
Int. J. Production Economics 235 (2021) 108107

Available online 18 March 2021
0925-5273/© 2021 Elsevier B.V. All rights reserved.

Review 

An assessment of probabilistic disaster in the oil and gas supply chain 
leveraging Bayesian belief network 

Nazmus Sakib a, Niamat Ullah Ibne Hossain, PhD b,*, Farjana Nur, PhD b, Srinivas Talluri, PhD c, 
Raed Jaradat, PhD b, Jeanne Marie Lawrence b 

a Department of Industrial and Production Engineering, Rajshahi University of Engineering Technology, Rajshahi, 6204, Bangladesh 
b Department of Industrial and Systems Engineering, Mississippi State University, PO Box 9542, Mississippi State, 39762, USA 
c Hoagland-Metzler Endowed Professor, Professor of Supply Chain Management, Fellow- Decision Sciences Institute, Michigan State University, East Lansing, MI, 48824, 
USA   

A R T I C L E  I N F O   

Keywords: 
Oil and gas 
Supply chain 
Disaster assessment 
Bayesian network 
Resilience 

A B S T R A C T   

The oil and gas supply chain (OGSC) is considered to have one of the most significant stakes in the U.S. economy 
because of its interconnectedness with supply chains in other sectors, such as health and medicine, food, heavy 
manufacturing, and services. While oil and gas development is expanding exponentially, various factors ranging 
from man-made to natural disasters can hinder OGSC processes, which, in turn, can result in inefficient and costly 
operations in other sectors. This study presents a Bayesian Network (BN) model to predict and assess disasters in 
the OGSC based on seven main factors: technical, economic, social, political, safety, environmental, and legal. BBN is a 
probabilistic graphical model that is predominantly used in risk analysis to illustrate and assess probabilistic 
relationships among different variables. To draw meaningful managerial insights into the proposed model, 
sensitivity analysis and belief propagation are used. The results indicate that of the seven factors responsible for 
OGSC disasters, technical factors have the highest impact while legal and political factors have the lowest.   

1. Introduction 

Supply Chain Management (SCM) is a sequential group of activities 
that starts with the sourcing of raw materials, proceeds through 
manufacturing or assembly of a product or service, and ends with de-
livery to a consumer within a specific timeframe (Tan, 2001; Holmberg 
and Holmberg, 2012). In the oil and gas (O&G) sector, the supply chain 
involves exploration, production, refining, distribution, and retail 
(Barclays, 2015). SCM involves the design and management of seamless 
inter- and intra-organizational processes, and critical product, demand, 
information, and financial flows through the participating entities 
(Coyle et al., 2017). The ultimate goal of SCM is to maximize the value 
generated to end customers and to supply chain entities (Chopra and 
Meindl, 2016). To achieve these goals, SCM requires the collaborative 
effort of all functional areas responsible for supply chain activities, such 
as material sourcing, production, quality management, and 
end-customer delivery (Lee et al., 2017; Lambert, 2014; Maleki et al., 
2013; Mentzer et al., 2001). Due to the number of functions involved in 
optimizing supply chain performance, sub-specialties span diverse fields 

including information technology (IT), risk management, financial 
management, logistics, and transportation. In the modern world, SCM 
plays an important strategic role in enterprise growth, not only for 
business organizations, but also for non-profit companies. 

Unlike traditional management practices, SCM is a rapidly evolving 
field built on continuous advancements in computer and information 
technologies, such as artificial intelligence (AI). However, data and re-
ports are still used to make critical decisions to minimize operational 
errors. In some cases, companies plan and execute supply chain strate-
gies to minimize cost and increase profitability, yet face considerable 
financial losses each year. These losses stem from several issues, 
including environmental disasters, operational instability, political un-
rest, lack of organizational support, poor route selection, global finan-
cial breakdown, social and labor dissimilarities, accidents, and logistics 
mismanagement (Macdonald and Corsi, 2013; Ivanov et al., 2017; 
Sodhi, 2015). These issues are known as supply chain disruptions (SCD) 
and can inflict huge economic losses on both a company and a country. 
To develop a resilient supply chain network, the causes of disruptions 
must be known and thoroughly analyzed so that appropriate measures 
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can be taken to mitigate potential losses. 
The oil and gas supply chain (OGSC) is susceptible to a wide range of 

setbacks due to environmental, economic, technical, safety, legal, po-
litical, and social factors (Saad, 2014; Jiang et al., 2019; Ebrahimi et al., 
2018). The U.S. oil and gas industry is a high risk operation that has 
experienced many challenges in the past. For instance, after the Global 
Financial Crisis (GFC) in the fiscal year 2008–2009, a hike in oil prices 
led to a decrease in overall GDP to 1.9%. Also, in 2016, oil exploration 
and extraction costs increased more significantly than other years 
(Thorbecke, 2019). Moreover, the lack of sustainable practices and 
technical difficulties have caused hardships for oil and gas refinery op-
erations. For instance, in 1988, oil rig fires caused 167 deaths and a gas 
leakage at Amuay Oil refinery caused 39 deaths. Another incident in 
2010 was the oil spill in the Gulf of Mexico that caused a severe ex-
plosion. These kinds of operational hazards have also caused habitat 
depletion, atmospheric emissions, surface water disruption, and 
increased labor stress (Barclays, 2015). Natural disasters have also 
affected the OGSC. In 2017, Hurricane Harvey caused severe flooding 
that resulted in the shutdown of many oil refineries near Houston on the 
gulf coast of Texas and at nearby ports that transported approximately 
six million barrels of oil each day. As a result, the price of oil sky 
rocketed to $100/barrel (Stanberry, 2009). In the early 2000s, the oil 
and gas supply chain faced schedule delays and cost overruns because of 
investment regulatory policies and geopolitical difficulties. Transporting 
commodities from the U.S. to other areas by pipeline, road, and barge 
was disrupted due to politically influenced investment policies, which 
imposed an operational limit of a maximum of 50% of total U.S. supply 
(Tan and Barton, 2017). These statistics clearly underscore the need to 
conduct research to develop a resilient oil and gas supply chain network 
that can withstand and minimize the disruptions cited above. 

The objective of this study is to identify and quantify the salient 
factors that could generate an OGSC disaster in the U.S. and predict the 
overall disruption by developing a Bayesian network (BN) model. The 
model is based on an extensive review of the extant literature, followed 
by the expert judgment of relevant fields to identify the risks and un-
certainties associated with the complexity of the OGSC network. This 
novel approach will help practitioners gain a better understanding of 
disruptions by presenting the facts, reasons, and effects of disruptions 
and the courses of action needed to develop a resilient OGSC network. 

The remainder of the paper is structured as follows: Section 2 pre-
sents the literature review on the causes, effects, and predictive mea-
sures related to the OGSC as discussed by other researchers. Section 3 
discusses the Bayesian Network approach. The 5-step methodology for 
the assessment of OGSC is proposed in Section 4, followed by a case 
study description of the factors and quantification techniques in Section 
5. Section 6 presents advanced analyses, such as propagation and 
sensitivity analysis, to provide further insights germane to the under-
lying model. The paper concludes with the implications of the current 
study, its limitations, and avenues for further research. 

2. Literature review 

This section discusses the existing literature pertaining to OGSC 
disruptions, especially in the U.S., and presents numerous studies that 
attempt to analyze the OGSC network in order to reduce disasters 
stemming from adverse conditions and operational uncertainties. 

Depending on the type of disruption and impact, researchers have 
made notable efforts in using theoretical, statistical, and economic 
analysis to provide evidence and guidance on solving disruptive issues. 
For example, Consiglio et al. (2006) employed a theoretical analysis 
technique named “Social Impact Assessments (SIAs)” to assess commu-
nity and social circumstances affected by the O&G sector. In another 
study, Attanasi (1998) conducted a 3-year survey of oil and gas re-
sources for both onshore and offshore reserves in the U.S., as well as the 
logistics activities for those reserves. The findings of this study indicated 
that the accumulation of resources may have significance for the OGSC 

depending on locational variations in demand and supply. In a related 
study, Stanberry (2009) delineated the trade deficit and import/export 
balance for petroleum as consequences of global trade policy that impact 
the supply chain for oil. 

Lack of organizational management can lead to increased supply 
chain cost and hamper overall performance. Al-husain (2014) identified 
logistics areas, lead time, remote inventory, and the “swap” practice of 
oil and gas derivatives as some of the logistics challenges encountered by 
countries around the world. The economic effect on the O&G industry, 
not only depends on financial transactions, but also on employees’ sex, 
race, age, and ethnicity. A comprehensive study of employment and log 
wages in the oil and gas (O&G) industry concluded that men, primarily 
black and Hispanic, are engaged more after the booming of the oil and 
gas industry (Austvik, 2017). 

In recent times, the sustainability of the O&G industry has experi-
enced several downturns in the U.S., Canada, Australia, and even in 
Brazil, West Africa, and Asia. Primary and secondary data have revealed 
that large scale hydrocarbon leakage and system failures have caused 
dramatic disruptions in economic growth and resource management 
(Anis and Siddiqui, 2015). Similarly, after the shale revolution, U.S. 
stock prices and oil prices varied significantly. In a study conducted by 
Bernanke, it was found that oil price increases driven by supply (rather 
than demand) correlated positively with stock prices after the shale 
revolution, while the converse was true before the shale revolution 
(Thorbecke, 2019). The implication is that oil price shocks need to be 
dissected to understand how they might disrupt supply chains and affect 
the overall financial performance of companies heavily dependent on 
oil. 

For the past two decades, researchers have used various mathemat-
ical approaches to address O&G supply chain problems, such as pro-
duction and transmission delays. Some researchers attempted to use 
optimization techniques to analyze the subject. For instance, Zarei and 
Amin-Naseri (2019) presented minimization techniques for transporting 
gas, as well as the overall planning for its extraction, production, stor-
age, and export. Along the same lines, Carrero-Parreño et al. (2019) used 
a mixed-integer linear programming (MILP) model to compute the reuse 
of flow-back water in onsite treatment plants where the water from shale 
gas wells deteriorated and caused an increase in cost to the operating 
system. Gao et al. (2017) also used MILP to solve process design chal-
lenges (extraction, transport of shale gas) and demonstrated the 
outcome as a sustainable process control mechanism and life cycle 
optimization. A number of research studies show that when using con-
ventional O&G techniques, companies frequently face costly trans-
actions, slow delivery, and customer dissatisfaction – factors that have 
direct implications for supply chain performance. For example, Mon-
tagna and Cafaro (2019) reported that horizontal and vertical hydraulic 
fracturing, slow extraction timing, machine parts maintenance, civil 
works, and equipment failure are primary reasons for imperfect supply 
chain processes. The authors applied an MILP approach by creating an 
optimization framework to integrate the planning of materials, supplies, 
economic budgeting, and capital expenditures to control these prob-
lems. To overcome logistics challenges, Joshi et al. (2017) presented a 
linear programming model to evaluate demand, capacity, and trans-
portation costs associated with logistics optimization. Their proposed 
model analyzed transportation chains in other countries by considering 
environmental, socio-economic, and political effects. 

In order to investigate demand, stock market, and price level, 
Nguyen and Okimoto (2019) developed a smooth transition vector 
autoregressive (STVAR) model to identify outcomes linked to price and 
location of the supply of O&G. The asymmetric relationship between 
price and the stock market was also found to cause other issues, 
particularly consumer takeovers, purchase reserve, and merger and 
acquisition (M&A) effects in the global O&G market. Cox and Ng (2016) 
implemented a distinct logistic regression analysis model to apply these 
factors to predict a long period of prognostication in oil and gas reserves, 
exchange deals, and global annual takeover. Different political 
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ideologies and increased global warming have caused extreme events 
such as earthquakes, and have placed the oil and gas supply chain in a 
presumably dead zone. From statistical measures, Gray et al. (2019) 
summarized people’s opinions about the impact of human activities on 
climate change. They also explained how man-made activities like stock 
market policies, political tension, price randomness, and frontier transit 
issues cause OGSC disruptions. A somewhat different approach was 
taken by Simpson (2012), who conducted a statistical analysis to 
investigate the economic and financial crisis in the oil and gas sectors of 
the U.S. Bouejla et al. (2014) and Mbamalu and Edeko (2004) utilized a 
Bayesian network approach to mitigate the issues pertaining to OGSC; 
however their study did not cover all possible aspects of OGSC disasters. 

Another stream focuses on mitigating the disruption and enhancing 
sustainability of oil and gas supply chain network. For instances, Wan 
Nurul Karimah et al. (2006) proposed a Pacific Sustainability Index (PSI) 
and a benchmarking method to identify the qualitative patterns for 
inconsistent behavior in OGSC disruption based on environmental sus-
tainability. The report shows that emissions, recycling, logistic 
outsourcing, and wastages are primary contributors for oil and gas 
disruption. In a recent study, Etokudoh et al. (2017) adopted 
Resource-Based Theory (RBT) and Network Theory (NT) in associating 

logistics deficiencies factors with OGSC risk. Gao and You (2018) per-
formed integrated hybrid life cycle analysis (IHLCA) techniques to es-
timate cost for electricity generation, which plays a major part in shale 
gas operations, and supply chain. This quantification described the cost 
effect of different parameters on oil and supply chain process, distri-
bution and risk prediction. Tang et al. (2018) assessed risk and resiliency 
level of offshore oil extraction unit. More specifically, they used a 
multivariate composite index to quantify fatalities, injuries, damage, 
asset management and prevention measures for OGSC disasters. In a 
similar vein, Tong et al. (2018) evaluated unconventional O&G re-
sources throughout the world which dictate the overall supply chain 
risks in O&G sectors. In other related work, John et al. (2019) applied 
statistical methods on survey data to evaluate the disruptive factors in 
supply chain distribution network of Nigeria O&G sectors. Along the 
same lines, Ibrion et al. (2019) analyzed 15 case studies of various 
hazard, accidents and disasters in O&G sectors via Life Cycle Assessment 
(LCA) methods to evaluate disruptive situations. 

A somewhat traditional yet effective approaches have been applied 
by some researchers to analyize and mitigate the OGSC disruption. 
Mandira et al. (2018) used Just in time (JIT), Kanban, TOC, Total 
Quality Management (TQM), and ABC analysis for total productive 

Table 1 
Current themes in O&G industry.  

Authors Approach Application Area and Findings 

Attanasi (1998) A modified ’"McKelvey box” used for 
classification and assessment 

Evaluation of recoverable oil, both in onshore and state waters; also determining conventional 
resources of crude oil and natural gas. 

Consiglio et al. (2006) Questionnaires for Social Impact Assessment 
(SIA) 

An insightful description of different social dimensions and their impacts on oil and gas industries. 

Wan Nurul Karimah et al. 
(2006) 

Pacific Sustainability Index (PSI) and 
benchmarking method 

Evaluation of index factors from environment and social perspective for oil and gas supply chain 
disruption. 

Simpson (2012) Ordinary least squares regression Evaluation of gas price index and volatility of the stock market based on political, social, and legal 
factors. 

Al-husain (2014) Inventory data in transportation and in-transit 
inventory 

Evaluating asset swap practices and opportunities for swapping in logistics areas and remote 
inventory for the oil and gas industry. 

Anis and Siddiqui (2015) Theoretical evaluation with the empirical 
methodology for sustainability 

Explains and illustrates sustainable development in economic, environmental, and social issues 
leading to analyzing threats in oil and gas companies. 

Cox and Ng (2016) Capital asset pricing model, regression analysis 
and Granger causality test 

Assessment of market policies and decision making associated with natural gas price and corporate 
takeovers. 

Etokudoh et al. (2017) Resource-Based Theories (RBT) and Network 
Theories (NT) approach 

A multicase, exploratory and qualitative approach is attempted to logistics outsourcing sustainability 
and risk assessment in Nigerian Oil and gas industries. 

Gao et al. (2017) Large-scale nonconvex mixed-integer 
nonlinear program (MINLP) model 

Optimal design of SCM and decision criteria on drilling, fracturing plan, location, and length of 
pipeline in the O&G extraction plant. 

Joshi et al. (2017) Linear Programming Model Optimization of transportation network in oil and gas SCM to reduce cost and uncertainty. 
Gao and You (2018) Integrated hybrid life cycle analysis (IHLCA) Optimal cost estimation of electricity generation from both upstream and downstream shale gas 

supply by using LCA method 
Mandira et al. (2018) viz., JIT, Kanban, 

TOC, TQM, TPM and ABC analysis 
Evaluation of value chain quickness of oil and gas supply chain in the UAE in understanding the risk 
resiliency during uncertain conditions 

Shqairat and Sundarakani 
(2018) 

questionnaire based survey and statistical 
analysis 

Evaluation of value chain quickness of oil and gas supply chain in the UAE understanding the risk 
resiliency during uncertain conditions 

Tang et al. (2018) Composite index development method Assessment of performance, risk level, and resilience by evaluating composite index in order to 
address major safety in offshore oil extraction units 

Tong et al. (2018) Volumetric analogy method and Monte-Carlo 
simulation 

An overview of undiscovered recoverable oil and gas reserves throughout the world by using an 
evaluation method 

Atris and Goto (2019) Data envelopment analysis (DEA) and the 
Kruskal-Wallis rank sum test 

Evaluation of unified efficiency by considering environmental (carbon emission footprints) and 
operational (assets, revenue and exploration) efficiency to mitigate risk factors 

Benjamin J. Gray et al. 
(2019) 

Ordinary Least Squares and binary logistic 
regression 

Estimation of global warming and induced seismicity based on public opinions of weather patterns in 
the Oklahoma oil plant. 

Carrero-Parreño et al. 
(2019) 

Mixed-Integer Linear Programming (MILP) Increasing total benefits and reducing total costs of shale gas water management. 

John et al. (2019) Statistical analysis from survey data Determining critical factors to disrupt supply chain downstream process for petroleum based oil and 
gas industry 

Montagna and Cafaro 
(2019) 

Mixed integer linear programming (MILP) 
model 

A novel optimization framework that combines service provision and material supply in the 
development of unconventional and conventional supply chain networks. 

Nguyen and Okimoto 
(2019) 

Smooth transition vector autoregressive 
(STVAR) 

Demonstrates the relationship impact between natural gas price and stock market price of O&G 
industries. 

Stanberry, 2009 Statistical and survey data Decision on increasing oil export to minimize deficit based on trade agreements. 
Thorbecke (2019) Multivariate regression model Established relationship among financial hedging, operational hedging, and commodity price 

exposure in O&G supply chain. 
Zarei & Amin-Naseri 

(2019) 
Mixed Integer Linear programming Model 
(MILP) 

Calculation of minimum cost of production and transportation in OGSC 

Rentizelas et al. (2020) Survey method and institutional theory Evaluation of major factors for sustainability of oil and gas supply chain in the Oman 
Ibrion et al. (2019) Life Cycle perspective Analysis Identify the stages linked to oil and gas disasters through life cycle perspective and their main 

technical causes.  
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maintenance (TPM) and Total quality management (TQM) in drilling 
with emphasis on resource allocation and flow management to ensure 
seamless operation of OGSC. By the same token, Shqairat and Sundar-
akani (2018) performed statistical analysis in order to assess the critical 
factors for O&G disruption and ways to mitigate disruption. The 
different research studies and current themes of OGSC are summarized 
in Table 1. 

For the last several decades, the OGSC has influenced the activities in 
many business areas, specifically, manufacturing and service industries, 
transportation, healthcare, and financial institutions. Therefore, risk 
events that lead to disruptions in the OGSC can have a huge direct and 
indirect economic consequences for such business areas. Higher oil prices 
due to shortages in supply following disasters can raise the cost of pro-
duction and delivery of goods, trigger job losses, and reduce returns to 
investors. For example, damage to refineries caused by Hurricane Katrina 
in 2005 resulted in an immediate spike in the price of oil futures, requiring 
the government to release 30 million gallons of oil from the US Strategic 
Petroleum Reserve to stabilize prices (Pan, 2005). As climate change be-
comes a growing reality, the threat of severe weather implications on the 
OGSC cannot be overlooked in the future. In 2013, the extraction, pipe-
line, and refining operations in the O&G sector in Louisiana was estimated 
at $5.9 billion or just over 7% of the state’s wages (Dahi-Taleghani and 
Tyagi, 2015). Any disruption that impacts O&G operations, could have a 
direct impact on job losses and, consequently, household income. In the 
past decade, the oil and gas sector has struggled to deliver investor returns 
that parallel performance in previous decades due to many factors, 
including an increase in the leverage ratio in the O&G sector following the 
2008 financial crisis (Ashraf et al., 2020). From these figures, it is evident 
that the O&G sector is sensitive to disruptions and any risk events in the 
OGSC can have significant financial implications in terms of lost revenues, 
profitability, legal fees, punitive damages, and environmental and social 
sustainability costs. Given this situation, the O&G sector would benefit 
tremendously from the use of practical quantitative methods to identify 
and characterize the salient factors that contribute to supply chain dis-
ruptions so that more effective risk mitigation methods can be developed 
in the future. Yet, despite the ubiquitous use of oil and gas to support 
economic activity, few methods are exist to identify and organize the 
salient factors that lead to disruptions. Moreover, the literature lacks 
methods to quantify the probability of a disruption in the O&G sector. 
Rather than identify the risks in isolation, the industry could benefit from 
having a more holistic structure that delineates the critical risks to support 
better risk mitigation planning in the OGSC. 

Of the different research models used in the last few years, the BN 
model is highly accessible, and its application has spread to e-commerce, 
marketing, domestic energy supply, transportation, social media, and 
many other sectors. The BN model can be applied to predict end-user 
integration, profit/loss, future investments, and customer satisfaction, 
banking, finance, and even environmental risk. The BN model, which is 
a widely used methodology among researchers, provides a unique 
analytical approach that helps to understand probabilistic functions in 
need-based variables. Considering risk as two-fold (likelihood and 
outcome), the BN method provides subjective belief propagation based 
on past supplier performance, disruption events, disaster history, and 
financial factors. Moreover, the BN provides significant help in pre-
dicting interventions, handling missing data, and avoiding overfitting 
data. Readers who are interested in additional information on BNs are 
referred to the works of Lockamy III and McCormack (2010); Maleki 
et al. (2013); Shahan and Seepersad (2012); Sharma & Kumar Sharma 

and Sharma (2015); and Abolghasemi et al. (2015). Readers who desire 
a more profound treatment of the various applications of the Bayesian 
Network across different domains are directed to the works of Amund-
son et al. (2012)), Lawrence et al. (2020), Hossain et al. (2019a, 2019b, 
2019c, 2019d) (supply chain), Hossain et al. (2019a, 2019b, 2019c, 
2019d) (waterway port), (electrical infrastructure), Song et al. (2013), 
Yet et al. (2016) (project management), Arizmendi et al. (2012) (data 
classification), Han et al. (2012) (system of systems) Hänninen et al. 
(2014), (traffic accidents), Hossain et al. (2020a, 2020b) (smart grid) 
(port and supply chain interdependencies), Saini (2008) (power system), 
and many more. 

It is apparent from the review of the literature that there is lack of 
research that considers the predictive approach to assess the disaster of 
OGSC. To address this gap, this research adopted Bayesian network as a 
probabilistic approach in the OGSC network to capture all the causes of 
OGSC failure that predict disruptions of the network. The following are 
contributions resulting from this study:  

• Identification of factors that are responsible for the disruption of the 
OGSC network.  

• Development of a comprehensive BN model that captures all the 
causal relationships among the different factors that predict OGSC 
disruption. This model would help to develop strategic plans and 
recommendations to manage the uncertainty and damage related to 
the OGSC network.  

• Use of a set of advanced analyses, such as belief propagation and 
sensitivity analysis, to provide better insights into the resilience of 
the OGSC network.  

• Demonstration of the extensibility of the BN as an efficacious tool in 
navigating and offsetting supply chain and logistics management 
problems. 

This research strives to support practitioners in developing and un-
derstanding the robust network model pertaining to OGSC disruptions. 

3. Theory of Bayesian Network 

In this section, we present the fundamentals of the Bayesian Network 
(BN), a directed acyclic graph (DAG) used for statistical extrapolation by 
establishing probabilistic relationships among nodes (interacting vari-
ables) and edges (arcs). 

An illustration of the BN is provided in Fig. 1 through a scenario 
related to the current research problem. If we consider, psychological 
effect and cultural & social infrastructure impact are two main sub-
factors of the social factors related to OGSC disruption. In other words, 
the posterior probability of social factor is conditioned upon two sub-
factors Psychological effect (S1) and cultural & social infrastructure 
impact (S2), respectively. On the other hand, the probability of overall 
oil and gas disruption is also dependent upon the probability of the so-
cial factors related to OGSC disruption. From a Bayesian theory 
perspective, S1 and S2 are the parent nodes of S3, and so S3 is the child 
of S1 and S2. Similarly, S4 is the child node of S3 and conversely, S3 is 
the parent node of the S4. All these nodes are connected through edges 
based on cause-and-effect relationships. 

The relationships between the variables correspond to states that 
provide probabilistic values associated with earlier nodes. The general 
expression of the full joint probability distribution can be represented 
using the following equation (1): 

P(S1, S2, S…, Sn)=P(S1|S2, S,…, Sn)P(S2|S3,…, Sn)…P

(

Sn− 1|Sn)P(Sn)=
∏n

i=1
P(Si|Parents(Si)

)

(1)   

N. Sakib et al.                                                                                                                                                                                                                                   



International Journal of Production Economics 235 (2021) 108107

5

4. Proposed model 

4.1. Methodology of the proposed framework 

The methodology for the proposed framework was established 
through an organized review of the extant literature. The search for the 
relevant literature was narrowed using the Scopus database and relevant 
keywords (i.e., supply chain disaster, supply chain risk, supply chain 
disruption, supply chain resilience, oil and gas supply chain) that are 
germane to supply chain disaster. The database search included pub-
lished, peer-reviewed, and proceedings papers that covered all aspects 
related to the O&G supply chain system and its network performance. 
Initial search results produced 100+ papers and further screening was 
carried out based on the suitability and pertinence of the subject. To 
further narrow the search pool, a more focused list of papers was 
selected that related only to oil and gas supply chain disasters with 
logical explanations for causes and consequences of disruptions that 
occur in the oil and gas supply chain. As a result, a total of 65 papers 
were selected for final review of theoretical and analytical 
considerations. 

This review helped to determine the areas of supply chain func-
tionality and led to the creation of an underlying Bayesian Network 
model pertaining to OGSC disasters. Fig. 2 illustrates the steps followed 
to develop the research methodology. 

4.2. Proposed 5-phase interdependency disruption assessment process 

This section describes the proposed O&G disruption assessment 
process of our study. To properly evaluate the disruption of the O&G 
supply chain, it is imperative that the main variables (factors) involved 
in disruption are identified. These factors were derived by employing the 
following steps: First, a detailed literature review was conducted and 
seven major factors implicated in OGSC disruptions were identified in 
conjunction with expert opinion. Second, sub-factor parameters 
belonging to each major factor in OGSC disruption were determined 
based on qualitative and quantitative measures, including recent sta-
tistics, historical data, the frequentist approach, and expert opinion. 
Finally, the variables were connected in a logical manner to develop the 
underlying BN model. 

Further advanced analyses, such as belief propagation and sensitivity 
analysis, were conducted to draw insights into the causes, consequences, 
and countermeasures of OGSC disruption and to affirm the authenticity 
of our underlying model based on the collected data. The 5-phase 
disruption assessment process is discussed below and depicted in 

Fig. 2. The base Bayesian Network (BN) model is illustrated in Fig. 3 
using the AgenaRisk software.  

• Phase I (Identification of factors and subfactors in OGSC disruption): 
In this phase, we identified the possible factors and sub-factors 
associated with disruptions in the OGSC. Next, expert opinion was 
sought to finalize the salient and less important factors and to 
eliminate the irrelevant factors.  

• Phase II (Quantification and assessment of factors and sub-factors): 
The second phase was to quantify the selected factors and subfactors. 
This included a determination of the likelihood of the event occur-
ring based on a subjective or frequentist approach.  

• Phase III (Construction of the BN model): The quantified data was 
fed into the BN model and simulated to assess the likelihood of 
disruption in the OGSC.  

• Phase IV (Results analysis): A set of advanced analyses, such as 
belief propagation analysis and sensitivity analysis, were conducted 
to draw insights into the fundamental model.  

• Phase V (Recommendations for adaptability improvement): In the 
last phase, recommendations were made to enhance OGSC perfor-
mance based on conclusions derived from a technical analysis. 

5. Problem description and model formulation 

This section uses a case study to discuss the problem and model 

Fig. 1. An illustration of a Bayesian Network (BN) with four variables.  

Fig. 2. Proposed 5-Phase Assessment process.  

N. Sakib et al.                                                                                                                                                                                                                                   



InternationalJournalofProductionEconomics235(2021)108107

6

Fig. 3. Base BN model for measuring the overall disruption of the OGSC network.  

N
. Sakib et al.                                                                                                                                                                                                                                   



International Journal of Production Economics 235 (2021) 108107

7

formulation. 

5.1. Case study description 

In this study, we chose the U.S. oil and gas supply chain (OGSC) as 
our primary case study because the OGSC is essential to the U.S. econ-
omy. Each year the U.S. earns around 8% of its revenue from the nation’s 
oil and gas domestic products. Currently, around 10.3 million jobs are 
directly and indirectly linked to the O&G industry. OGSCs face several 
threats due to different risks throughout the year. Because of its 
importance to the U.S. economy, oil and gas commodities and their 
supply chain processes need to be thoroughly assessed with a view to 
minimizing unwanted losses. Using a case study as background, this 
research will evaluate and prioritize risk factors and find suitable im-
provements to considerably lessen the effects of disruption in the U.S. oil 
and gas supply chain. 

5.2. Description of the factor and quantifications 

In this section, we present different factors and sub-factors respon-
sible for OGSC disruptions. Table 2 summarizes the main factors and 
subfactors related to OGSC disasters derived from the supply chain 
network literature. 

5.2.1. Technical factors 

• Mechanical failure: Unexpected mechanical failure of tools and in-
struments used in oil extraction, maintenance, and overhaul require 
immediate attention to prevent financial losses. When overhaul 
problems, such as repair, replacement, or installation of extraction 
machine components take long periods of time, the delivery of 
refined oil and gas may be delayed. Frequently, O&G companies 
require lengthy periods to address overhaul issues due to the un-
availability of machine parts and/or maintenance workers. (HEI, 
S2015).  

• Oil and gas extraction techniques: In the U.S., there are more than 
130,000 active oil and gas extraction sites, including some critical 
areas like the Southwestern Permian Basin, the Gulf of Mexico, the 
Eagle Ford Basin in Texas, Bakken oil fields in North Dakota, and 
Colorado’s Niobrara shale gas site, where both workers and ma-
chines are continueously extracting oil and gas. These locations vary 
in the type of extraction techniques employed based on site, budget, 
volume, depth of oil fields, and technical support (Ebrahimi et al., 
2018). According to the literature, there are two sub-factors related 
to oil and gas extraction techniques that might have an adverse effect 
on the performance of the OGSC. 

High extraction time (delay): O&G extraction sectors are highly sen-
sitive and risky ventures. Technical design risks, settlement risks, and 
management risks are time-sensitive; yet, minimizing these risks entail 
lengthy procedures that require efficient workers. Supply chain inte-
gration (SCI) techniques allow operational activities and extraction 
processes to run smoothly, preventing extraction delays that might have 
a negative impact on OGSC performance (Ebrahimi et al., 2018). 

Overwhelming extraction costs: According to the national assessment 
of U.S. oil and gas reserve data, approximately 960,000 oil fields are 
operational, resulting in production of 2.5 BBO (billion barrels of oil) 
(Attanasi, 1998). As of 2019, U.S. oil field production has increased to 
12,232 thousand barrels per day or 4.5 billion barrels of oil per year (U. 
S. EIA). 

Given the huge quantity of oil extracted, it is clear that the operation 
of O&G processes will influence extraction costs. More expensive tools 
and faster more efficient operations will ultimately improve technical 
performance of the overall OGSC.  

• Scheduling problems: Both oil extraction and shale gas extraction 
suffer from work scheduling disruptions due to inconveniences that 
arise from geological shale formation. Any failures or inconsistencies 
in the drilling and hydraulic fracturing operations of the extraction 
process can lead to delays. The risks associated with failure also 
hamper routing, storage, and exports to end-users (Guerra et al., 
2019; Zarei and Amin-Naseri, 2019). It seems that the OGSC process 
can be significantly disrupted due to long lead times and slow 
responsiveness at the extraction point. 

Lead time to supply oil: In recent years, oil and gas extraction com-
panies and their associated corporate giants used new technologies and 
increased their production rates significantly. However, scheduling ca-
pabilities have not kept pace with the increase in production. Conse-
quently, the methods applied have been inadequate to meet new time- 
imposed demands of customers. Lead time delays encountered in pipe-
line monitoring systems, refining quality, product transfer to consumers, 
commodity transfer, and upstream to downstream activities have all had 
detrimental effects on the OGSC. 

Delivery Delay: The responsiveness of the supply chain depends pri-
marily on timely execution of all supply chain activities, such as order 
cycle, customer service, outsourcing, and just in time (JIT) production and 
delivery. In the OGSC, firms focus on improving key areas like dynamic 
capabilities, strategic relationships between customers and suppliers, 
reliability, planning and control systems, and development of oil pro-
cessing plants to increase SC performance levels (Saad, 2014). Inefficient 
responsiveness leads to poor supply chain processes for oil and gas in-
dustries and a delivery delay that could result in huge financial losses. 

Table 2 
Existing threads in OGSC disruptions.  

Criteria Sub Criteria References 

Technical  • Mechanical failure  
• Oil and gas extraction techniques  
• Scheduling problems  

• Saad (2014), López-Díaz et al. (2018), Li et al. (2017), HEI Special Scientific Committee (2015).  
• Washington Post, Ebrahimi et al. (2018), Attanasi (1998).  
• Guerra et al. (2019), Zarei and Amin-Naseri (2019), Gao et al. (2017). 

Economic  • Socio-economic disruptions  
• Volatility in stock market  

• Anis and Siddiqui (2015), Nguyen and Okimoto (2019), Rickman and Wang (2019), Stanberry and Aven 
(2019).  

• Al-husain (2014), Cox and Ng (2016), Thorbecke (2019), Simpson (2012). 
Environmental  • Natural disasters  

• Accidental waste release  
• Barclays (2015), Gray et al. (2019), Souders et al. (2005).  
• Gao and You (2018), Kbah et al. (2016), Policies, Petroleum (1966). 

Safety  • Injury  
• Occupational hazards and fatalities  

• Tang et al. (2018), Barclays (2015).  
• Mortality Weekly Report (2013), Attanasi (1998), Thorbecke (2019). 

Social  • Cultural and social infrastructure  
• Remoteness and population density  
• Social and psychosocial effects  

• Consiglio et al. (2006), Kardel (2018).  
• Rickman and Wang (2019).  
• Guerra et al. (2019), López-Díaz et al. (2018). 

Legal  • National security anxiety  
• Trade agreement problems  

• Walde (2008), Jiang et al. (2019).  
• Stanberry and Aven (2019), Simpson (2012) 

Political  • Unstable partnerships & investments with 
government  

• Political disputes and unrest  

• Kardel (2018), Tan and Barton (2017).  
• Gray et al. (2019).  

N. Sakib et al.                                                                                                                                                                                                                                   



International Journal of Production Economics 235 (2021) 108107

8

The modeling procedure of the technical factors is discussed below: 
To model the technical factors and sub-factors, two types of variables 

were used: Boolean variables and continuous variables. Boolean variables 
are expressed using a dichotomous response (true/false, yes/no) to 
represent positive and negative outcomes respectively. The false state 
describes a negative outcome, and the true state represents a positive 
outcome. Boolean variables were used to model extraction time, extrac-
tion cost, delivery delay, and mechanical failure. For instance, Fig. 3 il-
lustrates that the probability of delivery delay is 20% true and 80% false. 

In other words, we assume that delivery delay happens 20% of the time 
(true state) and doesn’t happen 80% of the time (false state). Similar 
logic has been applied to the other factors. 

The truncated normal distribution is found to be the most appro-
priate distribution to model continuous variables such as lead time. It is a 
modified normal distribution that is defined using four parameters: μ, 
mean (i.e., central tendency), σ2, variance (i.e., confidence in the re-
sults), and upper and lower bounds. For example, based on historical 
data, the lead time to supply oil generally varies from 20 to 35 days with 
an average of 30 days. It is also obvious that lead time cannot be 
negative. Thus, a truncated normal distribution is suitable for defining 
the upper and lower bounds for the lead time random variable. 

Fig. 3 shows that the technical factor is conditioned upon three sub-
factors: mechanical failure, O&G extraction techniques, and scheduling 
problems. Other hidden or unknown factors could also contribute to the 
technical factor. To improve the accuracy of the model and the posterior 
probability of the technical factor node, the NoisyOR function can be 
applied. The NoisyOR function is an easy way to model uncertain re-
lationships in a Bayesian network and compensate for absent (leak) 
factors that could contribute to a true outcome. Generally, a NoisyOR 
function consists of a non-deterministic line failure function with inputs 
that result in a boolean output. If a line failure event occurs (i.e., is true), 
a false output will be obtained regardless of the input. The probability 
associated with the line failure is called an “inhibitor probability”. As an 
example, if U1, U2, U3, … … Un are inputs that produce an output X, then 
a non-deterministic line failure Ni will result in Boolean outputs U′

1, U′
2, 

U′
3, … … U’n. On the other hand, if a line failure event is false, the output 

will be equal to the input and the associated probability for the event 
will be calculated as (1 – inhibitor probability) (Srinivas, 1993; Vomlel, 
2015). The logic is that a NoisyOR model will begin with a 
non-deterministic model, F, and failures will be introduced into the in-
puts until a more realistic model that incorporates only a few probabi-
listic parameters is achieved. The generalized model adds proximate 
deterministic values that assume the value will be “True” if the parent 
node is “True”. Thus the “leak” node fulfils the missing values. Applied 
to the OGSC, the NoisyOR function will adjust for missing elements that 
could potentially affect post-disaster strategies. 

For example, if there are some factors such as C1, C2, C3 … Cn that are 
inputs in a conditional probability formula, then the event D is true only 
if C1 is true while others are false. The conditional probability distri-
bution P(D|C1, C2, C3 … Cn) is computed from the input probabilities. 
Here, the NoisyOR function is useful and it is presented for each factor Ci, 

Mi =P
(
D=True

⃒
⃒Ci =True, Cj =False; ∀j ∕= i

)
(2)  

where, Mi is the conditional probability being true if only the causal 
factor is true and all other factors are false. The function is written as 
follows: 

NoisyOR (C1, M1, C2, M2, C3, M3 … Cn, Mn, l)                             (3) 

Here, l is the leak factor representing the missing parameters in the 
model that contribute to the outcome being true. The conditional 
probability for event D being true can be described as follows: 

P

(

D=True|C1,C2,C3,…..Cn)=1−
∏n

i=1
[(1− p(D=True|Ci=True)(1− p(l)))

]

(4) 

The modeling equation of economic factors is presented in the 
following equation (7): 

Equation (7) explains the probability of O&G extraction, scheduling 
problems, and mechanical failure using the NoisyOR function, where each 
of the included factors is assumed to be true while others are assumed to 
be false. The probability distribution is defined as 0.50 for each factor, i. 
e., these three factors will have similar effects on the technical factor. The 
probability distribution for hidden factor is 10%. 

5.2.2. Economic factors 
Socio-economic effects and stock market price volatility are the main 

issues for the economic disruption of O&G sectors. When the natural gas 
market faces a shock in U.S. demand, supply market prices and eco-
nomic activities adjust upward or downward in response. Operational 
and financial hedging can be executed to mitigate the financial risk 
associated with median exposure states, commodity price randomness, 
and annual risk exposure.  

• Socio-economic disruptions: Anis and Siddiqui (2015) stated that the 
“Triple Bottom Line” or TBL consists of environmental, economic, 
and social threats. These threats can impact the OGSC. Recessions 
can also cause socio-economic disorder in the OGSC. 

Fluctuation in international oil price: An empirical investigation using a 
recession market scenario explained a large range of price fluctuations 
based on commodity control variables such as size, leverage, liquidity, 
and growth opportunities (Nguyen and Okimoto, 2019). These changes 
were found to accelerate during times of internal socio-economic 
disorder. 

Recession: According to a case study reviewing boom and bust phases 
in the oil industry, an unexpected drop in mining employment escalated 
a recession in fiscal years 2008–2010, particularly in Louisiana, North 
Dakota, Oklahoma, and Wyoming (Rickman and Wang, 2019). Unem-
ployment spikes similar to the one in this case study show how a 
recession could cause disarray in an OGSC network since there would be 
fewer workers in huge sectors. 

Fluctuating demand in consumption: While exports of U.S. oil are ex-
pected to grow steadily over the next few years, exporting of refined 
crude oil is likely to suffer a decline in demand in the future as sus-
tainable issues and carbon taxes force consumers to use renewable en-
ergy sources (Stanberry and Aven, 2019). Nonetheless, with a projected 
demand of more than 3 billion BBO annually, the potential for signifi-
cant disruption in the OGSC in the U.S. still exists.  

• Volatility in the stock market: The stock market reacts to supply chain 
complexities involving inventory and transportation components 
like railroads, tankers, and small vessels, with resultant randomness 
in stock prices (Al-husain, 2014). In the U.S., the oil and petro-
chemical industries often face stock price variations and market 
volatility which in turn result in negative consequences to the OGSC. 

The modeling procedure of the economic factors is explained below: 

Technical factor =NoisyOR (O&G extraction, 0.50, scheduling problem, 0.50, mechanical failure 0.50, 0.10) (5)   
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As illustrated in Fig. 3, the economic factor consists of two factors: 
socio-economic factors and the volatility of the stock market. The following 
table (Table 3) describes modeling of the economic factor and its sub- 
factors. 

The modeling equation for economic factors is presented in equation 
(6): 

5.2.3. Social factors 
Because oil and gas producers (OGP) have an impact on social di-

mensions, in depth knowledge of worker migration, security, safety, 
wages and salaries, health, and social position is necessary (Consiglio 
et al., 2006). Screening of workers’ skills, mental condition, work 
satisfaction, and monitoring of workers’ social life is important. This 
type of assessment helps to identify social factors that disrupt SC ac-
tivities in the oil and gas sectors.  

• Cultural and social infrastructure impact: Government and private 
owners need to maintain a legal framework for employees and others 
to define cultural boundaries, norms, social status, position, healthy 
lifestyle, justice, and equity for the society as a whole, while also 
reducing corruption in O&G operations (Kardel, 2018).  

• Remoteness and population density (obstruction in remote areas): 
Although in general a social lifestyle associated with remoteness, low 
population density, work availability, and salary structure impact 
financial results, in reality the population density of remote areas can 
have a negative effect on supply chain processes (Rickman and 
Wang, 2019). Depending on the remote area population density, 
supply chain processes might be affected by increased safety issues 
due to transaction speed and efficiency requirements (Rickman and 
Wang, 2019). 

• Social and psychosocial effects: When creating a new production fa-
cility or transferring facilities to an oil extraction site, there is some 
risk involved in habitat depletion, fragmentation, and degradation 
(Barclays, 2015). With regard to transfer of oil and gas commodities, 
social and psychosocial factors could result in OGSC disruption due 
to absenteeism, anxiety, and work preferences. 

Absenteeism at work: Issues of absenteeism are a challenge for oil and 
gas producers in the supply chain. Public nuisances such as noise, vi-
bration, and dust in the O&G work area (Barclays, 2015), may cause 
harmful psychosocial issues, leading to absenteeism in the workplace. 
An understanding of these issues is gained by examining worker profile, 
workplace safety measures, and employees’ beliefs about the workplace 
(Guerra et al. (2019). 

Worker anxiety: In the workplace, people often suffer from anxiety, 
especially in the O&G industry due to long term physical stress while 
operating machines, lifting heavy objects, and transporting oil manually 
(Kardel, 2018). Anxiety levels can help to explain workers’ motivation, 

work safety, satisfaction, and stress level. Increase in worker anxiety can 
cause significant schedule delays and considerable workflow losses. 

Workers tend to work slowly: Similar to the factors mentioned above, 
laborers and people can have work delay problems in handling the op-
erations of the oil extraction process due to excessive work stress. 

The modeling of social factors is summarized below: 

Boolean logic was applied to the majority of the nodes contributing 
to social factors except the cultural and social infrastructure node for 
which the Ranked Nodes Method was used. The Ranked Nodes Method 
(RNM) uses an ordinal scale (i.e. good, medium, and bad) to express 
different states (Fenton et al., 2007). This scale is originally mapped 
based on Normal Distribution truncated values between 0 and 1. For 
example, as illustrated in Fig. 3, the probability of substandard cultural 
and social infrastructure is assumed to be 20% high, 50% medium, and 
30% low based on historical data. 

The modeling equation for social factors is designed using a 
comparative expression. It is assumed that if the psychosocial effect is 
higher than 35%, the cultural and social infrastructure is equal to or 
higher than “medium”, and remoteness and population density exceed 
40%, then the combined effect will cause social concerns for the OGSC. 

5.2.4. Political factors 
Government rules, regulations, and political involvement can have 

detrimental effects on the OGSC. Because of the significant investment 
and geopolitical issues involved in the O&G sector, corporate firms often 
negotiate with governments to have exclusive rights to supply oil and 
gas to end-users (Kardel, 2018). Since these decisions are relevant to the 
supply chain, they could have a major effect on the OGSC.  

• Partnerships & investment conditions with governments: Decision- 
makers of O&G industries is trying to control future logistic ex-
penses to meet expected demand. The owners of natural gas, crude 
oil, and shale gas and their corporate legislators offer a sustainable 
market for future energy sectors (Tan and Barton, 2017). However, 
poor political decisions can play a role in diminishing the perfor-
mance of the O&G supply chain.  

• Political dispute and unrest: Lobbying for oil and gas extraction has 
caused political disputes during energy crisis interventions. More-
over, in the past, decision makers and legislators have handled these 
disputes poorly, with negative consequences on O&G production and 
delivery. When protestors gain power through local and organiza-
tional turmoil, political decisions could bring supply chain opera-
tions to a halt. 

The modeling of political factors is described below: 
The factors contributing to political risk are represented in Boolean 

mode. For example, the political dispute and unrest node shows that 

Table 3 
Node Probability Table (NPT) for the variables describing the node economic factor and its contributors.  

Variable Name Modeling Technique Modeling Description 

Oil price Fluctuation TNORM Oil price is defined by truncated normal distribution with 17.08% mean fluctuation over the past 5 years (UCOP, 2020). 
Fluctuation in demand TNORM The market demand for oil and gas is approximated using truncated normal distribution with an average of 32.84% fluctuation in 

past 5 years (UCOP, 2020). 
Recession Boolean It is assumed that 90% of the time, a recession in the O&G market causes socio-economic disruption. 
Volatility in the stock 

market 
Boolean Based on historical data, it is observed that 80% of the time, the volatility of the stock market contributes to creating an economic 

occurrence that leads to OGSC disruption, while 20% of the time, this might not happen. 
Socio-Economic Comparative 

expression 
The OGSC socio-economic situation is conditioned upon three factors. If the values of oil price and market demand are higher than 
17.08% (mean) and 32.84% (mean) respectively, and the likelihood of a recession occurring is higher than 75%, then there is 
concern about the socio-economic situation of the OGSC network (state of true), otherwise not (state of false).  

Economic factor=NoisyOR (Socio Economic, 0.75,Volatility in stock market, 0.50, 0.10) (6)   
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there is a 75% chance that political disputes and unrest might result in 
occurrences that adversely impact the performance of the OGSC 
network, while there is a 25% chance that it might not happen. On the 
other hand, there is a 40% likelihood that unstable partnership condi-
tions with the government could increase OGSC disruption. In this case, 
the NoisyOR function is used to express the political factor as shown in 
the following equation (7): 

5.2.5. Safety factors 
Safety issues could lead to supply chain disruptions for any product. 

While environmental calamities could impede regular transportation of 
goods, man-made disasters such as occupational hazards, psychosocial 
risks, and accidents in manufacturing plants could impact lifestyle and 
cause persistent damage. Supply chain disruptions may be exacerbated 
by occupational injury and industrial hazards.  

• Injury: Both O&G extraction sites and surrounding areas can result in 
injury due to natural hazards, atmospheric emissions, habitat 
depletion, rehabilitation, and restoration. These injury issues may 
cause unwanted disturbances in the OGSC (Barclays, 2015). 

Injury by moving harmful materials: Many accidental events occur 
when moving harmful materials within the work site area, resulting in 
worker dissatisfaction and work stoppage until the problem is solved. 

Handling bulk storage: Likewise, handling bulk volumes manually can 
also cause many accidents and impede production processes at O&G 
extraction sites, resulting in a loss for oil and gas producers.  

• Occupational hazards and fatalities: Safety factors in the supply chain 
are one of the most important aspects to consider in conceptual 
workplace design. In-depth management of safety and safety mea-
sures are needed to reduce psychological factors, fatalities, and 
hazards (Mortality Weekly Report, 2013). Failure to evaluate safety 
measures could result in disruptions in the OGSC. 

The modeling of safety factors is illustrated below: 
As discussed above, the safety factor is concerned with two main 

contributors: 1) injury and 2) occupational hazards and fatalities. These 
two continuous variables are modeled using a truncated normal distri-
bution (TNORM). The truncated normal distribution is characterized by 
a finite range (i.e., lower and upper bound); mean, μ (i.e., central ten-
dency); and variance, σ2. The modeling procedure for the safety factor 
and its contributors are presented in the following Table 4. 

5.2.6. Environmental factors 
Environmental impacts occur primarily in three domains, i.e., water, 

land, and air. Barclays (2015) discussed the contamination of water by 
pollutants and toxic ingredients from drilling and mining. Both natural 
and man-made disasters have the potential to cause supply chain 
disarray. Earthquakes, tornadoes, and accidental waste release can all 
cause inefficiency and disruption in the OGSC.  

• Natural Disasters: Over the last several decades, the U.S. has faced 
many natural disasters such as earthquakes, forest fires, heavy 

rainfall, tornadoes, and other natural calamities. Below are two 
natural disasters that can impact the OGSC network. 

Earthquakes (land): Due to land clearance for oil and gas extraction, a 
survey indicated that underground drilling and cutting could trigger 
earthquakes. This type of calamity could cause land deformation and 
road damage, thereby destroying supply chain transportation connec-

tions and slowing down the transfer of oil and gas. 
Tornadoes (air and water borne): Tornadoes, which can be both air- 

and water-borne, have the potential to severely delay supply chain ac-
tivities by causing the lockdown of industrial facilities and blockage of 
transit routes used for inland transportation of oil. Moreover, tornadoes 
could result in the worst case scenario of pipeline leakage and water 
contamination in the supply and distribution of refined oil products.  

• Accidental waste release: Accidental waste release can cause major 
problems in distribution. Souders et al. (2005) mentioned that at-
mospheric emissions like pollutants, specks of dust, and waste 
disposal at extraction sites have caused suppliers to relocate their 
raw materials, products, and accessories to other areas. These 
man-made activities can lead to increased supply chain-related costs 
for the O&G industry. 

The modeling process of environmental factors is described as follows: 
Based on the expert judgment of practioners and scholars who are 

knowledgeable of the locations in which oil and gas operations are 
performed and the potential for earthquake disruptions in these areas, 
the prior distribution of the earthquake variable is subjectively defined 
with two states: True = 65% and False = 35%. This means that there is a 
65% probability that an earthquake could cause an OGSC disaster. The 
same Boolean logic is applied to the tornado and accidental waste vari-
ables. Apart from these factors, some other hidden environmental fac-
tors could be responsible for OGSC disasters; therefore, the NoisyOR 
function is applied to design the environmental factor’s node as pre-
sented in the below equation (8): 

5.2.7. Legal factors 
Legal proceedings and political disputes of governments raise many 

questions about the extent to which oil and gas suppliers should be 
controlled. Foreign investors often circumvent legal proceedings by 
using cunning legislators. The result is that corporate suppliers may fail 
to meet fair policy requirements, thereby exposing themselves to 
negative consequences (Walde, 2008). The exposure explains some 
critical effects in the OGSC.  

• National security anxiety: Political decisions regarding the control of 
O&G industrial sites can create a national security dilemma. Policy 
changes could cause government and private O&G ventures to suffer 
because of the jurisdiction of capital investors, host states, and “rule 
of law” arrangements (Walde, 2008). For example, governments 
could alter policies toward foreign investment or the terms and 
conditions under which O&G projects were initially conducted. 

Political factor =NoisyOR (Political Dispute & Unrest, 0.50, partnership condition with goverment, 0.50, 0.15) (7)   

Environmental factors=NoisyOR (Accidental waste, 0.30, natural disaster, 0.75, 0.10) (8)   
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Political and financial agreements may present scenarios that result 
in decisions that cause severe problems for OGSC activities.  

• Trade agreement problems: Over the last several decades, changes in 
political power, government rules and regulations, and legislation 
policies, have resulted in disruptions in the business world (Jiang 
et al., 2019). These disruptions have significantly hampered the 
production and supply of oil and gas during these periods. 

The modeling process of legal factors is defined below: 
As demonstrated in Fig. 3, the legal factor is conditioned upon two 

nodes: national security anxiety and trade agreement problems. National 
security anxiety is designed using Boolean logic and trade agreement 
problems are expressed using the Ranked Node approach. If national se-
curity anxiety is higher than 50% and trade agreement problems are greater 
than the average (medium), then the combined effect resulting from 
these issues could create legal issues for the OGSC. 

Finally, in order to compute the posterior probability of OGSC 
disruption using the proposed model, a labelled node named “Weight 
(weighted average)” is created to calculate the weighted value for each 

variable contributing to OGSC disruption. This weighted value is similar 
to the weighted mean; however, it is associated with multiples of a 
particular event and the probability of each happening. The weighted 
value is computed by summing the products of the weighted variables in 
the model. Alternatively, the weighted average is derived from the mean 
probabilities of all the parent nodes in the OGSC as presented in equa-
tion (9): 

WMEAN =
∑

WiSi = 1, 2……n, ∀i = 1; 0 < Wi < 1;
∑

i
Wi = 1 (9)  

where i represents the number of variables (i = 7 for the proposed 
model) directly connected to the weighted average node of the OGSC 
disruption (see Fig. 3) and Wi denotes the weight of the ith variable. 

Based on this formula, the posterior probability of OGSC disruption 
being true is estimated at 59.04% which means that there is a 59.04% 
likelihood (chance) that the OGSC might undergo disruption (see Fig. 3). 

The description of causal relations among the trigger nodes, main 
causal nodes, and intermediate nodes that are potentially liable to OGSC 
disaster are summarized in Table 6. In other words, the simplified 

Table 5 
Simplified tabular format of Fig. 3 (base BN model).  

Node Child Node Parent Node 

Technical O&G SC Disaster Mechanical failure, Scheduling problem, O&G extraction techniques 
Mechanical Failure Technical – 
Scheduling problem Technical Delivery delay, Lead time 
O&G extraction techniques Technical Extraction time, Extraction cost 
Delivery Delay Scheduling problem – 
Lead Time Scheduling problem – 
Extraction time O&G extraction techniques – 
Extraction cost O&G extraction techniques – 
Economic O&G SC Disaster Socio economic disruption, Volatility is stock market 
Socio economic disruption Economic Oil price fluctuation, Recession, Fluctuation in demand 
Volatility is stock market Economic – 
Oil price fluctuation Socio economic disruption – 
Recession Socio economic disruption – 
Fluctuation in demand Socio economic disruption – 
Social O&G SC Disaster Psychosocial effect, Cultural and society infrastructure, Remoteness & population 
Psychosocial effect Social Absenteeism, Worker anxiety, Tend to slow down 
Cultural and society infrastructure Social – 
Remoteness and population Social – 
Absenteeism Psychosocial effect – 
Worker anxiety Psychosocial effect – 
Tend to slow down Psychosocial effect – 
Political O&G SC Disaster Political dispute and unrest, Partnership condition with government 
Political dispute and unrest Political – 
Partnership condition with government Political – 
Safety O&G SC Disaster Injury, Occupational Hazard and fatalities 
Injury Safety – 
Occupational Hazard and fatalities Safety – 
Environmental O&G SC Disaster Accidental waste, Natural disaster 
Accidental waste Environmental – 
Natural disaster Environmental Earthquake, Tornado 
Earthquake Natural disaster – 
Tornado Natural disaster – 
Legal O&G SC Disaster National security agency, Trade agreement problems 
National security agency Legal – 
Trade agreement problems Legal – 
Weight O&G SC Disaster –  

Table 4 
Modeling of safety factor and its node contributors.  

Variable Name Modeling 
Technique 

Modeling Description 

Injury TNORM Based on statistics, every year OGSC-related fatal injuries in the U.S. vary from 10 to 40 with an average of 24. The variance 
is approximated as 2.5. (BLS, 2010) 

Occupational hazard rate and 
fatalities 

TNORM The occupational hazard and fatality rate is significantly higher than the death/injury rate and varies from 14 to 199 with an 
average of 47 every year. The mean is approximated at 0.95 (95%) and variance calculated at 8. 

Safety factor Comparative 
Expression 

The safety factor depends on two factors. If the value of the injury delivery rate is greater than or equal to 20/year and the 
occupational hazard rate and fatalities exceeds 45, then there is a safety concern related to the OGSC (True state), otherwise 
not (False state).  
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version of Fig. 3 (base BN model) is presented in Table 5. 

6. Analysis and results 

In this section, we will discuss different types of technical analyses, 
such as belief propagation and sensitivity analysis, to validate the un-
derlying model. 

6.1. Propagation analysis 

Belief propagation analysis, also known as predictive inference (PI) 
reasoning, occurs when different observations are set for different nodes 
to evaluate the impact on the target node. There are two types of 
propagation that can be conducted on the underlying BN model: forward 
and backward. Forward propagation allows observations about causes to 
be made to determine the effect, whereas backward propagation permits 
observations of effects to be inserted and propagated backward to arrive 
at conclusions about the causes (Fenton and Neil, 2013). During prop-
agation analysis, the probability distribution for an event is predicted 
based on the contributing factors Mi = 1 to n. Each factor used as an 
input is functioned into the BN model, creating the probability distri-
bution of N in the following way: 

P(N =Qk)
∑mr

1
P(N = Sk|M1 =ml,M2 =ml,…,Mr =ml)

× P(M1 =ml,M2 =ml,…,Mr =ml) lim
x→∞

(10)  

where, r is considered as root nodes, and ml would be the lth state of n 
where l = 1 to m. Qk is the kth state of the leaf node, where k = 1 to t. 
P(N= Qk|M1 = ml,M2 = ml,…,Mn = ml) is the conditional probability 
distribution when N = Qk. 

P(Mi|e) ∀ Mi ∈ Ml (11) 

In our study, we considered forward propagation analysis to predict 
disaster in the OGSC under a combination of influential factors modeled 
using historical data and expert opinion. Based on Fig. 4, an illustration 
of forward propagation is Oil price fluctuation → Socio-Economic Disrup-
tion → Economic Disruption → OGSC Disaster. The underlying concept of 
belief propagation is transmission of a message using a message-passing 
algorithm that passes a parent node A to a child node B. Sometimes, the 
direction can be reversed depending upon the type of message sent, e.g., 
a casual support message when child node C is drawn to parent node B. 
When the message is dispersed from A to B, the conditional probability 
can be obtained from A to B to its final probability distribution. 

To illustrate the application of the forward propagation algorithm, 
we have considered two distinct scenarios (a) pessimistic and (b) 
optimistic. 

Scenario 1: During the pessimistic scenario illustrated in Fig. 4, we 
have generated and simulated a new scenario by setting the seven 
different variables to “true”: (i) the existing O&G extraction technique is 
completely impracticable (100% True state), which means that extrac-
tion time and extraction cost are no longer feasible to conduct the 
extraction operation, (ii) socio-economic disruption might reach 100% 

(True state) due to oil price fluctuation and recession. This means that 
when a recession hits the USA badly, the international price for oil and 
O&G consumption demand fluctuate rapidly with serious consequences 
that lead to socio-economic disruptions, (iii) worker anxiety reaches its 
peak (100% true) due to dissatisfaction that stems from working con-
ditions and mental and physical stress, (iv) political dispute and unrest are 
highly likely (100% true) to trigger political tension that will ultimately 
impact the performance of the OGSC, (v) due to poor safety policies, 
occupational and hazard fatalities will occur more than the maximum 
(~200/yr.), (vi) earthquakes might frequently impact and disrupt reg-
ular operations of the OGSC, and (vii) trade agreement problems might 
become a major concern (100% true) due to a change in political 
powers, government regulations, and legislation policies. These seven 
factors belong to seven different groups and were chosen in such a way 
that these are most likely to happen in real-world situations. It is 
apparent from Fig. 4 that these observations together disseminate an 
adverse impact on the overall probability of OGSC resilience and sub-
sequently enhance the probability of an OGSC disaster from 59.04% to 
72.88%. 

Scenario 2: On the other hand, an optimistic scenario accounts for a 
false state in five out of seven of the aforementioned variables along with 
a low occupational hazard/fatality rate (=25), which means that few 
injuries or accidents occur in the OGSC, and few trade agreement problems 
(=low state), which signifies that there is a low likelihood that trade 
agreement problems will give rise to legal disputes and ramifications in 
the O&G sector. A false state actually presents the absence of a pessi-
mistic situation. Described succinctly, the optimistic scenario will 
demonstrate the exact opposite situation of the pessimistic scenario, 
ultimately enhancing the performance of the OGSC network. The com-
bined effect of these variables positively impacts the OGSC performance 
and brings down the likelihood of OGSC disaster significantly from 
59.04% to 34.80% (see Fig. 5). A comparative analysis between the new 
scenario and base case is summarized in Table 6 and illustrated in Figs. 4 
and 5. 

6.2. Sensitivity analysis 

Sensitivity analysis (SA) is a validation tool that assesses the influ-
ence of causal factors on the outcome of a target node under a given set 
of assumptions. More precisely, sensitivity analysis demonstrates how 
various sources of uncertainty in an analytical model would contribute 
to the overall uncertainty of the underlying model. One of the benefits of 
SA is visualization, which allows relevant variables to be depicted using 
elaborative graphs. SA gives a comprehensive understanding of possible 
future outcomes depending on the available data. In this study, the aim 
was to identify the relative importance of each node that directly in-
fluences the likelihood of an OGSC disaster. 

For a BN, sensitivity I(ρ) of the defined parameter ρ = P(Wi|σ)can be 
represented as follows: 

I(ρ)= 1
pq
∑

m,n

δP(M|N)(ρ)
δρ (12)  

where, p and q are the number of values for M and N respectively. In the 

Table 6 
Comparative illustration of predictive inference reasoning.  

Scenario O&G extraction 
technique 

Socio-economic 
disruption 

Worker 
anxiety 

Political dispute 
and unrest 

Occupational hazard 
and fatalities 

Earthquake Trade agreement 
problems 

Likelihood of OGSC 
Disaster 

Base Case 78.18% (True) 22.65% (True) 60% (True) 67.27% (True) 14 < 47<199 65% (True) 30% Low, 
60% Medium, 
10% High 

59.04% 

Scenario 
1 

100% True 100% 
True 

100% True 100% True 200 100% True 100% High 72.88% 

Scenario 
2 

100% False 100% False 100% False 100% False 25 100% False 100% Low 34.80%  
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Fig. 4. The developed BN model for measuring disruption of the OGSC network. (Scenario 1).  
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Fig. 5. The developed BN model for measuring disruption of the OGSC network. (Scenario 2).  
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above factors, S1 and S2 are two random nodes. The parameter for node 
B is ρ = P(Wi|σ), and sensitivity of S2 relative to S1 can be represented 
using the following equation: 

IT(S2)=
1

pq
∑p

j=1

∑q

i=1
I
(
ρij
)

(13)  

where, p and q are the number of values for S1 and S2. 
To depict the relative importance of different causal factors such as 

technical, economic, social, political, safety, environmental, and legal on 
OGSC disruption, OGSC disruption is set as the target node, and the 
impact of its causal factors are evaluated by conditional probability. The 
sensitivity analysis of OGSC disruption is demonstrated in Fig. 6 in the 
form of a “tornado graph”. The width of the bars of the tornado graph 
represents a measure of the impact of the corresponding factor on OGSC 
disruption. The bars are organized in descending order based on width, 
which allows practitioners to easily understand the relative importance 
of each factor. Fig. 6 demonstrates the influence of a set of contributing 
factors (i.e., technical, economic, social, political, safety, environmental, 
and legal) on OGSC disruption when these variables are “True”. Fig. 6 
shows that the technical factor changes from 0.426 (when OGSC is false) 
to 0.676 (when OGSC is true), while the impact of legal and political 
factors are limited to a narrow range compared to other factors. The 
formal presentation of this figure indicates that the technical factor has 
the highest impact, while legal and political factors have the lowest in-
fluence on disruption of the OGSC. 

To justify the results of the tornado graph, we compared empirical 
results to our real-world scenario. The inherent criteria for an OGSC 
disruption are not always equally likely. However, after categorizing the 
factors, we were able to determine the likelihood of events that cause 
OGSC disruption. Based on the output, it is apparent that technical and 
economic factors are the variables most likely to cause oil and gas supply 
chain disruption, which is plausible when compared to real-world 
situations. 

Considering the technical aspects of the oil and gas extraction pro-
cess, it is appropriate to mention that O&G management needs to be 
careful when operating and maintaining machines, piping, and drilling 
equipment during extraction, especially at the Gulf of Mexico Eagle 
Ford, Utica, Alaska, and other prominent areas. The O&G industry is 
capital-intensive and its success is heavily dependent on the efficient 
functioning of proprietary technology. Any downtime caused by 
equipment failure will have serious negative consequences on the costs 
and revenue streams of O&G companies due to the shear volumes 
involved. Furthermore, oil and gas industries need to deploy efficient 
workers to avoid technical risks such as extraction delay, lengthy 

process times, and most importantly consumer cost. Also, oil and gas 
transportation risks need to be handled by mitigating scheduling prob-
lems such as failure time to serving, hydraulic fracturing, and timely 
responsiveness. The probabilistic measures from our model justify the 
scheduling problem as well as other relevant technical problems of 
overall OGSC disruption. 

The second important factor for OGSC disruption, “economic factor”, 
reflects our real-world scenario. After a few shocking years of market 
abnormality, gas prices have continued to increase due to operational 
and financial risk management strategies in the U.S. market. Fluctuating 
international oil prices may have some drawbacks in the U.S. due to the 
impact on costs and prices of goods and services in different essential 
sectors. Many industries are hugely dependent on the O&G sector and 
any volatility diminishes efforts to run their operations in a profitable 
manner. Highly unstable oil prices make it difficult, not only to manage 
day to day operations efficiently, but to encourage capital investments in 
sectors that are dependent on the O&G sector. However, if controlled, 
economic consequences such as the recession during the 2008–2010 
fiscal years could potentially be avoided. Hence, the outcome from our 
model indicates that price and demand of oil and gas need to be stan-
dardized and controlled to prevent unwanted volatility in the market. 

The Tornado graph illustrated in Fig. 6 implies a reasonable under-
standing that legal and political factors are less likely to cause OGSC 
disruptions than technical and economic factors. This can be observed 
from the Tornado graph which indicates a value range of 0.542–0.592 
for political factors and 0.541 to 0.591 for legal factors, while technical 
and economic factors have ranges of 0.426–0.676 and 0.435 to 0.635 
respectively. Since government rules and regulations are sufficiently 
flexible to adjust the terms for oil producers, legal and political factors 
can be curtailed or at least minimized to prevent disruption in O&G 
supply chain operations. For example, negotiation and dispute resolu-
tion provide mechanisms to control the occurrence of energy crises and 
develop local and international supplier relations. On the other hand, 
less predictable risks such as technical failures, economic volatility, or 
rare environmental disasters, with low probability of occurrence but 
severe impact are more likely to result in major financial losses despite 
the O&G industry’s best efforts at formulating contingency or crisis 
management plans. The results support real world observations since 
governments will not allow legal and political factors to disrupt the 
OGSC for prolonged periods of time due to the significance of the O&G 
industry to economic activity and growth. 

6.3. Practical implications 

This study presents a comprehensive modeling framework to assess 

Fig. 6. Sensitivity analysis of the OGSC disruption (Tornado Graph).  
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and predict the OGSC disruption by highlighting the main contributory 
factors that can lead to these disruptions. The oil and gas industry is 
intricately tied to national economic and social prosperity and any 
disruption in the OGSC could lead to astronomical impacts in these 
spheres. The BN model provides a basis for identifying and prioritizing 
risk events to support the development of risk mitigation strategies. The 
results show that technical, economic, and environmental factors have 
the greatest likelihood of causing OGSC disruptions. Therefore, supply 
chain practitioners in the O&G sector can utilize this knowledge to 
prioritize the development of risk mitigation strategies, particularly at 
the sub-factor level, to address potential disruptions associated with 
mechanical failure, extraction, scheduling, socio-economic impacts, 
stock price volatility, natural disasters and accidental waste. The model 
also provides a starting point for evaluating the impact of disruptions in 
the OGSC on other supply chains and industry sectors. 

The proposed model and the overall outcome of this research provide 
a number of managerial insights that will be handy for industrial poli-
cymakers, oil and gas firms, other sectors that depend on the oil and gas 
industry, and researchers in academia. Firstly, the proposed disruption 
assessment model can be used to assess the probabilistic disaster for any 
specific oil and gas industry, which in turn will be valuable for disaster 
preparedness of both O&G firms and other sectors that depend on O&G. 
Additionally, this model can be applied to any specific tier of the OGSC 
to assess the vulnerability of that specific facility. The outcome of this 
model emphasizes the dominance of the technical factors over the other 
factors contributing to disruption. Therefore, more resources should be 
allocated to strengthening the technical infrastructure of the OGSC and 
devising and implementing preventive measures to minimize risk im-
pacts. For example, O&G extraction companies can establish continuous 
monitoring systems and administer periodic preventive maintenance for 
their machines and equipment to avoid any extraction, scheduling, and 
delivery delays due to technical failures. In addition, O&G extraction 
companies may undertake different measures such as, close monitoring 
of stocks, accurate demand forecasting, and price adjustments needed to 
ensure their economic soundness. Further, environmental policies can 
be reviewed and enforced with adopting more waste recycling measures. 
These measures will work directly towards environmental soundness. 
Similar to other factors, legal and political factors should still be of in-
terest with minimum emphasis among the seven factors responsible for 
OGSC disaster. In summary, this research opens up the avenue for 
advanced strategic planning that will help develop more resilient and 
robust infrastructure in the OGSC and dependent firms. 

7. Conclusion 

This research paper proposes a comprehensive Bayesian network 
(BN) model to predict the vulnerability and disruption of the OGSC 
network, especially for the United States. After conducting a preliminary 
theoretical study of the existing literature, seven factors and several sub- 
factors responsible for OGSC disruption were identified. We then 
quantified the relevant factors and subfactors and fed them into the BN 
network. Finally, simulation was conducted to predict the overall 
vulnerability of the OGSC network. The original elements of our 
research are summarized below:  

• The model is developed based on real-world cases of oil and gas 
supply chain disruption.  

• The prime factors that affect supply chain network disruptions are 
outlined and quantified.  

• A real case study of OGSC was adopted to predict the disruption 
using a developed BN framework.  

• A different set of analyses was adopted to draw further insights and 
validate the output of the proposed model. 

In this study, academic and industrial viewpoints were also critically 
considered. For academia, the proposed BN network could serve as a 

benchmark for future reference on disruptive sub-factors affecting the 
OGSC. 

The OGSC is the lifeblood of many organizations and virtually every 
economy. From an industrial viewpoint, policy makers, executives and 
senior management can utilize this study to explore O&G industries and 
solve in-depth problems in at least four ways. First, this model could be 
incorporated into a more systemic analysis to explore and predict 
possible ripple effects of disruptions in multiple industries and their 
supply chains. For example, a disruption in the OGSC could lead to 
supply and demand imbalances, driving up the price of oil. A resulting 
spike in fuel prices could impact costs in several industries such as 
aviation, heavy manufacturing, logistics and transportation, with a 
massive spillover of cost into downstream industries such as processing, 
assembly, and retail operations. Ultimately the cost of goods to the end 
customer will be impacted. By extending the model and including it in a 
systemic analysis, the impact of disruptive shocks on all related enter-
prises and the consumers could be better assessed. Second, a BN model 
could be very useful as a post-auditing tool to evaluate progress in 
mitigating internal OGSC risks to determine where control procedures, 
including training is necessary. Another potential use would be to 
conduct scenario analyses within the OGSC for the purpose of devel-
oping mitigation solutions and crisis management plans in advance to 
avert long-term problems. Fourth, in addition to direct and indirect 
operational consequences of OGSC disruptions, a BN model could be 
incorporated into network development and strategic development 
plans to assess opportunities that stem from weak links in the OGSC. 
Such plans might include alternative investments and redundancies to 
offer a more robust and resilient energy supply chain. 

Robust supply chain management activities can be executed by using 
both theoretical and analytical approaches. This study could also be 
further augmented in different ways. A time-dependent dynamic 
Bayesian Network model could be initialized to monitor the OGSC 
performance and the consistency of the model over time. Also, infor-
mation theory that considers the state of uncertainty and mutual in-
terdependencies between the different factors impacting the probability 
of OGSC disaster could be applied. Further, the Delphi technique could 
be adopted to better elicit the node probability table (NPT) for the BN 
variables. 
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