016). The Lévy-Flight function follows the Lévy 
distribution as shown in Equation (29). 

LeẤvy(β) μ = t− 1− β, (0 ≤ β < 2) (29)  

ϕ = [
Γ(1 + β) × sin(π × β/2)

Γ(((1 + β)/2) × β × 2(β− 1)/2)
]
1/β (30) 

Equation (30) presents the calculation for the new position of the 
moth that follows Lévy-Flight function, where β = 1.5 and Γ represents a 
standard Gamma function. The global search ability of LFMFO is ex
pected to be improved from the hybridization of the Lévy-Flight function 
to MFO, utilizing the strength of both search mechanism to explore the 
solution space. The pseudo-code for LFMFO is presented below:  

Algorithm 3: Lévy-Flight Moth Flame for Single Objective Optimization 

Input: Vector product processing time for each machine, delivery time and 
distribution cost for customers, tardiness cost. 

Output: Schedule with near optimal Total Cost. 
begin 

Step 1(read files) 
retrieve input data; 

Step 2 (Initialization) 
generate initial moths with randomized schedules in the form of matrix; 

Step 3 (Evaluate) 
evaluate the initialized moths based on the objective function; 

Step 4 (New Moth Position Calculation) 
Perform calculation for number of flames, t and r; 

(continued on next page) 

5590

5640

5690

5740

5790

5840

5890

0 50 100 150 200

To
ta

l C
os

t

Iteration

DE/rand/1

DE/rand/2

DE/best/1

DE/best/2

DE/current-to-best/1

DE/current-to-pbest/1

MFO

LFMFO

GA

Fig. 6. Graph of convergence curves for algorithms for a problem instance.  
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(continued ) 

Algorithm 3: Lévy-Flight Moth Flame for Single Objective Optimization 

Update number of flames, t and r; 
If random number between 0 &1 ≤ Moth Levy factor, then  
Implement Lévy-Flight function on moth position; 
Elseif random number between 0 &1 >Moth Levy factor, then  
Implement logarithmic spiral function on moth position; 
end 

Step 5 (Evaluation) 
evaluate the moth position based on the objective function; 

Step 6 (Selection) 
compare the new moth position against flame; 
update best positions as flames for next iteration; 
Iteration = Iteration + 1; go to step 4; 

Step 7 (Stopping rule) 
stop function = false; 

If Current Iteration ≤Maximum Iteration, then  
go to step 4 
Elseif Current Iteration >Maximum Iteration, then  
Stop function toggle true; return; 
end 

end 
report best schedule and the Total Cost.  

5. Results and discussion 

This section discusses the results and data collected using the pro
posed metaheuristic algorithms, the optimal parameters through tuning 
and the comparison of the results obtained from the proposed meta
heuristic algorithms. The software used in this research are MATLAB 
R2018b and Minitab 15. The metaheuristic algorithms are coded in 
MATLAB R2018b. Meanwhile, Minitab is used for Design of Experiment 
and statistical analysis in this research. The PFSPs were solved using 
total cost as objective functions. A total of 36 problem instances are 
generated and solved. The datasets will be available on request and also 
available in public domain like ResearchGate. 

Since genetic algorithm (GA) is one of the metaheuristic algorithms 
which has a successful track record of solving complex scheduling 
problems (Abreu, Cunha, Prata, & Framinan, 2020; Ruiz et al., 2006). 
Therefore, to evaluate the performance of the proposed algorithms, 
proposed algorithms are compared with GA as well. GA starts with a set 
of random solutions and evolve by tournament selection, similar job 
order crossover, and shift mutation operators. The reason to select these 
operators is that they are successful in solving classical PFSPs. Note that, 
due to space constraints details of GA are not presented. In this section, 
the output of the proposed algorithms from parameter tuning and the 
experimental result of the proposed algorithms are discussed. 

5.1. Problem set generation 

As described in Section 1 and 2, authors study the PFSPs with batch 
delivery to the PFSP with batch delivery to multiple customers with 
SDST for the first time and there are no benchmark data sets available in 
the literature. Therefore, in this paper, three different groups of test 
problems, ranging from small, medium and large-sized problems are 
generated randomly to validate the effectiveness of the proposed algo
rithms. For each of the group, there is a total of 12 test problems sets 
produced for each size, with a total of36(= 12+12+12) problem in
stances were generated. For the small-sized problem, the product sizes, n 
has two levels: {20, 35} and machine sizes, m has two levels:{5,10}; As 
for medium-sized problems, the product sizes, n = {50,75} and machine 
sizes, m = {10,15}; Similarly, the product sizes, n = {100,125} and 
machine sizes, m = {15,20} are assigned for large-sized problems. With 
this assignment, the test problems can be increased by assigning 
different number of customers, f in the distribution stage ranging from 2 
to 4. To ensure there are no bias in the problem sets developed, it is 
important that the problem instances are generated randomly through 
multiple sets of constraints and different uniform distributions. Each 

time-related and cost-related parameter is generated using different 
uniform distributions and the range/constraints of uniform distributions 
for each of these parameters are discussed from Equation (31) to 
Equation (42). 

productsize ∈ [20, 125] (31)  

Numberofmachines,m ∈ [5, 20] (32)  

Numberofcustomer, f ∈ [2, 4] (33) 

Equation (34) to equation (41) define the constraints for the com
binations of problem set to be generated for small, medium and large 
sized problems. Equation (34) to equation (36) describes the range of 
value used for the generation of unit tardiness cost for each product, 
delivery time and delivery cost to each customer. Equation (37) and 
equation (38) describe the constraint on setup time for the first product 
for every machines and subsequent products respectively. Equation (39) 
shows the constraint of processing time for each product to be a uniform 
distribution between [1, 30], while the due date assigned for each 
product are also uniformly distributed between [LB, UB] as shown in 
Equation (40), Equation (41) and Equation (42). 

UnitTardinessCost, αij = Unif (1, 20) (34)  

DeliveryTime,DTi = Unif (5, 15) (35)  

DeliveryCost,DCib = Unif (1, 99) (36)  

Firstjobsetuptimeoneachmachines,Qπ1 j,k = Unif (1, 20), ∀k (37)  

SubsequentSetupTime, Sj,k = Unif (1, 20) (38)  

ProcessingTime,Pπjk = Unif (1, 30) (39)  

DueDate, dij = Unif (LBij,UBij) (40)  

LowerBoundary, LBij = max{Qπ1 jk +max
{

Sπjjhk
}
+max{Pπjk}+DTi,∀i

(41)  

UpperBoundary,UBij =
∑m

k=1
Qπ1 jk +

∑m

k=1
Sπjjhk +

∑m

k=1
Pπjk +DTi,∀i

(42)  

5.2. Performance metrics 

This section explains the methodology used to evaluate the perfor
mance of the single objective optimization algorithm. The most crucial 
part in this section is to establish a measurement for performance of the 
proposed algorithms through computational experiments, the obtained 
performance measurement for each algorithm is then compared with 
each other to identify the best performing algorithm. The methods used 
to measure the performance of single objective optimization are quite 
simple and straightforward. The performance metric known as relative 
percentage error (RPE) is calculated as shown in Equation (43). 

RPE =
|Methodsol − Bestsol|

|Bestsol|
× 100 (43)  

where Methodsol refers to the solution obtained by the method of the 
studied algorithms, and Bestsol indicates the best solution generated by 
all the considered algorithms. Equation (43) is considered to be reliable 
for small and moderate sized problem set. However, the inherent 
randomness of metaheuristic algorithms may result in different solu
tions for every run. Therefore, the best RPE (BRPE) and average RPE 
(ARPE) are implemented to study the upper bound and average of the 
result spread. The equation for BRPE and ARPE are presented in Equa
tion (44) and Equation (45) respectively. To utilize the BRPE and ARPE, 
the metaheuristic algorithms are run for ten times on the problems 
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generated to obtain the results of the run. Generally, RPE refers to the 
distance of variation of result obtain from the global best result. 
Therefore, it is desirable to obtain lower BRPE and ARPE value. 

BRPE =
|MethodBestsol − Bestsol|

|Bestsol|
× 100% (44)  

ARPE =
1
10

∑10

r=1

|Methodsol − Bestsol|

|Bestsol|
× 100% (45)  

5.3. Parameter tuning 

The purpose of parameter tuning is to identify the metaheuristic 
algorithm parameters to produce the most optimal results. The tuning 
process is very important because the quality of performance by the 
metaheuristic algorithm is very sensitive to the parameter used. The 
method proposed for the parameter tuning by Taguchi’s design of 
experiment (DOE) in order to reduce the number of experiments needed 
to obtain similar result. Taguchi design method details are not presented 
due to space constraints. However, they are available upon request and 
will be uploaded in platforms such as ResearchGate for readers’ benefit. 
To determine the appropriate parameters to be utilized through Taguchi 
design, the parameter tuning is done on a medium sized problem with 
the following details (75 products, 10 machines and 3 customers). Each 
parameter for each algorithm has four levels. Therefore, an L16 
orthogonal array was used to tune the parameters of the proposed al
gorithm. To ensure the reliability of the results, each run is repeated for 
10 times to obtain the Average Relative Percentage Error (ARPE), which 
is calculated by Equation (45). Fig. A1. to Fig. A3. (in Appendix) rep
resents the main effect plots of ARPE of the DE, MFO, and LFMF0 al
gorithm, respectively. To make the comparison fair, the parameters of 
GA are also tuned by Taguchi’s DOE and the results of the parameter 
tuning is presented in Fig. A4 (in appendix). 

Based on the Figs. A1, A2, and A3, the chosen parameter levels for 
each algorithm are shown in Table 3. From the chosen parameter set
tings, there is an obvious trend of maximizing population size and it
erations to reduce the ARPE. This is because the increased population 
size and iterations improved the chance of finding the optimal results 
with a trade-off of increased computation resources used. 

5.4. Experimental results 

This section discusses the results obtained from the experiments on 
problem instances generated with different sizing for single objective 
optimization with total cost as the objective function. All parameters 
used for the algorithms are based on the chosen parameters in Table 3. 
Each combination is repeated 25 times to ensure the reliability of the 
ARPE obtained by recording the average relative percentage error of the 
final results from the algorithms, while the BRPE observed from the best 
results obtain throughout the 25 repetition in this research. IBM CPLEX 
Optimization studio version 12.6.0.0 is used for solving the problems. It 
is observed that the solver was not able to generate optimal solutions for 
all the problems and only the first three small instances were solved by 
CPLEX. CPLEX returned an error message as ‘Search Space Exceeded’ for 
other instances in the small category. The proposed algorithms were 
able to achieve the optimal solution obtained by the CPLEX solver. 

To evaluate the performance of each of the algorithms, the ARPE and 
BRPE are recorded and the average for each algorithm in different sizes 
of problem instances are obtained. Subsequently, bar charts are con
structed to illustrate the average performance of each algorithm and its 
variants. Table A5, Table A6, and Table A7 (in appendix) presents the 
results obtained from the experiments conducted on small, medium, and 
large sized problem sets respectively. Based on the results obtained, 
average BRPE and ARPE values are plotted in Fig. 5, the average BRPE 
and ARPE indicates that Differential Evolution outperforms Moth Flame 
Optimization, Lévy-Flight Moth Flame Optimization and GA. The DE/ 
current-to-best/1 shows the best performance with 0.446 BRPE 
(average value of all the BRPEs), followed by DE/best/2 and DE/best/1. 
This indicates that these three variants of DE algorithms are able to 
achieve the closest to best found results and this is evident when 
comparing the average ARPE values of these algorithms. While both 
MFO and LFMFO indicates the least BRPE results with 0.989 and 1.096 
respectively. This is probably due to the mechanism of MFO and LFMFO 
which are more suited for position-based optimization problems. 
Furthermore, average value of both BRPE and ARPE shows that DE, 
MFO, and LFMFO algorithms outperforms GA as well. 

To validate the solutions, a lower bound (LB) is proposed, which is 
expressed with equation (46). In deriving the LB, we have made with the 
following assumptions, (1) all products for a customer f is delivered in 
single batch, i.e., each batch is formed only with the products from the 
same customer, and (2) the start time of the first job in each batch, b in 

Fig. A1. Main Effect Plot of ARPE for each parameter levels of DE algorithm.  
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the first machine for customer i , Hb is zero. (3) the products in for a 
customer (i.e., within the batch are sequenced based on their ascending 
order of due dates) Based on the assumptions, this bound could be 
different. However, a reasonable LB is proposed for comparing the re
sults. To further evaluate the performances of the proposed algorithms, 
we have proposed a simple lower bound (LB) which is expressed with 
equation (46). For evaluating the performance, the results obtained for 
the proposed algorithms are compared with respect to the LB by using 
equation (47) and (48). The results for small, medium, and large prob
lem instances are tabulated in Table A8, A9, and A10 respectively. Based 
on the comparison of the calculated average LBRPE and LARPE values, 
the variants of DE performed better than the other compared algorithms. 
Among the variants DE/current-to-best/1 is the best performer and this 
is consistent with the performance comparison previously discussed in 
this section. 

LB =
∑l

b=1

∑f

i=1

∑n

j=1
αij × max{0, yib × xπjb × (ATib − dij + Hib)}+

∑n

b=1

∑f

i=1
(yib

× DCib),whereQb

= 0
(46)  

LBRPE =
|MethodBestsol − LB|

LB
× 100% (47)  

LARPE =
1
25

∑10

r=1

|Methodsol − LB|
LB

× 100% (48) 

According to the trend of the cost as shown in Fig. 6, it is found that 
the convergence trends of differential evolution variants are very 

Fig. A2. Main Effect Plot of ARPE for parameter each levels of MFO algorithm.  

Fig. A3. Main Effect Plot of ARPE for each levels of LFMFO algorithm.  
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competitive and similar to each other, where there are no significant 
difference in the quality of solution found at the maximum iteration. On 
average, DE/best/1 has proven to reach the best-found result compared 
to the other variants at iteration = 143. Meanwhile, LFMFO is the worst 
performing algorithm in this research work. This is due to the random 
walk in Lévy flight function affecting the quality of solution by randomly 
changing the candidate solutions’ schedule or ‘moth position’, trading 
off the exploitation for the chance of improving the exploration of the 
original moth flame optimization. Similarly, the Moth Flame Optimi
zation is the second worst performing algorithm in the single objective 
optimization despite the steep average convergence rate before itera
tion = 50. This is because of original Moth Flame Optimization’s ten
dency to being entrapped into local best solution and the lack of 
sufficient exploration performed from the spiral motion of the candidate 
solutions or ‘moth’, as described in (Li et al., 2016; Sayed & Hassanien, 
2018). 

In order to have a better observation of the performance of algo
rithms and to ascertain that the difference among the algorithms is 
statistically significant, this research conducts the Friedman test. The 
statistical analysis is conducted on all the three dataset groups. Under 
each instance type, for each of the algorithms, relative ranks are 
calculated by considering the ARPE values. All relative ranks are 
addressed in the Table 4. As evident, DE/current to-best/1 performs 
better than other algorithms except for the medium datasets followed by 
DE/best/1 and DE/best 2. DE variants have performed better overall. 
MFO, LFMFO and GA are the poor performers among the tested algo
rithms for all dataset groups. Hence it can be claimed that performance 
of DE algorithms is highly competitive and consistent among the test 
datasets. 

5.5. Experimental result validation 

Since there are no standard benchmark data for solving the problem 
under study, authors have solved the proposed algorithms by realistic 
problem instances. Hence, it is important to validate the solutions 
generated by the proposed algorithms and GA. To do this, authors have 
validated the solutions generated by a lower bound (LB) (equation (46), 
47, and 48). For each problem instance, the value of the developed LB 
will remain unchanged, and therefore, provide a baseline for future 
comparisons. These values will be released publicly for future research. 

The deviation from LB for all the tested algorithms in small, medium, 
and large instances are summarized in Table A8, A9 and A10 (in ap
pendix). Moreover, for further validation, authors have utilized the IBM 
CPLEX Optimization solver and it was able find optimal solutions for the 
first three small instances, which was also same as the solutions achieved 
by some variants of the proposed DE algorithms. 

6. Case study 

In order to test the effectiveness of the proposed approaches in 
solving real-life problems, authors collected data and solved a produc
tion problem from a sanitaryware production system in Bangladesh. 
Fig. 7 shows the production flow diagram for the production system 
under study. As shown in the figure, the manufacturer receives the or
ders from the customers (i.e., MTO system) and the products are pro
cessed by 10 machines/stages (from jaw crasher to packaging) before 
they are transferred to the customers by trucks. All the products need 
setups in the molds, glazing lines, drying process in kilns, grinding and 
cleaning process during production. These setup times are sequence 
dependent. At the beginning of production, the production manager 
generates a schedule for the products to minimize the total cost of the 
supply chain. Therefore, scheduling decision is crucial for ensuring 
profitability of that production company. To demonstrate the effec
tiveness of the proposed algorithms, 50 production-5 customer problem 
has been experimented, and the results with best and average perfor
mances of the proposed algorithms are presented in Table A11. As seen 
from the table, the proposed algorithms show promising results in 
minimizing total costs of the supply chain. Moreover, different variants 
of DE performed better than MFO, LFMFO and GA, which is also 
consistent with the results obtained by solving the developed problem 
instances in Section 5. 

7. Conclusion and future research directions 

This research considers the PFSP with batch delivery to multiple 
customers in supply chain. From the literature review, it is clear that the 
problem has been scarcely addressed by the researchers. To the authors’ 
best knowledge, it is the first attempt to integrate production and dis
tribution decisions in a permutation flow shop while considering SDSTs. 
This is a complex industrial scheduling problem that needs an efficient 

Fig. A4. Main Effect Plot of ARPE for each levels of GA.  
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approach. The efficient approach should provide the best for the inte
grated production and distribution decisions to minimize the total costs 
in flow shop business. Hence, firstly, this paper develops a mathematical 
model to describe the problem. Secondly, three metaheuristic based 
algorithms have been proposed to address the problem, namely Differ
ential Evolution (DE) algorithm with the six (6) popular mutation op
erators, Moth Flame Optimization (MFO) and Lévy Flight Moth Flame 
Optimization (LFMFO). 

Experimental investigations suggest that DE algorithm variants 
outperform MFO and its relatively new hybrid LFMFO, this is apparent 
when the product size varies from small to medium sized. This is most 
likely due to the spiral motion of the candidate solution known as the 
‘moth position’ in Moth Flame Optimization which means there are less 
exploration and exploitation potential as the iteration approaches the 
maximum iteration. Furthermore, although the Lévy Flight Function 
allows LFMO algorithm to maintain its exploration capability, the 
diminishing spiral motion of the ‘moth position’ does not allow suffi
cient exploitation in a multimodal environment such as PFSPs. However, 
this can be mitigated by increasing the population size of moth in MFO 
and LFMFO. 

For the managerial implications, the developed model and algo
rithms can be employed by the production managers to improve the 
efficiency of production, reduce the cost of distribution, and therefore, it 
makes the manufacturers competitive. The developed algorithms will 
also help the managers obtain satisfying schedule within a reasonable 
computational time. Therefore, it can act as an essential decision- 
making tool for the managers. In future work, the study can be 
expanded to investigate the inclusion of other realistic settings, e.g., 
buffer capacity constraints, labor costs, process interruptions, inventory 
costs and shortage of material supply to further simulate the real 
manufacturing circumstances. Furthermore, since the energy con
sumption is also an important aspect in decision making, the proposed 
approaches could be implemented to further expand to the research on 
this topic. This will enable the wider application of multi-objective 
optimization algorithms to assist decision making in the 
manufacturing industry. 

Appendix A 

See Figs. A1-A4. 
See Tables A1-A11. 
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