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A B S T R A C T   

This paper proposes a mixed-integer non-linear programming (MINLP) model for the integrated supplier selec-
tion and order allocation in a centralized supply chain considering the disruption risks and a risk-averse decision- 
maker. In order to capture a realistic scenario of considering the geographical characteristics of the suppliers, we 
assume that the suppliers belong to two regions: the buyer’s region (domestic suppliers) and outside of the 
buyer’s region (foreign suppliers). Considering this realistic feature, the supply chain might face two types of 
disruption risk: first, local disruption risks which might uniquely occur inside each supplier such as equipment 
breakdowns, and second, regional disruption risks that might occur in the region of the suppliers located in the 
same geographical region such as natural hazards. We formulate the problem considering a risk-neutral decision- 
maker as a benchmark, and then a risk-averse model is presented. In the latter case, we apply two types of risk 
assessment tools introduced in the finance literature to analyze the decision maker’s behavior: value-at-risk 
(VaR) and conditional value-at-risk (CVaR). We show that developed models are non-convex programming, 
and therefore, we apply the particle swarm optimization (PSO) algorithm as the solution approach. We also 
compare the developed PSO algorithm with the Genetic algorithm (GA) and the commercial GAMS solver to 
verify the efficiency of the solution method. The computational experiments indicate the impact of the decision 
maker’s attitude on the supplier selection and the order quantity.   

1. Introduction 

Companies are interested in optimizing the whole supply chain 
instead of only maximizing their own profit to achieve competitive ad-
vantages. The centralized supply chain has several advantages, such as 
efficiency improvement and mitigation of the bullwhip effect, and is 
valuable for managing complex problems, in particular, considering the 
uncertain environment (Giannoccaro, 2018). In this policy, all members 
of the supply chain cooperate closely to optimize the integrated supply 
chain. Thus, full coordination creates between the buyer and suppliers 
by a single decision-maker who has decision-making power for the total 
supply chain. In addition, selecting efficient suppliers help the firms 
significantly to supply the right amount and price of the products. 
Therefore, the supplier selection and ordering process are introduced as 
an essential part of the supply chain in the modern production space 
(Kuo et al., 2010). 

On the other hand, the increase in the complexity of the supply chain 

has led to the occurrence of different types of risks. Supply chain risks 
are multi-dimensional and can be categorized into two main groups: (a) 
operational risks, which are related to everyday processes in the supply 
chain operations such as uncertainty in the supply, demand, costs, and 
lead time and (b) disruption risks which are concerned to the low 
probability and high impact of the disruptions in the supply chain 
(Govindan et al., 2017; Ivanov, 2020; Ivanov et al., 2018; Tang, 2006; 
Xu et al., 2020). The latter risks are created by either unpredictable 
natural hazards or man-made accidents, such as earthquakes, floods, 
terroristic attacks, labor strikes, and economic crises. For example, a 
volcanic eruption in Iceland in April 2010 resulted in a shutdown of the 
factories that supplied the main components of their products from 
Europe. The BBC news announced that NISSAN wouldn’t manufacture 
three models of its products anymore, and BMW reduced its production 
in Germany due to the disruption (He et al., 2015). As another example, 
the March 2011 earthquake in the eastern part of Japan and the October 
2011 catastrophic flood in Thailand disrupted the supply chain of the 
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electronic industries. The occurrence of these events in a region where 
many production units are concentrated imposed significant losses on 
the Japanese companies (Fuller, 2012; Park et al., 2013; Sawik, 2014). 
Thus, the disruption risks have turned out to be a major challenge for the 
supply chains, and therefore, supply chain risk management is a 
fundamental decision for the managers nowadays. Literature studies 
have developed different mitigation and recovery strategies to reduce 
the impact of disruption risks. In this paper, we adopt the sourcing 
strategy by diversifying the orders from the suppliers in different 
geographical regions to mitigate the supply risks. We note that selecting 
suppliers from different geographical regions have been considered as a 
practical strategy among many automotive manufacturing companies 
after the Japanese Tsunami and earthquakes in 2011 (Hosseini et al., 
2019). 

According to utility theory, and Its applications in the field of 
financial risk management, the risk attitude of the decision-maker de-
termines the risk. The subjective realization of the important risk can be 
divided into three categories: risk-neutral, risk-averse, and risk-seeking. 
Managers’ decision-making processes have entirely dependent on their 
attitudes of risk (Heckmann et al., 2015). In general, risk (or supply 
chain risk) is considered as a subjective concept rather than an objective 
concept, and it relies on the individual’s evaluation of potential out-
comes (Ellis et al., 2010). Thus, risk attitudes and individual or orga-
nization priorities have a critical and major impression on the 
measurement of future supply chain performance and also co-determine 
supply chain decisions (Heckmann et al., 2015). Surveying the ques-
tionnaires from the executive managers of international companies 
indicate that the decision-makers are always cautious regarding the risk 
in the real world (Xinsheng et al., 2015). Therefore, they prefer the risk- 
avarness attitude toward the risk as they cannot provide financial re-
sources to confront potential losses (Chahar & Taaffe, 2009). In addi-
tion, due to the profound impact of managers’ behavioral attributes on 
the decision-making process, risk-averseness has received much more 
attention from many researchers in recent years. In this study, we use the 
VaR and CVaR concepts introduced by Rockafellar et al. (2000) that 
have been used widely in the finance literature to assess the risk. The 
same unit measure with the underlying random variable is considered as 
one of the most important advantages of these variables over the other 
risk measures. In addition, VaR and CVaR have a moderately simple 
function that decision-makers can apply in real-world decision making 
and scenario-based problems (Gönsch, 2017). 

In this paper, we mainly focus on the supplier disruptions in the 
supply chains. We investigate a two-echelon supply chain, including the 
multiple suppliers delivering multiple products to a single buyer. In such 
situations, it is important that the buyer develop efficient plans for 
ordering policy during disruptions. In this paper, we investigate the 
optimal suppliers’ and buyer’s reactions to the supply disruption. More 
specifically, we study the optimal decisions regarding the supplier se-
lections and ordering policy of the buyer from the suppliers facing two 
types of disruptions. Similar to Esmaeili-Najafabadi et al., (2019), the 
portfolio approach by optimizing the values of VaR and CVaR is 
enhanced to integrate the decision maker’s attitude and the supplier 
selection problem. In the CVaR measure, we evaluate the cost of the 
worst-case scenario, and based on the evaluated cost distribution, we 
select the appropriate supplier and decide the optimal ordering policy. 
We assume a realistic scenario that the suppliers are located in two 
different geographical regions: in the buyer’s region (domestic sup-
pliers) and outside the buyer’s region (foreign suppliers). Thus, the 
suppliers are involved in two types of random disruptions: local and 
regional disruption risks. The former might occurs inside any domestic 
or foreign supplier (such as production line breakdown), and the latter is 
the result of disruption to all suppliers in the same geographical region 
(such as natural hazards). The decision-maker selects the optimal sup-
pliers from each region and decides the ordering policy from the selected 
suppliers. The objective is to minimize the total costs of the suppliers and 
buyer in the supply chain. We develop a particle swarm optimization 

(PSO) algorithm as the proposed model is a mixed-integer nonlinear and 
non-convex programming model, and it is not possible to solve effi-
ciently by the commercial solvers and exact solution methods. We 
compare the developed solution algorithm with the Genetic algorithm 
(GA) and GAMS commercial solver to evaluate the efficiency of the PSO 
algorithm. 

The rest of the paper is organized as follows. The next section pro-
vides a review of the relevant literature. In section 3, we present the 
model assumptions as well as the risk-neutral and risk-averse models. 
The proposed Genetic and particle swarm optimization algorithms are 
explained in section 4. In Section 5, numerical experiments are carried 
out to evaluate the models and the solution approach. The performance 
of the developed algorithms is presented in Section 6. Finally, we offer 
our conclusions and future research directions in Section 7. 

2. Literature review and contributions 

The literature related to this study is included in four main areas: 
supplier selection methods, coordination mechanism, risks of the supply 
chain, and how to manage and control the potential supply risks. 
Therefore, we review these issues, specifically those papers which are 
essential in building up our model. 

Recently, the supplier selection and order allocation problem has 
attracted significant attention among academic and industrial re-
searchers. Thus, a comprehensive effort has been to develop decision 
techniques and methods for this field. Weber et al. (1991) classified and 
reviewed about 74 articles in this area between 1966 and 1990 and 
focused on the analytical methods in supplier selection. Aissaoui et al. 
(2007) proposed that the supplier selection problem can be categorized 
into single-sourcing and multiple-sourcing models. In single-sourcing 
models, one supplier can meet all the demands, and there is only one 
decision: which supplier is the best? (Chen & Xiao, 2015; Golmo-
hammadi & Mellat-Parast, 2012; Tavana et al., 2016). In multiple- 
sourcing models, there is a capacity constraint, and one supplier alone 
is not able to satisfy all the demands. The main decisions are to select the 
best suppliers and allocate the quantity of orders from each supplier 
(Alfares & Turnadi, 2018; Kamalahmadi & Parast, 2017; Sawik, 2014). 
In the supplier selection literature, a variety of methodologies and ap-
proaches are used for categorizing methods to solve the supplier selec-
tion problem. In one of the important classifieds, models broadly are 
categorized, two groups (Firouz et al., 2017; Ware et al., 2014): 1) 
Quantitative models: These models are related to select the best port-
folio of suppliers and optimally allocate the buyer’s total demand among 
selected suppliers to meet different purchasing criteria. These category 
included linear programming (Anthony & Buffa, 1977; Pan, 1989), 
mixed-integer linear programming (Basnet & Leung, 2005; Chaudhry 
et al., 1993; Demirtas & Üstün, 2008; Hosseini et al., 2019), mixed- 
integer non-linear programming (Esmaeili-Najafabadi et al., 2019; Hu 
et al., 2018; Kamali et al., 2011; Keskin et al., 2010; Mendoza & Ventura, 
2010; Rezaei & Davoodi, 2011; Ware et al., 2014), goal programming 
(Buffa & Jackson, 1983), stochastic programming (Hammami et al., 
2014; Kara, 2011; Sawik, 2015, 2017, 2019), dynamic programming 
(Masella & Rangone, 2000; Mendoza et al., 2008), and multi-objective 
programming (Demirtas & Üstün, 2008; Kamali et al., 2011; Li et al., 
2016; Sodenkamp et al., 2016). and 2) Qualitative models: These models 
involve the analytical hierarchical process (AHP) (Mendoza et al., 
2008), Fuzzy-AHP (Önüt et al., 2009), weighted point method (Hu et al., 
2018), analytical network process (ANP), and vendor profile analysis 
(Thompson, 1990), matrix approach (Gregory, 1986), vendor perfor-
mance matrix approach (Soukup, 1987), TOPSIS and Fuzzy-TOPSIS 
(Gupta & Barua, 2017; Önüt et al., 2009), Analytical Network Process 
(ANP) (Bayazit, 2006; Demirtas & Ustun, 2009; Gencer & Gürpinar, 
2007; Hsu & Hu, 2009; Mendoza & Ventura, 2012). As mentioned, 
MINLP models are a common approach in the literature SS&OA prob-
lem. We applied the mathematical programming model. Since the se-
lection problems are recognized as an assignment problem, those have 
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the nature of integer. Also, the allocated quantity of order has a 
continuous nature. In addition, we used the economic order quantity 
(EOQ) to estimate the order quantities of each supplier. Therefore, in the 
final, our model became an MINLP model. 

Moreover, in the supplier selection literature, the coordination be-
tween supply chain members has been neglected. Buyer and Supplier 
coordination is defined as an operational plan to coordinate the opera-
tions of buyer and suppliers that results in improving the system profit. 
Li and Wang (2007) reviewed the coordination mechanisms in the 
supply chain based on decision structures (centralized and decentralized 
supply chain) and the nature of demand. They concluded that most 
existing models in this area of literature have considered only single- 
supplier and single-buyer or single-supplier and multiple-buyer cases. 
Most of the works on the supplier selection focus on one product and one 
machine and thereby fail to capture the essence of the real supply chain. 
In this study, we apply the multi-sourcing strategy and consider the 
capacity constraint of each supplier in the centralized supply chain 
producing multiple products. 

Supplier selection and order allocation problem is considered as a 
multi-criteria decision problem in the literature that involves both 
tangible and intangible criteria (Ho et al., 2010). Literature studies have 
proposed several supplier selection criteria, such as the greening criteria 
(Banaeian et al., 2018; Gao et al., 2020; Haeri & Rezaei, 2019; Liu et al., 
2019; Phuong Nha Le et al., 2011), resiliency criteria (Davoudabadi 
et al., 2020; Hassan et al., 2019; Hosseini et al., 2019; Hosseini & Barker, 
2016; Sawik, 2013), sustainability criteria (Bai & Sarkis, 2010; Jain & 
Singh, 2020; Stević et al., 2020; Tirkolaee et al., 2020; Vahidi et al., 
2018), and the supply chain risks criteria (Cheraghalipour & Farsad, 
2018; Esmaeili-Najafabadi et al., 2019; Pariazar & Sir, 2018; Pra-
sannaVenkatesan & Goh, 2016; Sawik, 2014). 

The question of how we can manage and control the potential supply 
risks has become a vital decision for the companies due to the increased 
complexity and interactions within the new supply chains as well as the 
considerable financial losses caused by the disruptions. In addition, the 
research on supplier selection under disruption risks is limited due to the 
complexity of the resulted optimization problem (Sawik, 2014). Based 
on the number of supply chain members involved in a disruption, 
disruption risks can be classified into local, semi-global (regional), and 
global disruption. Local disruption risks might uniquely occur inside 
each facility and include only a particular supplier, such as equipment 
breakdowns. Semi-global (regional) disruption risks might happen in 
the region of the facilities located in the same geographical region. 
Therefore, all the same, region suppliers would be unavailable simul-
taneously due to the disruption in their region, such as natural hazards. 
Global disruption risks might result in all facilities disruption simul-
taneously. Thus, all suppliers in the supply chain become unavailable 
simultaneously, such as pandemic disease COVID-19. Papers in this area 
have been reviewed by Hamdi et al. (2018). Tomlin (2006) investigated 
a single-product supply chain with one buyer and two suppliers; one is 
unreliable, and the other is reliable but more expensive. Both suppliers 
have limited capacities; however, a reliable supplier has a flexible ca-
pacity. This paper introduced the inventory reduction, multi-sourcing, 
and acceptance policies to cope with the disruption risks. Yu et al. 
(2009) studied a two-stage supply chain with two types of non- 
stationary and price-sensitive demand. They evaluated the effects of 
supply disruption risks on the single-sourcing and multi-sourcing de-
cisions. They proposed that both sourcing methods can be useful in the 
occurrence of supply chain disruptions. Schmitt and Singh (2012) 
focused on the strategies to mitigate the impact of disruption risks. They 
suggested that considering the quantitative measures of risks enables the 
managers to make more conscious decisions regarding hazardous con-
ditions. Sawik (2014) proposed a stochastic MINLP model for the sup-
plier selection and customer order scheduling problem under disruption 
risks. Kamalahmadi and Parast (2017) considered three policies of pre- 
positioning inventory, backup, and protected suppliers to manage the 
supply and environmental risks. The authors presented a two-stage 

mixed-integer programming model to determine the best sourcing 
strategies by minimizing the total expected cost as the objective func-
tion. Hosseini et al. (2019) developed a bi-objective MINLP model for 
the supplier selection and order allocation problem under disruption 
risks. They assessed the several reactive and proactive resilience stra-
tegies (such as surplus inventory, supplier segregation, supplier reli-
ability, backup supplier contracts, and supplier restoration capability) to 
manage the disruption risks. Esmaeili-Najafabadi et al. (2019) consid-
ered a centralized two-echelon supply chain with one buyer and mul-
tiple suppliers. They applied the pre-positioning inventory and 
protected supplier policies to mitigate the impact of disruption risks. 
However, in their model, the suppliers deliver the products to the buyer 
simultaneously, and the decision-maker is risk-neutral. Kaur and Singh 
(2021, p.) proposed an integrated supplier segmentation and order 
allocation under disruption risks and disruptive technologies by a multi- 
stage hybrid model. They used Data Envelopment Analysis (DEA) to 
evaluate suppliers based on a set of criteria suitable in the industry 4.0 
environment and then prioritized suppliers by AHP-TOPSIS. (Alejo- 
Reyes et al., 2021) presented an MINLP model for the supplier selection 
and order allocation problem. Due to the complexity of their model, they 
proposed a new heuristic method. PSO and DE algorithms have been 
used to evaluate the efficiency of their proposed heuristic. 

On the other hand, a McKinsey research report by Koller et al. (2012) 
surveyed about 1500 executives from 90 countries. The report showed 
that the decision-makers demonstrate extreme levels of risk aversion in 
their business processes regardless of the investment size. Therefore, 
many researchers have recently formulated the supply chains with risk- 
averse decision-maker (Chahar & Taaffe, 2009; He et al., 2017; Merzi-
fonluoglu, 2015). Gönsch (2017) reviewed different techniques in the 
finance literature to quantitatively measure the risk, such as: 1) Value- 
at-risk (VaR) and Conditional value-at-risk (CVaR) (e.g., Chahar & 
Taaffe, 2009; Madadi et al., 2014; Sawik, 2019). Chahar and Taaffe 
(2009) considered a company with consecutive quarterly sales and 
product delivery to different markets with uncertain demand. They 
applied a profit maximization method based on the newsvendor model 
and used the concept of CVaR for risk assessment. Madadi et al. (2014) 
proposed a supply chain design problem for the pharmaceutical industry 
to manage unreliable capacity. They investigated both risk-neutrality 
and risk-averseness (CVaR measure) policies. 2) Exponential utility 
function (e.g., Gönsch, 2017; Sayın et al., 2014; Shu et al., 2015). Sayın 
et al. (2014) investigated a single-product and single-period inventory 
problem considering a risk-averse decision-maker. They applied the 
utility function concept to formulate the risk consequences of the 
random supply and demand. Shu et al. (2015) investigated an in-
ventory/purchasing strategy in the presence of supply and demand 
uncertainties. They used an incremental and concave utility function to 
model the risk-averseness attitude of the retailer. 3) Mean-variance 
Analysis (Li et al., 2018; Ray & Jenamani, 2016; Xue et al., 2016). 
(Xue et al., 2016) proposed various strategies for a risk-sensitive 
manufacturer with unreliable suppliers and used the Markowitz mean-
–variance concept for the risk assessment. (Q. Li et al., 2018) proposed a 
two-stage supply chain in which the risk-neutral manufacturer supplies 
the required products from the point market and sells the final product 
to the risk-averse retailer. 4) Hybrid techniques (Mahmutoğulları et al., 
2018; Ravindran et al., 2010). (Ravindran et al., 2010) proposed a multi- 
objective method for the risky supplier selection problem. They com-
bined different measures of risk and proposed a price-flexible contract 
for the manufacturer and retailer. They also applied the mean–variance 
concept for controlling the retailer’s risk-averseness. Based on the 
studies in the literature, Table 1 shows the different model specifications 
used in the literature. 

Based on the literature analysis, we identify the following research 
gaps. First, the literature studies show that most of the papers have 
studied the supplier selection and order allocation problem considering 
the risk-neutral decision-maker. However, as previously mentioned, the 
lack of research on the impact of the decision maker’s behavior on the 
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Table 1 
Summary of the models considering supplier selection and order allocation under disruption risks.  

Paper Multi- 
Product 
Problem 

Buyer and 
Supplier 
Coordination 

Product Delivery Strategy Disruption 
Risk 

Type of disruption risk Sourcing Strategy Risk Analysis Technique Objective Function Solution Method 

Lumpy 
Delivery 

Phased 
Delivery 

Other 
delivery 
policies 

Local Regional Global SS MSO MSGS VaR CVaR Mean- 
Variance 

Utility 
Function 

Cost Profit Multi- 
Objective 

(Banerjee, 1986)          **       **   Closed-form solution 
(Tomlin, 2006)    *  * *   * *    **  ** *  Closed-form solution 
(Yu et al., 2009)      * *     *      *  Closed-form solution 
(Glock, 2011)  *   *      *      *   Heuristic Algorithm 
(Giri, 2011)      * *   *      * *   Closed-form solution 
(Kamali et al., 

2011)  
*  *       *        * Meta-Heuristic Algorithm 

(Sawik, 2013) *     * *  *  *  * *   *   Commerical CPLEX solver 
(Aliabadi et al., 

2013) 
* *  *       *      *   Genetic Algorithm 

(Sawik, 2014) *     * * *    * * *   *   Commerical CPLEX solver 
(Mohammaditabar 

et al., 2016)  
* *        *      *   Game Theory 

(Hosseini & 
Barker, 2016) 

*     * *    * *     *   Bayesian Network 

(Kamalahmadi & 
Parast, 2017)      

*  * *   *     *   Commerical CPLEX solver 

(Vahidi et al., 
2018) 

*     * *    *      *   Hybrid SWOT-QFD 

(Alfares & 
Turnadi, 2018) 

*  *        *      *   Genetic Algorithm 

(Hosseini et al., 
2019)      

* *      *      * ε-Constraint Method/ 
Fuzzy c-Mean Clustering 
Algorithm 

(Moheb-Alizadeh 
& Handfield, 
2019)  

*         *        * ε-Constraint Method 
/Benders Decomposition 
Algorithm 

(Esmaeili- 
Najafabadi 
et al., 2019) 

* * *   * *    *      *   Commerical CPLEX solver 

(Tirkolaee et al., 
2020) 

*          *        * Fuzzy DEMATEL/fuzzy 
ANP/ fuzzy TOPSIS 

(Jia et al., 2020)           *        * Goal Programming 
(Kaur & Singh, 

2021) 
*     *     *      *   FAHP-TOPSIS/ DEA 

(Alejo-Reyes et al., 
2021) 

*          *      *   heuristic method 

This study * *  *  * * *    * * *   *   Genetic Algorithm/ 
Particle swarm 
optimization 

SS: Single-Sourcing, MSO: Multiple Sourcing, MSGS: Multiple Sourcing considering the geographical specifications of the suppliers, etc. Solution Method, Hybrid SWOT-QFD: Strengths, Weaknesses, Opportunities and 
Threats analysis (so-called SWOT analysis) and Quality Function Deployment (QFD), Fuzzy DEMATEL: Fuzzy Decision-Making Trial and Evaluation Laboratory, Fuzzy ANP: Fuzzy Analytic Network Process, Fuzzy TOPSIS: 
Fuzzy Technique for Order of Preference by Similarity to the Ideal Solution. 
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optimal decisions in this area is still under investigation. This paper fills 
this research gap by analyzing a portfolio selection problem considering 
the CVaR measure to formulate the total supply chain objective function. 
In this study, we develop an economic order quantity (EOQ) in a two- 
echelon centralized supply chain under disruption risks. First, we 
define the risk-neutral model as a benchmark in which the central 
decision-maker is indifferent towards the risk. Then, the VaR and CVaR 
concepts are applied to formulate the risk-averness of the decision- 
maker. Second, the strategy of locating suppliers in different geograph-
ical regions is recognized as a practical strategy in the real world to 
mitigate the impact of disruption risks. In this paper, we assume that the 
suppliers are located in two geographical regions. Considering this 
feature, we propose two types of disruption risks in the suppliers: local 
disruption, which might uniquely occur inside each supplier such as 
equipment breakdowns and regional disruption which might occur in the 
region of the suppliers located in the same geographical region such as 
natural hazards. Third, although the supplier selection and order allo-
cation problem has been studied from different perspectives in the 
literature, few studies have considered the structure of commodity de-
livery (e.g., see (Beck et al., 2017; Gheidar Kheljani et al., 2009; Glock, 
2011; Kim & Goyal, 2009). In the literature, there are different 

approaches for the structure of commodity delivery such as: Lumpy 
delivery: all suppliers ship their lots at the same time to the buyer, 
Phased delivery: the buyer is supplied from only one supplier whenever 
its inventory level reaches zero, Other delivery policies: such as over-
lapping delivery cycle, unlimited delivery. In this paper, we assume that 
the buyer does not receive the (i + 1)th supplier’s order quantity until all 
the supplier’s order quantities are consumed, such as the phased de-
livery concept presented by (Kamali et al., 2011). In this delivery policy, 
the majority of the inventory is held on the suppliers, and this policy can 
be useful when the buyer’s inventory cost is more expensive than the 
suppliers’ inventory cost. 

3. Problem description 

In this section, we will first list the notations followed by an outline 
of the assumptions, and then provide the problem statement for risk- 
neutral and risk-averse decision-maker models. 

3.1. Notations 

Indices: 

Supplier 2

Supplier m

Buyer

Supplier 1

Information flow:

Material flow:

Central decision maker

Fig. 1. A single-product centralized supply chain with one buyer and multi suppliers (Gheidar Kheljani, Ghodsypour, & O’Brien, 2009).  

T

Inventory levels

Supplier 1

Supplier 3

Supplier 2

Buyer 

Time 

Time 

Time 

3P

-D
-D

1P

2P Time 

Fig. 2. Inventory levels for a single buyer, multi suppliers and one product (Kamali et al., 2011).  
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i: Index for suppliers {1, 2,⋯, n}, (Is: set of non-disrupted suppliers 
under scenario s) 

s: Index for disruption scenarios {1,2,⋯,2n}

j: Index for product types {1,2,⋯,m}

r : Index for geographical regions {1,2}
Parameters: 
Aij: Fixed ordering cost of the jth product type for the ith supplier 
Sij: Setup cost of the jth product type for the ith supplier 
Cij: Production cost of the jth product type for the ith supplier 
Capi: Capacity of the ith supplier 
hv

i : Holding cost per unit of the product for the ith supplier 
hb

i : Buyer’s holding cost per unit of the purchased product from the ith 

supplier 
Dj: Market demand for the jth product type 
Pj: The selling price of the jth product type in the market 
ωij: Wholesale price of the jth product for the ith supplier 
αi: Probability of the local disruption in the ith supplier 
α*

r : Probability of the regional disruption in the region r 
βs: Probability of the sth disruption scenario considering both local 

and regional disruption risks 
Bj: Shortage cost per unit of the jth product type 
Decision variables: 
τs: Tail cost for disruption scenario sth 

Qj: Order quantity of the jth product type Qj =
∑

i∈IYij 

Q
Ấ

i: Order quantity from the ith supplier Q
Ấ

i =
∑

j∈JYij 

Xi: 1 if the ith supplier is selected, otherwise 0 
Yij: Fraction of the demand for the jth product type that is ordered 

from the ith supplier 
Us

j : Unfulfilled demand of the jth product type in the disruption sce-
nario sth 

VaR: Value-at-Risk value 
CVaR: Conditional Value-at-Risk value 
In addition, XT represents the transpose of the matrix X, ⊗ indicates 

the Kronecker product (multiplication), * stands for the Hadamard 
product, and ⊘ represents the Hadamard division between the matrices. 

3.2. Assumptions 

This subsection describes the assumptions of an integrated supplier 
selection and order quantity allocation problem under supply chain 
disruption risks. We study a multi-product and two-echelon centralized 
supply chain with one buyer and multiple suppliers. The buyer can 
purchase multiple products from multiple suppliers. Fig. 1 shows the 

structure of the centralized supply chain. In the centralized supply 
chain, the central decision-maker who has all the information about the 
supply chain selects the suppliers and allocates the orders to meet the 
customers’ demand under disruption risks. We assume that suppliers 
have limited capacities, and the customers’ demand is deterministic. The 
policy of commodity delivery from the supplier to the buyer is the 
phased delivery policy concept that was presented by (Kim & Goyal, 
2009). 

Similar to (Kim & Goyal, 2009), we assume that in each period, the 
buyer will not receive the (i + 1)th supplier’s order as long as the ith 

supplier’s order is not consumed. In this policy, the economic produc-
tion quantity of the supplier is constant, and that is equal to the eco-
nomic order quantity of the buyer. Fig. 2 depicts this assumption for a 
supply chain with one buyer, three suppliers, and a single product. 

We also consider two types of suppliers in order to incorporate their 
geographical characteristics as follows: domestic suppliers, which are 
located in the buyer’s region, and foreign suppliers, which are located 
outside of the buyer’s region. We assume that the domestic suppliers and 
buyer are located in a region that is prone to disruptions (ex. due to 
geographical characteristics or less available technology), and as a 
result, the buyer seeks to consider the option to procure the products 
from the suppliers which are located outside of the buyer’s region 
(foreign supplier). On the other hand, foreign suppliers are more reliable 
but more expensive compared to domestic ones. In addition, we consider 
a comprehensive scenario for the supplier disruption risks considering 
their geographical specifications. The first type of disruption risk is the 
local disruption that might happen inside each supplier. Some of the 
examples are lack of materials, labor strikes, equipment breakdowns, 
etc. Another type is regional disruption, in which all the suppliers in the 
same region would be unavailable simultaneously due to the disruption 
in their region. Some examples are earthquakes, floods, hurricanes, etc. 
Although the probability of such incidents is lower than the local 
disruption, the negative impact is higher on the supply chain (Ray & 
Jenamani, 2016; Snyder et al., 2012). We assume that αi is the proba-
bility of the local disruption for the ith supplier, meaning that the sup-
plier i can not fulfill the buyer’s order due to the disruption with the 
probability of αi. As previously mentioned, we assume that domestic 
suppliers are more prone to local disruption because of economic 
instability, available technology, and geographical specifications. Thus, 
the probability of local disruption in domestic suppliers, i ∈ I1, are 
higher than that in the foreign suppliers, i ∈ I2. On the other hand, 
foreign suppliers are more expensive. 

We define α*
r as the probability of the regional disruption in which all 

suppliers located in the same region are not available simultaneously 
due to this type of disruption. For analytical tractability, we assume that 
regional and local disruption risks are independent. We define βs as the 
probability of disruption scenario s in which each scenario (s ∈ S) in-
cludes a subset of the supplies, i.e., Is ⊆ I, that are non-disrupted and can 
satisfy the buyer’s order. In addition, the number of disruption scenarios 
depends on the number of suppliers, and it is equal to 2n. We calculate 
the probability of each disruption scenario s as follows. Please note that 
I1 and I2 are the set of domestic and foreign suppliers, respectively. 

where ηs is the probability of local disruption for the suppliers under 
disruption scenario s as follows: 

ηs =
∏

i∈Is

(1 − αi).
∏

i∕∈Is

αi (2) 

The first term in Eq. (1) investigates the disruption probability when 
the buyer (he) cannot supply his orders, which is composed of four parts: 
(i) domestic and foreign suppliers disrupted due to regional disruptions 

βs =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

α*
1α*

2 + α*
1(1 − α*

2)
∏

i∈I2 αi + (1 − α*
1)α*

2

∏

i∈I1 αi + (1 − α*
1)(1 − α*

2)
∏

i∈I
αiif Is = ∅

(
1 − α*

1

)
α*

2

∏

i∈Is
(1 − αi)

∏

i∈I1\Is
αi +

(
1 − α*

1

)(
1 − α*

2

)
ηsif Is⊆I1

α*
1(1 − α*

2)
∏

i∈Is
(1 − αi)

∏

i∈I2\Is
αi +

(
1 − α*

1

)(
1 − α*

2

)
ηsif Is⊆I2

(
1 − α*

1

)(
1 − α*

2

)
ηsif Is ∩ I1 ∕= ∅, Is ∩ I2 ∕= ∅

(1)   
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separately, (ii) domestic suppliers disrupted due to regional disruption 
and foreign suppliers disrupted due to local disruptions, (iii) foreign 
suppliers disrupted due to regional disruption and domestic suppliers 
disrupted due to local disruptions, (iv) all of the domestic and foreign 
suppliers disrupted due to local disruptions in all of them. The second 
term is the disruption probability when the domestic suppliers deliver 
parts without disruptions. The third term is the disruption probability 
when the foreign suppliers deliver parts without disruptions. The last 
term shows when no disruption occurs. 

3.3. Risk-neutral model 

As stated before, in the financial risk management literature and 
supply chain risk literature, risk-neutral and risk-averse concepts are 
considered as two of the most important attitude of decision-makers 
with respect to risk. In this subsection, we consider the centralized 
supply chain in which the decision-maker is indifferent toward the risk 
(i.e., risk-neutral). We optimize the total supply chain cost, including the 
total costs of buyer and suppliers. We consider the average inventory of 
the buyer, defined as I, to calculate its total cost. As it is shown in Fig. 2, 
the inventory of the buyer based on the order from the ith supplier 

continuously changes between zero and Q
Ấ

i . In addition, the length of 
each period is equal to Qj

D , and therefore, the buyer’s average inventory 
for the products ordered from the ith supplier is calculated as follows: 

Ij =
1/2 × Q′

i × Q′

i/D
Qj/D

=
Qprime2

i

2Qj
(3) 

In addition, we have Q
Ấ

i = Yij*Qj. The above equation can be re- 
written as follows: 

Ij =
Q
Ấ

i

2

2Qj
=

Qj
2y2

ij

2Qj
=

QjY2
ij

2
(4) 

The buyer’s annual cost can be formulated as follows: 

πb =
∑

j∈J

∑

i∈I

Dj

Qj
AijXi +

∑

j∈J

∑

s∈S

∑

i∈Is

βsDjYijωij +
∑

j∈J

∑

s∈S

∑

i∈Is

βsQjY2
ijhb

i

2

+
∑

j∈J

∑

s∈S
βsDjBjUs

j −
∑

j∈J

∑

s∈S

∑

i∈Is

βsDjPjYij

(5) 

Eq. (5) represents five parts, including the fixed ordering cost, pur-
chasing cost of products from the suppliers, holding cost, shortage cost, 

and finally, revenue from selling the products, respectively. 
The total cost of the ith supplier, i ∈ Is, will be as follows: 

πv
i =

∑

j∈J
(CapiCij +

Dj

Qj
Sij +

QjCapiYijhv
i

2Dj
− Capiωij)

DjYij

Capi
. (6) 

Similar to (Mohammaditabar et al., 2016), Eq. (6) includes the 
production cost, setup cost, cost of holding inventory, and the revenue of 
supplier ith, respectively. 

The total cost of the supply chain is the sum of the buyer’s annual 
cost and the expected annual cost of suppliers considering the proba-
bilities of disruption scenarios as follows: 

πsc = πb +
∑

s∈S

∑

i∈Is

βsπv
i =

∑

j∈J

∑

i∈I

Dj

Qj
AijXi +

∑

j∈J

∑

s∈S

∑

i∈Is

βsDjYijωij

+
∑

j∈J

∑

s∈S

∑

i∈Is

βsQjY2
ijhb

i

2
+
∑

j∈J

∑

s∈S
βsDjBjUs

j −
∑

j∈J

∑

s∈S

∑

i∈Is

βsDjPjYij

+
∑

s∈S

∑

i∈Is

∑

j∈J
βs

(

CapiCij +
Dj

Qj
Sij +

QjCapiYijhv
i

2Dj
− Capiωij

)
DjYij

Capi
.

(7) 

We rewrite the objective function of the supply chain as follows: 

πsc =
∑

j∈J

∑

i∈I

Dj

Qj
AijXi +

∑

j∈J

∑

s∈S

∑

i∈Is

βs
Qj

2
Y2

ij

(
hb

i + hv
i

)
+
∑

j∈J

∑

s∈S

∑

i∈Is

βs
D2

j SijYij

QjCapi

+
∑

j∈J

∑

s∈S

∑

i∈Is

βsDjCijYij +
∑

j∈J

∑

s∈S
βsDjBjUs

j −
∑

j∈J

∑

s∈S

∑

i∈Is

βsDjPjYij.

(8) 

The function πsc is convex with respect to Qj. This can be proved 
through the following Lemma: 

Lemma 1:. The function πsc is convex with respect to Qj. 

Proofs of lemmas and theorem are given in the Appendix. 

Lemma 2:. The following inequality holds: 

1
μQ(1)

j + (1 − μ)Q(2)
j

≤

(
μ

Q(1)
j

+
(1 − μ)

Q(2)
j

)

∀Q(1)
j ,Q(2)

j ∕= 0andμ ∈ [0, 1]. (9) 

Based on Lemma 1, the problem can be simplified by solving the 
problem with respect to Qj and substituting the optimal value of the 
variable Qj in the objective function. As a result, this variable can be 
eliminated, and the problem becomes more manageable to solve. To do 
so, we make differentiation of πsc with respect to Qj, and set the equation 
equal to the zero as follows: 

Conditional value-at-risk

Value-at-risk

Loss 

(1 − )

Maximum Loss

Fr
eq

ue
nc

y 

Fig. 3. The VaR and CVaR for portfolio management problem minimizing the worst case losses (Chahar & Taaffe, 2009).  
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∂πsc

∂Qj
= −

Dj
∑

i∈IAijXi

Q2
j

+

∑
s∈S
∑

i∈Is
βsY2

ij

(
hb

i + hv
i

)

2
−

∑
s∈S
∑

i∈Is
βs

D2
j SijYij

Capi

Q2
j

= 0,

(10) 

By solving the above equation, we have: 

Qj =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

2Dj(
∑

i∈I
AijXi +

∑

s∈S

∑

i∈Is

βs
DjSijYij

Capi
)

∑

s∈S

∑

i∈Is

βsY2
ij

(
hb

i + hv
i

)

√
√
√
√
√
√ . (11) 

We substitute the optimal value of Qj in πsc. Therefore, the model can 
be formulated as follows: 

Model 1- Risk-neutral: 

minπSC =
∑

j∈J

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

2Dj

(
∑

i∈I
AijXi +

∑

s∈S

∑

i∈Is

βsDjSijYij

Capi

)(
∑

s∈S

∑

i∈Is

βsY2
ij

(
hb

i + hv
i

)
)√

√
√
√

+
∑

j∈J

∑

s∈S

∑

i∈Is

βsDjCijYij +
∑

j∈J

∑

s∈S
βsBjDjUs

j −
∑

j∈J

∑

s∈S

∑

i∈Is

βsDjPjYij (12) 

s.t 
∑

i∈Is

Yij +Us
j = 1∀s ∈ S, j ∈ J (13)  

∑

j∈J
YijDj ≤ XiCapi∀i ∈ I (14)  

Xi ∈ {0, 1}, Yij,Us
j ≥ 0∀i ∈ I, j ∈ J, s ∈ S. (15) 

The objective function (12) minimizes the total expected annual 
supply chain cost, including the expected annual costs of the buyer and 
the expected annual cost of the suppliers. Constraints (13) ensures the 
demand for each product is satisfied by the non-disrupted suppliers or 
remains as an unsatisfied demand in each disruption scenario. 
Constraint (14) addresses the capacity constraint of each supplier in 
each disruption scenario. 

We note that the objective function of the risk-neutral model is a non- 
convex programming model that is stated in Theorem 1. 

Theorem 1. The objective function of the risk-neutral model is non- 
convex. 

Supplier disruptions are low probabilities risks, which have a high 
negative financial impact on the supply chains. Therefore, it is important 
that the central decision-maker optimizes the supply chain in an efficient 
way that the high losses due to the supplier disruptions are managed. In 
the next section, a risk-averse model is developed to investigate how the 
decision maker’s attitude towards the risk would impact the supplier 
selection and order allocation decisions. 

In the supply chain risk literature, there are a few studies that 
different risk attitudes are explicitly considered simultaneously (Heck-
mann et al., 2015). To overcome this gap, we proposed a risk-averse 
model in the next section. Therefore, the risk-neutral model is consid-
ered as a benchmark for the risk-averse model. 

3.4. Risk-averse model 

In this subsection, disruption risks are managed based on two widely 
measures of risk assessment in the finance literature as follows: Value-at- 
Risk (VaR) and Conditional Value-at-Risk (CVaR). The VaR represents 
the maximum loss for a certain confidence level of outcomes. 

It is the probability that the loss of a given portfolio exceeds a certain 
threshold that is referred to as VaR. VaR is a measure to assess the 
probable loss of the portfolio due to the market risk. The CVaR considers 
a portfolio of outcomes so that the losses can exceed the VaR quantity 
during the given period. Therefore, the CVaR at a confidence level of θ is 
defined as the expected profit of the supply portfolio within the (1 − θ) % 
of the worst cases. Fig. 3 represents the relation between VaR and CVaR. 
Please refer to (Chahar & Taaffe, 2009; Madadi et al., 2014; Merzi-
fonluoglu, 2015) for more information. CVaR measure is applied widely 
as an alternative measure for the VaR as the VaR complicates the 
scenario-based optimization model significantly (Merzifonluoglu, 
2015). In addition, CVaR minimization optimizes the VaR simulta-
neously as it is equal or greater than the VaR in the optimization model. 
Therefore, in the present study, we apply the CVaR measure to control 
the supplier disruption risks. 

In the supplier selection and order allocation problem under 
disruption risks, the decision-maker controls the high-loss risks resulting 
from the supply disruptions by selecting the confidence level of θ. The 
decision-maker accepts only those portfolios in which the loss proba-
bility is less than the value of the VaR. Therefore, a higher confidence 
level indicates the higher risk-averseness of the decision-maker. We 
define τs as the tail cost for the disruption scenario s, and it represents 
the cost quantity that exceeds the value of VaR in the sth disruption 
scenario. The supply portfolio is optimized by calculating the VaR and 
minimizing the CVaR as the objective function as follows: 

Model 2: Risk-averse 

minCVaRc = VaRc +
1

(1 − θ)

∑

s∈S
βsτs (16) 

s.t.: 
Eqs. (13)–(15), and 

τs ≥
∑

j∈J

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

2Dj

(
∑

i∈I
AijXi +

∑

i∈Is

DjSijYij

Capi

)(
∑

i∈Is

Y2
ij

(
hb

i + hv
i

)
)√

√
√
√

+
∑

j∈J

∑

i∈Is

DjCijYij +
∑

j∈J
BjDjUs

j  

−
∑

j∈J

∑

i∈Is

DjPjYij − VaRc∀s ∈ S (17) 

Constraints (17) show the risk constraint in which cost exceeds the 
value of VaR in each disruption scenario. 

Both models 1 and 2 are MINLP and non-convex programming 
models, and standard commercial solvers may be used to solve these 
models when dealing with small-size instances. Although this is valu-
able, the number of variables and constraints in our proposed model for 
optimizing the supplier selection portfolio is O(mnh). That is mean that 
it grows linearly in the number h of disruption scenarios and hence 
exponentially in the number n of suppliers if all h = 2n potential sce-
narios are considered. Pariazar (2013) showed that exact solution ap-
proaches such as the integer L-Shaped method are not able to solve and 
find the optimal solution of these types of problems for more than ten 
suppliers. Therefore, the meta-heuristic algorithms, such as Genetic and 
Particle Swarm Optimization algorithms, can be an alternative approach 
to reduce the computational time to solve the large-sized instances 
(Bianchi et al., 2009; Pariazar & Sir, 2018). Wang et al. (2001) proposed 
that the Genetic algorithm is an efficient method to select the best 
combination of the suppliers. Min et al. (2005) suggested that the ge-
netic algorithm is the best population-based algorithm due to the 

= (0,1)  = (0,1) ×  
Fig. 4. The chromosomes structure.  
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simultaneous generation of a set of best solutions. On the other hand, 
(Zhu et al., 2011) showed that the PSO algorithm has high computa-
tional efficiency for the nonlinearly constrained portfolio optimization 
problems. As a result, in the next section, we propose the PSO algorithm 
to solve the supplier selection and order allocation problem under 
supplier disruption considering a risk-averse decision-maker. We also 
apply the GA algorithm as an efficient population-based algorithm, and 
we show that the proposed PSO algorithm has a better performance 
compared to the GA algorithm. 

4. Solution approach 

In this section, we describe the two proposed meta-heuristic algo-
rithms. i.e., genetic and particle swarm optimization algorithms to find 
the supply portfolio in a centralized supply chain. The genetic algo-
rithms are widely applicable in different fields due to their custom-
izability and speed. These algorithms start with an initial population, 
and then, a final population results with better characteristics. On the 
other hand, Particle swarm optimization (PSO) is recognized as one of 
the best evolutionary methods that was developed as an optimization 
method in 1995 by Kennedy and Eberhart (1995). Compared to other 
heuristic methods and the conventional mathematical approaches, this 
algorithm offers advantages such as less sensitive to the nature of the 
objective function, the ability to escape from the local minimum with a 
suitable design, and fewer operator settings (Alejo-Reyes et al., 2021). 
Also, the main advantage of this algorithm is the fast convergence over 
other global optimization algorithms (Bianchi et al., 2009). The base of 
the PSO concept is a simulation of the social treatment of birds flock. In 
the following sub-sections, we present the developed GA and PSO al-
gorithms to solve the models. 

4.1. Genetic algorithm 

Firstly, (Holand, 1975) introduced the Genetic Algorithm as a bionic 
optimization algorithm by inspiring from Darwin’s evolution theory and 
Mondel’s heredity theory. Based on the evolutions of defined “chro-
mosomes” (a population of solutions) from generation to generation, 
this algorithm tries to optimize some complex problems. In the GA, the 
problem codes as binary codes. Then, under the principle of “Survival of 
the Fittest”, the searching processes of the optimal solution are con-
ducted by copy, crossover, and mutation operators. In the following, we 
introduce chromosome structure as well as selection, crossover, and 
mutation operators for the GA algorithm. 

4.1.1. Chromosomes structure 
We create a suitable representation chromosome satisfying all con-

straints, which is one of the most critical steps in designing a GA. The 
proposed structure consists of one vector and one matrix in which the 
vector shows the variable of X, and the matrix specifies the variable of Y. 
Fig. 4 shows the amount of X and Y in which randi(0,1)N is a vector of N 
dimension with random integer number generator within the range {
0, 1} and rand(0,1)N×M is a matrix of N × M size from the random 
number generator within the range [0,1]. 

4.1.2. Selection operator 
According to parents’ fitness value, the selection operator chooses 

the elite individuals from the initial population. The likelihood method 
with fitness in proportion is recognized as a classical selection operator 
(Aliabadi et al., 2013). Based on the trial and error experiments, the 

roulette wheel method is used for selection operator in our problem due 
to the better performance compared to the other methods. In this paper, 
we control the diversity of the GA method by selecting the pressure 
parameter to avoid the quick convergence of the algorithm (Back, 1994). 

4.1.3. Crossover operator 
The crossover operations role is to generate a new population from 

two-parent solutions. First, we select both parent solutions for the new 
population and then generate the offspring solutions by applying the 
crossover operator. In addition, we use Arithmetic and binary crossover 
operators for continuous and binary variables, respectively, as there are 
two different encoding methods. In the binary crossover operator, we 
choose a single-point or two-points, and in the uniform crossover 
operator, we choose based on the roulette wheel method. 

4.1.4. Mutation operator 
The mutation operator is mainly responsible for generating a new 

chromosome by changing a certain chromosome gene. In addition, both 
the global search ability and population diversity are improved as this 
operator is applied to avoid the local optimum. We use binary and 
continuous mutation methods for binary and continuous variables, 
respectively. 

Generally, the correct selection of parameters significantly affects 
the effectiveness and operation of the GA algorithm (Naderi et al., 
2009). Thus, we adjust the parameters using statistical methods based 
on the Taguchi method in Section 6.1. In addition, we compare GA 
performance with the results obtained by the commercial GAMS solver 
(DICOPT algorithm) in Section 6.2. 

4.2. Particle swarm optimization algorithm 

The PSO is introduced as one of the population-based evolutionary 
optimization techniques (Eberhart & Kennedy, 1995). The fundamental 
aspect of PSO is an iterative approach. In this method, candidate solu-
tions (particles) are improved by moving these particles around the 
search-space according to position and velocity parameters. This algo-
rithm initializes with a population of random solutions. Each solution 
(particle) shows a possible solution that can optimize the decision var-
iables. In the iteration, particles (solutions) evolve, and their velocity is 
updated. In the following, we describe the general PSO procedure. 

4.2.1. Initialization 
The first step in the algorithm of PSO is initializing the population, 

where the population shows all the solutions as particles. The input data 
(decision variables) are the random points that distribute over the 
objective function’s search space. Particles (decision variables) follow a 
uniform probability distribution. After initializing the particles, the 
objective function evaluates the decision vector and the local and global 
particles calculated by the algorithm. Both the velocity and position are 
updated iteratively. Therefore, particles change. 

4.2.2. Velocity of particles 
Based on the last velocity value and evaluating the impacts of the 

best particles’ local and global particles, particle velocity and particle 
position must be updated for a new solution vector. The following 
equations show the process of updating the position of each individual 
solution (particle) in each iteration. 

Table 2 
Parameters input.  

Parameters D1  D2  Pj  Bj  Sij  Cij  α1* α2* 

Values 15,000 20,000 90 700 100× U[1,10] U[1,15] 0.01  0.001  
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v→i← v→i + c1 r→1 ⊗

(

p→i − x→i

)

+ c2 r→2 ⊗

(

p→g − x→i

)

(18)  

x→i← x→i + v→i (19)  

where x→i and v→i are the position and velocity of the ith particle, r→1 and 
r→2 are two randomly generated numbers from U[0, 1], c1 and c2 are 
acceleration coefficients, p→i and p→g are the best particle in each itera-
tion, and the best particle found so far, respectively. Note that Eq. (19) is 
the new position of the particle (decision vector) on the current itera-
tion. Based on the new position of particles in the search space, we can 
explore new possible solutions. We found that the constriction co-
efficients (Clerc & Kennedy, 2002; Poli et al., 2007) are suitable for our 
models by the trial and error procedure. Thus the Eq. (18) changes to the 
following equation: 

v→i←χ( v→i + ϕ1 r→1 ⊗

(

p→i − x→i

)

+ ϕ2 r→2 ⊗

(

p→g − x→i

))

(20)  

x→i← x→i + v→i (21)  

where ϕ = ϕ1 +ϕ2 > 4 and χ = 2
ϕ− 2+

̅̅̅̅̅̅̅̅̅̅̅
ϕ2 − 4ϕ

√ and the optimal value of ϕ is 

equal to 4.1, and the values of ϕ1 and ϕ2 are identical (Poli et al., 2007). 
Therefore, we have: 

ϕ1 = 2.05,ϕ2 = 2.05,ϕ = ϕ1 +ϕ2 = 4.1, χ =
2

ϕ − 2 +
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
ϕ2 − 4ϕ

√ = 0.7298,

Thus, both terms of ( p→− x→) in Eq. (45) are multiplied by a random 
number within the range of [0,1.49618]. Section 6.2 shows the perfor-
mance of the PSO algorithm by comparing the obtained result of PSO 
with GA and commercial GAMS solver. 

5. Benefits of the proposed models 

This section aims to demonstrate the performance of the proposed 
risk-neutral and risk-averse models for the supplier selection and order 
allocation problem in a centralized supply chain under disruption risks. 
We assume that the number of suppliers is ten that are located in two 
different geographical regions, and they satisfy two different products. 
Therefore, the number of disruption scenarios is equal to 210 = 2014. In 
addition, we assume that the subset of foreign suppliers is {1,2,3, 4,5},
and the subset of domestic suppliers is {6, 7, 8, 9, 10}. Without loss of 
generality, we also assume that the two products have the same pa-
rameters. We use the following parameters in Table 2 for both models, 
and the other ones have been adopted (Esmaeili-Najafabadi et al., 2019). 
The algorithms are in MATLAB R2018a and performed on a laptop 
computer with an Intel Core-i5 2.3 GHz processor and 8 GB of RAM. In 
addition, we benchmark our results using the DICOPT algorithm in the 
commercial GAMS solver. 

Table 3 provides the comparison results of risk-averse and risk- 
neutral models with two levels of local disruption probability gener-
ated fromαi ∈ [0,0.06] and αi ∈ [0.06,0.15]i ∈ I. Considering two 
different levels of disruption risk allowed us to investigate the impact of 
disruption risk on the decision-maker decisions. We also consider five 
different confidence levels, i.e., θ, in the risk-averse model equal to 0.5, 
0.75, 0.9, 0.95, and 0.99, meaning that the objective function minimizes 
the highest 50%, 25%, 10%, 5%, 1% of all disruption scenario outcomes 
(i.e, expected supply chain costs). 

This permits us to study the impact of the risk-averse size of the 
decision-maker on the supplier selection and order allocation (i.e., the 
main decisions of our problem). Note that the decision-maker is more 
risk-averse as the value of θ increases, and therefore, the model focuses 
on the smaller percentage of the highest outcome. 

The optimal risk-neutral supply portfolio for the local disruption 
probability of αi ∈ [0, 0.06] is shown in Fig. 5a. A similar figure for the 
local disruption probability of αi ∈ [0.06,0.15] is shown in Fig. 5b. 

Table 3 
Optimal solutions of risk-neutral model versus the risk-averse model.  

αi ∈ [0,0.06], i ∈ I   

Risk-neutral model Risk-averse model 

Confidence level θ   0.5 0.75 0.9 0.95 0.99 
Total expected cost − 2343690 − 2343690 − 2343690 − 2343690 − 2069360 − 2045382 
CVaR – − 1982530 − 1259820 908292.79 3,322,539 7,059,889 
VaR – − 2705230 − 2705230 − 2705230 1,007,211 4,930,033 
Selected supplier (% of the total allocated orders) 1(31%) 

4(69%) 
1(31%) 
4(69%) 

1(31%) 
4(69%) 

1(31%) 
4(69%) 

1(15%) 
4(15%) 
6(14%) 
7(14%) 
8(14%) 
9(14%) 
10(14%) 

1(8%) 
2(4%) 
3(2%) 
4(11%) 
5(4%) 
6(14%) 
7(14%) 
8(14%) 
9(14%) 
10(15%) 

αi ∈ [0.06,0.15], i ∈ I   
Risk-neutral model Risk-averse model 

Confidence levelθ   0.5 0.75 0.9 0.95 0.99 
Total expected cost − 501005 − 501005 − 291340 − 57568 62,724 137,113 
CVaR – 1,695,668 4,171,445 6,009,119 7,721,653 12,020,238 
VaR – − 2705230 1,811,025 3,254,072 5,367,756 7,729,871 
Selected supplier (% of the total allocated orders) 1(14%) 

2(17%) 
4(69%) 

1(14%) 
2(17%) 
4(69%) 

1(16.7%) 
2(16.7%) 
3(16.7%) 
4(16.7%) 
5(16.6%) 
9(16.6%) 

1(11.2%) 
2(11.2%) 
3(11.2%) 
4(11.1%) 
5(11.1%) 
6(11%) 
7(11.1%) 
9(11%) 
10(11.1%) 

1(10.1%) 
2(10.1%) 
3(10.1%) 
4(10.1%) 
5(10.1%) 
6(9.9%) 
7(9.9%) 
8(9.9%) 
9(9.9%) 
10(9.9%) 

1(7.6%) 
2(7.6%) 
3(7.6%) 
4(7.6%) 
5(7.6%) 
6(11.8%) 
7(11.8%) 
8(11.7%) 
9(15%) 
10(11.7%)  
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Table 3 indicates that the optimal supply portfolio for αi ∈ [0,0.06] al-
locates the total demand of customers between the two foreign suppliers 
with the lowest disruption risks. The lower disruption probability and 
the higher capacity for a supplier would result in a higher percentage of 

the total demand allocated. When the production cost is significantly 
lower than the shortage cost, disruption risk becomes a key component 
in the supplier selection. Also, the disruption risk and capacity of sup-
pliers are two keys factors in the decision of demand allocation among 
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Fig. 5. Optimal supply portfolio for risk-neutral model.  

Fig. 6. Risk-averse supply portfolios.  
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the selected suppliers to minimize the expected cost of the centralized 
supply chain. Similarly, when the local disruption probability is high, i. 
e., αi ∈ [0.06,0.15], the total demand is allocated among three suppliers, 
with the largest orders placed when disruption probability is low. 
Therefore, the decision-maker in the risk-neutral model prefers to in-
crease the number of selected suppliers as the probability of local 
disruption increases. A comparison of two levels of local disruption 
probability for the risk-neutral model indicates that the allocated de-
mand to the supplier i = 1 is divided between two suppliers i = 1, 2. 
Note that the local disruption probability of suppliers i = 1, 2 is equal 
within the range αi ∈ [0.06,0.15]. Although domestic suppliers offer low 
prices, they are not selected in both of optimal risk-neutral supply 
portfolios. These are evidence that supports reliability importance 
compared to costs for a multi-sourcing strategy. The importance of 
interaction between the reliability of suppliers and regions on supplier 
selection (sourcing decisions) in a multi-sourcing strategy is highlighted 
in the analysis of this section. This result in line with what (Hosseini 
et al., 2019; Kamalahmadi & Parast, 2017) discussed about the positive 
impacts of regionalized supply chains on risk management. 

The optimal risk-averse supply portfolio for two levels of disruption 
probability, i.e., αi ∈ [0,0.06] and αi ∈ [0.06, 0.15], and the five confi-
dence levels, i.e., 0.5, 0.75, 0.9, 0.95, and 0.99, are illustrated in the 
Fig. 6a and b. Table 3 and Fig. 6a show that when the probability of local 
disruption is low, and θ is between 0.5 and 0.9, the obtained risk-neutral 
results are identical with the corresponding risk-averse results. This 
indicates that when the disruption probability is not high enough, the 
risk-averse decision-maker is not interested in selecting a large number 
of suppliers. On the other hand, when the probability of local disruption 
is low, and the confidence level is high, i.e., θ = 0.95and0.99, the 
decision-maker prefers to apply the supplier diversification strategy by 
selecting more suppliers to mitigate the impact of disruption risks (see 
Table 3 and Fig. 6a). As it is shown in Fig. 6a, all ten suppliers are 

selected when the decision-maker is very risk-averse and has the highest 
confidence level. Although, when the confidence level decreases to the 
next lower level, i.e., θ = 0.95, the number of selected suppliers de-
creases to 7. Therefore, these results demonstrate that the suggested 
strategy by (Chopra & Sodhi, 2014), i.e., locating suppliers in different 
geographical regions, is an efficient way to reduce the disruption risk for 
risk-averse decision-makers. In addition, we note that the largest orders 
are placed on the domestic suppliers that are unreliable but offer more 

Table 4 
Effective factors and levels in Taguchi method.  

Level Factor 

3 2 1 

500 300 100 Maximum Iteration 
50 30 10 Population Size 
0.9 0.8 0.7 Mutation Rate 
0.3 0.2 0.1 Crossover Rate 
15 10 5 Selection Pressure  

Fig. 7. Average S/N ratio levels for GA’s parameters.  

Fig. 8. Average S/N ratio levels for GA’s parameters.  

Table 5 
Comparison of GA, PSO and GAMS commercial solvers in small and medium- 
sized instances.  

Problem 
size|J| × |I| ×
|S|

GAMS Genetic Algorithm Particle swarm 
optimization algorithm 

Objective 
function value 
(cost) 

Gap Objective 
function value 
(cost) 

Gap 

2× 2× 4  − 1810930 − 1810930 0% − 1810930 0% 
3× 2× 4  − 2850170 − 2850170 0% − 2850170 0% 
2× 3× 8  − 2126760 − 2118494 0.3% − 2126760 0% 
2× 4× 16  − 2207523 − 2207256 0.01% − 2207523 0% 
2× 6× 64  − 2207523 − 2196952 0.4% − 2207520 0%  
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competitive prices. 
In addition, Table 3 indicates that for αi ∈ [0.06, 0.15], domestic 

suppliers are selected when the confidence level is low. For example, for 
θ = 0.75, five domestic suppliers and a foreign supplier are selected. 
Although, when the confidence level increases, the number of selected 
foreign suppliers also increases. Similar to αi ∈ [0,0.06], the probability 
of local disruption is the main factor for selecting the suppliers, but 
unlike αi ∈ [0, 0.06], the fraction of allocated demand to each selected 
supplier is identical. Therefore, in general, Fig. 6 demonstrates the effect 
of local disruption risk on the optimal risk-averse supply portfolios. Also, 
the results show that the reliability of suppliers is a key selection element 
in two levels of local disruption probability for the risk-averse model. 
Finally, a comparison between both models indicates the expected cost 
of the risk-neutral model is smaller than the risk-averse model. In the 
risk-averse model, reducing the disruption risk is important as much as 
reducing the cost, and the model finds the optimal solution to the trade- 
off between these two elements. 

6. Performance of the developed algorithms 

It is shown that metaheuristic algorithms can be successfully used to 
solve complex problems with a high number of possible solutions. In this 
section, we present several different parameters to evaluate the perfor-
mance of the GA method. Also, to evaluate the developed algorithms’ 
performance, a comparison between GA, PSO, and GAMS commercial 
solver (DICOPT algorithm) is made. 

6.1. Parameters input for the GA algorithm 

We investigate the performance of the different parameters of 
developed GA in this section as adjusting parameters of meta-heuristic 
algorithms affect their performance significantly. We use the Taguchi 
method (Taguchi, 1986) to design the experiments. When the number of 
factors increases significantly in the full factorial design, the number of 
level combinations also increases very fast, which is not effective in 
practice. Therefore, In the Taguchi method, the orthogonal array is used 
to organize the parameters affecting the process and the different levels 
such that study a large number of decision variables with a small number 
of experiments (Taguchi, 1986). This method examines pairs of combi-
nations instead of test all possible combinations like the factorial design. 
Therefore, the orthogonal arrays method saves time and resource with a 
minimum amount of experimentation. The Taguchi arrays can be drawn 
out manually in the small size. Based on the number of parameters 
(factors) and the number of levels (states), the orthogonal arrays are 
calculated for large size. The orthogonal arrays in different levels and 
parameters can be found online or in the Minitab software as a file 

(Design of Experiments via Taguchi Methods - Orthogonal Arrays., 
2020) 

Based on the literature and trial and error experiment, we consider 
five parameters in the three different levels (see Table 4). Thus, we apply 
the L27 (3^5) scheme as an appropriate orthogonal array according to 
the Taguchi method. 

In the Taguchi method, the signal-to-noise (S/N) ratio is used to 
determine the best level of each factor as follows: 

S/Nratio = − 10log10

(∑
(Objectivefunction)2

n

)

(23) 

Due to the stochastic nature of GA and also in order to obtain the 
optimal value of the objective function, each model is run ten times. 
Then, the best solution of all runs is selected as the value of the objective 
function. In addition, a common performance measure (i.e., relative 
percentage deviation (RPD)) is employed to evaluate the algorithm. This 
measure demonstrates that how much an algorithm differs from the 
best-obtained solution on average. RPD is calculated as follows: 

RPD =
Algsol − Minsol

Minsol
× 100, (24)  

where Algsol represents the best-obtained solution for ten runs, Minsolis 
the minimum obtained solution. After changing the objective values to 
RDPs, the mean RPD is computed in each trial. Based on instructions of 
the Taguchi parameter design, these mean RPDs are transformed into S/ 
N ratio using Eq. (48). The mean S/N ratio for GA’s parameters is pre-
sented in Fig. 8. 

Based on Fig. 7, the best level of the parameters can be determined as 
follows: 

Maximum Iteration = 500, Population Size = 50, Mutation Rate =
0.8, Crossover Rate = 0.3, Selection Pressure = 15. 

Note that values of Maximum Iteration and Population Size are 
dependent on the scale of the problem. 4 shows the parameters for the 
small-sized increases. We need to increase the value of Maximum Iter-
ation and Population Size for medium and large-sized instances. 

6.2. Comparison of the performance of PSO, GA, and GAMS commercial 
solver 

In this section, we compare the obtained solutions of the GA, PSO, 
and GAMS commercial solver (DICOPT algorithm) in Tables 5 and 6 to 
evaluate the performance of the developed algorithms. We have run 
small, medium, and large-sized instances. As we can see from Table 5, 
the GAMS solver can only solve small and medium-sized instances. In 
addition, note that the DCIOPT algorithm (GAMS solver) does not 
guarantee to find the global optimum as the proposed models are non- 
convex programming models. Finally, Table 6 show the comparison 
between GA and PSO algorithms for large-sized instances in which the 
GAMS commercial solver is not able to find the solution. 

In general, Compared to GA, PSO is easy to implement and has no 
evolution operators such as crossover and mutation. Tables 5 and 6 
indicate that generally, the PSO algorithm performs better than the GA 
algorithm. In addition, Table 5 shows that the results of the PSO algo-
rithm are exactly equal to the optimal solution in the GAMS software (if 
it is available). In large-sized instances, the PSO algorithm reaches a 
better objective function in the lower number of function evaluations 
compared to the GA algorithm. 

7. Theoretical and practical implications 

In this section, we provide several implications to the theory and 
practice in the supply chain. As mentioned in the literature review, the 
supplier selection problem can be divided into two main categories:1) 
Quantitative models and 2) Descriptive models. (Sawik, 2014) 
addressed that most studies conducted on quantitative supplier selection 

Table 6 
Comparison of GA and PSO algorithms for large-sized instances.  

Problem 
size|J| ×
|I| × |S|

Genetic Algorithm Particle swarm optimization 
algorithm 

Objective 
function value 
(cost) 

Number of 
function 
evaluation 

Objective 
function value 
(cost) 

Number of 
function 
evaluation 

2× 8× 256  − 2311876 520,200 − 2328370 400,200 
2× 10×

1024  
− 2328350 1,040,400 − 2328378 800,400 

3× 6× 64  − 3434240 110,100 − 3434260 100,100 
3× 8× 256  − 3611144 520,200 − 3623034 400,200 
3× 10×

1024  
− 3595970 1,040,400 − 3622775 800,400 

5× 3× 8  − 5598874 110,100 − 5620307 100,100 
5× 6× 64  − 5623297 440,200 − 5678173 400,200 
5× 10×

1024  
− 6489943 1,040,400 − 6748010 800,400  
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inventory models ignore disruption risk and multi-sourcing aspects. 
Even though the costs of the supply chain can be reduced by single 
sourcing, but due to the presence of capacity constraints, disruption 
risks, etc., supply chain performance can be compromised. Therefore, 
we present a joint supplier selection and order allocation problem that 
explicitly is taken into consideration multi-suppliers with regard to in-
ventory decisions, capacity constraints, and disruption risks. (Sawik, 
2014) showed when supplier selection and order allocation are made 
simultaneously, these decisions can be considered as a short- to medium- 
term planning horizon. Therefore the managers can apply our model to 
strategic partnerships (supplier selection) and inventory policy based on 
the quantitative criteria for medium-term decisions. 

In the supplier selection literature, there are two approaches to 
modeling the supplier selection and order allocation problem: 1) The 
supplier selection problem and order allocation problem are formulated 
as an integrated model. 2) The modeling of supplier selection and order 
allocation problem is divided into two main phases. In the first phase, 
the suppliers are usually evaluated using a multi-criteria tool, and in the 
second phase, orders allocate to selected suppliers using mathematical 
programming to take into account the system constraints. For instance, 
please refer to (Ghodsypour & O’Brien, 1998; Hong et al., 2005; Kaur & 
Singh, 2021; Mendoza & Ventura, 2010). Coordination of supplier se-
lection phase and order quantities allocation leads to a significantly 
improvement in the performance of a multi-echelon supply chain under 
disruption risks. We propose a joint supplier selection and order allo-
cation model under disruption risks that it causes coordination between 
of supplier selection phase and the phase of order quantities allocation. 

(Chopra & Sodhi, 2014) show that even though the initial investment 
in the development of capabilities to mitigate disruption risks may not 
appear cost-effective at first, managers can improve the supply chain by 
investing in developing these capabilities. We used the strategy of 
locating suppliers in different geographical regions to mitigate disrup-
tion risks. Much of Toyota production at plants across Japan was sus-
pended by this company after the Japanese earthquake and tsunami in 
2011. Therefore, the world was faced with a shortage of parts. In the 
wake of this event, the strategy of locating suppliers in different 
geographical regions has been introduced as a practical resilience driver 
for many automotive manufacturing firms such as Toyota and Nissan 
(Hosseini et al., 2019). Our results support the benefits of the strategy of 
locating suppliers in different geographical regions to increase supply 
chain capabilities, especially when the decision-maker is highly risk- 
averse. Also, sensitivity analyses have been conducted on the parame-
ters of disruption probability and confidence levels to create insight into 
the behavior of the model and the numerical example. The result shows 
that our models are sensitive to the probability of disruption and 
therefore, the reliability of the supplier is a key selection element. 

Since supplier selection models are sometimes complicated and have 
nonlinear objective cost functions (Alejo-Reyes et al., 2019, 2020; 
Mendoza & Ventura, 2013), the number of possible solutions can in-
crease exponentially. Therefore, the exact solutions methods, e.g., the L- 
Shaped method, can not solve these problems (Pariazar & Sir, 2018). 
Also, in large instances, the solution process may time-consuming by 
commercial software, and it becomes impossible to evaluate the cost for 
all of them. The literature shows that metaheuristic algorithms present 
promising alternatives to reduce the computational burden associated 
with solving, such as Genetic algorithms, ant colony optimization, par-
ticle swarm, differential evolution, etc. (Alejo-Reyes et al., 2020; Bianchi 
et al., 2009; Pariazar & Sir, 2018). For this reason, we use GA and PSO 
algorithms to solve our proposed model. For this reason, we use GA and 
PSO algorithms to solve our proposed model. The findings of this study 
indicate that the PSO algorithm is more efficient than GA. This result is 
in line with what (Zhu et al., 2011) discussed the high computational 
efficiency for the non-linear constrained portfolio optimization 
problems. 

8. Conclusion 

In this paper, we develop a mixed-integer nonlinear programming 
model to integrate supplier selection and order allocation problem in a 
centralized multi-product supply chain under disruption risks. Although 
most of the supplier selection models in the literature have studied only 
buyer cost minimization in their models, the centralized supply chain in 
this paper focuses on the simultaneous optimization of the buyer and the 
supplier. The buyer–supplier relationship leads to coordination or 
collaboration with upstream partners to ensure an efficient supply of 
materials along the supply chain. Also, we investigate how decision- 
maker attributes affect the outcome of a supplier selection decision 
and buyer performance. Therefore, according to the taxonomy of 
(Kundu et al., 2015), our problem is placed in the category of the up-
stream problem. In addition, by applying the CVaR concept as a risk 
assessment measure, we provide the decision-maker with a simple tool 
to control the risk and coordinate the flow of the products from suppliers 
to the buyer. This method allows the decision-maker to shape the cost 
distribution by selecting the optimal supply portfolio and optimal allo-
cation of the customers’ orders. We show that the developed model is 
non-convex, and as a result, the problem is complex to solve with 
commercial solution solvers. Therefore, we develop at first a particle 
swarm optimization algorithm as the solution method and then, we 
evaluate its efficiency by comparing with a proposed Genetic algorithm 
and the commercial GAMS solver. We also apply the Taguchi design 
method to adjust the best parameters for the proposed Genetic 
algorithm. 

The comparisons between the two risk-averse and risk-neutral 
models indicated when the shortage cost of parts dominates the pur-
chasing cost; both models are sensitive to the probability of disruption 
and the reliability of the supplier is a key selection element. In the risk- 
neutral model, the decision-maker selects mostly the suppliers among 
reliable foreign suppliers and then allocates the demands based on the 
production cost of each supplier and their capacities. A specific supplier 
is selected based on the supplier’s non-disruption probability than based 
on the other factors such as purchasing cost or capacity of the supplier. 
In the risk-neutral model, increasing disruption probability has no 
impact on the key factors of supplier selection and order allocation. In 
the risk-averse model, with the increase in the decision maker’s risk- 
averseness, the decision-maker applies the supplier diversity policy. 
The suppliers with smaller disruption risks are selected, and the orders 
for all parts are simultaneously placed on the low price, less reliable 
domestic suppliers. Therefore, the computational experiments indicate 
that for both the risk-neutral and the risk-averse models, supplier reli-
ability is a key selection parameter, even for a cost-based objective 
function. With increasing local disruption probability, this strategy oc-
curs at a higher confidence level. In contrast, the risk-neutral model 
focuses on the expected cost only and limitedly uses a diversity strategy 
to mitigate disruption risks. Our finding in line with what (Hosseini 
et al., 2019; Kamalahmadi & Parast, 2017) discussed the positive im-
pacts of geographical segregation of suppliers on risk management. Our 
results confirm the diversity strategy in the supply chain by allocating 
less demand to a major number of suppliers and multiple-sourcing from 
two regions, which can help companies reduce the effect of local and 
regional disruption risk. 

The performed analysis in this work can be expanded in different 
aspects. In this study, it is assumed that there exists a central decision- 
maker to achieve coordination among the supply chain-related de-
cisions. For further studies in the future, it is recommended to consider a 
decentralized supply chain with competition between the buyer and 
suppliers. We also considered only two levels of centralization, but more 
levels of the supply chain could be introduced into the analysis. This 
leads to coordination with downstream partners to influence demand in 
a beneficial procedure. Finally, considering both supply and demand 
risks simultaneously can be an interesting subject for further research. 
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Appendix A 

Proof of Lemma 1. Base on the definition of convex functions, it is sufficient to prove that 
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By replacing Eq. (8) into Eq. (A.1), we obtain that 
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βsDjCijYij +
∑

j∈J

∑

s∈S
βsDjBjUs

j  

−
∑

j∈J

∑

s∈S

∑

i∈Is

βsDjPjYij ≤
∑

j∈J

∑

i∈I

μDj

Q(1)
j

AijXi +
∑

j∈J

∑

s∈S

∑

i∈Is

βs
μQ(1)

j

2
Y2

ij

(
hb

i + hv
i

)
+
∑

j∈J

∑

s∈S

∑

i∈Is

βs
μD2

j SijYij

Q(1)
j Capi  

+
∑

j∈J

∑

s∈S

∑

i∈Is

μβsDjCijYij +
∑

j∈J

∑

s∈S
μβsDjBjUs

j −
∑

j∈J

∑

s∈S

∑

i∈Is

μβsDjPjYij +
∑

j∈J

∑

i∈I

(1 − μ)Dj

Q(2)
j

AijXi  

+
∑

j∈J

∑

s∈S

∑

i∈Is

βs
(1 − μ)Q(2)

j

2
Y2

ij

(
hb

i + hv
i

)
+
∑

j∈J

∑

s∈S

∑

i∈Is

βs
(1 − μ)D2

j SijYij

Q(2)
j Capi  

+
∑

j∈J

∑

s∈S

∑

i∈Is

(1 − μ)βsDjCijYij +
∑

j∈J

∑

s∈S
(1 − μ)βsDjBjUs

j −
∑

j∈J

∑

s∈S

∑

i∈Is

(1 − μ)βsDjPjYij. (A.2) 

After simplifying, the Eq. (A.2) can be rewritten as 

∑

j∈J

∑

i∈I

Dj(
μQ(1)

j + (1 − μ)Q(2)
j

)AijXi +
∑

j∈J

∑

s∈S

∑

i∈Is

βs
D2

j SijYij
(

μQ(1)
j + (1 − μ)Q(2)

j

)
Capi  

≤
∑

j∈J

∑

i∈I

(
μ

Q(1)
j

+
(1 − μ)

Q(2)
j

)

DjAijXi +
∑

j∈J

∑

s∈S

∑

i∈Is

βs

(
μ

Q(1)
j

+
(1 − μ)

Q(2)
j

)
D2

j SijYij

Capi
. (A.3) 

The inequality (A.3) can be broken into two inequality as follows 

∑

j∈J

∑

i∈I

Dj(
μQ(1)

j + (1 − μ)Q(2)
j

)AijXi ≤
∑

j∈J

∑

i∈I

(
μ

Q(1)
j

+
(1 − μ)

Q(2)
j

)

DjAijXi, (A.4)  

and 

∑

j∈J

∑

s∈S

∑

i∈Is

βs
D2

j SijYij
(

μQ(1)
j + (1 − μ)Q(2)

j

)
Capi

≤
∑

j∈J

∑

s∈S

∑

i∈Is

βs

(
μ

Q(1)
j

+
(1 − μ)

Q(2)
j

)
D2

j SijYij

Capi
. (A.5) 

Thus, it suffices to prove inequalities (A.4) and (A.5) simultaneously. Due to the similarity of the proof of two inequality, we show only the proof for 
Eq. (A.4). 

According to Lemma 2, the following inequality hold 

∑

i∈I

Dj(
μQ(1)

j + (1 − μ)Q(2)
j

)AijXi ≤
∑

i∈I

(
μ

Q(1)
j

+
(1 − μ)

Q(2)
j

)

DjAijXi, (A.6) 

Thus, 

∑

j∈J

∑

i∈I

Dj(
μQ(1)

j + (1 − μ)Q(2)
j

)AijXi ≤
∑

j∈J

∑

i∈I

(
μ

Q(1)
j

+
(1 − μ)

Q(2)
j

)

DjAijXi (A.7) 
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Similarly, Eq. (A.5) is proved, and the proof is complete. ■ 
Appendix B 

Proof of Lemma 2: The left-hand side (LHS) can be restated 

1
μQ(1)

j + (1 − μ)Q(2)
j

=
1

μ
(

Q(1)
j − Q(2)

j

)
+ Q(2)

j

, (B.1) 

And the right-hand side (RHS) can be rewritten as follows: 
(

μ
Q(1)

j

+
(1 − μ)

Q(2)
j

)

=
μQ(2)

j + (1 − μ)Q(1)
j

Q(1)
j Q(2)

j

=
μ
(

Q(2)
j − Q(1)

j

)
+ Q(1)

j

Q(1)
j Q(2)

j

. (B.2) 

Therefore, it suffices to prove that 

1

μ
(

Q(1)
j − Q(2)

j

)
+ Q(2)

j

≤
μ
(

Q(2)
j − Q(1)

j

)
+ Q(1)

j

Q(1)
j Q(2)

j

. (B.3) 

By cross multiplying and simplifying the RHS, we hold 

Q(1)
j Q(2)

j ≤
(

μ
(

Q(2)
j − Q(1)

j

)
+Q(1)

j

)(
μ
(

Q(1)
j − Q(2)

j

)
+Q(2)

j

)

= − μ2
(

Q(2)
j − Q(1)

j

)2
+ μQ(2)

j

(
Q(2)

j − Q(1)
j

)
+ μQ(1)

j

(
Q(1)

j − Q(2)
j

)
+Q(1)

j Q(2)
j  

= − μ2
(

Q(2)
j − Q(1)

j

)2
+ μ
(

Q(2)
j − Q(1)

j

)(
Q(1)

j − Q(2)
j

)
+Q(1)

j Q(2)
j  

= − μ2
(

Q(2)
j − Q(1)

j

)2
+ μ
(

Q(2)
j − Q(1)

j

)2
+Q(1)

j Q(2)
j  

=
(

Q(2)
j − Q(1)

j

)2(
μ − μ2)+Q(1)

j Q(2)
j = μ(1 − μ)

(
Q(2)

j − Q(1)
j

)2
+Q(1)

j Q(2)
j . (B.4) 

Due to μ ∈ [0, 1], the value of μ(1 − μ) is always lager than or equal to zero. As 
(

Q(2)
j − Q(1)

j

)2
≥ 0 always holds. Therefore, 

Q(1)
j Q(2)

j ≤ μ(1 − μ)
(

Q(2)
j − Q(1)

j

)2
+Q(1)

j Q(2)
j holds, and the proof is complete. ■ 

Appendix C 

Proof of Theorem 1. For simplicity, the matrix form of Expression (11) is defined as follows: 

f (X.Y.U) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

2D(aTx + DβTYs(s ⊘ cap))(βT(Ys*Ys)h)
√

+DβTYsc+DBβTu − DPβTYs. (C.1)  

whereYs = IsY. Is is the matrices of different scenarios for each supplier. To prove the non-convexity of the Function (C.1), we use proof by 
contradiction. Therefore assume that the Function (C.1) is convex. It will suffice to merely show that the Hessian matrix for the Expression (C.1) is a 
positive semi-definite. We provide the Hessian matrix by calculating the derivatives of function (C.1) as follows: 

∂f
∂x

=
Da(hT ( YT

s ⊙ YT
s

)
β)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

2D(aTx + βTYs(s ⊘ cap))(βT(Ys ⊙ Ys)h)
√ . (C.2) 

Note that the derivatives have been calculated using the methods introduced in (Petersen & Pedersen, 2012). we calculate ∂f
∂Ys 

using the Hadamard 
product properties (Petersen & Pedersen, 2012) as follows: 

diag(β) = M, diag(h) = H,

βT(Ys*Ys)h = tr
(
MTYsHYs

T) = tr
(
MYsHYs

T) (C.3)  

∂tr
(
MYsHYs

T)

∂Ys
= MTITYsHT + IMYsH = MTYsHT +MYsH = 2MYsH (C.4)  

where diag(x) is the diagonal matrix of vector x , tr(X) is the trace of matrix X , and I is the identity matrix (unit matrix) with a size of S× S. According 
to Eqs. (C.3) and (A.4), the derivative of ∂f

∂Ys 
is calculated as follow: 

∂f
∂Ys

=
D(β(s ⊘ cap)T

)(βT(Ys*Ys)h )
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

2D(aTx + βTYs(s ⊘ cap))(βT(Ys*Ys)h)
√ +

4D(aTx + βTYs(s ⊘ cap))(MYsH)
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

2D(aTx + βTYs(s ⊘ cap))(βT(Ys*Ys)h)
√ +DβcT − DPβ 
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=
D(β(s ⊘ cap)T

)(βT
(Ys*Ys)h )

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

2D(aTx + βTYs(s ⊘ cap))(βT(Ys*Ys)h)
√ +

4D(aTx + βTYs(s ⊘ cap))
( (

βhT)*Ys
)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

2D(aTx + βTYs(s ⊘ cap))(βT(Ys*Ys)h)
√ +DβcT − DPβ. (C.5) 

Similarly, the other required derivatives are calculated as follows: 

∂f
∂u

= DBβ, (C.6)  

∂2f
∂x2 = −

Da(hT ( Ys
T*Ys

T)β)(βT(Ys*Ys)h)aT
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

8D(aTx + βTYs(s ⊘ cap))3
(βT(Ys*Ys)h)3

√ < 0. (C.7) 

To calculate ∂2f
∂Ys2, the derivative of the expression 

(
βhT)*Ys is calculated by applying the theorems provided in (Bentler & Lee, 1978): 

∂
( (

βhT)*Ys
)

∂Ys
=

∂
(
βhT)

∂Ys
DYs

+
∂Ys

∂Ys
D

βhT = D
βhT (C.8) 

Where matrix D
βhT is a diagonal matrix, the entries of which on the main diameter are dii = βhT

i . Also, βhT
i is equal to the ith entry of the vector 

vec(βhT), Thus, ∂2f
∂Ys

2is calculated as follows: 

∂2f
∂Ys

2 =

[
6D(MYsH)((s ⊘ cap)βT) + 4D(aTx + βTYs(s ⊘ cap))D

βhT

]

2D(aTx + βTYs(s ⊘ cap))(βT
(Ys*Ys)h )

×

[ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

2D(aTx + βTYs(s ⊘ cap))(βT(Ys*Ys)h )

√ ]

2D(aTx + βTYs(s ⊘ cap))(βT
(Ys*Ys)h )

−

[
D(β(s⊘cap)T)(βT (Ys*Ys)h)+4D(aT x+βT Ys(s⊘cap))(MYsH)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2D(aT x+βT Ys(s⊘cap))(βT (Ys*Ys)h )

√

]

2D(aTx + βTYs(s ⊘ cap))(βT
(Ys*Ys)h )

×
[D(β(s ⊘ cap)T

)(βT
(Ys*Ys)h ) + 4D(aTx + βTYs(s ⊘ cap))(MYsH) ]

2D(aTx + βTYs(s ⊘ cap))(βT
(Ys*Ys)h )

=

[
6D(MYsH)((s ⊘ cap)βT) + 4D(aTx + βTYs(s ⊘ cap))D

βhT

]

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

8D(aTx + βTYs(s ⊘ cap))3
(βT

(Ys*Ys)h )
3

√ ×
[2D(aTx + βTYs(s ⊘ cap))(βT(Ys*Ys)h ) ]

8D(aTx + βTYs(s ⊘ cap))3
(βT

(Ys*Ys)h )
3   

−
[D(β(s ⊘ cap)T

)(βT(Ys*Ys)h ) + 4D(aTx + βTYs(s ⊘ cap))(MYsH)]
2

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

8D(aTx + βTYs(s ⊘ cap))3
(βT(Ys*Ys)h)3

√ . (C.9) 

The denominator in Eq. (C.9) is positive. Therefore, ∂2 f
∂Ys2 is positive if the numerator in Eq. (C.9) is positive that is as follows: 

12D2( aTx+ βTYs(s ⊘ cap)
)(

βT(Ys*Ys)h
)
(MYsH)

( (
s ⊘ cap)βT)

+ 8D2( aTx + βTYs(s ⊘ cap)
)2( βT

(Ys*Ys)h
)
D

βhT  

− D2( βT(Ys*Ys)h
)2( β(s ⊘ cap)T

(s ⊘ cap)βT)

− 4D2( aTx+ βTYs(s ⊘ cap)
)(

βT
(Ys*Ys)h

)
(MYsH)

( (
s ⊘ cap)βT)

− 4D2( βT(Ys*Ys)h
)(

aTx+ βTYs(s ⊘ cap)
)
(MYsH)

( (
s ⊘ cap)βT)

− 16D2( aTx + βTYs(s ⊘ cap)
)2
(MYsH)

(
HYs

TM
)

= 8D2( aTx + βTYs(s ⊘ cap)
)2( βT(Ys*Ys)h

)
D

βhT  

+ 4D2( aTx+ βTYs(s ⊘ cap)
)(

βT
(Ys*Ys)h

)
(MYsH)

( (
s ⊘ cap)βT)

− D2( βT(Ys*Ys)h
)2( β(s ⊘ cap)T

(s ⊘ cap)βT)

− 16D2( aTx + βTYs(s ⊘ cap)
)2
(MYsH)

(
HYs

TM
)

= 8D2( aTx + βTYs(s ⊘ cap)
)2( βT(Ys*Ys)h

)
D

βhT  

+
(
D
(
β(s ⊘ cap)T)( βT

(Ys*Ys)h
)
− 4D

(
aTx + βTYs(s ⊘ cap)

)
(MYsH)

)2
> 0 (C.10) 

Because Eq. (C.10) is positive, ∂2f
∂Ys

2 is also positive, and the objective function (A.1) is convex in the direction of Ys. 

To calculate ∂f
∂x∂Ys

, we need to calculate the derivative of aTx((βhT)*Ys); however, since aTx((βhT)*Ys) is a matrix, the derivative is not defined 
(Petersen & Pedersen, 2012), and the following equations are used to calculate it: 
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aTx
( (

βhT)*Ys
)
= [ a1 a2 ⋯ an ]

⎡

⎢
⎣

x1
x2
⋮
xn

⎤

⎥
⎦
( (

βhT)*Ys
)
= a1x1

( (
βhT)*Ys

)
+ a2x2

( (
βhT)*Ys

)
+⋯+ anxn

( (
βhT)*Ys

)
(C.11) 

Thus, we have: 

∂f
∂x∂Ys

=

− D2(hT(Ys
T*Ys

T)β)(β(s⊘cap)T)a(βT (Ys*Ys)h)̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2D(aT x+βT Ys(s⊘cap))(βT (Ys*Ys)h )

√

2D(aTx + βTYs(s ⊘ cap))(βT(Ys*Ys)h )

+
4Da

( (
βhT)*Ys

) ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

2D(aTx + βTYs(s ⊘ cap))(βT
(Ys*Ys)h )

√

2D(aTx + βTYs(s ⊘ cap))(βT(Ys*Ys)h )

−

4D2a(hT(YsT*YsT)β)(aT x+βT Ys(s⊘cap))((βhT)*Ys )̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2D(aT x+βT Ys(s⊘cap))(βT (Ys*Ys)h )

√

2D(aTx + βTYs(s ⊘ cap))(βT(Ys*Ys)h )

=
− D
(
hT ( Ys

T*Ys
T)β

)
(β(s ⊘ cap)T

)a(βT(Ys*Ys)h )
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

8D(aTx + βTYs(s ⊘ cap))3
(βT
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=
Da(βT

(Ys*Ys)h )( −
(
hT ( Ys

T*Ys
T)β
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(β(s ⊘ cap)T

) + 4
( (

βhT)*Ys
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(aTx + βTYs(s ⊘ cap)))
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Note that in the above equations, 
(
hT ( Ys

T*Ys
T)β

)
and (βT(Ys*Ys)h ) are scalars with equal values, and they can be used interchangeably in matrix 

multiplications. In addition, the derivative of (βT
(Ys*Ys)h ) can be used instead of the derivative of (hT ( Ys

T*Ys
T)β) to calculate ∂f

∂Ys∂x due to their equal 
values. Therefore, we have: 

∂f
∂Ys∂x

=
2DaMYsH
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4Da
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√ (C.13) 

Finally, the Hessian matrix can be obtained as follows: 

H0 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂2f
∂x2

∂2f
∂x∂Ys

0

∂2f
∂Ys∂x

∂2f
∂Ys

2 0

0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

As it is shown the ∂
2f

∂x2 and is ∂2 f
∂Ys

2negative and positive, respectively, and the values of ∂2f
∂x∂Ys

and ∂2f
∂Ys∂x are equal. According to the definition of a positive 

semi-definite matrix (Bhatia, 2007; Petersen & Pedersen, 2012), the Hessian matrix is positive semi-definite if and only if all of its eigenvalues are non- 
negative. Therefore, the eigenvalues of the Hessian matrix is calculated as follows: 

|H0 − λI| = 0⇒

⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒

∂2f
∂x2 − λ

∂2f
∂x∂Ys

0

∂2f
∂Ys∂x

∂2f
∂Ys

2 − λ 0

0 0 − λ

⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒

=

(
∂2f
∂x2 − λ

)(

− λ
(

∂2f
∂Ys

2 − λ
)

− 0
)

−
∂2f

∂x∂Ys

(

− λ
∂2f

∂Ys∂x
− 0
)

= − λ
(

∂2f
∂x2 − λ

)(
∂2f

∂Ys
2 − λ

)

+ λ
(

∂2f
∂x∂Ys

)2

= 0⇒

⎧
⎪⎨

⎪⎩

λ1 = 0
(

∂2f
∂x2 − λ

)(
∂2f

∂Ys
2 − λ

)

=

(
∂2f

∂x∂Ys

)2 

Since 
(

∂2 f
∂x∂Ys

)2

is positive, 
(

∂2f
∂x2 − λ

)(
∂2f

∂Ys
2 − λ

)

will be positive. Therefore, the inequalities are held as follows: 

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1)
(

∂2f
∂x2 − λ

)

≤ 0and
(

∂2f
∂Ys

2 − λ
)

≤ 0

or

2)
(

∂2f
∂x2 − λ

)

≥ 0and
(

∂2f
∂Ys

2 − λ
)

≥ 0

(C.14) 

From the Equation (C.14) and case 2, it is obvious that ∂2f
∂x2 ≥ λ and ∂2f

∂Ys
2 ≥ λ. Due to ∂2 f

∂x2 is negative, λ < 0. In case 1, since ∂2f
∂x2 ≤ λ , ∂2f

∂Ys
2 ≤ λ and ∂2f

∂Ys
2 is 

positive, λ can be to greater and equal zero. Therefore, the condition of the positive semi-definite matrix definition does not always hold. This is a 
contradiction. Thus, the function (C.1) is non-convex. The proof is now completed 
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