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A B S T R A C T   

In this paper, we propose a new multi-objective optimization approach for the pharmaceutical supply chain 
network (PSCN) design problem to minimize the total cost and the delivery time of pharmaceutical products to 
the hospital and pharmacy, while maximizing the reliability of the transportation system. A new mixed-integer 
non-linear programming model was developed for the production-allocation-distribution-inventory-ordering- 
routing problem. Three new heuristics (H-1), (H-2), and (H-3) have been proposed and to validate the model, 
two new meta-heuristic algorithms, namely, an Improved Social Engineering Optimization (ISEO) and Hybrid 
Firefly and Simulated Annealing Algorithm (HFFA-SA) have been developed. The proposed mathematical model 
has been evaluated through extensive simulation experiments by analyzing different criteria. The results show 
that the proposed model along with the solution method provides a reliable and powerful instrument to solve the 
PSCN design problem.   

1. Introduction 

The supply chain is a complex system of linked segments like mul-
tiple suppliers, manufacturer, and retailer that can involve other chains. 
This makes supply chains more vulnerable to encounter several distur-
bances that may affect negatively the performance of the companies in 
the whole chain (Rivera, Afsar, & Prins, 2015; Bekdaş, 2015; Naderi, 
Govindan, & Soleimani, 2019). Furthermore, today’s supply chain is 
progressively complicated, and the competitive advantage of companies 
not only depend on producing products with lower costs, higher quality, 
and higher service level but also on their ability to survive unexpected 
disruptions, i.e. they should be resilient (Chung, 2013; Lücker and Sei-
fert, 2017; Genovese, Acquaye, Figueroa, & Koh, 2017; Nematollahi, 
Hosseini-Motlagh, Ignatius, Goh, & Nia, 2018; Aguayo, Sarin, & Cundiff, 
2019). 

In recent years, research in pharmaceutical supply chains has gained 
considerable momentum with the rise of several deadly diseases/viruses 
such as COVID-19, Ebola, SARS, and Bird Flu (Shirazi, Kia, & Ghasemi, 

2020). The pharmaceutical supply chain has features that distinguish it 
from other supply chains (Ghasemi & Khalili-Damghani, 2020). Medi-
cine is considered a strategic commodity. A commodity that is linked to 
the health of the people and society and the smallest disruption to its 
supply chain can cause severe crisis (Ghasemi, Khalili-Damghani, 
Hafezalkotob, & Raissi, 2019). Therefore, supplying and distributing 
medicines in the right amount, at a reasonable time and in the right 
place are among the most significant considerations when managing this 
chain. In this scenario vehicle’s reliability for the transportation of 
pharmaceutical products becomes very important. Pharmaceutical 
items are hence vital for the successful functioning of any health care 
system (e.g. hospitals), are of high priority and any risk can affect the 
entire pharmaceutical supply chain instantaneously (Xian, Qiu, & 
Zhang, 2013; Yeganeh & Zegordi, 2019). This problem can not only 
waste resources but can also jeopardize patients’ lives due to lack of 
access to pharmaceutical products (Genovese et al., 2017; Sabouhi, 
Pishvaee, & Jabalameli, 2018; Hooker, 2019; De Carvalho Bento, Bitar, 
da Cruz Neto, Soubeyran, & de Oliveira Souza, 2020). 
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The World Health Organization (WHO) describes a medicine or 
pharmaceutical preparation as: “any substance or mixture of substances 
manufactured, sold, suggested for sale or represented for use in the 
diagnosis, treatment, mitigation or prevention of disease, abnormal 
physical state or the symptoms thereof in man or animal; [and utilize in] 
restoring, correcting or modifying organic functions in man or animal” 
(Kickbusch, 2003). Access to medicine is also one of the important 
human rights that must be the central objective of any healthcare sys-
tems (Recioui, 2012; Escudero, Garín, Pizarro, & Unzueta, 2018; Moons, 
Waeyenbergh, & Pintelon, 2019). 

Several researchers have proposed various models and heuristics to 
solve the pharmaceutical supply chain problems. Sousa, Shah, and 
Papageorgiou (2005) designed an allocation-distribution problem in the 
supply chain network for pharmaceuticals by considering the maxi-
mizing of profit in the network. Accordingly, they formulated a mixed- 
integer linear programming (MILP) model and used metaheuristic al-
gorithms to solve the model. Susarla and Karimi (2012) suggested in-
tegrated planning in multi-site and multi-echelon pharmaceutical 
supply chain networks by considering procurement, production, and 
distribution problems. Whereas Firoozi et al. (2014) extended an inte-
grated network design for storage, inventory, facility location, and dis-
tribution problem of perishable products by considering medical and 
pharmaceutical items. They formulated a MINLP mathematical model 
and developed a memetic algorithm to solve the problem. Mousazadeh, 
Torabi, and Zahiri (2015) proposed a bi-objective MILP for a PSCN 
problem by considering two objective functions; minimizing the total 
cost and minimizing the unmet demand. Hansen and Grunow (2015) 
designed a MILP mathematical model in the pharmaceutical supply 
chain network. Haji Abbas and Hosseininezhad (2016) developed a 
multi-period location-allocation problem in the pharmaceutical supply 

chain. They considered two objective functions; the minimization of 
total cost and maximization of customer satisfaction. Zahiri, Zhuang, 
and Mohammadi (2017) proposed a new resilient-sustainable model for 
pharmaceutical network design. They proposed a novel hybrid meta- 
heuristic algorithm to solve the model. Zandieh, Janatyan, Alem- 
Tabriz, and Rabieh (2018) designed a multi-objective distribution 
network in the pharmaceutical supply chain network. Consequently, the 
NSGA-II algorithm with the Pareto-optimal front for the model has been 
used to solve the model. Bijaghini and SeyedHosseini (2018) developed 
a novel bi-level production-routing-inventory model for a medicine 
supply chain network and used the Benders Decomposition algorithm to 
solve the model. Dai, Aqlan, Zheng, and Gao (2018) extended a location 
and inventory supply chain network model by utilizing two heuristic 
approaches for perishable products. Whereas, Gharaei and Jolai (2018) 
proposed a multi-agent method to integrate the production-scheduling- 
distribution problem in a supply chain network. They also formulated a 
Mixed Integer Programming (MIP) problem and applied a hybrid multi- 
objective evolutionary algorithm to attain Pareto solutions. Recently, 
Zahiri, Torabi, Mohammadi, and Aghabegloo (2018) extended a multi- 
stage stochastic programming method for blood supply chain plan-
ning. They proposed a new hybrid multi-objective self-adaptive differ-
ential evolution algorithm to solve the problem. In another study, Zahiri, 
Jula, and Tavakkoli-Moghaddam (2018) developed a novel analytical 
model for bi-objective pharmaceutical supply chain network design 
including minimizing the total cost and maximum unmet demand. Zhu 
and Ursavas (2018) proposed a location and routing problem with time 
windows and direct delivery in the pharmaceutical industry. Savad-
koohi, Mousazadeh, and Torabi (2018) designed a three-echelon phar-
maceutical distribution network via a novel location-inventory model 
considering the perishability feature of pharmaceutical items. The goal 

Table 1 
The summary of the literature review.  

Reference Number of periods Type of the objectives   Solution methods Type of the 
model 

Single 
period 

Multi- 
period 

Cost Delivery 
time 

Reliability Profit Unmet 
demand 

Exact Meta- 
heuristic 

Heuristic MILP/ 
MINLP/ILP 
and … 

Sousa et al. (2005) * – – – – * – – * – MILP 
Susarla and Karimi 

(2012) 
* – * – – – – – – – MILP 

Firoozi et al. (2014) * – * – – – – – Memetic – MINLP 
Mousazadeh et al. (2015) * – * – – – * * – – MILP 
Hansen and Grunow 

(2015) 
* – – * *   * – – MILP 

Haji Abbas and 
Hosseininezhad (2016) 

* – * – – – – * – – MINLP 

Zahiri et al. (2017) – * * – – – – – DVG, NSGA- 
II, MOICA 

– MILP 

Zandieh et al. (2018) * – * – – – * – NSGA-II – MILP 
Bijaghini and 

SeyedHosseini (2018) 
* – – * – – – * – – MILP 

Dai et al. (2018) * – * – – – – – HHS, HGA – MINLP 
Gharaei and Jolai (2018) * – * – – – – – EA – MILP 
Zahiri, Torabi, et al. 

(2018) 
* – * – – – * – NSGA-II, 

MOICA 
– MILP 

Zahiri, Jula et al. (2018) * – * – – – * * – – MILP 
Zhu and Ursavas (2018) * – * – – – – * – – MILP 
Savadkoohi et al. (2018) – * * – – – – * – – MILP 
Singh and Goh (2019) * – * – – – – * – – MILP 
Tirkolaee, Mardani et al. 

(2020) 
– * * – * – – * – – MILP 

Tirkolaee, Goli et al. 
(2020) 

* – * – * – – – MOSA, 
NSGA-II 

– MILP 

Zandkarimkhani et al. 
(2020) 

* – * – * – – * – – MILP 

Akbarpour et al., 2020)) – * * – – – * * – – MILP 
Franco and Alfonso- 

Lizarazo (2020) 
– * * – – – – * – – MILP 

Our study – * * * * – – Epsilon- 
constraint 

ISEO, HFFA- 
SA 

H-1, H-2, 
H-3 

MINLP  
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of the model is to minimize the total cost of the network. More recently, 
Singh and Goh (2019) proposed a multi-objective mixed integer linear 
programming in a pharmaceutical supply chain. Whereas Tirkolaee, 
Mardani, Dashtian, Soltani, and Weber (2020) presented a novel hybrid 
method utilizing fuzzy decision making and multi-objective program-
ming for sustainable-reliable supplied selection in a two-level supply 
chain network. The goals were minimization of the total cost, maximi-
zation of the weighted value and reliability. To deal with multi- 
objectiveness, they used the weighted goal programming method. In 
another study, Tirkolaee, Goli, Faridnia, Soltani, and Weber (2020) 
developed a new bi-objective MILP model for the reliable pollution- 
routing problem with Cross-Dock Selection utilizing Pareto-based al-
gorithms. The first objective was to minimize total cost and the second 
was to maximize supply reliability. The multi-objective simulated- 
annealing (MOSA) algorithm and NSGA-II are used to find Pareto solu-
tions. Zandkarimkhani, Mina, Biuki, and Govindan (2020) used a 
chance-constrained fuzzy goal programming method for perishable 
PSCN design. Also, a bi-objective MILP model was designed, where the 
objectives of the model are to minimize the total cost and demand 
amount. Akbarpour, Torabi, and Ghavamifar (2020) designed a bi- 
objective integrated pharmaceutical relief chain network under drug’s 
perishability. A cooperative coverage mechanism for moving mobile 
pharmacies at post-disaster was used. Franco and Alfonso-Lizarazo 
(2020) developed a simulation-optimization method according to the 
stochastic counterpart in PSCN. Two MILP models are formulated based 
on this method. In this regard, the classification of the PSCN studies is 
given in Table 1. 

Recent general discussion (see Shah, 2004; Rossetti, Handfield, & 
Dooley, 2011; Uthayakumar & Priyan, 2013; Narayana, Pati, & Vrat, 
2014; Meiler, Tonke, Grunow, & Günther, 2015; Settanni, Harrington, & 
Srai, 2017; Sbai & Berrado, 2018) on PSCNs show that supply chain 
network research remains far from sufficient to address the needs and 
challenges of the pharmaceutical industry. Moreover, in the statement 
above, none of the above-mentioned papers considers reliability and 
multi-modal transportation contained in the production-allocation- 
distribution-inventory-ordering-routing problem of PSCNs. More 
importantly, a PSCN design including the integration of allocation, 
production, distribution, routing, inventory, and ordering problems has 
not been addressed properly. Furthermore, an objective function is 
defined to minimize the total cost, two other objective functions are 
stated to minimize the delivery time of pharmaceutical products and to 
maximize the reliability of transportation systems and routes between 
the network. To address the research gaps, this paper presents a PSCN by 

considering multi-modal transportation, multi-products, multi-period, 
the reliability of the transportation system and routes between network, 
and delivery on time of pharmaceutical products. A three objective 
MINLP model for PSCN is formulated. 

Accordingly, two novel Improved Social Engineering Optimization 
(ISEO) and Hybrid Firefly and Simulated Annealing (HFFA-SA) algo-
rithms are extended to efficiently solve the proposed large-sized prob-
lems. This has not been attempted in the existing studies so far. Then, 
three heuristics (H-1), (H-2), (H-3) approaches, and the ISEO, HFFA-SA 
algorithms were used to solve the proposed problem is developed. The 
main contributions of this work to the knowledge domain is shown by 
the following aspects:  

• Designing a novel multi-period, multi-echelon, and multi-product 
PSCN with multi-modal transportation considering reliability,  

• Formulating a new multi-objective MINLP model in the PSCN,  
• Considering the reliability of the proposed network,  
• Developing three fast heuristic approaches (H-1), (H-2), and (H-3) 

based on linear relaxation for the first time in this paper,  
• Developing two novel ISEO and HFFA-SA algorithms to find Pareto 

solutions in the PSCN problem, 
• Demonstrating the effectiveness and efficiency of developed ap-

proaches through different criteria and analyses,  
• Validation of the performance of the developed model by some 

sensitivity analyses. 

The paper is organized as follows. Section 2 describes the problem as 
well as the mathematical formulation. Section 3 explains the solution 
methodology. The computational results, making a balance among total 
cost, delivery time, and reliability, and numerical examples are 
demonstrated in Section 4. Finally, Section 5 concludes the paper with 
an implication to future studies as well as discusses the managerial 
implication of the outcomes. 

2. Problem description 

This section describes the proposed model. A four-level, multi- 
product, and multi-period PSCN including internal and foreign pro-
ducer, warehouse, and customer zones (central pharmacy, hospital and 
local pharmacy) based on Fig. 1 are designed. Furthermore, production 
centres are divided into two categories: internal and foreign producers. 
The foreign producer is considered due to the pharmaceutical product 
shortages by the internal producer. Pharmaceutical products are 

Fig. 1. The general scheme of PSCN.  
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transmitted from the internal and foreign producers to the warehouses 
and customers and from warehouses to customers based on specified 
demands and orders using different vehicles. Then, pharmaceutical 
products are delivered from internal and foreign producers to the 
warehouses and customers and from warehouses to customers on 
defined routes and at different periods. These pharmaceutical products 
are delivered through air or land transportation means. Re-order of 
pharmaceutical products in the customer demands from warehouses, 
and warehouse and customer demand from internal and foreign pro-
ducers are allowed. However, customers are prioritized based on phar-
maceutical products’ re-order costs. Further, the transportation cost is 
considered variable and multi-modal transportation systems as aerial 
and terrestrial are recognized. On the other hand, to save on the delivery 
cost, the delivery of pharmaceutical products is considered batch de-
livery. In this regard, travel times from internal and foreign producers to 
warehouses and customers, and from warehouses to customers on the 
different routes are assumed. At the customers level (central pharmacy, 
hospital and local pharmacy), the preparation and packing costs are 
considered. After that, the maximum amount of required pharmaceu-
tical products is considered in the internal and foreign producers, 
warehouses, and customers. 

2.1. Assumptions 

Assumptions for modelling the problem are as follow:  

• Each vehicle can traverse a maximum of one route per period.  
• Each customer can receive more than one vehicle of pharmaceutical 

products at any time. This means that the transportation system for 
each customer can be divided into two or more vehicles for each 
customer.  

• Customer’s demand for pharmaceutical products from warehouses 
and warehouse’s demand from internal and foreign producers are 
allocated during the planning horizon.  

• Only vehicles allocated to the customer, warehouse, and internal and 
foreign producers at that time can deliver pharmaceutical products 
to customers and warehouses at each time period are dedicated.  

• Each customer and warehouse have various capacities with the 
corresponding cost. If it is open can employ only one capacity level.  

• There is no route between internal and foreign producers and 
customers. 

• Pharmaceutical products are transferred through the air trans-
portation system if there is an airport at those levels of the network, 
otherwise, it will be transmitted through the land transportation 
system. Moreover, product delivery from foreign producers will only 
be possible through the air transportation system.  

• If each unit faces the late delivery of pharmaceutical products in each 
period must pay the penalty cost. 

2.2. Notations 

Indices  

m  Index for the internal and foreign 
producer (m1 ∪ m2 = M)

v  Index for vehicle type (airplane and 
truck) (v1 ∪ v2 = V)

t  Index for time period c  Index for customers (central 
pharmacy, hospital and local 
pharmacy) 

w  Index for warehouse r  Index for routes (rmw, rwc, rmc)  
p′ Index for pharmaceutical product    

Parameters  

αt
wp′ Inventory holding cost at the warehouse w for the product p′ at the period t  

αt
mp′ Inventory holding cost at internal/foreign producer m for the product p′ at 

the period t  

(continued on next column)  

(continued ) 

αt
cp′ Inventory holding cost at the central pharmacy c for the product p′ at the 

period t  
δt

m  Fixed cost for an internal and foreign producer m  
δt

w  Fixed cost for warehouse w  
βt

wmp′ Order cost by the warehouse w to the internal/foreign producer m for the 
product p′ at the period t  

βt
cmp′ Order cost by the central pharmacy c to the internal/foreign producer m for 

the product p′ at the period t  
βt

cwp′ Order cost by the central pharmacy c to the warehouse w for the product p′

at the period t  
Pt

p′ Penalty cost for the wasted product p′ at the period t  
Ct

p′ Penalty cost for the late delivery product p′ at the period t  
ψ t

p′ m  Production cost to produce the product p′ at the internal/foreign producer 
m at the period t  

ϕt rmw
p′ mwv  Transportation cost for the product p′ from internal/foreign producer m to 

the warehouse w using truck/airplane v on the route at the period t  
ϕt rmc

p′ mcv  Transportation cost for the product p′ from internal/foreign producer m to 
the customer using truck/ airplane v on the route rmc at the period t  

ϕt rwc
p′ wcv  Transportation cost for the product p′ from warehouse w to the customer c 

using truck/airplane on the route rwc at the period t  
Lt

p′ Tariff cost of product p′ in the airport at the period t  
Bt

p′ m  Back-order cost for the product p′ at internal/foreign producer m at the 
period t  

Dt
wmp′ Delivery cost by the warehouse w to the internal/foreign producer m for the 

product p′ at the period t  
Dt

cmp′ Delivery cost by the customer c to internal/foreign producer m for the 
product p′ at the period t  

Dt
cwp′ Delivery cost by the customer to the warehouse w for the product p′ at the 

period t  
Et

c  Establishing and packing cost of the customer at the period t  
Kt

p′ w  Keeping the cost of product p′ in the warehouse w at the period t  
θt

p′ wm  Purchase cost of the product p′ by warehouse w from the internal/foreign 
producer m at the period t  

θt
p′ cm  Purchase cost of the product p′ by the customer from the internal/ foreign 

producer m at the period t  
θt

p′ cw  Purchase cost of the product p′ by the customer c from the warehouse w at 
the period t  

μmwrmw  
Travel time from internal/foreign producer m to the warehouse w on route 
rmw  

μmcrmc  
Travel time from internal/foreign producer m to the customer on the route 
rmc  

μwcrwc  
Travel time from warehouse w to the customer c on the route rwc  

D  Fixed-rate of demand for the order of product p′

dmw  Distance from internal/foreign producer m to warehouse w  
dmc  Distance from internal/foreign producer m to customer c  
dwc  Distance from the warehouse w to the customer c  
Ip′ Intact rate of product p′

R  Reliability rate of vehicles per kilometer 
ωw  Capacity of warehouse w  
ωc  Capacity of customer c  
ωv  Capacity of truck /airplane v  
∂t

p′ wm  Product p′ demand required by warehouse w from the internal/foreign 
producer m at the period t  

∂t
p′ cm  Product p′ demand required by customer c from the internal/foreign 

producer m at the period t  
∂t

p′ cw  Product p′ demand required by customer c from the warehouse w at the 
period t  

Inittwp′ Initial inventory of product p′ in the warehouse w  
Inittcp′ Initial inventory of product p′ in the customer c  
Dmax  Maximum desired number of customer 
Mmax  Maximum desired number of internal/foreign producer 
Wmax  Maximum desired number of warehouse 
BigM  A huge number 
Bp′ The volume of one unit of product p′

Decision variables  

Qtrmw
p′ mw  Quantity of product p′ delivered from internal/foreign producer m to 

warehouse w on the route rmw at the period t  
Qtrmc

p′ mc  

(continued on next page) 
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(continued ) 

Quantity of product p′ delivered from internal producer/foreign m to the 
customer con the route rmc at the period t  

Qtrwc
p′ wc  Quantity of product p′ delivered from warehouse w to customer on the 

route rwc at the period t  
St

p′ w  Inventory quantity of the product p′ in the warehouse w at the period t  
St

p′ m  Inventory quantity of the product p′ in the internal/foreign producer m at 
the period t  

St
p′ c  Inventory quantity of the product p′ in the customer c at the period t  

St
p′ w  Inventory level of product p′ in the warehouse w at the period t  

St
p′ c  Inventory level of the pharmaceutical product p′ in the customer c at the 

period t  
BOQt

p′ m  Back-order quantity of the product p′ in internal/foreign producer at the 
end of the period t  

Xt
p′ mw  Quantity of product p′ ordered from internal/foreign producer m by the 

warehouse w at the period t  
Xt

p′ mc  Quantity of product p′ ordered from internal/foreign producer m by the 
customer c at the period t  

Yt
p′ wc  Quantity of product p′ ordered from the warehouse w by the customer c at 

the period t  
Wt

p′ c  The amount of waste from the product p′ at the customer c at the end of the 
period t  

Ut
p′ c  The amount of late delivery from the product p′ at the customer c at the 

first of the period t  
Up′ v  The amount of product p′ transported by airplane v  
λt

p′ m  Production quantity of product p′ at the internal/foreign producer m at the 
period t  

Ztrmw
p′ mwv  Shipping quantity of product p′ from internal producer m to warehouse w 

using truck/airplane v on the route rmw at the period t  
Ztrmc

p′ mcv  Shipping quantity of product p′ from internal/foreign producer m to the 
customer c using truck/airplane v on the route rmc at the period t  

Ztrwc
p′ wcv  Shipping quantity of product p′ from warehouse w to the customer c using 

truck/ airplane v on the route rwc at the period t  
Nt

p′ wm  Purchasing quantity of a product p′ by warehouse w from internal/foreign 
producer m at the period t  

Nt
p′ cm  Purchasing quantity of a product p′ by the customer c from internal/ 

foreign producer m at the period t  
Nt

p′ cw  Purchasing quantity of a product p′ by the customer c from the warehouse 
w at the period t  

Ap′ mw  Delivery time of products p′ from internal/foreign producer m to the 
warehouse w  

Ap′ mc  Delivery time of products p′ from internal/foreign producer m to the 
customer c  

Ap′ wc  Delivery time of products p′ from warehouse w to the customer c  
ϑt

p′ w  Quantity of excess demand for the product p′ in the warehouse w at the 
period t  

ϑ’t
p’w  Quantity of excess supply for the product p′ at the warehouse w at the 

period t  
σt

p′ c  Quantity of excess supply for the product p′ in the customer cat the period t  

σ’t
p’c  Quantity of excess demand for the product p′ in the customer c at the 

period t  
gt

v  A binary variable, equal 1 if truck/airplane v traverses from one level to 
another level in the network at the period t; 0 otherwise  

Fm  A binary variable, equal 1 if internal/foreign producer m is opened; 
0 otherwise  

Fw  A binary variable, equal 1 if the warehouse w is opened; 0 otherwise  
Fc  A binary variable, equal 1 if the customer c is opened; 0 otherwise  
Ot

wcrwc  
A binary variable, equal 1 if the warehouse w is assigned to the customer c 
on the route rwc at the period t; 0 otherwise  

Ot
mwrmw  

A binary variable, equal 1 if internal/foreign producer m is assigned to the 
warehouse w on the route rmw at the period t; 0 otherwise  

Ot
mcrmc  

A binary variable, equal 1 if internal/foreign producer m is assigned to the 
customer c on the route rmc at period t; 0 otherwise  

∇t
vrmw  

A binary variable, equal 1 if vehicle v is used on the route rmw at period t; 
0 otherwise  

∇t
vrmc  

A binary variable, equal 1 if vehicle v is used on the route rmc at period t; 
0 otherwise  

∇t
vrwc  

A binary variable, equal 1 if vehicle v is used on the route rwc at period t; 
0 otherwise   

2.3. Proposed mathematical model 

Min F1 =
∑

t

{
∑

p′

∑

w
αt

wp′ × St
p′ w +

∑

p′

∑

m1
αt

mp′ × St
p′ m +

∑

p′

∑

m2
αt

mp′ × St
p′ m 

+
∑

p′

∑

c
αt

cp′ × St
p′ c

}

+ D
∑

p′

∑

t

{
∑

w

∑

m1

βt
wmp′

Xt
p′ mw

+
∑

w

∑

m2

βt
wmp′

Xt
p′ mw

+
∑

c

∑

m1

βt
cmp′

Xt
p′ mc

+
∑

c

∑

m2

βt
cmp′

Xt
p′ mc

+
∑

c

∑

w

βt
cwp′

Yt
p′ wc

}

+

{
∑

p′

∑

c

∑

t

[(
Pt

p′ × Wt
p′ c

)
+
(

Ct
p′ × Ut

p′ c

) ]
}

+

{
∑

p′

[(
∑

t
Lt

p′ ×
∑

v
Up′ v

)]}

+

{
∑

p′

∑

t

[(
∑

m1

(
ψt

p′ m

× λt
p′ m

)
)

+

(
∑

m2

(
ψt

p′ m × λt
p′ m

)
)]}

+ {
∑

v

∑

p′

∑

t
[

(
∑

m1

∑

w
dmw

(
ψtrmw

p′ mwv × Ztrmw
p′ mwv

)
+ (φtrmw

p′ mwv

× Z
′ trmw
p′ mwv

)

)

+

(
∑

m2

∑

w
dnw(φtrmw

p′ mwv
× Z

′ trmw
p′ mwv

)

)

+

(
∑

m1

∑

c
dmc

(
ψtrmc

p′ mcv
× Ztrmc

p′ mcv

)
+ (φtrmc

p′ mcv
× Z

′ trmc
p′ mcv

)

)

+

(
∑

m2

∑

c
dmc(φtrmc

p′ mcv × Z
′ trmc
p′ mcv)

)

+

(
∑

w

∑

c
dwc

(
ψtrwc

p′ wcv

× Ztrmc
p′ mcv

)
+ (φtrwc

p′ wcv × Z
′ trwc
p′ wcv)

)

]} + {
∑

p′

∑

t

[(
∑

m1
(Bt

p′ m

× BOQt
p′ m)

)

+

(
∑

m2
(Bt

p′ m × BOQt
p′ m)

)]}

+ {
∑

c

∑

t
(Fc

× Et
c)} + {

∑

p′

∑

w

∑

t
(Fw × Kt

p′ w)} + {
∑

m1
(δm × Fm)

+
∑

m2
(δm × Fm) +

∑

w
(δw × Fw)} + {

∑

p′

∑

t
[

(
∑

w

∑

m1
(θt

p′ wm

× Nt
p′ wm)

)

+

(
∑

w

∑

m2
(θt

p′ wm × Nt
p′ wm)

)

+

(
∑

c

∑

m1
(θt

p′ cm

× Nt
p′ cm)

)

+

(
∑

c

∑

m2
(θt

p′ cm × Nt
p′ cm)

)

+

(
∑

c

∑

w
(θt

p′ cw

× Nt
p′ cw)

)

]} + {
∑

p′

∑

t
[

(
∑

w

∑

m1

∑

rmw

(Dt
wmp′ × Qtrmw

p′ mw
)

)

+

(
∑

w

∑

m2

∑

rmw

(Dt
wmp′ × Qtrmw

p′ mw)

)

+

(
∑

c

∑

m2

∑

rmc

(Dt
cmp′

× Qtrmc
p′ mc)

)

+

(
∑

c

∑

w

∑

rwc

(Dt
cwp′ × Qtrwc

p′ wc)

)

+

(
∑

c

∑

m1

∑

rmc

(Dt
cmp′ × Qtrmc

p′ mc
)

)

]}

(1) 

The first objective function (1) is the minimization of the total costs 
in the PSCN consisting of inventory holding, ordering, penalty, tariff, 
production, transportation, re-ordering, distribution, warehouse, fixed, 
purchasing, and delivery costs. 

In the first bracket, inventory costs of pharmaceutical products are 
considered at the internal and foreign producer, warehouse and 
customer. In the second bracket, the costs are based on orders and de-
mands for products from customers and warehouses to internal and 
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foreign producers and from customers to warehouses, which must be 
paid. In the third bracket, the penalty cost for delaying delivery and 
deterioration of pharmaceutical products is considered. In the fourth 
bracket, a tariff cost should be indicated for carrying pharmaceutical 
products between the levels of the network employed by the air trans-
portation system and delivered to the airport tariff office. In the fifth 
bracket, the production cost for pharmaceutical products in internal and 
foreign producers is considered. In the sixth bracket, at different period 
times and different transport systems (air and land), the cost of sending 
pharmaceutical products between different routes in the network is 
considered variable. In the seventh bracket, we will re-order products 
from internal and foreign producers at the end of the period. In the 
eighth bracket, the preparing and packaging cost of pharmaceutical 
products in customers is considered. In the ninth bracket, there is a fixed 
cost for the opening of internal and foreign producers and warehouses. 
In the tenth bracket, the purchase of pharmaceutical products by cus-
tomers and warehouses from internal and foreign producers and by 
customers from warehouses are carried out. In the eleventh bracket, it 
shows the fixed cost of delivery of products based on the delivery time 
between the levels of the network. 

Min F2 =
∑

p′

∑

t
[

(
∑

m1

∑

w

∑

rmw

(
Qtrmw

p′ mw
× Ap′ mw

)
)

+

(
∑

m2

∑

w

∑

rnw

(
Qtrmw

p′ mw × Ap′ mw

)
)(
∑

m1

∑

c

∑

rmc

(
Qtrmc

p′ mc × Ap′ mc

)
)

+

(
∑

m2

∑

c

∑

rnc

(
Qtrmc

p′ mc
× Ap′ mc

)
)

+

(
∑

w

∑

c

∑

rwc

(
Qtrwc

p′ wc
× Ap′ wc

)
)

(2) 

The second objective function (2) investigates to minimize the de-
livery time of pharmaceutical products from internal and foreign pro-
ducers to warehouses and customers, from warehouses to customers. 

Max F3 = R
∑

v

∑

t

(
∑

rmw

∇t
vrmw

+
∑

rmc

∇t
vrmc

+
∑

rwc

∇t
vrwc

)

(3) 

The third objective function (3) seeks to maximize the reliability of 
the transportation system of pharmaceutical vehicles that travel from 
internal and foreign producers to warehouses and customers and from 
warehouses to customers. 
(
∑

p′

∑

m1

∑

rmw

Qtrmw
p′ mw

Bp′ +
∑

p′

∑

m2

∑

rnw

Qtrmw
p′ mw

Bp′

)

⩽ωw . Fw ∀w, t (4)  

∑

p′

∑

w

∑

rwc

Qtrwc
p′ wc

⋅Bp′ ⩽ωc⋅Fc ∀c, t (5)  

∑

p′
Bp′ × Ztrmw

p′ mwv⩽ ωv . gt
v ∀m, rmw,w, v, t (6)  

∑

p′
Bp′ × Ztrmw

p′ mwv⩽ ωv . gt
v ∀m, rmw,w, v, t (7)  

∑

p′
Bp′ × Ztrwc

p′ wcv⩽ ωv . gt
v ∀w, rwc, v, c, t (8) 

Constraints (4)–(8) investigate the capacity of the warehouse, 
customer, and vehicle in each period, respectively. 
∑

rwc

Ot
wcrwc

⩽1 ∀w, c, t (9)  

∑

rmw

Ot
mwrmw

⩽1 ∀m1,w, t (10)  

∑

rmw

Ot
mwrmw

⩽1 ∀m2,w, t (11)  

∑

rmc

Ot
mcrmc

⩽1 ∀m1, c, t (12)  

∑

rmc

Ot
mcrmc

⩽1 ∀m2, c, t (13) 

Constraints (9)–(13) display an allocated route between each ware-
house and customer, each internal producer and warehouse, each 
foreign producer and warehouse, each internal producer and customer, 
each foreign producer and customer, and each warehouse and customer. 
∑

c

∑

rwc

Ot
wcrwc

⩽1 ∀w, t (14) 

Constraint (14) ensures that a warehouse is allocated to only one 
customer. 

∂t
p′ wm =

∑

rmw

Qtrmw
p′ mw ∀t, p′

,m1,w (15)  

∂t
p′ wm =

∑

rmw

Qtrmw
p′ mw

∀t, p′

,m2,w (16)  

∂t
p′ cm =

∑

rmc

Qtrmc
p′ mc ∀t, p′

,m2, c (17)  

∂t
p′ cw =

∑

rwc

Qtrwc
p′ wc ∀t, p′

,w, c (18)  

∂t
p′ cm =

∑

rmc

Qtrmc
p′ mc

∀t, p′

,m1, c (19) 

Constraints (15)–(19) determine the number of pharmaceutical 
products delivered from the internal and the foreign producer to the 
customer and the warehouse and from the warehouse to the customer. 
∑

w
(Yt

p’wc × Ip’ + ϑt
p’w − ϑ’ t

p’w) = ∂t
p’cw∀t, p’, c (20) 

Constraint (20) indicates balance constraint for warehouse and 
customer. 

St− 1
p′ w +

∑

v1

∑

rmw

Ztrmw
p′ mwv

=
∑

v

∑

c
∂t

p′ cw + St
p′ w ∀w,m, p′

, t (21)  

St− 1
p′ w +

∑

v2

∑

rmw

Ztrmw
p′ mwv =

∑

v

∑

c
∂t

p′ cw + St
p′ w ∀w,m, p

′

, t (22) 

Constraints (21) and (22) show inventory balance constraints in the 
warehouse. 

Sp′ w = Initp′ w ∀w, p
′ (23)  

Sp′ c1 = Initp′ c ∀c, p
′ (24)  

Fm⩽Mmax ∀m1 (25)  

Fm⩽Mmax ∀m2 (26)  

Fw⩽Mmax ∀w (27)  

Fc⩽Dmax ∀c (28) 

Constraints (23) and (24) show the initial inventory in the warehouse 
and customer. Constraints (25)–(28) indicate the maximum number of 
used pharmaceutical products in internal and foreign producers, ware-
houses, and customers. 

(gt
v1 + gt

v2) − Ot
mwrmw

⩽1 ∀m1,w, v1, v2, rmw, t (29) 

F. Goodarzian et al.                                                                                                                                                                                                                            



Computers & Industrial Engineering 158 (2021) 107389

7

(gt
v1 + gt

v2) − Ot
mwrmw

⩽1 ∀m2,w, v1, v2, rmw, t (30)  

(gt
v1 + gt

v2) − Ot
mcrmc

⩽1 ∀m1, c, v1, v2, rmc, t (31)  

(gt
v1 + gt

v2) − Ot
mcrmc

⩽1 ∀m2, c, v1, v2, rmc, t (32)  

(gt
v1 + gt

v2) − Ot
wcrwc

⩽1 ∀w, c, v1, v2, rwc, t (33) 

Constraints (29)–(33) exhibit the routes of each vehicle in a 
sequence, respectively. 

Ap′ mw⩾μmwrmw
− BigM(1 − Ot

mwrmw
) ∀m1,w, rmw, p

′

, v1, t (34)  

Ap′ mw⩾μmwrmw
− BigM(1 − Ot

mwrmw
) ∀m1,w, rmw, p

′

, v2, t (35)  

Ap′ mw⩾μmwrmw
− BigM(1 − Ot

mwrmw
) ∀m2,w, rmw, p

′

, v1, t (36)  

Ap′ mw⩾μmwrmw
− BigM(1 − Ot

mwrmw
) ∀m2,w, rmw, p

′

, v2, t (37)  

Ap′ mc⩾μmcrmc
− BigM(1 − Ot

mcrmc
) ∀m1, c, rmc, p

′

, v1, t (38)  

Ap′ mc⩾μmcrmc
− BigM(1 − Ot

mcrmc
) ∀m1, c, rmc, p

′

, v2, t (39)  

Ap′ mc⩾μmcrmc
− BigM(1 − Ot

mcrmc
) ∀m2, c, rmc, p

′

, v1, t (40)  

Ap′ mc⩾μmcrmc
− BigM(1 − Ot

mcrmc
) ∀m2, c, rmc, p

′

, v2, t (41)  

Ap′ wc⩾μwcrwc
− BigM(1 − Ot

wcrwc
) ∀w, c, rwc, p

′

, v1, t (42)  

Ap′ wc⩾μwcrwc
− BigM(1 − Ot

wcrwc
) ∀w, c, rwc, p

′

, v2, t (43) 

Constraints (34)–(43) prove the delivery time of pharmaceutical 
products from internal and foreign producers to warehouses and cus-
tomers and from warehouses to customers on a different route. 

BOQt
p′ m,X

t
p′ mw,X

t
p′ mc,Y

t
p′ wc,Wt

p′ c,U
t
p′ c,Up′ v, λ

t
p′ m,Z

trmw
p′ mwv

, Ztrmc
p′ mcv

, Ztrwc
p′ wcv

,Qtrmw
p′ mw

,

Qtrmc
p′ mc

,Qtrwc
p′ wc

, St
p′ w, St

p′ m, S
t
p′ c, St

p′ w,Nt
p′ wm,N

t
p′ cm,N

t
p′ cw,Ap′ mw,Ap′ mc,Ap′ wc,

ϑt
p′ w, σ

t
p′ c⩾0 (44)  

gt
v,Fm,Fw,Fd,Ot

wcrwc
,Ot

mwrmw
,Ot

mcrmc
, ∇t

vrwc
, ∇t

vrmc
,∇t

vrmw
∈ {0, 1} (45) 

Finally, constraints (44) and (45) determine the type of decision 
variables. 

2.4. Linearization process 

In the first objective function, the term ordering costs (
βt

wmp′

Xt
p′ mw

,
βt

cmp′

Xt
p′ mc

, 

βt
cwp′

Yt
p′ wc

) make the model non-linear. To linearize it, new positive variables 

(κt
wmp′ ,κ

t
cmp′ , κt

cwp′ ) are defined and replace with the nonlinear term. 
Furthermore, the first objective function (just the bracket of ordering 
cost) is modified as follows: 

Min F1= D{
∑

w

∑

m1

∑

p′

∑

t
κt

wmp′ +
∑

w

∑

m2

∑

p′

∑

t
κt

wmp′ +
∑

c

∑

m1

∑

p′

∑

t
κt

cmp′

+
∑

c

∑

M2

∑

p′

∑

t
κt

cmp′ +
∑

c

∑

w

∑

p′

∑

t
κt

cwp′ } (46) 

Objective functions Eq. (2) and (3), and constraints Eq. (4)–(45) 

κt
wmp′ , κ

t
cmp′ , κt

cwp′ ⩾0  

3. The solution method 

The proposed model was formulated as a MINLP model that cannot 
be solved by conventional approaches in a reasonable time. First of all, 
the exact method is described; secondly, we present two new ISEO and 
HFFA-SA algorithms and three heuristics (H-1), (H-2), and (H-3) ap-
proaches to find Pareto solutions. Additionally, these heuristics (H-1), 
(H-2), and (H-3) are compared to justify the developed algorithms. 

3.1. Epsilon constraint method 

The Epsilon constraint approach is one of the exact methods for 
calculating Pareto points in multi-objective optimization problems. 
Additionally, many successful applications have been reported using 
this approach. In this approach, an objective function is added to the 
constraints at each step. The general equations of this approach illus-
trate as follows: 

minf1(x)
x ∈ X
f2(x)⩽ε2
⋮
fn(x)⩽εn

(47) 

The steps for solving this approach are as follows (Pérez-Cañedo, 
Verdegay, & Miranda Pérez, 2020):  

• Select one of the objective functions as the main objective function,  
• Solve the problem with the selected objective function each time,  
• Divide the interval between the two optimal values of the sub- 

objective functions into a predetermined number and obtain a 
table of values for ε2,⋯, εn,  

• Solve the problem each time with the main objective function with 
any of the ε2,⋯, εn values,  

• By making changes in the values (εi) are obtained efficient solutions 
to the problem. 

3.2. Multi-objective optimization 

In this sub-section, the PSCN problem has three objective functions. 
In this condition, the interactions amidst the solutions are indicated by 
the Pareto optimum set. This set comprises the non-dominated solutions. 
To illustrate this actuality, consider three solutions: solution A, B, and C. 
Solution A dominates the Solutions B and C when all the objectives of A 
are not worse than B and C and it is available at least one of A that is 
more reliable than B and C (Samadi, Mehranfar, Fathollahi Fard, & 
Hajiaghaei-Keshteli, 2018). According to the Pareto optimum set, this 
paper applies four metrics to appraise the quality of Pareto fronts such as 
many recent pieces of research e.g. (Deb & Padhye, 2014; Devika, 
Jafarian, & Nourbakhsh, 2014; Sahebjamnia, Goodarzian, & Hajiaghaei- 
Keshteli, 2020; Fathollahi-Fard, Ahmadi, Goodarzian, & Cheikhrouhou, 
2020). In this respect, the solution representation of utilized multi- 

Fig. 2. The utilized procedure to allocate a sort of vehicle system for customers.  
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objective metaheuristic algorithms is explained. 

3.3. Solution presentation 

A scheme should be designed to encode the problem to implement 
the metaheuristic algorithms (Grobelny & Michalski, 2017). According 
to this view, a two-stage method called Random-Key is employed 
(Snyder & Daskin, 2006). Accordingly, this method transforms an un-
feasible solution to a feasible one by a set of methods in two stages 
(Golmohamadi, Tavakkoli-Moghaddam, & Hajiaghaei-Keshteli, 2017). 
Researchers have used this method in many contexts of engineering 
design. For more information, refer to references (Quinton, Hamaz, & 
Houssin, 2019). 

Then, a numerical example to encode the solution presentation is 
exhibited as follows. Six internal and foreign producers (m), three 
warehouses (w), six customers (c) with two types of vehicles (v) and 
fifteen pharmaceutical products (p’) is considered. First, the sort of 
utilized vehicle system to transfer each product to customers should be 
particularized. In this procedure, an array by a length of C is created by a 
uniform distribution: U (0, c). Then, the sort of vehicle system alloca-
tions to carry every product to customers should be interpreted. 
Furthermore, a set of methods has been displayed in Fig. 2. Hence, the 
third type of vehicle system is employed for customers c1, c2, and c3. 
Likewise, the fourth and sixth sort of vehicle systems is used for cus-
tomers c4 and c6, respectively. 

Furthermore, an array of the length of D is distributed by U (0,1) to 
determine the route of the vehicle of products to customers. Next stage, 
these numbers are classified. Henceforth, these numbers are stipulated 
to schedule the delivery of products to the customers. Fig. 3 indicates an 
instance of the utilized arrays of this matrix for algorithms. Especially, 
based on the maximum optimal total distance travelled, the utilized 
vehicle capacity, as well as delivered products to the customers’ con-
straints, the route of five utilized vehicle systems for delivered products 
to the customers, are checked and determined. According to this 
example, the sixth customers not needed for the routes. These routes are 
shown as follows: 

3.4. Improved social engineering optimization 

Even though in recent years several metaheuristic algorithms have 
been introduced, but researchers nevertheless use traditional algorithms 
to solve problems. Also, it can be said that over the past two decades, 
most of the metaheuristic algorithms are population-based and have 
many steps and parameters that make them difficult to understand and 
perceive. This research follows an intelligent algorithm like many of the 
most recent metaheuristic algorithms, and yet very simple, which only 
includes four steps and three parameters for adjustment. The social 
engineering optimization (SEO) algorithm was introduced by Fathol-
lahi-Fard, Hajiaghaei-Keshteli, and Tavakkoli-Moghaddam (2018), 
which has been inspired by the rules of social engineering, an emerging 
phenomenon in today’s real world. Therefore, this algorithm begins 
with two random solutions called the attacker and defender. Also, search 
phases are based on the rules of social engineering in which the attacker 
uses certain techniques to achieve his desired goals. Then, we first 
introduce the concepts of social engineering and then describe the 
method inspired by this phenomenon with the description and steps 

related to it. 
In the proposed method, each answer expressing each individual and 

their characteristics, including their abilities in mathematics, sports, 
business, etc., expresses the variables of the problem. As mentioned 
earlier, this algorithm begins with two random solutions, the better 
solution is called the attacker and the other the defender. Therefore, in 
order to simulate the learner’s training and retraining from the attacker 
to the defender, a series of random tests are defined for each attribute in 
which the attacker tests an attribute in the defender and the amount of 
learning was calculated and the new defender has the highest re-training 
rate if there is a replacement for the current defender. Further, attacks 
from the defender are carried out according to the techniques that are 
available to him. During these actions, the defender is transferred to the 
attacker’s points in order to respond to the attacks and the defender is 
evaluated and this process is repeated until the end of the strike, and if 
the defender is more valuable than the attacker, they are replaced by 
each other and in Ends, a new defender has been used to reboot the 
algorithm. In this algorithm, like other metaheuristic algorithms, phases 
of the search are considered. Also, training and retraining of the de-
fender and the attacker from each other forms a local search in the al-
gorithm. In addition, the attacker’s attacks on the defender and the 
response to that focus phase are formed, and eventually, the choice of 
the new defender will be the phase of diversity for this algorithm. 

3.4.1. Initialize the attacker and the defender 
The purpose of optimization is to obtain the optimum solution be-

tween all available solutions. In this regard, an array should be 
considered for optimization. In the algorithm, “chromosome” represents 
this array. Here, “person” in this algorithm represents this array. Besides, 
in the genetic algorithm for naming variables, the “gene” used to 
represent it, is employed herein as “trait” for persons determining the 
variables of an array for optimization. In an n-dimensional space for the 
optimization problem, each person can be defined with the following 
equations: 

person = [X1,X2,X3,…,XNvar ] (48) 

Hence, the objective function value is calculated as follows: 

Value = f (person) = f (X1,X2, ...,XNvar ) (49) 

The algorithm begins with two random solutions, the better solution 
as the attacker and another solution as the defender. 

3.4.2. The number of attackers and defenders 
In this algorithm, there are two different search factors, which 

include the attacker and the defender. The number of attackers and 
defenders as the population is considered in this search space. The 
number of attackers is randomly chosen from 65% to 90% of the total 
population. The number of attackers obtained from Eq. (50) is: 

Na = floor[(0.9 − rand × 0.25) × N ] (50) 

where randa random number is among [0,1]. Meanwhile, 
floor(0)mapping a real number is an integer. The number of defenders 
(Nd)as complementary between (N) and (Na) is calculated as Eq. (51): 

Nd = N − Na (51) 

Furthermore, the total population (M) is formed by elements of N 

Fig. 3. The utilized method to allocate transportation system to deliver products to customers in each route.  
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and are divided into two subgroups G and Q. Moreover, G and Q sizes are 
controlled by a predetermined constant ρratio. The group of G is a set of 
attackers G = {G1,G2, ...,GNa}. Meanwhile, the group of Q includes 
defendersQ =

{
Q1,Q2, ...,QNd

}
. wherein, M = {M1,M2, ...,MN}. So, 

M = m1 = G1, M2 = G2, ...,MNa = GNa , MNa+1 = Q1,MNa+2 = Q2, ...,MN

= QNd  

3.4.3. Training and retraining 
At this stage, we intend to demonstrate the defender’s and the at-

tacker’s training and retraining. In this process, the attacker will choose 
the most influential trait. For this purpose, α percent of the traits are 
randomly chosen and repeated directly in the same trait in the defender. 
The number of traits for training is given by the formula: 

NTrain = round{α, nVar} (52)  

where α is the percent of chosen characteristics and nVar is the total 
number of traits per person. Hence, NTrain is the number of character-
istics that are randomly tested in the defender. 

3.4.4. Defender and attacker evaluation criteria 
In this step, each defender and the attacker have one weight Wa and 

Wd, that indicates the quality of the solution to the defender d and the 
attacker ‘a’ of the population (M). Therefore, equations (53) and (54) 
have been used to calculate the weight of each attacker and defender. 

Wa =
K(Ma) − worstm

bestm − worstm
(53)  

Wd =
K(Md) − worstm

bestm − worstm
(54)  

where K(Ma)and K(Md) capability is obtained by evaluating the at-
tacker’s position and defender and according to the objective function 
K(0). Values worstm and bestm are defined as equations (55) and (56): 

bestm = min
i∈(1,2,...,M)

(K(Mi) ) (55)  

worstm = max
i∈(1,2,...,M)

(K(Mi) ) (56)  

3.4.5. Spot an attack 
At this stage, in order to carry out an attack, this research proposes 

four various techniques, including obtaining, phishing, diversion theft 
and pretext. In the following, a random technique is used as a search 
function. Additionally, only one input parameter called β is required for 
adjustment. Besides, the arrow sign indicates the way in which the de-
fender moves. In all phrases, defnew represents the new defender during 
the attack, and defold, att indicate the current position of the attacker and 
the defender, respectively. Therefore, this algorithm gives the user the 
opportunity to use one of the four suggested techniques for his or her 
own point of view. 

3.4.5.1. Obtaining. At this stage, the attacker disturbs the defender 
directly to attain desirable purposes. Then, a novel solution is generated 
and the strategy is based on the following equation: 

defnew = defold × (1 − sinβ × U(0, 1) )+
(defold + att)

2
× sinβ × U(0, 1)

(57)  

3.4.5.2. Phishing. To the design of this technique, the attacker tends 
towards a defender, and the defender moves to a place where the 
attacker has predicted it. The equations are displayed as follows: 

def 1
new = att × (1 − sinβ × U(0, 1) )+

(defold + att)
2

× sinβ × U(0, 1) (58)  

def 2
new = defold ×

(
1 − sin

(π
2
− β
)
× U(0, 1)

)
+
(defold + att)

2
× sin

(π
2
− β
)

× U(0, 1)
(59) 

Eqs. (58) and (59) show two novel defenders by a movement ac-
cording to the attacker and the defender, respectively. In this regard, the 
mean distance between the attacker and the defender is the principal 
part of the movement. Besides, the common position of the attacker in 
Eq. (58) and the common position of the defender in Eq. (59), are the 
principal reasons to move the defender in this attack. The movement is 
according to a random distribution i.e. U(0, 1)and the quantity of β is to 
accomplish this purpose. 

3.4.5.3. Diversion theft. In this section, first of all, the attacker pushes 
the defender into a place that is, in reality, a deception, and then the 
defender moves in the attacker’s direction and pushes the attacker to his 
desirable goal. At this stage, only one solution is generated. The equa-
tion is shown as follows:   

Eq. (60) tries to propose the movement of the defender by presenting 
its common position and the mean of distance among the defender and a 
weighted amount of attacker to accomplish the purpose. The uniform 
distribution U(0,1)and the quantity of β play the principle variety of this 
movement of the defender in this spotting attack. 

3.4.5.4. Pretext. The attacker uses a number of traits that the defender 
is more inclined to them. And it is expected that this technique will be 
more than enough to defeat the defender. First, as a diversion theft, the 
defender first moves forward to the attacker. The equations are dis-
played as follows: 

defnew =
(

defold × U(0, 1) × sin
(π

2
− β
))

× (1 − sinβ

× U(0, 1) )+

(
defold × U(0, 1) × sin

(
π
2 − β

)
+ att

)

2
× sinβ

× U(0, 1) (61)  

3.4.5.5. Respond to attack. The new defender’s position is assessed and 
compared with the previous position. If it was better, it would be 
replaced and if the final position of the defender was more reliable than 
the attacker, they would replace. 

3.4.6. Adjustment operator 
This improved algorithm is introduced with an adjustment operator 

defnew = defold × (1 − sinβ × U(0, 1) )+

(
defold + att × U(0, 1) × sin

(
π
2 − β

))

2
× sinβ × U(0, 1) (60)   
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to enhance its efficiency in terms of search precision and running time. 
This operator is used to make a novel generation. The size of this part is 
equal to the size of G and Q. This operator creates a new division ac-
cording to the best person and other random people from G and Q. Also, 
we assume that Yt+1

o,j the value of the element j is the number of in-
dividuals o, thenYt+1

o,j generated based on Eq. (62): 

Yt+1
o,j =

{
Yt

best,j rand⩽ρ
Yt

r3,j rand > ρ (62)  

where r is a random number obtained from equation (63). Where ‘rand’ 
is a random number of uniform distribution and δ a fixed value equal to 
1.2. Also, t is the number of iterations. 

r = rand × δ (63) 

In Eq. (63), parts of the newly created person are updated according 
to Eq. (64), if the number of other random numbers created is greater 
than the adjustment rate. The adjustment rate is shown by the BAR and 
the set is equal to the fixed partition. In Eq. (65) dy, a local search is 
represented by the training and retraining of the defender and the 
attacker in each other in this algorithm. ‘μ’ is an element that controls 
the penetration of dy in the updating process. 

Yt+1
o,j = Yt+1

o,j + μ
(
dLy − 0.5

)
(64)  

dy = RT
(
Yt

o

)
(65)  

3.4.7. Choose a novel person as a defender 
During this section, the attacker has destroyed the defender and the 

novel defender is randomly replaced. 

3.4.8. Stop condition 
Like other metaheuristic algorithms, the stop condition can be used 

to maximize the simulation time or find the best solution, or any con-
ditions that are chosen by the user. 

3.5. Computational method of ISEO 

The computational method for the presented algorithm is as follows: 
Step 1: Given M as the number of members of the m-dimensional set, 

the number of defenders Md and the number of attackers Ma in the total 
population is defined as: 

Na = floor[(0.9 − rand × 0.25) × N ] (66)  

Nd = N − Na (67)  

where rand a random number is between [0,1]. Meanwhile, 
floor(0)mapping a real number is an integer. 

Step 2: Initialization is randomly for the defender Eq. (68), the 
attacker Eq. (69), and for the set of member Eq. (70). In Fig. 4, an 
initialized pseudo code is presented. 

Q =
{

Q1,Q2, ...,QNd

}
(68)  

G = {G1,G2, ...,GNa} (69)  

M = m1 = G1, M2 = G2, ...,MNa = GNa , MNa+1 = Q1,MNa+2 = Q2, ...,MN

= QNd

(70) 

Step 3: At this stage, we intend to demonstrate the defender’s and 
attacker’s training and retraining. In this step, the attacker chooses the 
most influential trait. For this purpose, α percent of the characteristics 
are elected randomly and repeated directly in the same trait in the de-
fender. The number of traits for training is indicated in Eq. (71). 

NTrain = round{∝.nVar} (71)  

where α percent is selected traits and nVar is the total number of char-
acteristics per person. Moreover, NTrainis the number of characteristics 
that are randomly tested in the defender. 

Step 4: Calculate the weight of each defender and attacker from the 
population of N, which is expressed in pseudo-code in Fig. 5. 

Step 5: In order to carry out an attack, this algorithm proposes four 
various techniques, including obtaining, phishing, diversion theft, and 
pretext. 

Step 6: This improved algorithm is introduced with an adjustment 
operator to enhance its efficiency in terms of search precision and 
running time. In the following, we will express its pseudo-code in Fig. 6. 

Step 7: In this step, the attacker finally defeats the defender and the 
new defender is randomly replaced. 

Fig. 4. The pseudo-code of initialization.  

Fig. 5. The pseudo-code of calculating the weight of each attacker 
and defender. 

Fig. 6. The pseudo-code of adjustment operator.  
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Step 8: If the stop criteria are met, the process ends, otherwise we 
will go back to step 3. 

Therefore, Fig. 7 indicates a pseudo-code ISEO algorithm. 

3.6. Hybrid Firefly and Simulated Annealing algorithms (HFFA-SA) 

In this subsection, the Firefly Algorithm (FFA) and Simulated 
Annealing (SA) algorithm are used, which is explained as another 
innovation of this paper in this section. Then, by applying the Hybrid 

FFA-SA (HFFA-SA) algorithm, it will increase the efficiency of the main 
algorithms because it converts the unfeasible solutions created by the 
main algorithms into a feasible one. Moreover, the pseudo-code and 
mechanism of performance of the HFFA-SA algorithm are shown in 
Fig. 8. 

3.7. Heuristic approach 

Other contributions of the present paper are to develop several 

Fig. 7. The pseudo-code of proposed ISEO.  
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heuristic algorithms to approximate the global optimum solution for the 
recommended model in a sensible time. Besides, two heuristic algo-
rithms analyzing a distinguished strategy and concentrating on the key 
parameters of the model are extended. Furthermore, we extend three 
heuristics (H-1), (H-2), and (H-3) to solve the model. Eventually, these 
(H-1), (H-2), and (H-3) are compared. According to the presented model, 
all these heuristics are proposed to better understand the presented 
model. The gist decision variables are binary variables of the model. i. 
e.,Ot

wcrwc
,Ot

mwrmw
andOt

mcrmc 
properly. Each of the heuristics presents a 

similar matrix close to the decision variable. To hold on to the objective 
function, the routes for vehicles are designed by analyzing the distance 
among internal and foreign producers, central pharmacies, and ware-
housesdmw,dmc, and dwcas well as the amount of transportation cost for 
each vehicle in the different routesϕt rmw

p′ mwv, ϕt rmc
p′ mcv andϕt rwc

p′ wcv. In this 
respect, the following formula is generated for the principle input of 

heuristics: 

αtrmw
p′ mwv = ϕt rmw

p′ mwv × dmw∀m1, p
′

, v1, rmw,w, t (72)  

αtrmw
p′ mwv

= ϕt rmw
p′ mwv

× dmw∀m1, p′

, v2, rmw,w, t (73)  

αtrmw
p′ mwv = ϕt rmw

p′ mwv × dmw∀m2, p
′

, v2, rmw,w, t (74)  

αtrmc
p′ mcv

= ϕtrmc
p′ mcv

× dmc∀m1, p′

, v1, rmc, c, t (75)  

αtrmc
p′ mcv = ϕtrmc

p′ mcv × dmc∀m1, p
′

, v2, rmc, c, t (76)  

αtrmc
p′ mcv

= ϕtrmc
p′ mcv

× dmc∀m2, p′

, v2, rmc, c, t (77)  

αtrwc
p′ wcv = ϕtrwc

p′ wcv × dwc∀m1, p′

, v1, rwc, c, t (78)  

αtrwc
p′ wcv

= ϕtrwc
p′ wcv

× dwc∀m1, p′

, v2, rwc, c, t (79)  

where αtrmw
p′ mwv,α

trmc
p′ mcvandαtrwc

p′ wcv, are the principal input of all heuristics. 
Only the first step of each heuristic is different, and the other steps are 
the same. The central strategy of them is according to the allocation of 
internal and foreign producers, central pharmacies, and warehouses. 
throughout, the first step of heuristics is explained as follows:  

• Heuristic 1 (H-1): To set the route of each internal producer and 
warehouse, the first vehicle is to consider the minimum number of 
the first row of the matrix indicated based on Eq. (72) in Fig. 8. The 
other vehicles are chosen by the minimum number of this matrix in 
the other rows. 

• Heuristic 2 (H-2): For the tour of each internal producer and ware-
house, choosing the first vehicle is started with the average of each 
row of the matrix presented in Eq. (73). Similar to H-1, choosing the 
other vehicles of the route is according to the minimum digit of this 
matrix in the other rows. 

• Heuristic 3 (H-3): A heuristic method is developed to achieve solu-
tions for the PSCN model. Hence, (H-3) based on binary variable 
relaxation is presented. The suggested heuristic (H-3) is tested for all 
samples small, medium, and large experiments. In the following, a 
flowchart of the H-3 approach is indicated in Fig. 9. 

To strongly understand the heuristics, a numerical instance for per 
heuristic is given with details in Fig. 10. In the following, a set of nu-
merical instances indicates the description of the H-2 heuristic in Fig. 10. 
The rate of transportation cost for four sorts of the vehicle i.e. the ground 
vehicle nine-pharmaceutical products with different period and 
different routes that their costs are four-unit. For every route as 
demonstrated before, the first pharmaceutical products are chosen based 
on chosen rules of H-2. To run the H-2 proposed, amongst all arrays of 
αtrmw

p′ mwvthe matrix, in the first row of each vehicle, the minimum one is 
chosen. This means that pharmaceutical product 4 for the first sort of 
vehicle is elected. Henceforward, this method is used for pharmaceutical 
product 4 as can be displayed in Fig. 10. Likewise, pharmaceutical 
product 3 is chosen. Then, the column of pharmaceutical product 4 is 
deleted and then pharmaceutical product 5 is selected by the same 
procedure similar to earlier. Note that in H-2, the routes are considered 
based on the capacity of utilized vehicles. According to the limitation of 
the details of proposed model constraints, the principle decision variable 
values of the model (αtrmw

p′ mwv) are indicated in Fig. 10. 

3.8. Constraint handling strategy 

In this paper, most of the constraints are satisfied with the settings of 
heuristic algorithms, but in order to satisfy other constraints, a penalty 

Fig. 8. The pseudo-code of the proposed HFFA-SA.  
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strategy is used. The considered constraint handling was for capacity- 
related constraints. For example, warehouse and customer capacity 
constraints are listed here. The solution process is such that the 
maximum amount of constraints is calculated. If this value is negative, 
the number zero is selected as the maximum. Then, according to the 
dynamics of the proposed method, the calculated total value is multi-
plied by the number of iterations. Finally, the calculated amount is 
multiplied by the penalty amount. For more information, you can refer 
to Khalili-Damghani, Abtahi, and Ghasemi (2015). The main idea of 
constraint handing is taken from Khalili-Damghani et al. (2015). 
Constraint handling is provided as dynamic and will change based on 
the number of iterations. For example, equations (80) and (81) are used 
to calculate violations of constraints 4 and 5: 

Af = O4
wt

= max
∀w,t

{0,
∑

p′

∑

m1

∑

rmw

Qtrmw
p′ mw

Bp′ +
∑

p′

∑

m2

∑

rnw

Qtrmw
p′ mw

Bp′ ) − ωw . Fw } ∀f

= 1, 2
(80)  

Bf = O5
ct = max

∀c,t

{

0,
∑

p′

∑

w

∑

rwc

Qtrwc
p′ wc.Bp′ − ωc.Fc

}

∀f = 1, 2 (81) 

It should be noted that the index f is equal to the number of objective 
functions. The calculated violation value according to Eq. (82) is equal 
to the sum of each violation: 

Fig. 9. The flowchart of H-3 approach.  

Fig. 10. A numerical example of H-2.  
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Violationf =
(
Af + Bf

)
*iteration (82) 

It should be noted that in Equation (82), the violation value is dy-
namic due to the iteration value. In this way, the higher the iteration, the 
greater the amount of the violation value will be. Therefore, the value of 
the ultimate objective functions is defined as Equation (82) for penalized 
chromosomes. As the iteration of the algorithm goes on, the violated 
chromosome is penalized harder. 

The value of the calculated violation in Eq. (83) is dynamic and 
changes based on the number of iterations. 

fc = fc + penalty*Violationc ∀c = 1, 2 (83)  

4. Numerical experiments, results, and discussion 

Firstly, the experiment problems are created by a method related to 
the proposed pharmaceutical supply chain network. Regarding the three 
conflicting objective functions, four assessing metrics are introduced to 
evaluate the quality of non-dominated solutions of the metaheuristic 
algorithms. After that, a comprehensive analysis is presented by com-
parison of the developed three heuristics (H-1), (H-2), and (H-3) and the 
ISEO and HFFA-SA algorithms based on algorithm parameter values. 
Consequently, the best trade-off among three objective functions is 
investigated and the best heuristics by comparison of developed heu-
ristics are selected, as well as the best method for the problem is pro-
posed. The proposed model was tested using GAMS 24.1.3 software and 
MATLAB R2016b on a computer with Intel (R) Core (TM) i5-2400 2.50 
GHz in CPU and 6 GB memory and utilizing Windows 8.1 as an operating 
system. 

4.1. Data generation 

As the proposed model in this study is innovative, there are no 
available benchmarks in the literature to experiments on the proposed 
pharmaceutical supply chain network problem. An approach is required 

to generate experimental problems. Fifteen experimental problems 
involving three classifications including small-scale: SP1 to SP5, me-
dium scale: MP6 to MP10 and large-scale: LP11 to LP15 are proposed. 
Table 2 indicates the scales of problem instances. The range of the 
proposed model parameters could be seen in Table 3. Furthermore, 
Table 4 explains the presented levels along with the factors. 

Table 4 
Values of parameter setting of the algorithms.  

Factors levels 

ISEO  

1 2 3 4 

Max Iteration 100 200 300 400 
Ma (Number of attacker)  50 100 150 200 
Md (Number of defender)  50 100 150 200 
α (Rate of collecting data) 0.2 0.25 0.3 0.35 
β (Rate of connecting attacker) 0.5 0.55 0.65 0.7 
dy (a local search for the training and retraining)  0.3 0.5 0.7 0.9 
Wa (Weight of the each attacker)  0.1 0.15 0.2 0.25 
Wd (Weight of the each defender)  0.2 0.25 0.3 0.35  

Factors HFFA-SA  

1 2 3 4 

MaxIt  100 200 300 400 
MaxSubIt  10 20 30 40 
T0; Initial Temp.  10 15 20 25 
alpha; Temp. Reduction Rate  0.8 0.85 0.9 0.99 
nPop; Number of Fireflies (Swarm Size)  40 50 60 80 
gamma = 1; % Light Absorption Coefficient  1 1.5 2 2.5 
beta; Attraction Coefficient Base Value  2 2.5 3 3.5 
alpha; Mutation Coefficient  0.2 0.25 0.3 0.35 
alpha damp; Mutation Coefficient Damping Ratio  0.8 0.85 0.9 0.99 
delta = 0.05*(VarMax-VarMin); Uniform Mutation 

Range  
– – – – 

m  2 3 4 5  

Table 3 
The range of the proposed model parameters.  

Parameters Value/distribution Parameters Value/distribution 

αt
cp′ α

t
wp′ αt

mp′ Uniform(100000,200000)$ μmwrmw 
μmcrmc 

,μwcrwc  
Uniform(25,120)min  

δt
w,δt

m  100000  D  30  

βt
wmp′ β

t
cmp′ , β

t
cwp′ ,L

t
p′ ,B

t
p′ m  

Uniform(150000,250000) dmw dmc,dwc  Uniform(45,1000)km  

Pt
p′ ,C

t
p′ ,ψ

t
p′ m  Uniform(50000,150000) Inittwp′ ,Inittcp′ ,Ip′ 2000  

ϕt rmw
p′ mwv,ϕ

t rmc
p′ mcv, ϕ

t rwc
p′ wcv  

Uniform(150000,250000) R  550  

Dmax,Mmax,Wmax  50000  ωw,ωc ,ωv  Uniform(150000,250000)
Dt

cmp′ D
t
wmp′ ,D

t
cwp′ ,E

t
c,Kt

p′ w  Uniform(150000,250000) ∂t
p′ wm,∂t

p′ cm,∂t
p′ cw,εt

p′ w  
Uniform(20000,50000)

θt
p′ wm,θt

p′ cm,θt
p′ cw  Uniform(200000,350000) BigM  1000000   

Table 2 
The instances for experiment problem.  

Classification Instance m  w  c  v  p′ t  

Small SP1 2 4 3 3 10 1 
SP2 2 4 3 3 15 1 
SP3 3 4 4 3 25 1 
SP4 4 5 4 4 35 2 
SP5 5 5 5 4 45 2 

Medium MP6 6 5 6 5 50 2 
MP7 6 6 6 5 55 2 
MP8 7 6 7 6 65 2 
MP9 7 7 7 6 70 3 
MP10 8 7 8 6 75 3 

Large LP11 8 8 10 14 85 4 
LP12 10 12 12 18 95 5 
LP13 12 16 14 22 140 6 
LP14 14 20 16 26 160 7 
LP15 16 24 18 30 180 8  

Table 5 
The results of calculation and CPU time for small and medium scale test 
problems.  

Classification Instance F1(dollars)  F2(seconds)  F3(%)  Time (s) 

Small scale SP1  2134325.06  1914226.39  6.28 4 
SP2  2344336.23  2033153.35  7.42 38 
SP3  2422667.82  2232227.50  9.01 72 
SP4  2735633.09  2345165.08  9.98 97 
SP5  2883218.08  2533240.24  11.25 219 

Medium scale MP6  2923536.35  2772676.42  15.78 711 
MP7  3167883.78  2942562.85  16.33 1617 
MP8  3481249.09  3166451.70  18.08 2884 
MP9  3633129.50  3361545.93  18.89 5936 
MP10  3815435.27  3506547.11  19.17 9826  
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Accordingly, a maximum of four levels is considered to the algorithm’s 
factors. 

4.2. Exact solution results 

The results of solving the proposed model in small and medium sizes 
by the Epsilon constraint approach are provided in Table 5. As can be 
seen, five instances are given for small and medium problems. As it is 
clear, the CPU time of the exact approach increases dramatically by 

increasing problem size. 
The first objective function is of cost, its unit is US dollars. The sec-

ond objective function of time and its unit is in seconds. Finally, the third 
objective function, which is responsible for maximizing system trans-
portation reliability, is scaleless. 

The CPU time of the presented model by the Epsilon constraint 
approach is shown in Fig. 11. As it is evident, the CPU time of the pre-
sented model increases exponentially. Therefore, to solve the proposed 
problem on a large scale, heuristic and meta-heuristic algorithms have to 

Fig. 11. CPU time of the exact method based on the small and medium problems.  

Table 6 
The orthogonal array ISEO algorithm.  

L32 A B C D E F G H 

1 1 1 1 1 1 1 1 1 
2 1 1 1 1 1 1 1 1 
3 1 1 1 1 1 2 2 2 
4 1 1 1 1 1 2 2 2 
5 1 2 2 2 2 1 1 1 
6 1 2 2 2 2 1 1 1 
7 1 2 2 2 2 2 2 2 
8 1 2 2 2 2 2 2 2 
9 2 1 1 2 2 1 1 2 
10 2 1 1 2 2 1 1 2 
11 2 1 1 2 2 2 2 1 
12 2 1 1 2 2 2 2 1 
13 2 2 2 1 1 1 1 2 
14 2 2 2 1 1 1 1 2 
15 2 2 2 1 1 2 2 1 
16 2 2 2 1 1 2 2 1 
17 3 1 2 1 2 1 2 1 
18 3 1 2 1 2 1 2 1 
19 3 1 2 1 2 2 1 2 
20 3 1 2 1 2 2 1 2 
21 3 2 1 2 1 1 2 1 
22 3 2 1 2 1 1 2 1 
23 3 2 1 2 1 2 1 2 
24 3 2 1 2 1 2 1 2 
25 4 1 2 2 1 1 2 2 
26 4 1 2 2 1 1 2 2 
27 4 1 2 2 1 2 1 1 
28 4 1 2 2 1 2 1 1 
29 4 2 1 1 2 1 2 2 
30 4 2 1 1 2 1 2 2 
31 4 2 1 1 2 2 1 1 
32 4 2 1 1 2 2 1 1  

Table 7 
The orthogonal array HFFA-SA algorithm.  

L32 A B C D E F G H J K L 

1 1 1 1 1 1 1 1 1 1 1 1 
2 1 1 1 1 1 1 1 1 1 1 1 
3 1 1 1 1 1 2 2 2 2 2 2 
4 1 1 1 1 1 2 2 2 2 2 2 
5 1 2 2 2 2 1 1 1 1 2 2 
6 1 2 2 2 2 1 1 1 1 2 2 
7 1 2 2 2 2 2 2 2 2 1 1 
8 1 2 2 2 2 2 2 2 2 1 1 
9 2 1 1 2 2 1 1 2 2 1 1 
10 2 1 1 2 2 1 1 2 2 1 1 
11 2 1 1 2 2 2 2 1 1 2 2 
12 2 1 1 2 2 2 2 1 1 2 2 
13 2 2 2 1 1 1 1 2 2 2 2 
14 2 2 2 1 1 1 1 2 2 2 2 
15 2 2 2 1 1 2 2 1 1 1 1 
16 2 2 2 1 1 2 2 1 1 1 1 
17 3 1 2 1 2 1 2 1 2 1 2 
18 3 1 2 1 2 1 2 1 2 1 2 
19 3 1 2 1 2 2 1 2 1 2 1 
20 3 1 2 1 2 2 1 2 1 2 1 
21 3 2 1 2 1 1 2 1 2 2 1 
22 3 2 1 2 1 1 2 1 2 2 1 
23 3 2 1 2 1 2 1 2 1 1 2 
24 3 2 1 2 1 2 1 2 1 1 2 
25 4 1 2 2 1 1 2 2 1 1 2 
26 4 1 2 2 1 1 2 2 1 1 2 
27 4 1 2 2 1 2 1 1 2 2 1 
28 4 1 2 2 1 2 1 1 2 2 1 
29 4 2 1 1 2 1 2 2 1 2 1 
30 4 2 1 1 2 1 2 2 1 2 1 
31 4 2 1 1 2 2 1 1 2 1 2 
32 4 2 1 1 2 2 1 1 2 1 2  
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use. 

4.3. Taguchi method for parameter tuning of metaheuristic algorithms 

In this sub-section, the evaluation makes sense when done in a fair 
environment. For a fair comparison of the proposed algorithms, it is 
necessary to adjust the input parameters of the algorithms for each 
model so that it can be effective for solving it [103]. If the parameters of 
the algorithms are not adjusted well, comparison and solving of the 
problem with their help will be useless [104]. In this paper, the Taguchi 
method is used to adjust the parameters of the problem. For more details 
about the Taguchi method, we have suggested several references such as 
Sadeghi, Mousavi, Niaki, & Sadeghi, 2013; Candan & Yazgan, 2015; 
Goodarzian & Hosseini-Nasab, 2019; Orłowska et al. (2020); Good-
arzian, Taleizadeh, Ghasemi, & Abraham, 2021. Therefore, the RPD and 
S/N metrics for the proposed algorithms are calculated, which suggests 
the best level among the proposed levels for the algorithms. Hence, the 
number of factors and levels of algorithms are specified in Table 4. 
Regarding this issue, the Taguchi method decreases the total number of 
experiments by proposing a set of orthogonal arrays to tune the algo-
rithms in a reasonable time. The Taguchi method for the ISEO and 
HFFA-SA algorithms proposed the Orthogonal Array L32 with different 
levels, which in Tables 6 and 7 are provided. 

Furthermore, after performing experiments and calculating the 
evaluation parameters in the Taguchi method to find the effectiveness 
and efficiency of the levels in each factor, the RPD and S/N figures for 
each algorithm are drawn separately. Figs. 12 and 13 illustrate the RPD 
and S/N for the ISEO and HFFA-SA algorithms, respectively. 

4.4. Evaluation metrics of Pareto optimum solutions 

Especially, the comparison of multi-objective algorithms is complex. 
In this regard, researchers have proposed several metrics to appraise the 
quality of Pareto fronts for the algorithms (Devika et al., 2014; Belhaiza, 
M’Hallah, Brahim, & Laporte, 2019). Hence, four famous evaluation 
metrics have been utilized. These metrics were employed in the papers 
(Govindan, Jafarian, & Nourbakhsh, 2015; Sahebjamnia et al., 2020; 
Goodarzian, Hosseini-Nasab, Muñuzuri, & Fakhrzad, 2020).  

• The number of Pareto Solution (NPS) (Govindan et al., 2015; 
Sahebjamnia et al., 2020),  

• Mean Ideal Distance (MID) (Karimi, Zandieh, & Karamooz, 2010; 
Govindan et al., 2015; Goodarzian, Hosseini Nasab, & Fakhrzad, 
2020),  

• Spread of Non-Dominance Solution (SNS) (Maghsoudlou, Kahag, 
Niaki, & Pourvaziri, 2016; Goodarzian, Abraham, & Fathollahi-Fard, 
2021),  

• Maximum Spread (MS) (Samadi et al., 2018).  
• Inverted Generational Distance (IGD) (Li & Zhang, 2008)  
• Hyper Volume (HV) (Van Veldhuizen, 1999) 

4.5. A balance among the delivery time, total cost, and reliability: 
Evaluation of heuristics 

In this segment, three heuristics in two variants according to the 
proposed three approaches i.e. H-1, H-2, and H-3 are presented to 
address the experiment problems. The outcomes are shown in Table 8. In 
this respect, the study compares the heuristics’ resolutions to each other, 
to attain a non-dominated solution to every experiment problem. As a 
result, the solutions for some experiment problem i.e. SP2, SP5, MP10, 

Fig. 12. The RPD ratios of ISEO and HFFA-SA.  

Fig. 13. The S/N ratios of ISEO and HFFA-SA.  
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Table 8 
The results obtained are the objective functions and CPU time (based on seconds) of the heuristics.  

Problem size Objective function H-1 CPU MID H-2 CPU MID H-3 CPU MID 

SP1 F1  2777431.12 33.1 1  2298341.32  29.5 3  1935429.13  16.3 1 
F2  2387605.28    1876231.26    1722780.58   
F3 (percent)  22.54    22.61    23.76   

SP2 F1  2886525.59 57.3 1  2447659.02  39.2 3  1967126.16  17.5 3 
F2  2456761.41    2133157.43    1728781.18   
F3 (percent)  24.54    24.76    24.98   

SP3 F1  2912365.54 69.3 –  2522300.18  55.8 3  2013781.32  28.2 3 
F2  2754431.23    2380233.76    1856670.14   
F3 (percent)  26.00    26.05    26.08   

SP4 F1  3122541.28 78 –  2734216.12  67.2 –  2047168.81  33.5 3 
F2  2856612.21    2345172.23    1935781.27   
F3 (percent)  26.28    26.64    26.89   

SP5 F1  3504326.39 89.8 –  2903566.14  76.1 –  2145781.41  45.2 – 
F2  3293415.17    2733243.84    1978125.04   
F3 (percent)  28.75    28.82    28.86   

MP6 F1  3887665.19 122.8 –  2923544.26  91.2 –  2250212.82  57.3 – 
F2  3589011.18    2772681.23    2067784.26   
F3 (percent)  30.05    31.08    31.75   

MP7 F1  4116576.12 152.56 –  3280987.53  122.6 –  2658124.06  78.2 3 
F2  3988033.25    2942871.23    2378123.19   
F3 (percent)  31.64    31.84    31.97   

MP8 F1  4490881.18 197.34 –  3481255.71  162.1 1  2845781.23  85.1 1 
F2  4190221.25    3216054.12    2670341.56   
F3 (percent)  32.95    33.28    33.42   

MP9 F1  4578823.05 221.31 –  3633133.54  201.3 3  2887651.12  89.3 3 
F2  4156601.43    3361552.56    2757120.67   
F3 (percent)  33.62    33.69    33.74   

MP10 F1  4838213.61 283.19 –  3915378.31  225.9 3  3156780.68  125.7 3 
F2  4359080.17    3692551.81    2941383.18   
F3 (percent)  33.94    34.11    34.18   

LP11 F1  5226318.19 296.7 1  4107961.13  256.8 3  3678120.45  166.1 3 
F2  4668913.17    3880231.87    3256782.19   
F3 (percent)  35.95    35.95    36.04   

LP12 F1  5456218.36 367.1 –  4120431.34  318.2 1  3734780.17  193.2 – 
F2  4922913.04    3934411.34    3378025.56   
F3 (percent)  36.20    36.38    36.76   

LP13 F1  5956758.12 398.2 3  4596128.45  356.8 1  4067124.27  244.6 3 
F2  5382112.27    4249867.67    3778901.21   
F3 (percent)  36.79    36.97    37.01   

LP14 F1  6154928.19 573.2 –  4890231.67  473.6 –  4120601.15  367.8 – 
F2  5689125.74    4393101.18    3967103.67   
F3 (percent)  37.05    37.48    37.89   

LP15 F1  6589120.15 678.3 –  5178932.67  512.3 –  4521670.76  466.7 3 
F2  6090238.98    4467091.14    4256091.41   
F3 (percent)  39.67    40.12    42.61    

Fig. 14. The non-dominated solutions for experiment problems.  
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and LP13 are indicated in Fig. 14. To attain the best trade-off among the 
non-dominated solutions of heuristics, like the MID metric, the 
normalized interval among all solutions for every experiment’s problem 
is calculated. Eventually, the solution which has the minimum normal-
ized interval is chosen as the best trade-off among objective functions to 
include the total cost (F1), the delivery time (F2), and reliability (F3). 
According to the MID of the suggested heuristics, the outcomes can be 
explained as follows. In Table 8, first, the solutions of presented heu-
ristics using H-3 performs better than the H-1 and H-2. Next, by 
concentrating on the average of MID, while the three heuristics has the 
minimum value of the mean of MID (0.4), the H-2 heuristic has the 
maximum rate of this mean (1.4), and the H-3 heuristic has the 
maximum rate of this mean (1.93). We, therefore, conclude that H-3 is 
more reliable and performs better than the H-1 and H-2 to solve the 
model. 

Further, Fig. 15 displays the behaviour of heuristics as per the 
computational (CPU) time. According to the mean CPU time for three 
heuristics, a set of the heuristic utilizing H-1 has a more solution time 
(221.7473 s) and H-2 (192.56 s) than H-3 (134.1 s). Therefore, between 
the three heuristics, H-1 has the lowest quality and less reliable. 

4.6. Pareto optimum analysis: Comparison of metaheuristics 

In this section, suggested four evaluation metrics, two novel meta-
heuristic algorithms are compared together. Both metaheuristics ISEO 
and HFFA-SA and their primary solutions are created with an equivalent 
contribution. Eventually, to improve the efficiency of algorithms, the 
mean of outcomes for thirty run times is proposed. The behavior of al-
gorithms in terms of CPU time is indicated in Fig. 16. In Fig. 16 and 
Table 9, it is clear that ISEO is swifter than the HFFA-SA. Thus, the so-
lution time of ISEO is lesser than HFFA-SA for different scale problems. 
Furthermore, ISEO has the least means of solution time (1120.59 s). The 
HFFA-SA has the highest rate for this part (1250.761 s). 

The capability and performance of the proposed metaheuristic al-
gorithms are tested by evaluating the comparison metrics i.e. NPS, MID, 
SNS, MS, IGD, and HV for achieving Pareto sets for every experiment 
problem. The outcomes are indicated in Tables 10–15. 

According to Tables 10–13, In the NPS metric, the number of non- 
dominated solutions in the objective function space overcomes all 
other solutions. It is obvious that the higher the number of non- 
dominated solutions on the best front, the higher the efficiency of the 
algorithm. It should be noted that the lower the value of MID, the better 
the quality of the algorithm solutions. Based on the non-dominated so-
lutions of MID, the SNS criterion examines the degree of a variety of 
solutions. The higher the value of SNS is shown the higher the quality of 
the algorithm’s non-dominated solutions population. MS considers the 
extent of non-dominated solutions. A higher value of this criterion in-
dicates more capability of the algorithm’s solutions. Based on the 
description of the four evaluation criteria, the ISEO algorithm in all four 
criteria examined shows that this algorithm is more efficient than the 
HFFA-SA. In multi-objective optimization, two performance criteria are 
used to compare solutions in terms of Pareto frontal amplitude and 
convergence. First of all, to determine the degree of convergence of 
solutions, the IGD criterion is employed. According to the results of 
Table 14, the rate of convergence to the real Pareto front is higher in the 
ISEO algorithm than in the HFFA-SA. Secondly, the HV metric calculates 
the volume (or level) covered by the optimal solutions found relative to 
a reference point and is an indicator of both convergence and diversity 
criteria. The reference point can be considered the vector of the worst 
values of the objective functions. This metric measures the quality of 
solutions in terms of both the ability to converge and maintain diversity 
in the population. The higher the value of this metric, it means the better 
the performance. According to Table 15, the ISEO algorithm is of higher 
quality than HFFA-SA in the HV metric. 

Fig. 17 indicates the non-dominated solutions of the proposed al-
gorithms in SP1, MP8, and LP13 experiment problems. In these figures, 
ISEO displays the best efficiency and reliability than the other meta-
heuristics. The other algorithm solutions are near and similar to each 
other. 

Accordingly, to determine a more reliable algorithm, this paper 
carries out statistical comparisons between algorithms according to the 
Pareto optimum analyses based on assessment metrics. Hence, the out-
puts which were indicated in Tables 10–15 are converted into a common 
metric i.e., Relative Deviation Index (RDI) by using the following for-
mula (Devika et al., 2014): 

RDI =
|Algsol − Bestsol|

Maxsol − Minsol
× 100 (84)  

Where Algsol is the objective value achieved based on the assessment 
metric of the metaheuristic, Maxsol andMinsol are the maximum and the 
minimum values between all values consequence of algorithms respec-
tively. Bestsol is the best solution between procedures; in another 
expression, it is one of the Maxsoland Minsol based on the essence of 
metrics (Hatami, Ruiz, & Andrés-Romano, 2015; Goodarzian & 
Hosseini-Nasab, 2019; Fakhrzad & Goodarzian, 2019). The lower the 
amount RDI attains, the higher the quality and efficiency of the algo-
rithm. As a result, to assess modified metaheuristics, the means plot and 
Least Significant Difference (LSD) are used. The outputs of the means 
plot and LSD are indicated in Fig. 18. Regarding Fig. 18(a), according to 
the NPS, firstly, it shows that the ISEO algorithm is more reliable than 
HFFA-SA that obtained the most suitable solution time. Between these 
metaheuristics, the introduced ISEO algorithm is the most efficient than 
HFFA-SA. Briefly, the suggested ISEO indicates the best efficiency in the 
NPS metric. Fig. 18(b) displays that the ISEO algorithm is forcefully 
better than HFFA-SA. Although HFFA-SA indicates weak efficiency, 
ISEO is strongly better than HFFA-SA in the MID metric. Then, this point 
of view in MS metric is correct. However, HFFA-SA indicates the worst 
behaviour in the MS metric (Fig. 18(c)). The outputs of the SNS metric 

Fig. 15. The behavior of CPU time for three heuristic approaches.  

Fig. 16. The behavior of metaheuristics according to the CPU time.  
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are distinctly contrary to the three explained metrics. Hence, ISEO is 
more reliable than HFFA-SA. The proposed ISEO is more trustworthy 
than HFFA-SA. Between both proposed metaheuristics, not only ISEO is 
more efficient than HFFA-SA but it also shows the most competent ef-
ficiency between all algorithms for SNS metric (Fig. 18(d)). Based on 
Fig. 18(e) and (f), in terms of IGD and HV, the results of the ISEO al-
gorithm has high efficiency and also it is more priority than HFFA-SA. 

4.7. Sensitivity analyses 

To identify the behaviour of the PSCN model along with the real 
savings of the problem proposed more efficiently, a number of sensi-
tivity analyses have been performed on the important parameters of the 
model. In this regard, a medium test problem such as MP6 considering 
six internal and foreign producers, five warehouses, five types of vehi-

Table 9 
The outcomes of the objective functions and CPU time (based on seconds) of the metaheuristics.  

Problem size Objective function ISEO CPU HFFA-SA CPU 

SP1 F1  5178613.124  46.65  5345341.344  61.87 
F2  4145191.123   4356128.236  
F3 (percent)  32.89   32.14  

SP2 F1  5245661.23  59.13  5690218.877  78.23 
F2  4656671.15   5351289.128  
F3 (percent)  32.92   32.90  

SP3 F1  5672981.134  145.17  6378975.811  156.43 
F2  4992123.228   5838703.544  
F3 (percent)  34.48   34.08  

SP4 F1  5853291.123  196.32  6830341.673  208.17 
F2  5256334.185   6189452.566  
F3 (percent)  37.75   36.51  

SP5 F1  9857455.566  268.67  11832231.78  279.45 
F2  8547611.19   10332439.4  
F3 (percent)  37.85   36.89  

MP6 F1  12156611.76  289.12  15823544.716  378.45 
F2  10855621.19   16772268.123  
F3 (percent)  45.75   45.28  

MP7 F1  14554302.71  345.34  16767887.21  462.56 
F2  12012231.61   19342566.23  
F3 (percent)  45.94   45.84  

MP8 F1  16890655.29  714.67  23981255.71  794.21 
F2  13467711.15   21566454.789  
F3 (percent)  46.95   45.98  

MP9 F1  18677125.162  1056.34  29176613.529  1145.34 
F2  15893252.671   24661552.566  
F3 (percent)  47.00   46.11  

MP10 F1  19233701.814  1236.23  34578991.451  1678.78 
F2  17765541.523   26187651.532  
F3 (percent)  47.25   47.19  

LP11 F1  22567651.763  1678.26  39804561.801  1866.38 
F2  19567480.156   28489831.267  
F3 (percent)  53.75   52.11  

LP12 F1  25567781.892  1945.34  32267731.234  2265.12 
F2  21587781.456   29034411.934  
F3 (percent)  53.98   53.61  

LP13 F1  28756211.231  2578.54  34566088.123  2777.4 
F2  23347845.781   31126543.634  
F3 (percent)  55.62   55.52  

LP14 F1  28567732.897  2856.43  39523231.232  3491.31 
F2  25687901.754   33043241.145  
F3 (percent)  56.94   55.72  

LP15 F1  33465439.236  3254.21  4528765198.5  3828.5 
F2  28714432.311   37564811.152  
F3 (percent)  58.84   57.29   

Table 10 
The outcomes of NPS’s for proposed algorithms.  

Experiment problem HFFA-SA ISEO 

SP1 4 8 
SP2 6 7 
SP3 6 10 
SP4 7 11 
SP5 5 12 
MP6 8 10 
MP7 7 11 
MP8 5 11 
MP9 6 10 
MP10 5 9 
LP11 5 7 
LP12 5 8 
LP13 5 7 
LP14 6 9 
LP15 7 9  

Table 11 
The outcomes of MID’s for suggested algorithms.  

Experiment problem ISEO HFFA-SA 

SP1  904.025  1009.211 
SP2  648.671  978.240 
SP3  774.601  944.100 
SP4  831.167  1127.611 
SP5  917.241  1355.417 
MP6  1075.050  1418.080 
MP7  489.215  1755.601 
MP8  568.610  2010.640 
MP9  1765.871  1988.715 
MP10  1510.410  2055.891 
LP11  1674.756  2203.333 
LP12  2019.369  2489.341 
LP13  2025.700  2742.025 
LP14  2365.008  2563.409 
LP15  1936.000  2089.341  
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cles, six customers, and fifty patients is elected. To manage the PSCN 
model, H-3 and ISEO as the most efficient heuristic and meta-heuristic 
algorithm respectively in this paper are considered. A set of changes 
containing the distance between levels in the network (dmw, dmc, dwc), 
inventory holding cost (αt

wp’, αt
mp’, αt

cp’), reliability rate of vehicles (R), 
and travel time (μmwrmw

, μmcrmc
, μwcrwc

) for extended PSCN model are 
analyzed. Each analysis is divided into six samples numbered as S1 to S6. 
Eventually, all outcomes based on H-3 and ISEO are provided in 
Table 16 and also in Fig. 19 as well as all outcomes in Fig. 20. 

According to the distance between levels in the network, inventory 
holding cost, reliability rate of vehicles, and travel time parameters, 
sensitivity analyses have been represented by raising the amount of 

these parameters. Details are summarized in Table 16. To recognize the 
behavior of three objective functions i.e. total cost, delivery time, and 
reliability, simultaneously, the values are considered in these compari-
sons as illustrated in Figs. 19 and 20. Regarding the results of Figs. 19(a) 
and 20(a) show that by the raising amount of the distance between levels 
in the network parameter the three objective functions be raised. In this 
regard, although by the increasing amount of the inventory holding cost 
parameter the first objective function is increased, these changes are no 
effect on the second and third objective functions in Figs. 19(b) and 20 
(b). Therefore, the behavior of the three objective functions is clear in 
Figs. 19(c) and 20(c). By increasing the number of the reliability rate of 
vehicles, the behavior of the total cost and reliability is raised, but the 
delivery time is decreased. Then, regarding this issue, the speed of de-
livery time for sending pharmaceutical products is decreased based on 
increasing transportation [system reliability along with raising trans-
portation costs. Finally, in terms of Figs. 19(d) and 20(d), by maximizing 
the travel time, every three objective functions have remained without 
change and these increases are no effect on the total cost, delivery time, 
and reliability. 

The effect of the change in the value of the parameters on the 
feasibility of the model is shown in Table 17. Therefore, the lower limit 
and the upper limit of the parameter deviation are calculated as long as 
the model remains feasible. 

For this purpose, the parameters are divided into different cate-
gories. For example, the first line indicates that changes in the range of 
− 15% up to + 26% in the amount of Inventory holding cost keep the 
solution space of the proposed model feasible. This category contains the 
parameters αt

wp’, αt
mp’andαt

cp’. The last line also indicates that changes in 
the range of − 27% up to + 39% in the amount of demand keep the 
solution space of the proposed model feasible. This category also con-
tains the parameters∂t

p’wm, ∂t
p’cm and∂t

p’cw. It should be noted that after 
running the proposed model for all parameters, the maximum changes 
for the Upper bound and Lower bound for each category of parameters 
are reported in Table 17. 

5. Conclusion, managerial implications, and future studies 

In the present paper, a novel production–distribution-inventory- 
location-allocation-routing model and associated solution for the PSCN 
problem of pharmaceutical products was developed by considering the 
delivery time and reliability with multi-modal transportation. The pro-
posed model was formulated as a MINLP model with reliability. Adding 
the multi-modal transportation of various sorts of utilized vehicles to 
transfer the pharmaceutical products to customers, was the principal 
contribution of the three-objective pharmaceutical supply chain model 
distinguished by three objectives. Three new heuristics (H-1), (H-2), (H- 
3) and two new, ISEO and HFFA-SA algorithms to find optimal solutions 
are developed. The efficiency of the ISEO algorithm is better, as it 

Table 12 
The outcomes of MS’s for presented algorithms.  

Experiment problem HFFA-SA ISEO 

SP1 4,732,147 5,183,225 
SP2 5,102,311 5,432,721 
SP3 5,231,773 5,577,716 
SP4 7,400,149 8,056,415 
SP5 11,329,216 12,005,413 
MP6 11,164,064 13,643,871 
MP7 9,730,189 12,116,213 
MP8 20,065,885 21,126,876 
MP9 20,005,167 22,556,005 
MP10 22,644,230 25,685,706 
LP11 25,672,367 27,651,410 
LP12 28,846,211 30,231,746 
LP13 28,993,015 30,469,199 
LP14 31,225,156 35,615,279 
LP15 32,566,980 38,822,911  

Table 13 
The outputs of SNS’s for proposed algorithms.  

Experiment problem HFFA-SA ISEO 

SP1 787525.4  824413.6 
SP2 713518.5  733619.3 
SP3 527143.2  535316.9 
SP4 574610.7  591537.7 
SP5 741753. 2  765440.3 
MP6 968547.4  972542.2 
MP7 1245953.1  1386346.5 
MP8 2225664.9  2758079.4 
MP9 2409308.1  2845619.5 
MP10 2714505.3  2795330.6 
LP11 3712364.2  3792505.8 
LP12 4017116.6  4276416.6 
LP13 4264419.3  5153206.3 
LP14 4164825.6  4597561.1 
LP15 3566845.5  3642609.3  

Table 14 
The outputs of IGD’s for proposed algorithms.  

Experiment problem ISEO HFFA-SA 

SP1  0.0384  0.0532 
SP2  0.0392  0.0582 
SP3  0.0401  0.0612 
SP4  0.0422  0.0657 
SP5  0.0434  0.0682 
MP6  0.0456  0.0721 
MP7  0.0478  0.0756 
MP8  0.0489  0.0812 
MP9  0.0492  0.0824 
MP10  0.0494  0.0856 
LP11  0.0532  0.0878 
LP12  0.0678  0.0912 
LP13  0.0732  0.0936 
LP14  0.0821  0.0956 
LP15  0.0876  0.0978  

Table 15 
The outputs of HV’s for proposed algorithms.  

Experiment problem HFFA-SA ISEO 

SP1  1.36  2.34 
SP2  1.45  2.67 
SP3  1.67  3.24 
SP4  1.79  3.45 
SP5  1.82  3.78 
MP6  1.93  4.01 
MP7  2.01  4.34 
MP8  2.23  4.68 
MP9  2.35  4.89 
MP10  2.56  5.34 
LP11  2.69  5.88 
LP12  2.78  6.21 
LP13  2.85  6.45 
LP14  2.93  6.67 
LP15  3.02  7.21  
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utilizes a new position mechanism. This improved algorithm is intro-
duced with an adjustment operator to enhance its efficiency in terms of 
search precision and running time, as the main aim was to better balance 

the convergence speed and local optima avoidance of the ISEO. Besides, 
numerical experiments were conducted to test the validity of the sug-
gested problem, two presented heuristics, and an extended 

Fig. 18. ANOVA plots for the evaluate metrics in term of RDI for algorithms.  

Fig. 17. Pareto frontier of presented metaheuristics algorithms.  
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metaheuristic algorithm for the small, medium, and large size of the 
problem. According to the numerical experiments, the following con-
clusions could be made; Firstly, though H-3 is faster than H-1 and H-2, 
the quality of H-3 solutions is higher than that of H-1 and H-2; Secondly, 
though the ISEO algorithm is efficient than other algorithms, the quality 
of the ISEO algorithm is higher than that of other algorithms when large- 
scale problems. Afterwards, the significance of identifying a compro-
mising solution is explained by examining the trade-offs through Pareto 
analysis in relevance to the considered examples. Observations reveal 
that a significant amount of the total costs and delivery time of phar-
maceutical products reduction can be achieved at the expense of a 

minimal increase in the reliability of transportation systems in the PSCN 
much to the interest of internal and foreign producers and hospitals and 
pharmacies. 

The managerial implications related to the transportation costs and 
the rate of reliability of vehicles observed for different configurations of 
the common problem are derived as follows. Firstly, for the small, me-
dium, and large-size problems, the rate of reduction in total costs of the 
PSCN according to the decreasing delivery time of pharmaceutical 
products and the increase in the reliability of the vehicles, is found to 
increase initially and later the rate of reliability in the different sizes of 
problems decreases drastically. Secondly, the insights achieved by 

Table 16 
The sensitivity analyses based on the results of H-3 and ISEO.  

The sensitivity analyses on the distance between levels in the network   

Samples dmw,dmc,dwc  Total cost Delivery time Reliability   

S1 H-3 45 km 2923544.26 277268.123 27.87    
ISEO  12156611.76 10855621.19 25.98   

S2 H-3 150 km 4323169.31 356912.456 28.92    
ISEO  21072109.23 15789123.31 27.45   

S3 H-3 300 km 5621812.81 462814.511 30.31    
ISEO  29651245.19 19356284.45 29.74   

S4 H-3 400 km 6389126.17 523219.702 32.51    
ISEO  37278823.13 25701240.18 31.85   

S5 H-3 500 km 7145618.27 592802.19 33.95    
ISEO  49192629.28 31562719.21 33.27   

S6 H-3 1000 km 8547544.26 762113.322 35.79    
ISEO  67195623.52 45691218.23 35.11    

The sensitivity analyses on the inventory holding cost    
Samples αt

wp’,αt
mp’,αt

cp’  Total cost Delivery time Reliability   
S1 H-3 100000$ 2923544.26 277268.123 24.32    

ISEO  12156611.76 10855621.19 23.75   
S2 H-3 115000$ 3427128.43 277268.123 24.98    

ISEO  17325723.12 10855621.19 23.88   
S3 H-3 140000$ 4278122.34 277268.123 25.97    

ISEO  21872312.25 10855621.19 25.23   
S4 H-3 160000$ 4928890.81 277268.123 26.31    

ISEO  25762323.65 10855621.19 26.10   
S5 H-3 180000$ 5226671.26 277268.123 28.61    

ISEO  29782109.23 10855621.19 27.28   
S6 H-3 200000$ 5880121.45 277268.123 30.79    

ISEO  32784523.19 10855621.19 28.64    

The sensitivity analyses on the reliability rate of vehicles    

Samples R  Total cost Delivery time Reliability   

S1 H-3 0.450 2923544.26 277268.123 16.27    
ISEO  12156611.76 10855621.19 14.64   

S2 H-3 0.550 3145812.32 258912.249 23.67    
ISEO  13152833.71 9651281.21 20.78   

S3 H-3 0.650 3367128.45 227268.123 28.91    
ISEO  15461289.19 9155621.19 25.09   

S4 H-3 0.750 3578011.18 197268.433 33.14    
ISEO  17569023.16 8855621.21 31.68   

S5 H-3 0.850 3678544.26 177268.567 38.94    
ISEO  19156611.76 8255011.23 36.87   

S6 H-3 0.950 3923544.37 143468.455 45.23    
ISEO  21780923.16 6518011.34 40.56    

The sensitivity analyses on the travel time    

Samples μmwrmw
,μmcrmc

,μwcrwc  
Total cost Delivery time Reliability   

S1 H-3 25(second) 2923544.26 277268.123 21.32    
ISEO  12156611.76 10855621.19 20.64   

S2 H-3 45 2923544.26 277268.123 23.41    
ISEO  12156611.76 10855621.19 21.70   

S3 H-3 65 2923544.26 277268.123 25.61    
ISEO  12156611.76 10855621.19 24.41   

S4 H-3 85 2923544.26 277268.123 28.61    
ISEO  12156611.76 10855621.19 26.71   

S5 H-3 95 2923544.26 277268.123 29.42    
ISEO  12156611.76 10855621.19 29.31   

S6 H-3 120 2923544.26 277268.123 32.34    
ISEO  12156611.76 10855621.19 30.55    
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Fig. 19. The behavior of objective functions in the sensitivity analyses based on the H-3.  

Fig. 20. The behavior of objective functions in the sensitivity analyses based on the ISEO.  
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capturing the impact of variation in allocation, distribution, inventory 
holding, and production level on the available cost in the PSCN and 
increasing reliability for users of the transportation system on the 
different route, are of crucial value for internal and foreign producers to 
decide the adequate level of allocation, distribution, inventory holding, 
and production of pharmaceutical products. Subsequently, this pro-
posed model helps internal and foreign producers in staying well 
informed concerning the achievable levels of penalties thresholds, while 
ensuring a check on costs, delivery times, and reliability of vehicles. The 
present paper provides a numerical example to display the pros and cons 
of raising the warehouse, distribution center, and the sorts of trans-
portation system capacities. The aforementioned trade-offs are instru-
mental for internal and foreign producers while making an intuitive 
selection of a reliability strategy for pharmaceutical products according 
to the penalties. 

In future works, one can consider a multi-objective metaheuristic 
algorithm such as multi-objective Grey Wolf Optimizer, Multi-objective 
Stochastic Fractal Search, Fast PGA, NSGA-II, MOGA, etc. to attain 
Pareto solutions. Furthermore, several parameters of the model such as 
demand and cost can be considered stochastic, robust, or fuzzy to cause 
the application closer to actuality. Besides, the interested scholars could 
utilize the Lagrangian Relaxation Algorithm, logic-based benders 
decomposition, branch-and-price, or branch-and-price-and-cut algo-
rithms to solve the proposed problem in future studies. In addition, the 
presented mathematical model by adding other objective functions such 
as sustainability in the PSCN, maximization of product quality level, and 
minimization of customer dissatisfaction of pharmaceutical products 
will be developed for future research. Finally, Blockchain technology 
will be utilized in the PSCN in future studies. 
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Pérez-Cañedo, B., Verdegay, J. L., & Miranda Pérez, R. (2020). An epsilon-constraint 
method for fully fuzzy multiobjective linear programming. International Journal of 
Intelligent Systems, 35(4), 600–624. 

Quinton, F., Hamaz, I., & Houssin, L. (2019). A mixed integer linear programming 
modelling for the flexible cyclic job shop problem. Annals of Operations Research, 
1–18. 

Recioui, A. (2012). Sidelobe level reduction in linear array pattern synthesis using 
particle swarm optimization. Journal of Optimization Theory and Applications, 153(2), 
497–512. 

Rivera, J. C., Afsar, H. M., & Prins, C. (2015). A multi-start iterated local search for the 
multi-trip cumulative capacitated vehicle routing problem. Computational 
Optimization and Applications, 61(1), 159–187. 

Rossetti, C. L., Handfield, R., & Dooley, K. J. (2011). Forces, trends, and decisions in 
pharmaceutical supply chain management. International Journal of Physical 
Distribution & Logistics Management, 41(6), 601–622. 

Sabouhi, F., Pishvaee, M. S., & Jabalameli, M. S. (2018). Resilient supply chain design 
under operational and disruption risks considering quantity discount: A case study of 
pharmaceutical supply chain. Computers & Industrial Engineering, 126, 657–672. 

Sadeghi, J., Mousavi, S. M., Niaki, S. T. A., & Sadeghi, S. (2013). Optimizing a multi- 
vendor multi-retailer vendor managed inventory problem: Two tuned meta-heuristic 
algorithms. Knowledge-Based Systems, 50, 159–170. 

Sahebjamnia, N., Goodarzian, F., & Hajiaghaei-Keshteli, M. (2020). Optimization of 
Multi-Period Three-echelon Citrus Supply Chain Problem. Journal of Optimization in 
Industrial Engineering, 41–50. 

Samadi, A., Mehranfar, N., Fathollahi Fard, A. M., & Hajiaghaei-Keshteli, M. (2018). 
Heuristic-based Metaheuristics to solve a Sustainable Supply Chain Network Design 
Problem. Journal of Industrial and Production Engineering, 35(2), 102–117. 

Savadkoohi, E., Mousazadeh, M., & Torabi, S. A. (2018). A possibilistic location- 
inventory model for multi-period perishable pharmaceutical supply chain network 
design. Chemical Engineering Research and Design, 138, 490–505. 

Sbai, N., & Berrado, A. (2018). A literature review on multi-echelon inventory management: 
the case of pharmaceutical supply chain, 200. p. 00013. 

Settanni, E., Harrington, T. S., & Srai, J. S. (2017). Pharmaceutical supply chain models: 
A synthesis from a systems view of operations research. Operations Research 
Perspectives, 4, 74–95. 

Shah, N. (2004). Pharmaceutical supply chains: Key issues and strategies for 
optimization. Computers & chemical engineering, 28(6–7), 929–941. 

Shirazi, H., Kia, R., & Ghasemi, P. (2020). Ranking of hospitals in the case of COVID-19 
outbreak: A new integrated approach using patient satisfaction criteria. International 
Journal of Healthcare Management, 1–13. 

Singh, S. K., & Goh, M. (2019). Multi-objective mixed integer programming and an 
application in a pharmaceutical supply chain. International Journal of Production 
Research, 57(4), 1214–1237. 

Snyder, L. V., & Daskin, M. S. (2006). A random-key genetic algorithm for the 
generalized traveling salesman problem. European Journal of Operational Research, 
174(1), 38–53. 

Sousa, R. T., Shah, N., & Papageorgiou, L. G. (2005). Global supply chain network 
optimization for pharmaceuticals. Computer Aided Chemical Engineering, 20, 
1189–1194. 

Susarla, N., & Karimi, I. A. (2012). Integrated supply chain planning for multinational 
pharmaceutical enterprises. Computers & Chemical Engineering, 42, 168–177. 

Tirkolaee, E. B., Goli, A., Faridnia, A., Soltani, M., & Weber, G. W. (2020). Multi- 
Objective Optimization for the Reliable Pollution-Routing Problem with Cross-Dock 
Selection using Pareto-based Algorithms. Journal of Cleaner Production, 122927. 

Tirkolaee, E. B., Mardani, A., Dashtian, Z., Soltani, M., & Weber, G. W. (2020). A novel 
hybrid method using fuzzy decision making and multi-objective programming for 
sustainable-reliable supplier selection in two-echelon supply chain design. Journal of 
Cleaner Production, 250, Article 119517. 

Uthayakumar, R., & Priyan, S. (2013). Pharmaceutical supply chain and inventory 
management strategies: Optimization for a pharmaceutical company and a hospital. 
Operations Research for Health Care, 2(3), 52–64. 

Xian, S., Qiu, D., & Zhang, S. (2013). A fuzzy principal component analysis approach to 
hierarchical evaluation model for balanced supply chain scorecard grading. Journal 
of Optimization Theory and Applications, 159(2), 518–535. 

Yeganeh, F. T., & Zegordi, S. H. (2019). A multi-objective optimization approach to 
project scheduling with resiliency criteria under uncertain activity duration. Annals 
of Operations Research, 1–36. 

Van Veldhuizen, D. A. (1999). Multi-objective evolutionary algorithms: classifications, 
analyses, and new innovations (No. AFIT/DS/ENG/99-01). AIR FORCE INST OF 
TECH WRIGHT-PATTERSONAFB OH SCHOOL OF ENGINEERING. 

Zahiri, B., Jula, P., & Tavakkoli-Moghaddam, R. (2018b). Design of a pharmaceutical 
supply chain network under uncertainty considering perishability and 
substitutability of products. Information Sciences, 423, 257–283. 

Zahiri, B., Torabi, S. A., Mohammadi, M., & Aghabegloo, M. (2018a). A multi-stage 
stochastic programming approach for blood supply chain planning. Computers & 
Industrial Engineering, 122, 1–14. 

Zahiri, B., Zhuang, J., & Mohammadi, M. (2017). Toward an integrated sustainable- 
resilient supply chain: A pharmaceutical case study. Transportation Research Part E: 
Logistics and Transportation Review, 103, 109–142. 

Zandieh, M., Janatyan, N., Alem-Tabriz, A., & Rabieh, M. (2018). Designing Sustainable 
Distribution Network in Pharmaceutical Supply Chain: A Case Study. International 
Journal of Supply and Operations Management, 5(2), 122–133. 

Zandkarimkhani, S., Mina, H., Biuki, M., & Govindan, K. (2020). A chance constrained 
fuzzy goal programming approach for perishable pharmaceutical supply chain 
network design. Annals of Operations Research, 1–28. 

Zhu, S. X., & Ursavas, E. (2018). Design and analysis of a satellite network with direct 
delivery in the pharmaceutical industry. Transportation Research Part E: Logistics and 
Transportation Review, 116, 190–207. 

F. Goodarzian et al.                                                                                                                                                                                                                            

http://refhub.elsevier.com/S0360-8352(21)00293-X/h0165
http://refhub.elsevier.com/S0360-8352(21)00293-X/h0165
http://refhub.elsevier.com/S0360-8352(21)00293-X/h0165
http://refhub.elsevier.com/S0360-8352(21)00293-X/h0170
http://refhub.elsevier.com/S0360-8352(21)00293-X/h0170
http://refhub.elsevier.com/S0360-8352(21)00293-X/h0170
http://refhub.elsevier.com/S0360-8352(21)00293-X/h0175
http://refhub.elsevier.com/S0360-8352(21)00293-X/h0175
http://refhub.elsevier.com/S0360-8352(21)00293-X/h0180
http://refhub.elsevier.com/S0360-8352(21)00293-X/h0180
http://refhub.elsevier.com/S0360-8352(21)00293-X/h0180
http://refhub.elsevier.com/S0360-8352(21)00293-X/h0180
http://refhub.elsevier.com/S0360-8352(21)00293-X/h0185
http://refhub.elsevier.com/S0360-8352(21)00293-X/h0185
http://refhub.elsevier.com/S0360-8352(21)00293-X/h0185
http://refhub.elsevier.com/S0360-8352(21)00293-X/h0190
http://refhub.elsevier.com/S0360-8352(21)00293-X/h0190
http://refhub.elsevier.com/S0360-8352(21)00293-X/h0195
http://refhub.elsevier.com/S0360-8352(21)00293-X/h0195
http://refhub.elsevier.com/S0360-8352(21)00293-X/h0195
http://refhub.elsevier.com/S0360-8352(21)00293-X/h0200
http://refhub.elsevier.com/S0360-8352(21)00293-X/h0200
http://refhub.elsevier.com/S0360-8352(21)00293-X/h0200
http://refhub.elsevier.com/S0360-8352(21)00293-X/h0205
http://refhub.elsevier.com/S0360-8352(21)00293-X/h0205
http://refhub.elsevier.com/S0360-8352(21)00293-X/h0205
http://refhub.elsevier.com/S0360-8352(21)00293-X/h0210
http://refhub.elsevier.com/S0360-8352(21)00293-X/h0210
http://refhub.elsevier.com/S0360-8352(21)00293-X/h0215
http://refhub.elsevier.com/S0360-8352(21)00293-X/h0215
http://refhub.elsevier.com/S0360-8352(21)00293-X/h0215
http://refhub.elsevier.com/S0360-8352(21)00293-X/h0220
http://refhub.elsevier.com/S0360-8352(21)00293-X/h0220
http://refhub.elsevier.com/S0360-8352(21)00293-X/h0220
http://refhub.elsevier.com/S0360-8352(21)00293-X/h0225
http://refhub.elsevier.com/S0360-8352(21)00293-X/h0225
http://refhub.elsevier.com/S0360-8352(21)00293-X/h0225
http://refhub.elsevier.com/S0360-8352(21)00293-X/h0230
http://refhub.elsevier.com/S0360-8352(21)00293-X/h0230
http://refhub.elsevier.com/S0360-8352(21)00293-X/h0230
http://refhub.elsevier.com/S0360-8352(21)00293-X/h9005
http://refhub.elsevier.com/S0360-8352(21)00293-X/h9005
http://refhub.elsevier.com/S0360-8352(21)00293-X/h9005
http://refhub.elsevier.com/S0360-8352(21)00293-X/h0235
http://refhub.elsevier.com/S0360-8352(21)00293-X/h0235
http://refhub.elsevier.com/S0360-8352(21)00293-X/h0235
http://refhub.elsevier.com/S0360-8352(21)00293-X/h0240
http://refhub.elsevier.com/S0360-8352(21)00293-X/h0240
http://refhub.elsevier.com/S0360-8352(21)00293-X/h0240
http://refhub.elsevier.com/S0360-8352(21)00293-X/h0245
http://refhub.elsevier.com/S0360-8352(21)00293-X/h0245
http://refhub.elsevier.com/S0360-8352(21)00293-X/h0245
http://refhub.elsevier.com/S0360-8352(21)00293-X/h0250
http://refhub.elsevier.com/S0360-8352(21)00293-X/h0250
http://refhub.elsevier.com/S0360-8352(21)00293-X/h0250
http://refhub.elsevier.com/S0360-8352(21)00293-X/h0255
http://refhub.elsevier.com/S0360-8352(21)00293-X/h0255
http://refhub.elsevier.com/S0360-8352(21)00293-X/h0255
http://refhub.elsevier.com/S0360-8352(21)00293-X/h0260
http://refhub.elsevier.com/S0360-8352(21)00293-X/h0260
http://refhub.elsevier.com/S0360-8352(21)00293-X/h0260
http://refhub.elsevier.com/S0360-8352(21)00293-X/h0265
http://refhub.elsevier.com/S0360-8352(21)00293-X/h0265
http://refhub.elsevier.com/S0360-8352(21)00293-X/h0265
http://refhub.elsevier.com/S0360-8352(21)00293-X/h0270
http://refhub.elsevier.com/S0360-8352(21)00293-X/h0270
http://refhub.elsevier.com/S0360-8352(21)00293-X/h0270
http://refhub.elsevier.com/S0360-8352(21)00293-X/h0275
http://refhub.elsevier.com/S0360-8352(21)00293-X/h0275
http://refhub.elsevier.com/S0360-8352(21)00293-X/h0275
http://refhub.elsevier.com/S0360-8352(21)00293-X/h0280
http://refhub.elsevier.com/S0360-8352(21)00293-X/h0280
http://refhub.elsevier.com/S0360-8352(21)00293-X/h0285
http://refhub.elsevier.com/S0360-8352(21)00293-X/h0285
http://refhub.elsevier.com/S0360-8352(21)00293-X/h0285
http://refhub.elsevier.com/S0360-8352(21)00293-X/h0290
http://refhub.elsevier.com/S0360-8352(21)00293-X/h0290
http://refhub.elsevier.com/S0360-8352(21)00293-X/h0295
http://refhub.elsevier.com/S0360-8352(21)00293-X/h0295
http://refhub.elsevier.com/S0360-8352(21)00293-X/h0295
http://refhub.elsevier.com/S0360-8352(21)00293-X/h0300
http://refhub.elsevier.com/S0360-8352(21)00293-X/h0300
http://refhub.elsevier.com/S0360-8352(21)00293-X/h0300
http://refhub.elsevier.com/S0360-8352(21)00293-X/h0305
http://refhub.elsevier.com/S0360-8352(21)00293-X/h0305
http://refhub.elsevier.com/S0360-8352(21)00293-X/h0305
http://refhub.elsevier.com/S0360-8352(21)00293-X/h0310
http://refhub.elsevier.com/S0360-8352(21)00293-X/h0310
http://refhub.elsevier.com/S0360-8352(21)00293-X/h0310
http://refhub.elsevier.com/S0360-8352(21)00293-X/h0315
http://refhub.elsevier.com/S0360-8352(21)00293-X/h0315
http://refhub.elsevier.com/S0360-8352(21)00293-X/h0320
http://refhub.elsevier.com/S0360-8352(21)00293-X/h0320
http://refhub.elsevier.com/S0360-8352(21)00293-X/h0320
http://refhub.elsevier.com/S0360-8352(21)00293-X/h0325
http://refhub.elsevier.com/S0360-8352(21)00293-X/h0325
http://refhub.elsevier.com/S0360-8352(21)00293-X/h0325
http://refhub.elsevier.com/S0360-8352(21)00293-X/h0325
http://refhub.elsevier.com/S0360-8352(21)00293-X/h0330
http://refhub.elsevier.com/S0360-8352(21)00293-X/h0330
http://refhub.elsevier.com/S0360-8352(21)00293-X/h0330
http://refhub.elsevier.com/S0360-8352(21)00293-X/h0335
http://refhub.elsevier.com/S0360-8352(21)00293-X/h0335
http://refhub.elsevier.com/S0360-8352(21)00293-X/h0335
http://refhub.elsevier.com/S0360-8352(21)00293-X/h0340
http://refhub.elsevier.com/S0360-8352(21)00293-X/h0340
http://refhub.elsevier.com/S0360-8352(21)00293-X/h0340
http://refhub.elsevier.com/S0360-8352(21)00293-X/h0350
http://refhub.elsevier.com/S0360-8352(21)00293-X/h0350
http://refhub.elsevier.com/S0360-8352(21)00293-X/h0350
http://refhub.elsevier.com/S0360-8352(21)00293-X/h0355
http://refhub.elsevier.com/S0360-8352(21)00293-X/h0355
http://refhub.elsevier.com/S0360-8352(21)00293-X/h0355
http://refhub.elsevier.com/S0360-8352(21)00293-X/h0360
http://refhub.elsevier.com/S0360-8352(21)00293-X/h0360
http://refhub.elsevier.com/S0360-8352(21)00293-X/h0360
http://refhub.elsevier.com/S0360-8352(21)00293-X/h0365
http://refhub.elsevier.com/S0360-8352(21)00293-X/h0365
http://refhub.elsevier.com/S0360-8352(21)00293-X/h0365
http://refhub.elsevier.com/S0360-8352(21)00293-X/h0370
http://refhub.elsevier.com/S0360-8352(21)00293-X/h0370
http://refhub.elsevier.com/S0360-8352(21)00293-X/h0370
http://refhub.elsevier.com/S0360-8352(21)00293-X/h0375
http://refhub.elsevier.com/S0360-8352(21)00293-X/h0375
http://refhub.elsevier.com/S0360-8352(21)00293-X/h0375

	A set of efficient heuristics and meta-heuristics to solve a multi-objective pharmaceutical supply chain network
	1 Introduction
	2 Problem description
	2.1 Assumptions
	2.2 Notations
	2.3 Proposed mathematical model
	2.4 Linearization process

	3 The solution method
	3.1 Epsilon constraint method
	3.2 Multi-objective optimization
	3.3 Solution presentation
	3.4 Improved social engineering optimization
	3.4.1 Initialize the attacker and the defender
	3.4.2 The number of attackers and defenders
	3.4.3 Training and retraining
	3.4.4 Defender and attacker evaluation criteria
	3.4.5 Spot an attack
	3.4.5.1 Obtaining
	3.4.5.2 Phishing
	3.4.5.3 Diversion theft
	3.4.5.4 Pretext
	3.4.5.5 Respond to attack

	3.4.6 Adjustment operator
	3.4.7 Choose a novel person as a defender
	3.4.8 Stop condition

	3.5 Computational method of ISEO
	3.6 Hybrid Firefly and Simulated Annealing algorithms (HFFA-SA)
	3.7 Heuristic approach
	3.8 Constraint handling strategy

	4 Numerical experiments, results, and discussion
	4.1 Data generation
	4.2 Exact solution results
	4.3 Taguchi method for parameter tuning of metaheuristic algorithms
	4.4 Evaluation metrics of Pareto optimum solutions
	4.5 A balance among the delivery time, total cost, and reliability: Evaluation of heuristics
	4.6 Pareto optimum analysis: Comparison of metaheuristics
	4.7 Sensitivity analyses

	5 Conclusion, managerial implications, and future studies
	CRediT authorship contribution statement
	References


