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ABSTRACT This paper presents the transformation method of the system of algebraic equations describing
the symmetric cipher into the QUBO problem. After transformation of given equations f0; f1; . . . ; fn�1 to
equations over integers f 00; f

0
1; . . . ; f

0
n�1, one can linearize each, obtaining f 0lini ¼ linðf 0i Þ, for i ¼ 0; n� 1, where

lin denotes linearization operation. Finally, one can obtain problem in the QUBO form as ðf 0lin0Þ
2 þ � � � þ

ðf 0linn�1
Þ2 þ Pen� C, where Pen denotes penalties obtained during linearization of equations, n is the number

of equations and C is constant appearing in the polynomial ðf 0lin0Þ
2 þ � � � þ ðf 0linn�1

Þ2 þ Pen. This paper
presents the transformation method of SPN block ciphers to the QUBO problem. What is more, we present
the results of the transformation of the complete AES-128 cipher to the QUBO problem, where the number
of variables of the equivalent QUBO problem equals approximately 30,026. It is worth noting that AES-128
is much easier to solve using quantum annealing than the factorization problem and the discrete logarithm
problem of a similar level of security. For example, factorizing a 3072 bit long RSA integer using quantum
annealing requires a QUBO problem of about 2,360,000 variables.

INDEX TERMS Cryptanalysis, AES, block ciphers, algebraic attacks, quantum annealing

I. INTRODUCTION

Quantum computing is one of the most promising approaches
that may be used for the cryptanalysis of many cryptographic
algorithms. The first major paper in this field was published by
Peter W. Shor [1], where he described a quantum algorithm for
factorization and discrete logarithm computation. Since that
time, many efforts have been made to construct quantum com-
puters, which would break algorithms used in real-world appli-
cations. However, the progress in this field is huge, and till now,
the biggest quantum computer made by Google has 72 working
qubits [2], it is still too little to break real-world algorithms.
In the last few years, the second quantum computing

approach has gained much popularity. This approach is quan-
tum annealing, and it is applied in computers built by D-Wave
company. Unfortunately, such computers may solve only Ising
problems. Of course, other problems as QUBO (Quadratic
Unconstrained Binary Optimization) andDQM (Discrete Qua-
dratic Model) may be transformed to the Ising problem.
The quantum annealing approach allowed for some success in

factorization, where the quantum factorization record had
belonged to the D-Wave computer for some time. Using

transformation of integer factorization to the QUBO problem,
Dridi and Alghassi [3] were able to factorize integer 200,099,
which result was later beaten by Jiang et al. [4], and by Wang
et al. [5],who factorized 20-bit integer 1,028,171. Such transfor-
mation of factorization problem to the QUBO problem requires
approximately n2

4 logical qubits. It means that factorizing a 3072
bit long RSA integer using quantum annealing requires
a QUBO problem of about 2,360,000 variables. It is believed
that such an RSA problem has (nowadays) a similar level of
security (128 bits) asAES-128.
Moreover, it is also possible to transform discrete logarithm

problem to the QUBO problem [6], where approximately 2n2

logical qubits are necessary. It means that computing discrete
logarithm modulo 3072-bit long prime using quantum anneal-
ing requires a QUBO problem of about 18,875,000 variables.
It is believed that such a discrete logarithm problem has (now-
adays) a similar level of security (128 bits) as AES-128. These
arguments make that quantum annealing may be used in
cryptanalysis of cryptographic algorithms.
This paper presents a method for transforming algebraic

equations of a symmetric cipher into the QUBO problem.
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After such transformation, obtained QUBO problem may be
solved using the quantum annealing approach, especially on
D-Wave computers. At first, algebraic equations of cipher
have to be obtained. The idea here is the same as in the case
of algebraic attacks. After obtaining Boolean equations of
given cipher in algebraic normal form, each equation f has to
be transformed to the equation of Boolean variables with
integer coefficients as f 0 ¼ f � 2k, where k is an integer, k �
bfmax2 c and fmax is maximal value polynomial f can take. More-
over, k has to be written as the sum of Boolean variables

k ¼
XblðfmaxÞ�1

i¼0

2iki þ fmax þ 1� 2blðfmax�1Þ; (1)

where blðxÞ denotes bit-length of integer x. After transforma-
tion of given equations, one has to linearize each, obtaining
f 0lini ¼ linðf 0i Þ, where lin denotes linearization operation.
Finally, one can obtain problem in the QUBO form as
ðf 0lin0Þ

2 þ � � � þ ðf 0linn�1
Þ2 þ Pen� C, where Pen denotes pen-

alties obtained during linearization of equations, n is the
number of equations and C is constant appearing in the poly-
nomial ðf 0lin0Þ

2 þ � � � þ ðf 0linn�1
Þ2 þ Pen.

In this paper, we present the results of the transformation
of the complete AES-128 cipher to the QUBO problem,
where the number of variables of equivalent QUBO problem
is equal to approximately 30,026 which means that, at least
theoretically, that problem may be solved using the D-Wave
Advantage computer. Unfortunately, it is hard to estimate the
time this process would require.

II. THE IDEA OF ALGEBRAIC ATTACKS

Algebraic attacks [7], [8], [9], [10] (rather than statistical like
differential and linear cryptanalysis) in nature exploit the
internal algebraic structure of the algorithm. The general idea
is quite simple. First, obtain a representation of the cipher as
a system of equations. And then try to solve it to recover
unknowns which are secret key bits. In theory, most modern
(block and stream) ciphers can be described by a system of
multivariate polynomials over a finite field. For the majority
of the ciphers, such systems are too complex for any practical
solving method.
The term “Algebraic Attack” typically refers to the tech-

nique of expressing the whole cryptosystem as a large system
of multivariate polynomial equations. To obtain a polynomial
system from block ciphers, we must include linear equations
from the diffusion layer, key addition, nonlinear equations
from the substitution layer, and Key Schedule equations. For
the nonlinear equations, we distinguish two cases: explicit
equations, which are equations of the form yi ¼ gi x0; x1;ð
. . . ; xn�1Þ, and implicit equations which are equations of the
form f x0; . . . ; xn�1; y0; . . . ; ym�1ð Þ ¼ 0. We usually consider
algebraic attacks when these equations have a small degree.
When mounting an algebraic attack for each nonlinear

component of the cipher, we usually attempt to obtain as
many low-degree, linearly independent equations as possible.
That over-defined systems are generally easier to solve.

In its general form, an algebraic attack is mounted by
expressing the whole cipher operation as a system of low-
degree multivariate equations, involving the (known) plain-
text and ciphertext values, the secret key, and many interme-
diate variables arising in the cipher operations. It results in
huge systems (typically over GFð2Þ). Attack usually requires
only one single plaintext/ciphertext pair. The solution of the
system is equivalent to key recovery.
It means that for algebraic attacks, we need efficient algo-

rithms for solving algebraic systems. So, the methods for
solving polynomials systems are the essential ingredients of
algebraic attacks and have recently started receiving special
attention from the cryptographic community. The most com-
mon methods used in cryptology may include the Linearisa-
tion principle, XL and variants, Groebner Basis algorithms
(e.g., Buchberger, F4, F5), SAT-solvers, and others.
Linearization is a well-known technique for solving large

systems of multivariate polynomial equations. We consider all
monomials in the system as independent variables and solve
the system using linear algebra techniques (i.e., Gaussian
reduction). Themethod’s effectiveness depends on the number
of linearly independent polynomials in the system. In the case
of Boolean functions with n variables, the total number of
monomials of degree d is N ¼ Pd

i¼1
n
i

� �
. The complexity of

Gaussian reduction is OðN3Þ. We may theoretically write
OðNvÞ, where v � 2þ �, if the matrix of the linearized sys-
tem is sparse. Note that the problem of estimating the rank of
the linearized system is challenging. In order to apply the line-
arization method, the number of linear equations in the system
needs to be approximately the same as the number of mono-
mials in the system. Many techniques have been proposed to
generate enough linear equations when this is not the case.

III. FROM ALGEBRAIC ATTACK TO QUBO PROBLEM

This section will present the transformation from theMQ prob-
lem to the QUBO problem for block ciphers of the SPN type.

A. GENERATE THE SYSTEM OF MULTIVARIATE

QUADRATIC EQUATIONS

Most block ciphers can be described as a system of multivari-
ate equations over GF(2). If in such a system all equations
are quadratic, then when looking for a solution we refer to
the MQ problem (Multivariate Quadratic Problem). In [11],
[12] Shamir et al. showed that the MQ problem is NP-hard,
and its complexity decreases when the MQ system is over-
defined. In [8] Courtois and Pieprzyk showed how to create
over-defined systems for Rijndael and Serpent ciphers.
Our approach of creating systems of multivariable qua-

dratic equations to describe a cipher is slightly different. We
are looking for a minimal system that still describes the cipher.
Minimal in this case means the smallest possible number of
equations, variables, and different monomials of degree two
because we aim to obtain the smallest possible number of
binary variables in the target form of the QUBO problem.
Additional unknown variables were introduced to describe

the SPN block cipher encryption algorithm using quadratic

VOLUME 10, NO. 2, APRIL-JUNE 2022 679

Burek et al.: Algebraic Attacks on Block Ciphers Using Quantum Annealing

Authorized licensed use limited to: ULAKBIM UASL - DOKUZ EYLUL UNIVERSITESI. Downloaded on October 28,2022 at 12:58:57 UTC from IEEE Xplore.  Restrictions apply. 



equations to describe intermediate states between rounds.
Additionally, successive variables were used to represent the
intermediate states in each round by the layer of substitution
boxes. Such a division of the cipher round, the separation of
the linear layer from the nonlinear layer, causes the number
of monomials in the system to be smaller than when consid-
ering the round as a whole. Figure 1 shows the proposed
division of the SPN block cipher round, where the states
described by additional unknowns are shown in red.
The unknown in the generated system of multivariate qua-

dratic equations is round key bits and intermediate state bits.
Since exactly one solution is sought, the independent varia-
bles of the round keys must be related using the equations
describing the algorithm for generating the round keys.
The key expansion algorithm is partitioned using addi-

tional unknown variables, separating the linear and nonlinear
layers like the encryption algorithm.

1) LINEAR LAYER

In the partition proposed by us, the linear layer consists of
adding the round key and linear diffusion. Adding a round
key is a xor operation of each bit, while the diffusion layer
can be a superposition of any linear operations. Hence, the
system of equations describing the linear layer of each round
consists of as many linear equations as there are bits output
from the linear layer.

2) NONLINEAR LAYER

It was assumed that the nonlinear layer consists of some sub-
stitution boxes, the so-called S-boxes, with the same number
of input and output bits. We assume that the S-box is

a GFð2Þn ! GFð2Þn. Therefore, the method of generating
implicit multivariate equations of a degree of at most two for
over-defined systems, presented in [8], was used. Bijection,
where n is the number of input and output bits. Each output
bit’s equation in algebraic normal form should have a high
algebraic degree for a properly designed substitution box. This
method allows one to construct equations containing only
monomials from a predefined set of acceptable monomials.
For a substitution box of size n, the number of all possible

entries into the box is 2n, the number of all possible mono-
mials is 22n, the number of all possible monomials of degree
two is 2n

2

� �
, and the number of all possible monomials of

degree two at most is equal to 2n
2

� �þ 2nþ 1. A matrix of
dimension 2n

2

� �þ 2nþ 1� 2n was considered, where each
row contains the values of a given monomial for all possible
inputs. Then, Gaussian elimination was performed while
simultaneously storing the operations performed. At least
2n
2

� �þ 2nþ 1� 2n rows have been cleared. Hence there are
at least 2n

2

� �þ 2nþ 1� 2n quadratic equations satisfying
a substitution box. For the bigger S-boxes (for example,
n ¼ 8), the number of rows may be less than the number of
columns, which means that quadratic equations satisfying
a substitution box may not exist (the value of 2n

2

� �þ 2nþ
1� 2n is negative).
Unfortunately, it is a method that generates an over-defined

system. Therefore the obtained set of quadratic equations was
searched to find the minimum system. For each possible com-
bination of quadratic equations from the obtained set, it was
checked whether a given system is satisfied for only one out-
put and whether all outputs were satisfied for each possible
input. It means that only given (the only one) S-box satisfies
the minimum system of equations. As will be presented later
for Simplified AES, we may obtain the minimal system con-
sisting of 5 equations, and in the case of AES-128, we may
obtain the minimal system consisting of 12 equations. How-
ever, as we will clarify, the better is a system consisting of 13
equations for our purpose.
The selected system should meet the following conditions:
� the minimum number of different square monomials in

the system,
� the minimum number of equations in the system.
Since the number of all monomials in the system also

affects the number of binary variables in the target form of
the QUBO problem, the next step was to check whether it
is possible to replace the given equation in the system with
another equation with a smaller number of monomials,
obtained from the operation xor on two, three, etc.
equations.
The system of quadratic equations of many variables

obtained as a result of the search was used to describe the
substitution box of the nonlinear layer.
Let r be the number of quadratic equations in the found

system and m be the number of substitution boxes in the
nonlinear layer. Then the entire nonlinear layer of a sin-
gle round can be described by r � m multivariate quadratic
equations.

FIGURE 1. Split a round of an SPN block cipher by using addi-

tional variables.
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B. TRANSFORMATION TO PSEUDO-BOOLEAN

FUNCTIONS

Pseudo-Boolean functions have been known since 1968
when Hammer in [13] introduced the following definition:
Let R be the field of the real numbers; by a pseudo-Boolean
function, we shall mean a function

f : Bn
2 ! R:

In a special case, the pseudo-Boolean function is a mapping
of Bn

2 to a ring Z of integers. If we assume that elements
0 and 1 of B2 are equated with the numbers 0 and 1, then
each Boolean function is also a pseudo-Boolean function.
The following theorem [13] is also well known:
Every pseudo-Boolean function may be written as

a polynomial, which is linear in each variable, and which, after
the reduction of the similar terms, is uniquely determined up to
the order of sums and products.

C. LINEARIZATION

It is crucial that one can obtain the QUBO problem in two lit-
tle different ways:
1) one can at first linearize each equation f 0i to obtain the

linearized equation f 0lini , then compute the sum FPen ¼Pn�1
i¼0 ðf 0liniÞ

2 þ Pen� C, where Pen denotes penalties
obtained during linearization, n is the number of equa-
tions and C is constant appearing in the polynomialPn�1

i¼0 ðf 0liniÞ
2 þ Pen; polynomial FPen is in such a case

in QUBO form;
2) one can at first compute the sum F ¼ Pn�1

i¼0 ðf 0i Þ2, and
then make of quadratization of the polynomial F,
obtaining FQuadr, finally obtaining polynomial FPen ¼
FQuadr þ Pen� C in QUBO form, where Pen denotes
penalties obtained during linearization, n is the number
of equations and C is constant appearing in the polyno-
mial

Pn�1
i¼0 ðf 0liniÞ

2 þ Pen; polynomial FPen is in such a
case in QUBO form.

In the proposed transformation of the system of multivari-
ate polynomial equations to the QUBO problem, the first
method simply allows us to compute the maximal number of
required variables in the resulting QUBO problem. There-
fore, the first method was used.
Linearizing Boolean functions is NP-hard, but we do not

need an optimal solution.
The reduction by substitution algorithm proposed by

Rosenberg in [14] was used for our research. The reduction is
to replace each quadratic monomial with a new variable. Since
the QUBO problem is unconstrained, add a penalty to enforce
equality after substitution. The reduction is performed as
follows:

xixj ! xk þ 2ðxixj � 2xkðxi þ xjÞ þ 3xkÞ; (2)

where 2ðxixj � 2xkðxi þ xjÞ þ 3xkÞ is the penalty.
If xixj ¼ xk then the penalty is zero. Otherwise if xixj 6¼ xk

then

xixj < xk þ 2ðxixj � 2xkðxi þ xjÞ þ 3xkÞ; (3)

where the penalty is of high value and such a solution should
be rejected when looking for the minimum function.
The cost of this reduction is one new variable per substitu-

tion, but a new variable can reduce a given quadratic mono-
mial in many system equations. The biggest problem is
determining the optimal order of substitutions. In our research,
substitutions were performed according to the order of occur-
rence of successive square monomials.
The determined penalty after all substitutions is multiplied

by a large positive constant and added to the cost function of
the generated QUBO problem.

D. TRANSFORMATION OF A LINEAR SYSTEM TO QUBO

PROBLEM

In [15], [16], [17], and [18], the use of quantum annealing for
the linear least squares problem is presented. Let t denote the
number of multivariable polynomial equations in the system
describing the cipher, and let p denote the number of binary
variables in this system after linearization. Let us define the
system of Boolean equations

f0ðx0; x1; . . . ; xp�1Þ � 0 ðmod 2Þ;
f1ðx0; x1; . . . ; xp�1Þ � 0 ðmod 2Þ;
..
.

ft�1ðx0; x1; . . . ; xp�1Þ � 0 ðmod 2Þ:

8>>><
>>>:

(4)

This system may be transformed into the system of Boolean
variables with integer coefficients:

f0ðx0; x1; . . . ; xp�1Þ ¼ 2k0
f1ðx0; x1; . . . ; xp�1Þ ¼ 2k1
..
.

ft�1ðx0; x1; . . . ; xp�1Þ ¼ 2kt�1:

8>>><
>>>:

(5)

Since the equations are pseudo-Boolean functions, each
equation is equal to zero modulo 2, which means it is equal
to a multiple of 2.
To determine the value of 2ki, we assume the maximum

possible value of the given equation, i.e., we assume that all
binary variables of the equation are equal to 1, which is equiv-
alent to the number of monomials in the equation. The deter-
mined maximum value of ki determines the number of binary
variables by means of which the actual value of the equation fi
will be presented. Hence, each ki is a polynomial of degree 1
at most, for which we use successive binary variables.
Now let s denote the number of binary variables used for

the construction of all of the polynomials fi and ki.
Let us present the resulting system of residuals:

f0ðx0; x1; . . . ; xp�1Þ � 2k0 ¼ 0
f1ðx0; x1; . . . ; xp�1Þ � 2k1 ¼ 0

..

.

ft�1ðx0; x1; . . . ; xp�1Þ � 2kt�1 ¼ 0

8>>><
>>>:

(6)

VOLUME 10, NO. 2, APRIL-JUNE 2022 681

Burek et al.: Algebraic Attacks on Block Ciphers Using Quantum Annealing

Authorized licensed use limited to: ULAKBIM UASL - DOKUZ EYLUL UNIVERSITESI. Downloaded on October 28,2022 at 12:58:57 UTC from IEEE Xplore.  Restrictions apply. 



in matrix form:

Axþ c ¼ 0 (7)

where:
� A is the t � s matrix of the coefficients of the polyno-

mials fi and ki,
� x is a vector of s� 1 of binary variables x0; x1; . . . ; xs�1,

occurring in the polynomials fi and ki,
� c is a vector of t � 1 of values 0 or 1 which are con-

stants of fi polynomials.

Axþ c ¼

A0;0 A0;1 . . . A0;s�1

A1;0 A1;1 . . . A1;s�1

..

. ..
. . .

. ..
.

At�1;0 At�1;1 . . . At�1;s�1

0
BBBB@

1
CCCCA

x0

x1

..

.

xs�1

0
BBBB@

1
CCCCA
þ

þ

c0
c1

..

.

ct�1

0
BBBB@

1
CCCCA
: (8Þ

This is equivalent to

Axþ c ¼
A0;0x0 þ A0;1x1 þ � � � þ A0;s�1xs�1 þ c0
A1;0x0 þ A1;1x1 þ � � � þ A1;s�1xs�1 þ c1

..

.

At�1;0x0 þ At�1;1x1 þ � � � þ At�1;s�1xs�1 þ ct�1

0
BBB@

1
CCCA:

(9)

The 2nd square norm of the vector of residuals in Equation 9
is determined as:

kAxþ ck22 ¼
Xt�1

i¼0

ðjAi;0x0 þ Ai;1x1 þ � � � þ Ai;s�1xs�1 þ cijÞ2

(10)

kAxþ ck22 ¼

¼
Xt�1

i¼0

ðA2
i;0x

2
0 þ 2Ai;0c0x0 þ A2

i;1x
2
1 þ 2Ai;1c1x1 þ � � � þ

þ A2
i;s�1x

2
s�1 þ 2Ai;s�1cs�1xs�1Þþ

þ
Xt�1

i¼0

ð2Ai;0Ai;1x0x1 þ 2Ai;0Ai;2x0x2 þ � � � þ

þ 2Ai;s�2Ai;s�1xs�2xs�1Þþ

þ
Xt�1

i¼0

c2i (11Þ

kAxþ ck22 ¼
Xt�1

i¼0

Xs�1

j¼0

Ai;jðAi;j þ 2ciÞxj þ
Xt�1

i¼0

2
X
j< k

Ai;jAi;kxjxk þ
Xt�1

i¼0

c2i ¼

¼
X
j

Bj;jxj þ
X
j< k

Bj;kxjxk þ C ¼ xTBxþ C (12Þ

where

Bj;j ¼
Xt�1

i¼0

Ai;jðAi;j þ 2ciÞ; (13)

Bj;k ¼ 2
Xt�1

i¼0

Ai;jAi;k; (14)

C ¼
Xt�1

i¼0

c2i ; (15)

and for every binary variable x holds that x2 ¼ x.
Finding the values of binary variables, including key varia-

bles, solves the following constraint problem

min
x2f0;1gs

y ¼ xTBxþ C; (16)

where the constraints are the substitutions of new binary vari-
ables during linearization.
The square penalty determined during linearization, corre-

sponding to the constraints of our problem, is presented in
the form

xTDx: (17)

The optimal solution to the constrained problem is the same
as the unconstrained problem with the penalty. Hence our
problem is as follows:

min
x2f0;1gs

y ¼ xTBxþ xTDxþ C ¼ xTQxþ C: (18)

Since xi are binary variables, we obtain problem in the QUBO
form

min
x2f0;1gs

y ¼ xTQx: (19)

The constant C is not included in the QUBO form.
Summing up, variables ki’s are introduced while Boolean

equations are transformed into equations of Boolean varia-
bles, but with integer coefficients. Even though ki’s are
unknown until the system is solved. During linearization, aux-
iliary variables are introduced, and knowledge about basic
variables would be lost if penalties would not be introduced.
If penalties were not introduced, then it would be very proba-
ble that the solution of the linear system we obtained would
not satisfy the substitutions. To ensure that substitutions will
be made correctly, we have to keep all the penalties to 0.
To clarify our approach, we will show how to solve a very

simple system of equations of Boolean variables x0; x1; x2

x0x1 þ x2 þ 1 � 0 ðmod 2Þ;
x1x2 þ x0 � 0 ðmod 2Þ;
x0 þ x1 þ x2 þ 1 � 0 ðmod 2Þ:

8<
: (20)

This system may be transformed into the system of equations
of Boolean variables with integer coefficients
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f0 : x0x1 þ x2 þ 1 ¼ 2k0;
f1 : x1x2 þ x0 ¼ 2k1;
f2 : x0 þ x1 þ x2 þ 1 ¼ 2k2;

8<
: (21)

which is equivalent to

f 00 : x0x1 þ x2 þ 1� 2k0 ¼ 0;
f 01 : x1x2 þ x0 � 2k1 ¼ 0;
f 02 : x0 þ x1 þ x2 þ 1� 2k2 ¼ 0;

8<
: (22)

At first, the system (22) will be linearized. We will make the
following substitutions x3 ¼ x0x1 and x4 ¼ x1x2 for which
we will obtain the following penalties: Pen1 ¼ 2ðx0x1 �
2x3ðx0 þ x1Þ þ 3x3Þ and Pen2¼2ðx1x2� 2x4ðx1þx2Þ þ 3x4Þ.
The linearized system of equations is presented by the
system (23)

f 0lin0 : x3 þ x2 þ 1� 2k0 ¼ 0;
f 0lin1 : x4 þ x0 � 2k1 ¼ 0;
f 0lin2 : x0 þ x1 þ x2 þ 1� 2k2 ¼ 0:

8<
: (23)

The values of k0, k1, k2 are limited by the maximal value of
each of the equations. Because the maximal value of x3 þ
x2 þ 1 is 3, it must hold that 2k0 � 3 and the maximal value
of k0 is 1. Similarly, because the maximal value of x4 þ x0 is
2, it must hold that 2k1 � 2 and the maximal value of k1 is
also 1. Finally, because the maximal value of x0 þ x1 þ x2 þ
1 is 4, it must hold that 2k2 � 4 and the maximal value of k2
is 2. k0; k1; k2 need to be presented as the sum of successive
Boolean variables with integer coefficients (see Equation (1)).
It means that k0 ¼ x5; k1 ¼ x6; k2 ¼ x7 þ x8. The system (23)
may be presented as (24)

x3 þ x2 þ 1� 2x5 ¼ 0;
x4 þ x0 � 2x6 ¼ 0;
x0 þ x1 þ x2 þ 1� 2ðx7 þ x8Þ ¼ 0:

8<
: (24)

Finally, one can compute FPen ¼ ðf 0lin0Þ
2 þ ðf 0lin1Þ

2 þ
ðf 0lin2Þ

2þ c � Pen� C, where Pen ¼ Pen1 þ Pen2 denotes
penalties obtained during linearization and c ¼ 10 is a con-
stant (in here c ¼ 10 is chosen arbitrarily; in general a constant
should be so large to ensure that for improper values of varia-
bles it should be impossible to obtain minimal energy), and C
is constant appearing in the polynomial ðf 0lin0Þ

2 þ ðf 0lin1Þ
2 þ

ðf 0lin2Þ
2 þ c � Pen, which Polynomial has the following form

F0
Pen ¼ 22x0x1þ2x0x2 þ22x1x2� 40x0x3 � 40x1x3 þ 2x2x3þ

2x0x4� 40x1x4 � 40x2x4 � 4x2x5 � 4x3x5� 4x0x6 � 4x4x6 �
4x0x7 � 4x1x7� 4x2x7�4x0x8�4x1x8�4x2x8þ8x7x8þ 4x0þ
3x1 þ 6x2þ 63x3 þ 61x4 þ 4x6 þ 2.
Finally, FPen ¼ F0

Pen � 2, because 2 is constant appearing
in the polynomial F0

Pen.
FPen is of course in the QUBO form. Theminimal energy for

this problem (minimal energy is equal to �2; the minimal
energy is the negation of constant C) may be obtained for the
proper solution. There are two proper solutions. The first one is
x0 ¼ 0; x1 ¼ 0; x2 ¼ 1; x3 ¼ 0; x4 ¼ 0; x5 ¼ 1; x6 ¼ 0; x7 ¼

1; x8 ¼ 0 and the second one is x0 ¼ 0; x1 ¼ 0; x2 ¼ 1; x3 ¼
0; x4 ¼ 0; x5 ¼ 1; x6 ¼ 0; x7 ¼ 0; x8 ¼ 1. However, it is
important to see that these both solutions give the same solution
of System (23) because k2 ¼ 1 both for k2 ¼ x7 þ x8 if x7 ¼
1; x8 ¼ 0 and k2 ¼ x7 þ x8 if x7 ¼ 0; x8 ¼ 1.
Of course solution x0 ¼ 0; x1 ¼ 0; x2 ¼ 1 satisfy the Sys-

tem (20), from which we began.
What is more, one can also use the matrix notation.

According to Equation (7) holds that

A ¼
0 0 1 1 0 �2 0 0 0
1 0 0 0 1 0 �2 0 0
1 1 1 0 0 0 0 �2 �2

2
4

3
5; (25)

and

c ¼
1
0
1

2
4

3
5: (26)

According to Equations (18) and (19) matrices B;D;Q
are equal to, respectively

B ¼

4 2 2 0 2 0 �4 �4 �4
0 3 2 0 0 0 0 �4 �4
0 0 6 2 0 �4 0 �4 �4
0 0 0 3 0 �4 0 0 0
0 0 0 0 1 0 �4 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 4 0 0
0 0 0 0 0 0 0 0 8
0 0 0 0 0 0 0 0 0

2
6666666666664

3
7777777777775

;
(27)

D ¼

0 20 0 �40 0 0 0 0 0
0 0 20 �40 �40 0 0 0 0
0 0 0 0 �40 0 0 0 0
0 0 0 60 0 0 0 0 0
0 0 0 0 60 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

2
6666666666664

3
7777777777775

;
(28)

Q ¼

4 22 2 �40 2 0 �4 �4 �4
0 3 22 �40 �40 0 0 �4 �4
0 0 6 2 �40 �4 0 �4 �4
0 0 0 63 0 �4 0 0 0
0 0 0 0 61 0 �4 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 4 0 0
0 0 0 0 0 0 0 0 8
0 0 0 0 0 0 0 0 0

2
6666666666664

3
7777777777775

:

(29)

The constant C is equal to �2.
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IV. APPLICATION OF OUR APPROACH TO THE AES

CIPHER

We will explain the transformation of the cipher’s multivari-
able polynomial equations to the QUBO problem on the
example of the Simplified AES cipher, which was developed
by Edward Schaefer [19].

A. TRANSFORMATION OF THE SYSTEM OF

MULTIVARIATE POLYNOMIAL EQUATIONS TO THE

QUBO PROBLEM FOR SIMPLIFIED AES CIPHER

The overall structure of Simplified AES is shown in Figure 2.
The input of the Simplified AES encryption algorithm is
a 16-bit plaintext block and a 16-bit key. Processing a single
input block produces a 16-bit ciphertext.
The encryption algorithm is performed in three rounds that

contain four different functions: add key (AK), nibble substi-
tution (NS), shift row (SR), and mix column (MC). Round 0
only consists of the add key function. Round 1 is a full round
with all four functions. The last Round 2 consists of three dif-
ferent functions; there is no mix column function. Thus,
encryption can be presented as a composition of the follow-
ing functions

AK2 	 SR 	 NS 	 AK1 	MC 	 SR 	 NS 	 AK0

The algorithm for generating the round keys of the Simpli-
fied AES algorithm is shown in Figure 3. A 16-bit key is
grouped into two 8-bit words, from which the following four
words are generated, forming another two round keys. The
words w1, w3, and w5 are processed by the g function, con-
sisting of three different functions: RotNib, SubNib, Rcon.
The RotNib function changes the input nibble places. The
SubNib function uses the same substitution boxes as the
encryption algorithm. The Rcon function is a bitwise xor
operation of the given word with the corresponding constant.

The intermediate state was presented using additional vari-
ables to describe the Simplified AES encryption algorithm as
a system of multivariable polynomials. Figure 4 shows the
partition of the encryption algorithm using intermediate vari-
ables marked in red and the order bits of the input and output
of the substitution box. The bits of round keys (from x0 to
x47) and intermediate variables (from x96 to x159) are
unknown in the created system of polynomials. Additionally,
to explain our approach, the plaintext and ciphertext bits that
are known during the attack are shown here using the varia-
bles x64 to x95.
Similarly, additional intermediate variables were intro-

duced to the algorithm of generating round keys, separating
the linear and nonlinear layers, as shown in Figure 5.
The nonlinear layer of the Simplified AES encryption algo-

rithm consists of four substitution boxes. Each substitution

FIGURE 2. Structure of the Simplified AES encryption algorithm.

[20]. FIGURE 3. Simplified AES key expansion algorithm [20].

FIGURE 4. Necessary variables for a Simplified AES encryption

algorithm.
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box can be described by a system of up to 21 independent qua-
dratic equations that contain 28 different monomials of degree
two.
The equations are as follows:

eq0 : z0z1 þ z0z3 þ z0y2 þ z0 þ z1z2 þ z1 þ y0 þ y1 þ 1 ¼ 0,
eq1 : z0z1 þ z0z2 þ z0y0 þ z0y1 þ z0y2 þ z0 þ z1 þ z2 þ y0þ

y1 þ y2 þ 1 ¼ 0,
eq2 : z0z1 þ z0z2 þ z0z3 þ z0y0 þ z0y1 þ z0y3 þ z0 þ z1z3þ

z1y0 þ z1 ¼ 0,
eq3 : z0z1 þ z0z2 þ z0z3þ z0y0 þ z0y3 þ z1z3 þ z1y1 þ y0þ

y1 þ 1 ¼ 0,
eq4 : z0z1 þ z0z2 þ z0y2 þ z0y3 þ z0 þ z1y2 ¼ 0,
eq5 : z0z3 þ z0y1 þ z0y2 þ z0 þ z1z3 þ z1y3 þ z2 þ z3 þ y0þ

y1 þ y3 ¼ 0,
eq6 : z0z1 þ z0y0 þ z0y2 þ z0y3 þ z0 þ z1z3 þ z2z3 þ z2þ

y0 þ y3 ¼ 0,
eq7 : z0z1 þ z0z2 þ z0z3 þ z0y2 þ z1z3 þ z2y0 þ z3 þ y3 þ 1¼ 0,
eq8 : z0z3 þ z0y0 þ z0y2 þ z1z3 þ z2y1 þ z2 þ z3 þ y3 þ 1 ¼ 0,
eq9 : z0z1þ z0z2 þ z0y0 þ z0y1 þ z0y3þ z0 þ z1þ z2y2 þ z2þ

y0 þ y1 þ 1 ¼ 0,
eq10 : z0z3 þ z0y0þz0y1þ z0y3 þ z0 þ z1z3þ z2y3þ z2 þ y0þ

y3 ¼ 0,
eq11 : z0z1 þ z0z2 þ z0y1 þ z0y3 þ z3y0 þ z3 þ y0 þ 1 ¼ 0,
eq12 : z0y0 þ z0y1 þ z0 þ z2 þ z3y1þ z3 þ y0 þ y3 ¼ 0,
eq13 : z0y0 þ z0 þ z3y2 þ z3 þ y0 þ 1 ¼ 0,
eq14 : z0z1þz0z2þ z0z3þ z0y0þ z0y2þz1z3þz3y3 þ z3 þ y0þ

1 ¼ 0,
eq15 : z0z2 þ z0z3 þ z0y1 þ z0y3 þ z2 þ z3 þ y0y1 þ y0 þ y1

þy3 ¼ 0,
eq16 : z0z1þz0y1þz0y2þ z0y3 þ z1 þ z2 þ y0y2 þ y0 þ y1 þ 1 ¼ 0,
eq17 : z0z1 þ z0z2 þ z0y2 þ z0 þ z1z3þ y0y3 þ y3 ¼ 0,
eq18 : z0z2 þ z0y1 þ z0y2 þ z0y3þ z0 þ y1y2 ¼ 0,
eq19 : z0z2 þ z0y1 þ z0y2 þ z0y3 þ z1z3 þ y0 þ y1y3 þ y1 þ 1 ¼ 0,
eq20 : z0z3 þ z0y0 þ z0y3 þ z0 þ z3 þ y0 þ y2y3 þ 1 ¼ 0,
where the variables zi are the input bits to the substitution

box and yi are the output bits. Hence, the entire nonlinear layer
in the round can be written using a system of 84 polynomials
of degree two, containing 112 different monomials of degree

two, which must be replaced with new binary variables during
linearization.
Since we strive to obtain the smallest possible number of

binary variables in the QUBO problem, the system of
21 polynomial equations was searched to find another system
with the minimum number of different monomials of degree
two, satisfying the substitution box.
Eight systems were found, consisting of 5 equations and

12 different monomials of degree two, satisfying the substitu-
tion box. Of these eight, the system selected had the smallest
number of all monomials, equal to 23. The selected system
consists of the following equations:
eq0 : z0z1 þ z0z3 þ z0y2 þ z0 þ z1z2 þ z1 þ y0 þ y1 þ 1 ¼ 0,
eq1 : z0z1 þ z0z2 þ z0y0 þ z0y1 þ z0y2 þ z0 þ z1 þ z2 þ y0 þ

y1 þ y2 þ 1 ¼ 0,
eq6 : z0z1þ z0y0þ z0y2 þz0y3 þ z0 þ z1z3 þ z2z3 þ z2 þ y0þ

y3 ¼ 0,
eq11 : z0z1 þ z0z2 þ z0y1 þ z0y3 þ z3y0 þ z3 þ y0 þ 1 ¼ 0,
eq12 : z0y0 þ z0y1 þ z0 þ z2 þ z3y1 þ z3 þ y0 þ y3 ¼ 0.
An attempt was made to find a better system by consecu-

tively performing the xor operation on two, three, and four
equations, but with such a small number of equations, it did not
benefit.
The Simplified AES Round 0 is a linear layer consisting

only of the K0 key addition operation. This layer can be writ-
ten in 16 linear equations, the form:
f0 : x0 þ x64 þ x96 ¼ 0,
f1 : x1 þ x65 þ x97 ¼ 0,
f2 : x2 þ x66 þ x98 ¼ 0,
f3 : x3 þ x67 þ x99 ¼ 0,
f4 : x8 þ x72 þ x104 ¼ 0,
f5 : x9 þ x73 þ x105 ¼ 0,
f6 : x10 þ x74 þ x106 ¼ 0,
f7 : x11 þ x75 þ x107 ¼ 0,
f8 : x4 þ x68 þ x100 ¼ 0,
f9 : x5 þ x69 þ x101 ¼ 0,
f10 : x6 þ x70 þ x102 ¼ 0,
f11 : x7 þ x71 þ x103 ¼ 0,
f12 : x12 þ x76 þ x108 ¼ 0,
f13 : x13 þ x77 þ x109 ¼ 0,
f14 : x14 þ x78 þ x110 ¼ 0,
f15 : x15 þ x79 þ x111 ¼ 0.

Round 1 of the Simplified AES cipher is a full round con-
sisting of a nonlinear and a linear layer.
Since the substitution box has been described with

5 equations, the entire nonlinear layer can be repre-
sented by 20 equations of degree two, containing
48 different monomials of degree two. The equations are
as follows:
f16 : x96x112 þ x96x113 þ x96 þ x98 þ x99x113 þ x99 þ x112þ

x115 ¼ 0,
f17 : x96x97þx96x98þ x96x113þ x96x115þx99x112þx99 þ x112þ

1 ¼ 0,
f18 : x96x97 þ x96x112 þ x96x114 þ x96x115 þ x96 þ x97x99þ

x98x99 þ x98 þ x112 þ x115 ¼ 0,

FIGURE 5. Necessary variables for a Simplified AES key expan-

sion algorithm.
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f19 : x96x97þx96x98 þ x96x112 þ x96x113 þ x96x114þ x96 þ x97þ
x98 þ x112 þ x113 þ x114 þ 1 ¼ 0,

f20 : x96x97 þ x96x99 þ x96x114 þ x96 þ x97x98 þ x97 þ x112þ
x113 þ 1 ¼ 0,

f21 :x100x116þ x100x117þ x100þ x102þ x103x117þ x103 þ x116þ
x119 ¼ 0,

f22 :x100x101þ x100x102þx100x117þ x100x119þ x103x116 þ x103þ
x116 þ 1 ¼ 0,

f23 :x100x101þx100x116þx100x118 þ x100x119þ x100 þ x101x103þ
x102x103 þ x102 þ x116 þ x119 ¼ 0,

f24 :x100x101þx100x102þx100x116 þ x100x117 þ x100x118 þ x100þ
x101 þ x102 þ x116 þ x117 þ x118 þ 1 ¼ 0,

f25 : x100x101 þ x100x103 þ x100x118 þ x100þ x101x102 þ x101þ
x116 þ x117 þ 1 ¼ 0,

f26 :x104x120þ x104x121 þ x104 þ x106þ x107x121 þ x107 þ x120þ
x123 ¼ 0,

f27 :x104x105þx104x106þx104x121 þ x104x123 þ x107x120 þ x107þ
x120 þ 1 ¼ 0,

f28 :x104x105þx104x120þx104x122 þ x104x123 þ x104 þ x105x107þ
x106x107 þ x106 þ x120 þ x123 ¼ 0,

f29 :x104x105þx104x106þx104x120 þ x104x121þ x104x122 þ x104þ
x105 þ x106 þ x120 þ x121 þ x122 þ 1 ¼ 0,

f30 : x104x105 þ x104x107 þ x104x122 þ x104þ x105x106 þ x105þ
x120 þ x121 þ 1 ¼ 0,

f31 :x108x124 þ x108x125þx108 þ x110 þ x111x125 þ x111 þ x124þ
x127 ¼ 0,

f32 : x108x109þx108x110þx108x125þx108x127þ x111x124 þ x111þ
x124 þ 1 ¼ 0,

f33 : x108x109þx108x124þx108x126þx108x127þ x108 þ x109x111þ
x110x111 þ x110 þ x124 þ x127 ¼ 0,

f34 :x108x109þx108x110þx108x124 þ x108x125 þ x108x126 þ x108þ
x109 þ x110 þ x124 þ x125þ x126 þ 1 ¼ 0,

f35 : x108x109 þ x108x111 þ x108x126 þ x108þ x109x110 þ x109þ
x124 þ x125 þ 1 ¼ 0.

16 linear equations of the form describe the Round 1 linear
layer:
f36 : x16 þ x112 þ x126 þ x128 ¼ 0,
f37 : x17 þ x113 þ x124 þ x127 þ x129 ¼ 0,
f38 : x18 þ x114 þ x124 þ x125 þ x130 ¼ 0,
f39 : x19 þ x115 þ x125 þ x131 ¼ 0,
f40 : x24 þ x118 þ x120 þ x136 ¼ 0,
f41 : x25 þ x116 þ x119 þ x121 þ x137 ¼ 0,
f42 : x26 þ x116 þ x117 þ x122 þ x138 ¼ 0,
f43 : x27 þ x117 þ x123 þ x139 ¼ 0,
f44 : x20 þ x114 þ x124 þ x132 ¼ 0,
f45 : x21 þ x112 þ x115 þ x125 þ x133 ¼ 0,
f46 : x22 þ x112 þ x113 þ x126 þ x134 ¼ 0,
f47 : x23 þ x113 þ x127 þ x135 ¼ 0,
f48 : x28 þ x116 þ x122 þ x140 ¼ 0,
f49 : x29 þ x117 þ x120 þ x123 þ x141 ¼ 0,
f50 : x30 þ x118 þ x120 þ x121 þ x142 ¼ 0,
f51 : x31 þ x119 þ x121 þ x143 ¼ 0.
The last round of the Simplified AES cipher, Round

2, similarly to Round 1, consists of a nonlinear and a linear
layer. The nonlinear layer, as before, was described by
20 quadratic equations with 48 different quadratic

monomials. The form of the equations is analogous to those
for Round 1, only the indexes of the variables will change.
16 equations of degree one describe the same for the linear
layer.
The algorithm of generating the round keys of the Simpli-

fied AES cipher has a nonlinear layer consisting of two substi-
tution boxes. Thus, the equations for wordw2 and analogously
for wordw4 were generated in two parts. The first part consists
of 10 quadratic equations describing the RotNib and SubNib
operations, while the second part consists of 8 linear equations
describing the Rcon operation and xor operations with the
wordw0. The equations betweenw0 andw2 are:
f88 : x12x48 þ x12x49 þ x12 þ x14 þ x15x49 þ x15 þ x48 þ x51 ¼ 0,
f89 : x12x13 þ x12x14 þ x12x49 þ x12x51 þ x15x48 þ x15 þ x48þ

1 ¼ 0,
f90 :x12x13þx12x48þ x12x50 þ x12x51 þ x12 þ x13x15 þ x14x15þ

x14 þ x48 þ x51 ¼ 0,
f91 : x12x13 þ x12x14 þ x12x48 þ x12x49 þ x12x50þ x12 þ x13þ

x14 þ x48 þ x49 þ x50 þ 1 ¼ 0,
f92 :x12x13þx12x15þ x12x50 þ x12 þ x13x14 þ x13 þ x48 þ x49þ

1 ¼ 0,
f93 : x8x52 þ x8x53þ x8 þ x10 þ x11x53 þ x11 þ x52þ x55 ¼ 0,
f94 : x8x9 þ x8x10 þ x8x53 þ x8x55 þ x11x52 þ x11 þ x52 þ 1 ¼ 0,
f95 :x8x9þx8x52þ x8x54 þ x8x55 þ x8 þ x9x11 þ x10x11 þ x10þ

x52 þ x55 ¼ 0,
f96 : x8x9 þ x8x10 þ x8x52 þ x8x53 þ x8x54 þ x8 þ x9 þ x10þ

x52 þ x53 þ x54 þ 1 ¼ 0,
f97 : x8x9 þ x8x11 þ x8x54 þ x8 þ x9x10 þ x9 þ x52 þ x53 þ 1 ¼ 0,
f98 : x0 þ x16 þ x48 ¼ 0,
f99 : x1 þ x17 þ x49 ¼ 0,
f100 : x2 þ x18 þ x50 ¼ 0,
f101 : x3 þ x19 þ x51 ¼ 0,
f102 : x4 þ x20 þ x52 ¼ 0,
f103 : x5 þ x21 þ x53 ¼ 0,
f104 : x6 þ x22 þ x54 ¼ 0,
f105 : x7 þ x23 þ x55 ¼ 0.
The word w3 and analogously w5 is determined by the lin-

ear xor operation, represented by the 8 linear equations for
each word. The equations for the word w3 are:
f106 : x8 þ x16 þ x24 ¼ 0,
f107 : x9 þ x17 þ x25 ¼ 0,
f108 : x10 þ x18 þ x26 ¼ 0,
f109 : x11 þ x19 þ x27 ¼ 0,
f110 : x12 þ x20 þ x28 ¼ 0,
f111 : x13 þ x21 þ x29 ¼ 0,
f112 : x14 þ x22 þ x30 ¼ 0,
f113 : x15 þ x23 þ x31 ¼ 0.
Thus, 26 equations of degree two or less are related to the

Round 2 keys, containing 24 different monomials of degree
two.
Combining all the equations, the multivariate quadratic

equation system describing the entire Simplified AES cipher
consists of 140 equations containing 160 binary variables,
144 different monomials of degree two, and 831 all monomials.
During linearization, 144 different monomials of degree

two are changed into new binary variables (x160 to x303).
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Simultaneously, a penalty was assigned, being the sum of
576 monomials of a degree of at most two.
Then, the number of binary variables was determined for

the ki value of each equation, which depends on the number
of monomials in the equation. For example, let us take the
following linearized equation:
flin19 :x96 þ x97þ x98 þ x112 þ x113 þ x114 þ x160 þ x161 þ x163þ

x164 þ x169 þ 1 � 0ðmod2Þ
which is equivalent to the equation:

flin19 :x96 þ x97 þ x98 þ x112þ x113 þ x114 þ x160 þ x161 þ x163þ
x164 þ x169 þ 1� 2k19 ¼ 0

The maximum value of the pseudo-Boolean function:
x96 þ x97 þ x98 þ x112 þ x113þ x114 þ x160 þ x161 þ x163 þ
x164 þ x169 þ 1 is 12. Thus, the maximum value k19 of this
equation is 6, which can be represented with three bits.
Hence, for the value of k19 we take the next three binary vari-
ables, obtaining the following equation:
f 0lin19 : x96 þ x97 þ x98 þ x112 þ x113 þ x114 þ x160 þ x161þ

x163 þ x164 þ x169 þ 1� 2ðx329 þ x330 þ x331Þ ¼ 0
For each equation of the system describing the Simplified

AES cipher, the number of binary variables to represent all val-
ues of ki was determined. The number of binary variables
needed is 279, these are variables from x304 to x582. After calcu-
lating the sumof the squares of the residuals and adding the pen-
alty, a problem in the QUBO form was obtained, consisting of
4522monomials of degree two or less and 583 binary variables.
The presented transformation was also performed for the

Simplified AES cipher for the complete set of 21 equations
describing the substitution box. The results are shown in
Table 1.
The most important criterion of the presented transforma-

tion of the system of multivariate quadratic equations
describing the cipher to the QUBO problem was to obtain
the QUBO problem with the smallest possible number of
binary variables. The obtained results show that reducing the
number of equations in the system describing the substitution
box reduces the number of required binary variables in the
QUBO problem by 55%.
We did some practical experiments, where we tried to use

our method to make an algebraic attack on a Simplified AES

cipher. We used a D-Wave hybrid solver to solve one round
Simplified AES without key expansion. The round keys are
permutations of a master key. The equivalent QUBO prob-
lem consists of 199 variables. It took 18 minutes of hybrid
quantum computation on D-Wave Advantage to obtain the
proper result. Because the QUBO problem, equivalent to an
algebraic attack on one round Simplified AES with key
expansion, consists of more than 300 variables, according to
our limitations in available time for computations on D-
Wave, we were not able to solve this problem. Even though
we think that using more time for computations, larger prob-
lems might be solved.

B. TRANSFORMATION OF THE SYSTEM OF

MULTIVARIATE POLYNOMIAL EQUATIONS TO THE

QUBO PROBLEM FOR AES-128 CIPHER

The transformation to the QUBO problem, discussed in the
Simplified AES cipher, was performed for the AES-128
cipher.
The division of the round with the use of intermediate vari-

ables was performed analogously to the partition presented in
Figures 4 and 5.
The nonlinear layer of the AES-128 encryption algorithm

consists of 16 substitution boxes. The number of generated
quadratic equations describing the substitution box is 39. This
system consists of 120 different monomials of degree two and
1337monomials.
The system of polynomial equations satisfying the substi-

tution box was searched to find a smaller system. One system
of twelve polynomials was found with 64 different mono-
mials of degree two and 667 systems consisting of 13 polyno-
mial equations and 54 different monomials of degree two.
Since the primary condition is the number of different mono-
mials of degree two, the system with the lowest number of
all monomials, 356, was selected from 667 systems.
The next step was to minimize the system, substituting the

equation resulting from the operation xor two, three, four,
etc., equations. As a result of this search, a system satisfying
the substitution box was found, consisting of 13 polynomial
equations, 54 different monomials of degree two, and 268 all
monomials.
The obtained minimum system for the substitution box

consists of the following equations:
eq0 :x0y2 þ x0y4 þ x2y0 þ x2y1 þ x3y1 þ x3y2 þ x3y7 þ x4y3þ

x4y4 þ x5y1 þ x5y2þx5y3 þ x5y7 þ x6y1 þ x6y2 þ x6y3þ
x0þ x2 þ x4 þ x7 þ y0 þ y5 ¼ 0,

eq1 :x0y3þ x0y5þ x2y0 þ x2y1 þ x2y5 þ x3y0 þ x3y3 þ x3y7þ
x4y0 þ x4y3þx4y4þx5y0 þ x6y3þx6y4 þ x6y5 þ x7y1þ
x7y5þ x7y7 þ x2 þ x4 þ y0 ¼ 0,

eq2 :x0y0þ x0y2 þ x0y4 þ x0y6 þ x1y5 þ x1y7 þ x2y0þx3y1þ
x3y2þx4y0þ x4y1 þ x4y7 þ x5y0 þ x5y3 þ x6y4 þ x7y4þ
x5 þ y1 þ y7 ¼ 0,

eq3 : x0y5 þ x1y1þ x3y0 þ x4y0 þ x4y1 þ x4y3 þ x4y6þ x5y6þ
x6y1 þ x6y2 þ x6y3 þ x7y2 þ x7y4 þ x1 þ x4 þ x5 þ x6þ
x7 þ y4 ¼ 0,

TABLE 1. Results of Transformation of the System of Multivariate

Quadratic Equations Describing the Simplified AES Cipher to

the QUBO Problem for the Set of 21 and 5 Equations Describing

the Substitution Box.

The number of equations in the system
describing the substitution box.

21 5

The number of equations describing the cipher. 332 140
The number of binary variables in the cipher
description system.

160 160

The number of variables used during linearization. 336 144
The number of binary variables after linearization. 496 304
The number of binary variables for the value of ki. 807 279
The number of monomials in the obtained
QUBO problem.

11950 4522

The number of binary variables in the obtained
QUBO problem.

1303 583
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eq4 :x0y0 þx0y2 þ x0y4þ x0y5 þ x3y3 þ x3y4 þ x4y4 þ x5y0þ
x5y1 þ x6y1 þ x6y5þx7y2 þ x7y5þ x0 þ x1 þ x2 þ x5þ
x6þ x7þ y5 þ y6 þ y7 ¼ 0,

eq5 :x0y0 þ x0y3 þ x0y5 þ x2y0 þ x2y2 þ x2y4 þ x2y5 þ x3y2
þx3y3þx3y4þx3y5þx4y3þx5y0 þ x5y4 þ x5y6 þ x6y0þ
x6y1 þ x6y2 þ x0 þ y1 þ y2 ¼ 0,

eq6 :x0y3 þ x0y5þ x0y7 þ x2y4 þ x2y6 þ x2y7þ x3y2 þ x3y6þ
x4y4 þ x5y3 þ x5y7 þ x6y4 þ x6y5 þ x7y1 þ x7y7 þ x0þ
x4þ x5 þ y0 þ y3 ¼ 0,

eq7 :x0y4þ x0y7 þ x1y5 þ x2y1 þ x2y6 þ x2y7þ x3y1 þ x3y4þ
x4y0þ x4y4þ x4y5þx4y7 þx5y4þx5y5 þ x6y4 þ x7y2þ
x7y7 þ x3 þ x5 þ x6 þ y0 þ y5 ¼ 0,

eq8 :x0y0þ x0y2 þ x0y7 þ x2y0 þ x2y3 þ x2y4 þ x3y4þ x3y6þ
x4y4þ x5y1þ x6y0 þ x6y1 þ x6y2 þ x6y4 þ x7y2 þ x7y3þ
x6 þ y1 þ y2 þ y5 þ y7 þ 1 ¼ 0,

eq9 :x0y0þ x0y4 þ x0y6 þ x0y7 þ x2y7 þ x3y3þ x4y0 þ x4y1þ
x4y3þx4y6þx5y4þx5y6 þ x5y7þ x6y1 þ x6y3 þ x6y4þ
x7y1 þ x7y3þ x2 þ y3 þ y5 ¼ 0,

eq10 :x0y2þx0y7þ x1y5 þ x1y7þ x2y0 þ x2y2 þ x3y4 þ x3y7þ
x4y2þx4y3þx5y4 þ x7y2 þ x7y5 þ x7y7 þ x1 þ x7 þ y3
þy5 þ y7 þ 1 ¼ 0,

eq11 :x2y3þx2y4þ x3y4 þ x4y0 þ x4y1 þ x5y1 þ x5y5þ x6y2þ
x6y5þx7y1þx0þ x4 þ x5 þ x6 þ y4 þ y5 þ y6 þ 1 ¼ 0,

eq12 :x0y4þx0y6 þx1y7þ x2y1 þ x2y4 þ x2y5 þ x2y6 þ x3y0þ
x3y2þ x3y4þ x3y6þ x4y1þ x4y3þ x5y0þ x5y1 þ x5y2þ
x6y5 þ x4 þ y1 þ y5 þ y7 ¼ 0,

where xi is the S-box input bits and yi is the S-box output
bits.
A complete transformation to the QUBO problem was

performed for the three polynomial equation systems that
satisfied the substitution box. The results are presented in
Table 2.
The number of binary variables of the QUBO problem for

the AES-128 cipher with the over-defined system of polyno-
mial equations describing the substitution box is 68626. Due
to the search for a smaller system for the substitution box,
the number of necessary binary variables of the QUBO prob-
lem was reduced to 30626, which gives an improvement of
55%. Another minimization of the system of polynomials

satisfying the substitution box to a lesser extent reduced the
number of binary variables required in the QUBO problem
to 30026, i.e., by 2%.

V. CONCLUSION

In this paper, we presented an algebraic attack on block ciphers
using quantum annealing. We showed how to transform a sys-
tem of equations describing block cipher to the QUBO prob-
lem. What is essential, in a similar way, one can transform
stream cipher or other symmetric primitive to the QUBO prob-
lem. Such a problem may then be solved using quantum
annealing, for example, using a D-Wave computer. Because
the complexity of solving the QUBO problem depends on the
number of variables, we aimed to minimize the number of vari-
ables in the obtained QUBO problem. We made such minimi-
zation in the AES-128 cipher, searching for a minimal system
of equations with the minimum number of different monomials
of degree two, satisfying the substitution box.
What is more, such a system was then modified by XOR-

ing some of the equations, where finally, we obtained a
smaller number of all monomials in the system describing
the substitution box. These methods let us decrease the num-
ber of variables of complete AES-128 cipher from 68,626 to
30,026 binary variables, which gave us 56; 25% of variables
less than using complete system of equations describing sub-
stitution box. It is worth noting that it means that AES-128 is
much easier to break using quantum annealing than the fac-
torization problem and the discrete logarithm of a similar
level of security. For example, using quantum annealing to
factorize a 3072 bit long RSA integer requires a QUBO prob-
lem of about 2,360,000 variables. Unfortunately, nowadays
asymptotic time of execution of the QUBO problem using
quantum annealing is not known. It seems that problems of
such sizes as the QUBO problem for AES-128 will not be
solved using quantum annealing in the following years.
However, some efficient algorithm for solving QUBO prob-
lems using the general-purpose quantum computer may be
found in the near future.
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