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A B S T R A C T   

In a project-driven supply chain, the project schedule and material supply influence one another. The effective 
decision-making process between the project manager and the suppliers can promote the flexibility and 
competitiveness of supply chains. However, due to their incompatible objectives, the suppliers are reluctant to 
disclose private information. By incorporating information asymmetry, we build a model to describe the 
decentralized decision-making process. The project manager does not know the lead time and the production/ 
transportation cost of the material suppliers accurately. To build an effective alliance in the supply chain, 
different contracts are considered to provide a positive or negative incentive for the suppliers, including a non- 
financial incentive contract with continuous orders. Then, we present a framework that integrates the agent- 
based approach and evolutionary algorithm. In the framework, the agents not only negotiate with each other 
to complete a solution but also jointly evaluate the solutions generated by the evolutionary algorithm. Finally, an 
experiment is conducted to compare the agent-based approach and the classical NSGA-II under information 
symmetry. The results show that the gap between the algorithms is acceptable, especially for a large project. The 
results also show that the non-financial incentive contract is beneficial to all the players in the supply chain.   

1. Introduction 

Effective supply chain management is critical for projects, because it 
can avoid time and cost overruns. In construction projects, building 
materials alone can constitute up to 60% of the total project cost, and the 
management of materials affects 80% of the project schedule (Safa et al., 
2014). If a supply chain is not controlled properly, it will ultimately 
result in project failure (Shojaei and Haeri, 2019). The Boeing 787 
project was postponed for two years due to material shortage or late 
delivery, which damaged its credibility and cost billions of dollars. The 
supply chain which ultimately delivers a customized capital project is 
referred to as a project-driven supply chain (Wu, 2014). As shown in 
Fig. 1, in a project-driven supply chain, the project is the single customer 
and generally orders materials in batches during the project execution, 
especially for a large project with a limited site (Ghisolfi et al., 2017). 
The project purchases materials based on its inventory, which depends 
on the requirement of the relevant activities and the delivery status of 
the associated suppliers; if the inventory is less than the minimum 
requirement, the project will be suspended for a lack of materials. There 
exist intertwined relationships in the project-driven supply chain: the 

demand quantity and the demand cycle are defined by the project 
schedule, while the implementation progress of the project is con-
strained by the actual deliveries of different suppliers. If we schedule 
activities or purchase materials separately, both plans are generally 
inexecutable and make the project difficult to respond to various dis-
ruptions flexibly. 

Integrated project planning can help to define these relationships 
and to enhance the project performance (Wu, 2014; Mello et al., 2017). 
On the one hand, the project manager can timely adjust the schedule due 
to a potential delay or a limited capacity of suppliers. The adjusted 
schedule partly reduces the negative effect of the material shortage. On 
the other hand, the selection of suppliers throughout the project prog-
ress can increase productivity and reduce costs (Chen et al., 2018). The 
uniqueness of the project leads to a discontinuous and uncertain nature 
of demand for the suppliers and entails supplier identification (Shisho-
dia et al., 2019). The same project in a separate batch may raise different 
requirements for the suppliers as well. For example, in the event of time 
pressure, the project manager prefers the supplier with a faster delivery 
rather than that with a lower price. The current research on the project 
scheduling or the project procurement assumes information symmetry 
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and is conducted through a centralized decision-making process (e.g., 
heuristics-based methods, mathematical programming, multi-objective 
algorithm). This assumption implies that the information of all the 
players in supply chain is completely public; this decision-making pro-
cess requires that all the players concentrate on the common objectives, 
and all the plans are executed firmly without consideration of personal 
loss. However, in practice, suppliers prefer to keep some information 
private to increase their competitive advantage even in a collaborative 
environment; thus, the objectives of the players are generally conflict-
ing. Therefore, the project-driven supply chain resolved via a centralized 
decision-making process may lead to unreliable information, inattentive 
execution and unsatisfactory outcomes (Chen and Lee, 2017). 

On another dimension, as shown in Fig. 1, the players in the project- 
driven supply chain are closely connected by contracts, which outline 
the expectations for the goods and stipulate the payment to the sup-
pliers. Each type of contract differs in the specific terms about in-
centives. From the perspective of the project manager, an effective 
contract can propel the suppliers to deliver goods on time, and reduce 
the schedule slippage in a cost-efficient way. The literature about the 
contracts for project procurement is scarce. To the best of our knowl-
edge, only Chen and Lee (2017) proposed a time incentive contract in a 
simplified project network. Although the mutual effect between the 
project scheduling and the material procurement was not considered, 
they proved that channel coordination was achieved in a decentralized 
decision-making process. The existing research on contracting in the 
whole field of project management mainly focuses on financial incentive 
contracts that directly use money to produce a negative or positive 

incentive (Kwon et al., 2010b; Kerkhove and Vanhouckev, 2017; Palit 
and Brint, 2020). Moreover, the incentive strength in the financial 
incentive contract, such as the ratio of down payment, is always 
assumed to be exogenous. However, in practice, incentives are repre-
sented in various forms, not restricted to financial factors; the project 
manager can adjust the incentive strength according to the order 
quantity and the delivery date for different orders. 

This paper deals with the decentralized decision-making process in 
the project-driven supply chain and improves the interface between site 
activities and the supply chain under information asymmetry. This 
paper makes two main contributions. First, we propose a decentralized 
decision-making framework integrating the agent-based approach and 
evolutionary algorithm. The agents collectively resolve resource con-
flicts via negotiations or evaluations, and no sensitive information is 
disclosed during the resolution. Second, except for two types of financial 
incentive contract, we adopt a non-financial incentive contract as a link 
between the players. This non-financial incentive contract takes a future 
work opportunity as an incentive. In these contracts, the project man-
ager is entitled to change the contractual requirements according to the 
market competition and the project condition, such as the delivery cycle 
and the incentive strength. 

This paper is organized as follows. Section 2 provides a brief review 
of the related literature. A mathematical programming model for the 
project manager and material suppliers is presented in Section 3. An 
evolutionary algorithm to integrate with agents is proposed in Section 4. 
Section 5 presents the agent-based approach. Section 6 discusses several 
experiments performed in various supply chain situations to verify the 

Fig. 1. Project-driven supply chain.  
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algorithm effectiveness. Finally, some conclusions are drawn. All the 
proofs and pseudocodes are presented in the Appendixes. 

2. Related literature 

In a project-driven supply chain, the procurement plan is integrated 
with the project schedule, and the coordination between the project 
manager and the suppliers is mainly ensured by a contract. The study is 
related to the following research streams: (1) project integrated sched-
uling and (2) contracting in project management. 

2.1. Project integrated planning 

The project integrated planning includes project scheduling, mate-
rial ordering, supplier selection, etc. There is similar research in the field 
of production integrated planning (Chen, 2010; Viergutz and Knust, 
2014; Cui, 2016). For the integrated problem of project scheduling and 
material ordering, Tabrizi and Ghaderi (2016) proposed a mixed-integer 
programming model for project scheduling and material procurement, 
subject to the risks of activity durations and execution costs. Considering 
the price discount, an order is put for each activity. Zoraghi et al. (2017) 
extended the model by including mode selection for project scheduling 
and assumed that the material procurements are exposed to the total 
quantity discount policy. The integrated problem was further studied 
with consideration of supplier selection. Chen et al. (2018) considered 
supplier selection and final quality inspection for concurrent projects in 
construction. The projects were independent in operation but subject to 
shared suppliers. They assumed that each project chooses one single 
supplier for each resource. In consideration of the risks of material de-
livery, Xu et al. (2016) presented a dynamic programming model for a 
recurrent project with random material delays to jointly optimize safety- 
stock decisions in material supply chains and crashing decisions in 
projects. They simplified the project into a sequence of critical tasks and 
assumed that the supply chains of different activities were operated 
independently. Habibi et al. (2019) proposed a mathematical model to 
determine the activities schedule, the material ordering time and 
quantity, and the supplier selection that maximize the project’s Net 
Present Value and the environmental and social benefits of its suppliers. 
As shown in Table 1, the above studies all adopt centralized methods, in 
which the project manager (or the contractor) and the suppliers 
collaborate perfectly. These approaches typically require sensitive 
strategic information from business partners. Project integrated plan-
ning cannot be realized exactly in practice because the different players 
in the supply chain are always self-interested and maximize their profits 
without considering others. 

We acknowledge that no single player can determine the schedules 
for the whole supply chain. Therefore, we consider the supplier’s trade- 

off model separately from the project manager’s planning model. The 
project manager cannot know the sensitive information of the suppliers 
accurately due to information asymmetry. Then, we resolve the inte-
gration problem via a decentralized approach—an agent-based 
approach. 

2.2. Contracting in project management 

The incentives in supply chain management take the form of a con-
tract so that all parties internalize the full system-wide costs and benefits 
associated with their decisions, such as a profit-sharing contract (Shang 
et al., 2016). Four types of contracts in project management are common 
when a project manager can observe the completion time or the actual 
operating cost for the contract. 1) Under a fixed-price contract, the 
project manager pays the contractor a fixed price upon project 
completion with no incentives. 2) Under a time incentive contract, the 
payment for the contractors is a decreasing function of the delivery time 
to impel the contractor to complete the project earlier. 3) Under a cost 
incentive contract, the payment depends on the actual cost incurred by 
the contractor plus an incentive to restrain the cost, e.g., cost plus a fixed 
fee contract. 4) Under a quality incentive contract, better quality/scope 
performance brings the contractors more gains, and the quality/scope 
evaluation mostly uses key performance indicators or balanced score-
card techniques. Our paper concentrates on time incentive contracts due 
to the time risks in a project-driven supply chain. 

In the literature on project management, most studies, except for the 
mentioned work of Chen and Lee (2017), consider a contractual rela-
tionship between a general contractor and several subcontractors. Kwon 
et al. (2010a) compared a delayed contract and a no-delayed contract 
based on the suppliers’ work rates. They analysed the contracts’ impact 
on each supplier’s effort level and on the manufacturer’s net profit in 
equilibrium. This study assumed that the contractor outsources parallel 
activities to identical subcontractors and considered the payment 
amounts as exogenous parameters. Kwon et al. (2010b) additionally 
considered the uncertain completion time and compared three types of 
project contracts commonly used in practice, namely, fixed price con-
tract, time incentive contract and cost incentive contract. Chen et al. 
(2015) focused on a set of serial activities and nonhomogeneous sub-
contractors and incorporated the payment amounts as decision vari-
ables. They also studied an incentive payment contract and examined 
the impact on the project client’s expected profit and the schedule 
performance of serial stochastic projects. Wang et al. (2017) investi-
gated the impact of a time incentive contract for a serial project con-
sisting of two activities, each performed by a subcontractor. They 
characterized the project makespan as an uncertain variable that de-
pends on the subcontractor’s unobservable effort. Based on the above 
framework, Dawande et al. (2019) derived multiple types of optimal 

Table 1 
Overview of literature on project integrated planning.  

Research Project scheduling Material 
procurement 

Supplier 
selection 

Characteristic of procurement Approach  

Single 
mode 

Multi-mode/ 
Crashing 

Multi- 
project 

Multi- 
objective   

Uncertain 
delivery 

Procurement 
contract  

Tabrizi and 
Ghaderi 
(2016)   

√ √ √    Multi-objective 
algorithm 

Zoraghi et al. 
(2017)  

√  √ √    Multi-objective 
algorithm 

Chen et al. 
(2018)   

√  √ √   Mathematical 
programming 

Xu et al. (2016)  √ √  √ √ √  Dynamic 
programming 

Habibi et al. 
(2019) 

√   √ √ √   Multi-objective 
algorithm 

This paper √   √ √ √ √ √ Agent-based 
approach  
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contracts for series–parallel projects, which induces the agents to exert 
optimal effort and a penalty. As shown in Table 2, the above studies are 
mainly conducted via the Stackelberg model and Principal-Agent model, 
while some studies are conducted via the Nash bargaining model (Palit 
and Brint, 2020). There is another solution using optimization methods. 
Kerkhove and Vanhoucke (2016) constructed a quantitative framework 
for the contract design problem, using incentive items for cost, duration 
and scope simultaneously. Kerkhove and Vanhoucke (2017) proposed a 
multi-objective scatter search heuristic to solve it. Aouam and Van-
houcke (2019) formulated the owner’s model of determining the 
optimal parameters of a linear incentive contract as a bi-level program, 
considering that the contractor’s effort influences the duration and cost 
of activities. 

Our research addresses the contracting problem between the project 
manager (on behalf of the owner) and the material suppliers, which is 
different from the contractual relationship between a general contractor 
and several subcontractors. We analyse different types of time incentive 
contracts in the supply chain under information asymmetry, especially a 
non-financial incentive contract. Moreover, the incentive strength 
serves as a decision variable in the financial incentive contract, which is 
expressed by the incentive parameter. The suppliers are entitled to 
refuse the contract under an assumption of bounded rationality. 

3. Mathematical formulation 

We build models for the players in the supply chain due to their 
conflicting objectives. As shown in Fig. 2, the first model simulates the 
repeated ordering and the coordinated scheduling process from the 
perspective of project managers. The project manager makes a project 
schedule and develops procurement contracts to minimize the project 
costs. Three variables (the order quantity, the incentive parameter and 
the due date of delivery) are determined in the contract, and another 
variable (the order date) is also associated with it. 

Another model is on behalf of the material suppliers. If a supplier 
accepts the contract, a mode of production & transportation will be 
selected to balance the lead time and the costs. The mode is introduced to 
describe the lead time of suppliers, which is influenced by the differ-
ences in the production techniques, the means of transportation or the 
distance to the project (Dotoli et al., 2017). When the actual delivery 
time exceeds the due date, the delay time will incur backorder cost. 

The information asymmetry is twofold. First, the mode of the sup-
plier is not revealed to the project manager. The project manager cannot 
know the actual lead time but only estimates it. Under a given contract, 
the suppliers tend to select the cheapest mode to maximize profits. The 
cheapest mode may lead to a late delivery and negatively affect the 
project schedule. Second, the project manager does not know the most 
favourable parameters of a contract for himself, which can be agreed 

upon by the suppliers as well. If the project manager is self-centred to 
determine the parameters, the suppliers may deny the contract because 
of no profits. 

3.1. Project manager’s model 

The project network is described by a directed graph (V ,G ) defined 
over the node set V = {0,1,⋯N,N+1}, where 0 and N + 1 indicate 
dummy source activity and dummy sink activity, respectively. The set G 

collects the arcs representing the finish-start precedence relationships 
with zero time lag. We consider only one type of material but several 
optional suppliers. Once an activity starts, the required materials are 
consumed instantly. Material procurement is repeated several times, and 
the project manager is dominant at the orderings. The due date of de-
livery and the order quantity are determined based on a project 
schedule. A late delivery should be prevented due to the backorder cost. 
The notations are listed in Table 3. 

The objective of the project manager is to minimize TCcontract. The 
expression of the discounted cash flow is expressed as in the study of 
Homberger and Fink (2017). The model can be formulated as follows. 

minTCfc =
∑

l∈[L]

∑

g∈[G]

[
MCg,l(1 + α)− ADe

g,l +BCg,l

]
(1) 

s.t. 
∑

t∈[T ]

t × xi,t ≥
∑

t∈[T ]

(
t+ dj

)
xj,t∀(i, j) ∈ G (2)  

x00 = 1 (3)  

∑

i∈wt

ri,k ≤ Rk∀k ∈ [K],∀t ∈ [T] (4)  

It = It− 1 +
∑

(g,l):ADe
g,l=t

qg,l −
∑

i∈[N]

nixi,t∀t ∈ [T] (5)  

I0 = IT = 0 (6)  

0 ≤ It∀t ∈ [T] (7)  

ldmin < Dg − Og ≤ ldmax∀g ∈ [G] (8)  

Dg < Og+1∀g ∈ [G − 1] (9)  

ADe
g,l = max

(
Og + lde

l ,Dg
)
∀g ∈ [G], ∀l ∈ [L] (10)  

∑

j∈[g]:ADe
j,l>Og

qj,l ≤ MQl∀g ∈ [G], ∀l ∈ [L] (11) 

Table 2 
Overview of literature on contracting in project management.  

Research Fixed price 
contract 

Time incentive 
contract 

Cost incentive 
contract 

Quality incentive 
contract 

Non-financial incentive 
contract 

Project stage Approach 

Kwon et al. (2010a) √ √    Construction Game theory 
Kwon et al. (2010b) √ √ √   Construction Game theory 
Chen et al. (2015) √ √    Construction Game theory 
Wang et al. (2017)  √    Construction Game theory 
Dawande et al. (2019)  √    Construction Game theory 
Palit and Brint (2020)  √    Construction Game theory 
Kerkhove and 

Vanhouckev (2016)  
√ √ √  Construction N/A 

Kerkhove and 
Vanhouckev (2017)  

√ √ √  Construction Multi-objective 
algorithm 

Aouam and Vanhoucke 
(2019)   

√   Construction N/A 

Chen and Lee (2017) √ √    Procurement Game theory 
This paper √ √   √ Procurement Agent-based 

approach  
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xi,t ∈ {0, 1}
Dg, qg,l ∈ N

fg,l, png,l ∈ (0, 1)

∀i ∈ V , ∀t ∈ [T]
∀g ∈ [G], ∀l ∈ [L]
∀g ∈ [G], ∀l ∈ [L]

(12) 

Expression (1) shows that the project manager pays the material 
suppliers a fixed price upon material delivery under a fixed-price con-
tract. The total cost comprises the material price and a backorder cost. 
Constraint (2) shows that the precedence relations between activities 
need to be taken into consideration. Each activity should start after all 
immediate predecessors are completed. Constraint (3) requires that the 
dummy source activity starts at time 0. Constraint (4) describes that the 
requirement for renewable resources at any time is below the relative 
resource availability. A state transition equation is constructed to 
monitor the inventory level over the planning horizon in Constraint (5). 
Constraints (6) and (7) show that the initial inventory and ultimate in-
ventory are both 0 and the inventory is non-negative at any time. 
Constraint (8) shows that the due date minus the order time is in a semi- 
closed interval of the shortest (estimated) lead time and the longest 
(estimated) lead time. The interval ensures the order contract is 
executable. Dg is generally earlier than the next order time forg < G in 
Constraint (9). Constraint (10) indicates that the (estimated) delivery 
time is a maximum of the (estimated) material arrival time and the due 
date of delivery. The material arrival time is defined as the order time 
plus the lead time. Early delivery is also not allowed due to limited 
storage. Constraint (11) shows that at the order time Og, the order 
quantity that is not delivered cannot exceed the capacity of each 

supplier. The materials with ADe
j,l > Og are ordered at the jth order but 

not delivered. Constraint (12) defines the domains of decision variables. 

3.2. Suppliers’ model 

For a given contract, the suppliers are entitled to deny it, if they 
cannot benefit from the business. Under an established contract, the 
suppliers will decide the most profitable mode for themselves. The mode 
is arranged in ascending order of the cost of production & trans-
portation. Suppose that there is a negative correlation between the cost 
of production & transportation and the lead time. Moreover, we assume 
that the cost of production & transportation arises at the middle of the 
lead time. We define the notations of suppliers in Table 4. 

From Table 4, the (actual) material arrival time of supplier l is a 
specific value with respect to the mode m. It is different from the (esti-
mated) material arrival time in the project manager’s model. The project 
manager thinks the lead time as lde

l , an estimation of the material lead 
time of supplier l, because the project manager cannot know it accu-
rately. In this paper, we focus on the coordinative approach even when 
lde

l obviously differs from ldl,m, irrespective of the predication techniques 
of the lead time. 

Supplier l maximizes the discounted profit 
∑

g∈[G]yg,lSPcontract
g,l . Under a 

fixed-price contract (fc), the project manager pays the material suppliers 
a fixed price upon material delivery. The objective function is shown in 
Expression (13). Constraint (14) reveals that the supplier l can select 

Fig. 2. Relation between project manager’s model and suppliers’ model.  
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only one mode to produce and transport materials. Constraint (15) de-
fines the domains of decision variables. 

max
∑

g∈[G]

yg,lSPfc
g,l =

∑

g∈[G]

yg,l
[
MCg,l(1 + α)− ADg,l − DCg,l

]
(13) 

s.t. 
∑

m∈[M]

zg,l,m = 1∀g ∈ [G] (14)  

zg,l,m, yg,l ∈ {0, 1}∀g ∈ [G], ∀m ∈ [M] (15)  

Proposition 1.. The supplier selects the optimal mode m* for max
m

SPfc
g,l . 1) 

If max
m

ldl,m ≤ Dg − Og, m* = 1. 2) If min
m

ldl,m ≥ Dg − Og, 

m* = argmax
m

{
η
(
ηMPl − SCl,m

) }
. 3) If the above conditions are invalid, we 

define the optimal mode m1 for max
Og+ldl,m≤Dg

SPfc
g,l and the optimal mode m2 for 

max
Og+ldl,m>Dg

SPfc
g,l. If MPl

[
(1 + α)− Dg − ϑ2

]
+(ρ2 − ρ1)ϑ+ρ1

[
ϑ − (1 + α)− Dg/2

]

≥ 0, m* = m1; otherwise, m* = m2. Let η = (1 + α)− ldl,m/2, 

ϑ = (1 + α)− (ldl,m2 +Og)/2, ρ1 = SCl,m1 (1 + α)− Og/2 and ρ2 = SCl,m2 

(1 + α)− Og/2. 

3.3. Objectives under incentive contracts 

We consider three types of incentive contracts: instalment contract 
(ic), penalty contract (pc) and non-financial incentive contract (nc). 
Under each contract, the constraints of both the project manager’s 
model and the suppliers’ model remain. 

In the case of the instalment contract, a down payment is paid in 
advance, and the balance is deferred until material delivery. A down 
payment rate fg,l is defined as an incentive parameter. Expressions (1) 
and (13) are replaced by 

minTCic =
∑

l∈[L]

∑

g∈[G]

[
BCg,l + fg,lMCg,l(1 + α)− Og +

(
1

− fg,l
)
MCg,l(1 + α)− ADg,l

]
(16)  

and 

max
∑

g∈[G]

yg,lSPic
g,l =

∑

g∈[G]

yg,l
[
fg,lMCg,l(1 + α)− Og +

(
1

− fg,l
)
MCg,l(1 + α)− ADg,l − DCg,l

]
(17)  

Proposition 2.. The supplier selects the optimal mode m* for max
m

SPic
g,l . 1) 

If max
m

ldl,m ≤ Dg − Og, m* = 1. 2) If min
m

ldl,m ≥ Dg − Og, 

m* = argmax
m

{
η
[
η
(

1 − fg,l
)

MPl − SCl,m

]}
. 3) If both conditions are 

invalid, we define the optimal mode m1 for max
Og+ldl,m≤Dg

SPic
g,l and the optimal 

mode m2 for max
Og+ldl,m>Dg

SPic
g,l. If 

(
1 − fg,l

)
MPl

[
(1 + α)− Dg − ϑ2

]

+(ρ2 − ρ1)ϑ+ρ1

[
ϑ − (1 + α)− Dg/2

]
≥ 0, m* = m1; otherwise, m* = m2. Let 

η = (1 + α)− ldl,m/2,ϑ = (1 + α)− (ldl,m2+Og)/2, ρ1 = SCl,m1 (1 + α)− Og/2 and 
ρ2 = SCl,m2 (1 + α)− Og/2. 

In the case of the penalty contract (pc), if the delivery date is beyond 
the due date specified in the contract, the project manager imposes a 
penalty on the supplier as liquidated damages. The default penalty DPg,l 

for supplier l at the gth order is paid for the case of ADg,l > Dg. The 
penalty rate png,l is also an incentive parameter. Expressions (1) and (13) 
are replaced by 

Table 3 
Notations for the project manager’s model.  

Notations Description 

Indices 
i  Index of activities, i ∈ V .  
k  Index of type of renewable resources, k ∈ [K].  
l  Index of material suppliers, l ∈ [L].  
t  Time index, t ∈ {0, 1,⋯,T}, where T is a planning horizon.  
g  Index of order, g ∈ [G].  
Parameters 
di  Duration of activity i. 
rik  Quantity of renewable resource k required by activity i. 
ni  Quantity of material required by activity i. 
Rk  Availability of renewable resource k per period. 
BN  Per-period backorder cost rate of the material price. 
α  Discount rate of cash flow, α ∈ (0, 1).  

lde
l  Estimation of material lead time of supplier l. 

MPl  Material price per unit of supplier l. 
MQl  Material capacity of supplier l for each order. 
H g  Preference set for selecting suppliers at the gth order.  

ldmax  Longest lead time of all suppliers. 

ldmin  Shortest lead time of all suppliers. 

contract  Contract type, contract ∈ {fc, ic,pc, nc}. fc, ic, pc and nc denote 
fixed-price contract, instalment contract, penalty contract and non- 
financial incentive contract, respectively.  

Decision variables 
xi,t  If activity i starts at time t, xi,t = 1; otherwise xi,t = 0.  
Dg  Delivery due date specified in the contract for the gth order.  
qg,l  Order quantity of supplier l at the gth order.  
fg,l(optional)  Down payment rate of the material price agreed with supplier l at 

the gth order under ic.  
png,l(optional)  Per-period penalty rate of the material price agreed with supplier l 

at the gth order in case of material delivery beyond the due date 
under pc.  

Other variables 
TCcontract  Discounted total cost under a contract.  

wt  A set of activities in progress at time t, wt =
{

i|xi,t− δ = 1, δ = 1,⋯, di
}

.  
It  Remainder of material at time t. 
Og  Order time for the gth order.  
ADe

g,l  Estimation of delivery date of supplier l at the gth order.  
MCg,l  Material price paid to supplier l at the gth order, MCg,l = MPl × qg,l.  
DPg,l  Default penalty submitted by supplier l at the gth order,DPg,l =

png,l × MCg,l

(
ADe

g,l − Dg

)+

.  
BCg,l  Discounted backorder cost of material l at the gth order in case of 

delay in delivery, BCg,l =
∑

t∈[ADe
g,l − Dg ]

BN× MCg,l(1 + α)− (Dg+t).   

Table 4 
Notations for the suppliers’ model.  

Notations Description 

Indices and Parameters 
m Index of mode of production & transportation, m ∈ [M].  
ldl,m  Material lead time of supplier l in mode m. 
SCl,m  Per-unit cost of production & transportation of supplier l in mode m. 
Decision variables 
zg,l,m  =1 if supplier l selects mode m at the gth order; 0 otherwise.  
yg,l  =1, supplier l award the gth contract if SPcontract

g,l > 0; 0 otherwise.  
Other variables 
SPcontract

g,l  Discounted profit of supplier l under a contract at the gth order.  

ADg,l  Actual delivery date of supplier l at the gth order, ADg,l =

max
(
Og +

∑
m∈[M]ldl,mzg,l,m ,Dg

)
.  

DCg,l  Discounted cost of production & transportation of supplier l at the gth 

order,DCg,l =
∑

m∈[M]zg,l,mSCl,mqg,l(1 + α)− (ADg,l+Og)/2.   
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minTCpc =
∑

l∈[L]

∑

g∈[G]

[
BCg,l +MCg(1 + α)− ADg,l − DPg,l(1 + α)− ADg,l

]
(18)  

and 

max
∑

g∈[G]

yg,lSPpc
g,l =

∑

g∈[G]

yg,l
[
MCg,l(1 + α)− ADg,l − DPg,l(1 + α)− ADg,l − DCg,l

]

(19)  

Proposition 3.. The supplier selects the optimal mode m* for max
m

SPpc
g,l . 1) 

If max
m

ldl,m ≤ Dg − Og, m* = 1. 2) If min
m

ldl,m ≥ Dg − Og, m* =

argmax
m

{
η2MPl

[
1 − png,l × π(m)

]
− ηSCl,m

}
. 3) If both conditions are 

invalid, we define the optimal mode m1 for max
Og+ldl,m≤Dg

SPpc
g,l and the optimal 

mode m2 for max
Og+ldl,m>Dg

SPpc
g,l. If MPl

[
(1 + α)− Dg − ϑ2

]
+(ρ2 − ρ1)ϑ 

+ρ1

[
ϑ − (1 + α)− Dg/2

]
+ϑ2png,l × π(m2) ≥ 0, m* = m1; otherwise, m* =

m2. Let η = (1 + α)− ldl,m/2, π(m) =
(
Og + ldl,m − Dg

)+, ϑ =

(1 + α)− (ldl,m2 +Og)/2, ρ1 = SCl,m1 (1 + α)− Og/2 and ρ2 = SCl,m2 (1 + α)− Og/2. 

In the case of the non-financial incentive contract (nc), the on-time 
delivery is not motivated through a bonus, an incentive fee or pen-
alties, but possible future work (Rose and Manley, 2011). If the materials 
are delivered on time at the previous orderings, the project manager will 
give a priority to this supplier. The priority implies that the supplier is a 
candidate for suppling materials at the next ordering. Once the supplier 
violates the contract at a certain ordering, the priority will be with-
drawn. Let H g denote the preference set at the gth order. The suppliers 
are selected randomly from H g under the material requirement is 
satisfied. The objective function of the project manager or the supplier is 
still as Expression (1) or (13) shows. 

Proposition 4.. Assuming that the suppliers are completely conservative 
and consider the worst case of the future, the supplier selects the optimal mode 
m* as proposition 1 shows. 

4. Evolutionary algorithm 

We employ an evolutionary algorithm to generate new solutions and 
integrate it with the agent-based approach to search for satisfactory 
solutions. The reasons are twofold. First, the model of the project 
manager is built based on the classic model of the resource-constrained 
project scheduling problem (RCPSP), which is a well-known NP-hard 
combinational optimization problem. Second, the evolutionary algo-
rithm is effective and efficient for RCPSP (Xiao et al., 2016; Kadri and 
Boctor, 2018; Zaman et al., 2020) and project ordering problem (Zhang 
et al., 2019). Thus, the evolutionary algorithm is applicable for solving 
the models in this paper, which is an extension of the models of RCPSP 
and project ordering problem. 

4.1. Generic framework 

A generic framework is used to integrate the agent-based approach 
and an evolutionary algorithm. It can be extended to the other decen-
tralized decision-making problem using agents. There are mainly two 
types of integration. On one hand, the agents take actions based on a 
part of a solution. The agents not only coordinate the interests of players 
but also complete the solution. For example, in multi-project environ-
ment, when the activities are scheduled and the resource requirements 
are collected, the project agents start to compete for the shared resources 
(Adhau et al., 2013). The solution sent to the agents is generally formed 
by a heuristic algorithm but not an exact algorithm, because it may be 
incomplete or will be partly replaced. It is difficult to find satisfactory 
solutions globally with the heuristic algorithm, because the objective 

function value hardly impacts the form of the partial solution. On the 
other hand, as Homberger and Fink (2017) mentioned, the agents can 
bid for a set of complete solutions, which are approximately Pareto- 
optimal solutions. Each agent evaluates the existing solutions for its 
own interest. It spends much time searching for the Pareto set, because 
the agents cannot quantitatively describe their requirements or criteria. 
In this paper, we design a framework that combines the two types. 

From Fig. 3, the initial population is divided into two sub-
populations: archive and routine. The suppliers’ objective function 
value is permitted to be negative to expand the search space. The H2 

solutions with the best TCcontract are reserved in the archive, supposing 
that the project manager leads the contract negotiation with the sup-
pliers. The other H1 solutions are selected randomly to constitute the 
routine. As the first type of integration described, the solutions in the 
archive will be further adjusted via agent negotiation. In the second 
type, the agents evaluate the solutions in both the routine and the 
offspring. The offspring contains H1 solutions generated by the evolu-
tionary algorithm. After this evaluation, only H1 solutions are reserved 
to form a mixed population with the archive. Then, the agents evaluate 
the mixed population again: the best H2 solutions are used to update the 
archive, and the other solutions are used to update the new routine. The 
update operators require the agents to evaluate the old subpopulation 
and the new solutions. The program terminates within the finite 
iterations. 

4.2. Initialization 

The solution is encoded by three parts. Part 1 is a priority vector 
(PR), which is a priority rule representation to determine the start order 
of each activity under constraints. The PR ensures feasibility easily after 
the various operators in the evolutionary algorithm. Part 2 is an order- 
delivery vector. The vector includes G pairs, each of which describes the 
time interval between the order times and the due dates. The time in-
terval is tractable for the crossover operator in the evolutionary algo-
rithm. The first pair in the vector describes (0,D1) at the first order (O1 =

0); the gth (g > 1) pair indicates 
(
Og − Dg− 1,Dg − Og

)
at the gth order. 

Part 3 consists of three G × L dimensional matrices. Each element in the 
first matrix indicates the order quantity from supplier l at the gth order. 
The second matrix is the decisions of the material suppliers, and each 
element is the selected mode, namely, 

∑
mm × zl,g,m of supplier l at the 

gth order. The third matrix is employed only under the instalment 
contract (ic) or the penalty contract (pc). Each element indicates the 
incentive parameter for supplier l at the gth order. The pseudocodes of 
the coding and the decoding (modified SSGS) are presented in the Ap-
pendixes E and F. 

The coding process for initialization is designed from the perspective 
of the project manager. Let LSi be the latest start time of activity i. The 
process includes four steps to generate the three parts of a complete 
code. The main content is the third step to generate the order quantity: 
first, we randomly define the number of suppliers for ordering, denoted 
assag; then, the order quantity is randomly determined according to 
Constraint (11) for these suppliers. 

The code is transformed into a schedule using a modified SSGS. Let 
DS indicate the set of unscheduled activities with all immediate pre-
decessors being scheduled. We need to schedule each activity in the set 
DS under the precedence relations and the available resources. During 
the decoding process, “repair the solution” is activated when the project 
makespan reaches the deadline due to insufficient material. It changes 
part 2 of the code, namely, the order date and the due date: if the current 
time t ∈

(
Og,Dg

]
or 

(
Dg− 1,Og

]
, we set Dg = t − 1, and Og is regenerated 

randomly based on Constraints (8) and (9). 

4.3. Evolutionary algorithm 

The evolutionary algorithm is composed of parent selection and bi- 
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level recombination to generate offspring. First, for each pair of parents, 
the first individual is randomly selected from the archive, while the 
second is chosen randomly from the routine. 

Second, the bi-level recombination is executed to search for satis-
factory solutions effectively. The first-level recombination handles part 
1 and part 2 of the code, and consists of three steps: two crossover op-
erators and a mutation operator. First, a hybrid two-point/ 
electromagnetism crossover operator (Xiao et al., 2016) is used to 
generate the first-part code of the two offspring. The second step is a 
traditional one-point crossover operator for the second-part code. A 
crossover point is generated randomly between 1 and G. The elements of 
the offspring before a crossover point come from the father, and the 
other elements are inherited from the mother; the parents are changed 
for another offspring (Bargaoui et al., 2017). Third, a simple mutation 
operator is employed for the g*th pair of the second-part code. The 
element is increased or decreased by a time unit with a half chance. 

The first-level recombination generates only two children, but the 
second-level recombination will produce H1/2 solutions for each. The 

second-level recombination handles part 3 of the code and includes a 
one-point crossover operator and a mutation operator. First, a crossover 
point is generated randomly between 1 and G. Taking the crossover 
point as a cut-off point, the third part of the code, namely, the three 
matrices, originates from the father or the mother. Then, a simple mu-
tation operator is adopted: the positive order quantity qg* ,l1 of supplier l1 

is decreased by one unit, and another positive order quantity qg* ,l2 in-
creases by one unit (l1 ∕= l2). 

5. Agent-based approach 

The agent-based approach is characterized by distributed computa-
tion and information processing and is regarded as a valid technique for 
supply chain management (Pan et al., 2009). The competing or inter-
fering agents make their decisions independently without considering 
the constraints of other agents or global performance, which is also 
termed the multi-agent scheduling problem (Perez-Gonzalez and Fra-
minan, 2014). This approach has been widely applied to solve various 

Fig. 3. Framework for the agent-based approach and the evolutionary algorithm.  
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problems, such as smart cities (Buzachis et al., 2020), supply chain 
scheduling (Aminzadegan et al., 2019), decentralized multi-project 
scheduling (Homberger and Fink, 2017), parallel machine scheduling 
(Choi and Park, 2017) and cloud manufacturing (Wang et al., 2020). The 
agent-based approach aims to balance the interests of the involved 
players considering asymmetric information and strategic behaviour. 

The main difficulty of the proposed models is the coordination be-
tween the players. If a supplier rejects the contracts, the project manager 
may take various actions: selecting another supplier, adjusting the 
schedule to reduce the requirement, or conceding in the incentive 
parameter to the supplier. Moreover, the decisions of the suppliers are 
private and self-interested. Therefore, we employ an agent-based 
approach. Three types of agents are employed: L supplier agents (SAs), 
one project agent (PA), and one mediator (MA). They are assigned 
different works at the negotiation and the evaluation. 

5.1. Agent negotiation 

With a specific order time and delivery date, the negotiation progress 
is shown in Fig. 4. First, the PA sends the contract type, the requirements 
and the incentive parameter to all supplier agents. The best and worst 
incentive parameters among the suppliers are set as the initial value and 
the current bound, respectively. Each SA decides whether to receive the 
contract and submits this decision to the mediator; if the SA receives the 

contract, it should select a proper mode as propositions 1 ~ 4 show. If 
the requirement of the PA matches the supplies of the SAs, the mediator 
can end this order and return to the upper algorithm; otherwise, the MA 
judges whether the sum of the supply quantities exceeds the requirement 
quantity. On one hand, if the requirement can be satisfied completely, 
the MA will select the appropriate candidates for the PA to form a new 
supplier list. The PA decides whether to receive the list based on the 
objective function. On the other hand, if the total requirement is 
dissatisfied or the PA refuses the supplier list sent by the MA, the PA 
changes the incentive parameter for a desired supplier or reschedules 
the relevant activities. 

5.1.1. Negotiation about the incentive parameter 
The incentive parameters are initialized equally for all suppliers. The 

SA rejects the contract if it cannot benefit from the contract. If required, 
the parameter changes in a beneficial way for the suppliers. The 
incentive parameter before (after) the change is described with the su-
perscript bf(af). Thus, the down payment rate after the change is faf

g,l =

fbf
g,l(1+ Δf), and the penalty rate after the change is pnaf

g,l =

pnbf
g,l(1 − Δpn). Δf and Δpn are specified parameters. 

5.1.2. Rescheduling 
When the total supply quantity at the gth order is less than the total 

Fig. 4. Flowchart of the agent-based approach.  
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order quantity, the PA should reschedule activities that start after the 
due date Dg under the available resources. The order quantity is rede-
termined based on the total supply quantity. Moreover, the order 
quantity should ensure the feasibility of Constraints (7) and (11). If 
Constraint (7) is violated, we randomly select a supplier and determine 
an order quantity randomly within the available capacity. This selection 
is repeated until the gap between the supply and the requirement is 
filled. Constraint (11) only provides the available capacity of each 
supplier. 

5.2. Agent evaluation 

The SA and PA evaluate the solutions according to their own interest. 
Each agent computes the objective function value of the solutions pri-
vately. The PA ranks them in the ascending sequence, and the SA ranks 
them in the descending sequence. Then, we summarize the sequence 
numbers. The solution with a smaller sum is better. For example, a PA 
and two SA need to evaluate three solutions (denoted by A, B and C). 
They ranked them as “A C B”, “C B A” and “A C B”, respectively. The sum 
values of A, B and C are 5, 8 and 5. Solutions A and C are better. If we 
only want to keep one solution, solution A or C is reserved with a half 
chance. During the evaluation, the agents only expose the preference 
sequence of the solutions, not the definitive objective function values. 

6. Numerical experiments 

6.1. Instance parameters 

The parameters of the instances include two parts: the project and 
the material ordering. The project parameters are available in PSPLIB, 
an open collection of resource-constrained project instances, to evaluate 
the proposed algorithm. The instances comprise 30, 60, or 90 non- 
dummy activities, which are denoted by sets J30, J60 and J90, respec-
tively. We choose 120 instances from the three sets, namely, 40 in-
stances from each set. As described in Kolisch and Sprecher (1997), the 
network complexity NC ∈ {1.5,1.8} and the resource strength of the 
renewable resources RS ∈ {0.2,0.5}. There is one type of material and 
three types of renewable resources for each instance. The project pro-
cures materials with G = 3 for J30 instances, G = 4 for J60 instances and 
G = 5 for J90 instances. The down payment rate and the per-period 
penalty rate are in the range of (0.2,0.6] and (0, 0.1] , respectively. At 
each round of negotiation, Δf = 0.1 and Δpn = 0.05. In addition, the 
per-period backorder cost rate BN is 0.3, and the discount rate α equals 
0.2%. 

On the other hand, the suppliers are 3 ≤ L ≤ 5 to simulate the 
competitive market and reduce the number of objectives. The majority 
of the material ordering parameters are generated at random. Supplier l’ 
s supply capacity MQl is assumed to round up the maximal material 
requirement and follows a uniform distribution in [10,13] for J30 in-
stances, [24, 27] for J60 instances and [32, 43] for J90 instances. The per- 
unit material price MPl from supplier l follows a uniform distribution as 
MPl U[400,500]. There are five modes (M = 5) for each supplier’s se-
lection. For the production & transportation of supplier l in mode m, the 
unit cost SCl,m follows a uniform distribution as SCl,m U[100, 250]. Sup-
pose that the material lead time ldl,m follows a Poisson distribution in a 
bounded interval [4,30], as ldl,m π

(
lλl,m

)
. lλl,m follows a uniform distri-

bution as lλl,m U[7, 16]. The lead time ldl,m (m ∈ {1,2,⋯,M}) varies 
inversely with the unit cost SCl,m for supplier l. 

6.2. Results analysis 

6.2.1. Information asymmetry vs. symmetry 
To evaluate the algorithm performance, we compare the mixed al-

gorithm with the classic NSGA-II under the fixed-price contract (fc). 
NSGA-II is a very effective algorithm in the literature for the resource- 

constrained project scheduling problem (Zoraghi et al., 2017; Habibi 
et al., 2019). We employ the same initialization (Section 4.2) and 
evolutionary algorithm (Section 4.3) in NSGA-II. There are two main 
differences in the program: (1) The NSGA-II is a pure multi-objective 
algorithm, without the agent-based approach. (2) All information of 
the players in the supply chain is open in NSGA-II, i.e., the project 
manager knows the actual delivery dates and the costs of the material 
suppliers. Therefore, we can exactly obtain the non-dominated solutions 
by NSGA-II. 

The algorithms are programmed in Microsoft Visual Studio 2015 
(C++ language) and run on a single computer (Intel core i7, 2.40 GHz, 
4.00 GB RAM operating the Microsoft 7 Desktop Edition). Both algo-
rithms are performed until 5000 solutions are explored and are run 30 
times for each test instance. The size of the routine is H1 = 200, and the 
archive size H2 is half of H1. In addition, the probability of mutation is 
0.2. 

In our experiments, two performance measures for the sets are 
introduced from the work of Xiao et al. (2016). (1) The Set Coverage (C- 
metric) indicates the ratio of solutions of one set dominated by solutions 
of another set. A value of 1 means that all solutions are dominated by the 
other set; a value of 0 implies that no solution is dominated. (2) The 
Distance from the Pareto Front (D-metric) represents the arithmetic 
average of the minimum Euclidean distance of the solutions of a set. The 
minimum Euclidean distance of a solution is the minimum value of the 
Euclidean distance between the solution and all solutions of the Pareto 
Front (PF). In the experiment, the non-dominated solutions admitted by 
both algorithms are used as the PF. Each objective is normalized before 
computing the distances to avoid significant differences among the 
objectives. 

Figs. 5–7 present the set coverage between the two algorithms for 
test sets J30, J60, and J90, respectively. It is obvious that NSGA-II 
performs better than the mixed algorithm, and its C-metric values are 
mostly below 0.05. However, the gap between the two algorithms de-
creases with the test set from J30 to J90, i.e., fewer solutions of the 
mixed algorithm are dominated by the solutions of NSGA-II as the ac-
tivities increase. The C-metric value of the mixed algorithm is always 
below 0.4, even for the J30 set. Figs. 8–10 show the distances from the 
Pareto Front to the nondominated sets of the two algorithms for J30, J60 
and J90. The curves of NSGA-II in the figures are relatively stable and 
are mainly below 0.01. The curves of the mixed algorithm fluctuate 
highly but become increasingly close to those of NSGA-II as the activities 
increase. The D-metric value even exceeds the value of NSGA-II in 
several instances of J90. Similarly, the D-metric value of the mixed al-
gorithm is not very high (mostly below 0.04) for all instances. In 
conclusion, the performance of the mixed algorithm is lower than that of 
NSGA-II, but the gap is very small and even visibly decreases with the 
growth of the project size. Moreover, Table 5 shows that the mixed al-
gorithm consumes less computation time. 

6.2.2. Analysis of different contracts 
Four types of contracts—fixed-price contract (fc), instalment con-

tract (ic), penalty contract (pc) and non-financial incentive contract 
(nc)—have different effects on the interests of the project manager and 
the material suppliers. We present Figs. 11 and 12 to measure the in-
fluences on the project-driven supply chain. Because the suppliers are 
homogeneous, we select supplier l as a representative. The mixed al-
gorithm is also performed until 5000 solutions are explored for only the 
test set J90. In the figure, the broken line describes the optimal objective 
value of the project manager or the supplier, and the columns show the 
relevant backorder cost. For example, the column of the backorder cost 
under ic in Fig. 12 occurs at instance 3. It is the backorder cost of the 
third instance for the case of the optimal objective of supplier 1 under 
the instalment contract. 

As shown in Fig. 11, pc or nc generally results in the lowest project 
cost. Their backorder cost arises less often but remains. By contrast, the 
highest project costs are always generated under ic, and the relevant 
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backorder costs frequently occur. This means that the delayed delivery 
cannot be avoided completely by investing more costs in the project, 
such as an advanced payment. The values of the project cost under fc 
mostly perform mediocre, but sometimes better than under nc. Thus, the 
penalty contract and the non-financial incentive contract are mainly 
beneficial to the project manager, closely followed by the fixed price 
contract. 

Fig. 12 shows that ic always improves the supplier’s profits to the 
maximum extent, closely followed by fc or nc. The supplier’s profits 
under pc are generally at the worst level. Comparatively, the backorder 
cost under pc is the least frequently gained, and its value is much less. 
Thus, the supplier prefers the instalment contract, and the supplier 
under pc barely brings the project a backorder cost. The performance of 
the non-financial incentive contract and fixed-price contract is essen-
tially the same and is very close to that of the instalment contract. In 
conclusion, the non-financial incentive contract is profitable for both the 
project manager and the suppliers, and the penalty contract is effective 
in reducing the delayed delivery of the suppliers. 

Roughly, we may think that the project manager prefers the pc, and 
the suppliers are inclined to the ic. The overall results can support this 
intuition. However, from Figs. 11 and 12, nc and fc perform well or even 

better than pc (ic) from the perspective of the project manager (sup-
pliers). Moreover, we may also think that nc is better than fc in reducing 
late delivery. Compared to nc, fc obtains a better result for some cases, 
such as instances 10, 23 and 39 in Fig. 11. Note that there is no order cost 
under both contracts at these instances. The preference set for the non- 
financial incentive contract may impede a better selection of the sup-
pliers to reduce the project cost, in case of no late delivery. 

7. Conclusion 

We study the project-driven supply chain under information asym-
metry, assuming that the project manager cannot estimate the delivery 
date of the suppliers accurately and does not know the information 
about the suppliers’ costs. The project manager has to use incentive 
contracts to promote on-time deliveries and to share risks. In the paper, 
four types of incentive contracts are considered: fixed-price contract, 
instalment contract, penalty contract and non-financial incentive con-
tract. The instalment contract and the penalty contract are financial 
incentive contracts, while the non-financial incentive contract takes a 
follow-up transaction as an incentive. Moreover, the incentive param-
eter is a decision variable in the model, i.e., the project manger can 

Fig. 5. C-metric between algorithms for J30.  

Fig. 6. C-metric between algorithms for J60.  
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Fig. 7. C-metric between algorithms for J90.  

Fig. 8. D-metrics of algorithms for J30.  

Fig. 9. D-metrics of algorithms for J60.  
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adjust the incentive strength according to the project status and the 
potential suppliers. We present a mixed algorithm that combines an 
agent-based approach with an evolutionary algorithm to simulate the 
decentralized decision-making process. The agent-based approach en-
sures the solution procedure under information asymmetry, while the 
evolutionary algorithm improves the solution globally. The agents can 
negotiate with each other and evaluate the solutions collectively. In this 
process, if a supplier denies the contract, the project manager will 
change the incentive parameter or select the other suppliers; if the 
project’s requirement is not satisfied, the project manager will adjust the 
schedule and change the due date of delivery. 

The experimental results show that the gap between the mixed al-
gorithm and NSGA-II is very small and visibly decreases with the growth 
of the project size. The analysis of the effect of the contracts shows that 

the non-financial incentive contract is beneficial to the project manager 
and does not harm the suppliers’ interest. The penalty contract is the 
most useful to eliminate late delivery by the suppliers. Therefore, we 
suggest that the project managers use the non-financial incentive con-
tract in case of normal risks to achieve double wins, but replace it with 
the penalty contract in the event of a very tight deadline. 

Existing commercial softwares can be used for project-driven supply 
chain management. For example, the Oracle Project-driven Supply Chain 
can help the project manager maintain the project-specific inventory 
and keep track of the implementation of the orders; it also enables the 
suppliers to compartmentalize manufacturing operations to serve mul-
tiple projects. This software can explicitly show the material flow and 
the fund flow with respect to each project, but it cannot autonomously 
make any decision on behalf of these players in the supply chain. In this 
paper, the proposed approach can help the players reach an agreement 
via a decentralized decision-making process by means of human-
–computer interactions. 

The model in this paper can be further extended. First, we only 
consider three types of incentive contracts. Problems with diverse and 
combinatorial incentive measures can be studied in the future. Second, 
we consider only one type of material in the model. A variety of 

Fig. 10. D-metrics of algorithms for J90.  

Table 5 
Average computation time of algorithms.  

Item J30 (s) J60 (s) J90 (s) 

Mixed algorithm  108.94  244.00  460.97 
NSGA-II  498.22  667.08  946.59  

Fig. 11. Objective value and backorder cost under different contracts for project.  
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materials will make this problem more challenging. Wide scope remains 
for further exploration. 
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Appendix A. Proof of Proposition 1 

For a supplier l under the fixed-price contract (fc), the behaviour of suppliers for the current contract are dependent of the future opportunities, so 
we can analyse the mode selection separately. 

First, if Og +ldl,m ≤ Dg holds for all the modes, ADg,l = Dg. Due to MCg,l = MPl × qg,l and DCg,l = SCl,mqg,l(1 + α)− (ADg,l+Og)/2 for a given mode m, 

SPfc
g,l =

[
MPl(1 + α)− Dg − SCl,m(1 + α)− (Dg+Og)/2

]
× qg,l. Only the variable SCl,m depends on the mode m, so m* = argmin

m
SCl,m. The cost SCl,m is sorted in 

ascending order, so m* = 1. 

Second, if Og +ldl,m ≥ Dg holds for all the modes, ADg,l = Og + ldl,m. SPfc
g,l =

[
MPl(1 + α)− (Og+ldl,m) − SCl,m(1 + α)− (ldl,m/2+Og)

]
× qg,l =

[
MPl(1 + α)− ldl,m/2

− SCl,m

]
× qg,l × (1 + α)− Og − ldl,m/2. Let η = (1 + α)− ldl,m/2, m* = argmax

m

{
η
(
ηMPl − SCl,m

) }
for the given contract. 

Lastly, there are several modes to satisfy Og +ldl,m ≤ Dg and the others for Og + ldl,m > Dg. We compare the mode m1 = argmax
Og+ldl,m≤Dg

SPfc
g,l and the 

modem2 = argmax
Og+ldl,m>Dg

SPfc
g,l. The optimal mode corresponds to max

m
SPfc

g,l.
(

max
Og+ldl,m≤Dg

SPfc
g,l − max

Og+ldl,m>Dg
SPfc

g,l

)/

qg,l = MPl(1 + α)− Dg 

− SCl,m1 (1 + α)− (Dg+Og)/2
− MPl(1 + α)− (Og+ldl,m2 ) + SCl,m2 (1 + α)− (ldl,m2 /2+Og) = MPl

[
(1 + α)− Dg − (1 + α)− (Og+ldl,m2 )

]
+

(
SCl,m2 − SCl,m1

)

(1 + α)− (ldl,m2 /2+Og) + SCl,m1

[
(1 + α)− (ldl,m2 /2+Og) − (1 + α)− (Dg+Og)/2

]
. Let ϑ = (1 + α)− (ldl,m2+Og)/2, ρ1 = SCl,m1 (1 + α)− Og/2 and ρ2 = SCl,m2 (1 + α)− Og/2, 

and it follows the proposition 1. Note that only if the objective value related to m* is more than zero, the supplier will accept the contract. So, when the 
objective value of m1 or m2 is less than zero, the comparison is useless. 

Appendix B. Proof of Proposition 2 

For a supplier l under the instalment contract (ic), we also analyse the mode selection at an order separately. 

First, if Og +ldlm ≤ Dg holds for all the modes, ADgl = Dg. SPic
g,l = fg,lMPl × qg,l(1 + α)− Og +

(
1 − fg,l

)
MPl × qg,l(1 + α)− Dg − SCl,m ×

qg,l(1 + α)− (Dg+Og)/2. Only the variable SClm depends on the mode m, so m* = argmin
m

SCl,m = 1. 

Fig. 12. Objective value and backorder cost under different contracts for supplier.  
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Second, if Og +ldl,m ≥ Dg holds for all the modes, ADg,l = Og + ldl,m. SPic
g,l =

[
fg,lMPl(1 + α)− Og +

(
1 − fg,l

)
MPl(1 + α)− (Og+ldl,m) − SCl,m(1 + α)− (ldl,m/2+Og)

]
× qg,l = fg,lMPl(1 + α)− Og +

[(
1 − fg,l

)
MPl(1 + α)− ldl,m/2

− SCl,m

]
× qg,l ×

(1 + α)− Og − ldl,m/2. Let η = (1 + α)− ldl,m/2, m* = argmax
m

{
η
[
η
(

1 − fg,l
)

MPl − SCl,m

]}
for the given contract. 

Lastly, there are several modes to satisfy Og +ldl,m ≤ Dg and the others for Og + ldl,m > Dg. We compare the mode m1 = argmax
Og+ldl,m≤Dg

SPic
g,l and the 

modem2 = argmax
Og+ldl,m>Dg

SPic
g,l. The optimal mode corresponds to max

m
SPic

g,l.
(

max
Og+ldl,m≤Dg

SPic
g,l − max

Og+ldl,m>Dg
SPic

g,l

)/

qg,l = fg,lMPl(1 + α)− Og +

(
1 − fg,l

)
MPl(1 + α)− Dg − SCl,m1 (1 + α)− (Dg+Og)/2

− fg,lMPl(1 + α)− Og −
(

1 − fg,l
)

MPl(1 + α)− (Og+ldl,m2 ) + SCl,m2 (1 + α)− (ldl,m2 /2+Og) =
(

1 − fg,l
)

MPl 
[
(1 + α)− Dg − (1 + α)− (Og+ldl,m2 )

]
+

(
SCl,m2 − SCl,m1

)
(1 + α)− (ldl,m2 /2+Og) + SCl,m1

[
(1 + α)− (ldl,m2 /2+Og) − (1 + α)− (Dg+Og)/2

]
. Let ϑ = (1 + α)− (ldl,m2+Og)/2, 

ρ1 = SCl,m1 (1 + α)− Og/2 and ρ2 = SCl,m2 (1 + α)− Og/2, and it follows the proposition 2. Also, when the objective value of m1 or m2 is less than zero, the 
comparison is useless. 

Appendix C. Proof of Proposition 3 

For a supplier l under the penalty contract (pc), we also analyse the mode selection at an order separately. 

First, if Og +ldl,m ≤ Dg holds for all the modes, ADg,l = Dg. SPpc
g,l =

[
MPl(1 + α)− Dg − SCl,m(1 + α)− (Dg+Og)/2

]
× qg,l. Only the variable SClm depends on 

the mode m, so m* = argmin
m

SCl,m = 1. 

Second, if Og +ldl,m ≥ Dg holds for all the modes, ADg,l = Og + ldl,m. SPpc
g,l =

[
MPl(1 + α)− (Og+ldl,m) − png,lMPl

(
Og + ldl,m − Dg

)+
(1 + α)− (Og+ldl,m) − SCl,m(1 + α)− ldl,m/2− Og

]
× qg,l =

[
MPl(1 + α)− ldl,m/2

− png,lMPl
(
Og + ldl,m − Dg

)+

(1 + α)− ldl,m/2
− SCl,m

]
× qg,l × (1 + α)− Og − ldl,m/2. Let η = (1 + α)− ldl,m/2 and π(m) =

(
Og + ldl,m − Dg

)+, m* = argmax
m

{
η2MPl

[
1 − png,l × π(m)

]
− ηSCl,m

}

for the given contract. 
Lastly, there are several modes to satisfy Og +ldl,m ≤ Dg and the others for Og + ldl,m > Dg. We compare the mode m1 = argmax

Og+ldl,m≤Dg

SPpc
g,l and the 

modem2 = argmax
Og+ldl,m>Dg

SPpc
g,l. The optimal mode corresponds to max

m
SPpc

g,l.
(

max
Og+ldl,m≤Dg

SPpc
g,l − max

Og+ldl,m>Dg
SPpc

g,l

)/

qg,l =

MPl(1 + α)− Dg − SCl,m1 (1 + α)− (Dg+Og)/2
− MPl(1 + α)− (Og+ldl,m2 ) + png,lMPl

(
Og + ldl,m2 − Dg

)+
(1 + α)− (Og+ldl,m2 ) + SCl,m2 (1 + α)− ldl,m2 /2− Og =

MPl

[
(1 + α)− Dg − (1 + α)− (Og+ldl,m2 )

]
+

(
SCl,m2 − SCl,m1

)
(1 + α)− (ldl,m2 /2+Og) + SCl,m1

[
(1 + α)− (ldl,m2 /2+Og) − (1 + α)− (Dg+Og)/2

]
+ png,lMPl

(
Og 

+ldl,m2 − Dg
)+

(1 + α)− (Og+ldl,m2 ). Let ϑ = (1 + α)− (ldl,m2+Og)/2, ρ1 = SCl,m1 (1 + α)− Og/2, ρ2 = SCl,m2 (1 + α)− Og/2 and π(m2) =
(
Og + ldl,m2 − Dg

)+, and it 
follows the proposition 3. When the objective value of m1 or m2 is less than zero, the comparison is useless. 

Appendix D. Proof of Proposition 4 

For a supplier l under the non-financial contract (nc), the selected mode will impact the business opportunity at the next ordering. But at the last 
ordering which has no impact, the optimal mode is determined as proposition 1 shown. We only analyse the scenarios with g < G as follows. 

First, if Og +ldl,m ≤ Dg or Og +ldl,m ≥ Dg holds for all the modes, all the modes lead to the same effect on the next cooperation with the project 
manager. So, the optimal mode under these scenarios is also determined as proposition 1 shown. 

Second, if there are several modes to satisfy Og +ldl,m ≤ Dg and the others for Og + ldl,m > Dg, we compare the mode m1 = argmax
Og+ldl,m≤Dg

SPnc
g,l and the 

modem2 = argmax
Og+ldl,m>Dg

SPnc
g,l. If max

Og+ldl,m≤Dg
SPnc

g,l > max
Og+ldl,m>Dg

SPnc
g,l, the supplier absolutely regard the mode m1 as the optimal mode; otherwise, it is difficult to 

compare max
Og+ldl,m≤Dg

SPnc
g,l +max

m
SPfc

g+1,l and max
Og+ldl,m>Dg

SPnc
g,l at the progress of the agent negotiation. During the negotiation, the order date, the due date and 

the order quantity at the g+1 ordering may be changed. Assumed that the supplier is conservative, the worst case of the next ordering is considered for 
max

m
SPfc

g+1,l. The worst value of the max
m

SPfc
g+1,l is zero, because the supplier denies the contract due to no profits. So, we also compare the max

Og+ldl,m≤Dg
SPnc

g,l 

and max
Og+ldl,m>Dg

SPnc
g,l. In conclusion, the optimal mode is selected as proposition 1 shown. 
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Appendix E. Pseudocodes of coding  
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(continued on next page) 
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Appendix F. . Pseudocodes of decoding  

(continued ) 
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