
292 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 33, NO. 1, JANUARY 2022

An R-Convolution Graph Kernel Based on Fast
Discrete-Time Quantum Walk

Yi Zhang, Lulu Wang , Richard C. Wilson , Senior Member, IEEE, and Kai Liu

Abstract— In this article, a novel R-convolution kernel,
named the fast quantum walk kernel (FQWK), is proposed
for unattributed graphs. In FQWK, the similarity of the
neighborhood-pair substructure between two nodes is measured
via the superposition amplitude of quantum walks between
those nodes. The quantum interference in this kind of local
substructures provides more information on the substructures so
that FQWK can capture finer-grained local structural features
of graphs. In addition, to efficiently compute the transition
amplitudes of multistep discrete-time quantum walks, a fast
recursive method is designed. Thus, compared with all the
existing kernels based on the quantum walk, FQWK has the
highest computation speed. Extensive experiments demonstrate
that FQWK outperforms state-of-the-art graph kernels in terms
of classification accuracy for unattributed graphs. Meanwhile,
it can be applied to distinguish a larger family of graphs, includ-
ing cospectral graphs, regular graphs, and even strong regular
graphs, which are not distinguishable by classical walk-based
methods.

Index Terms— Discrete-time quantum walk (DTQW), graph
classification, graph kernel, R-convolution kernel.

I. INTRODUCTION

A. Motivation

GRAPHS are important structures for information rep-
resentation, in which nodes and edges, respectively,

represent the entities and the relationships in the real world.
Graph processing has been widely used in many scientific
fields, such as image processing [1], biochemical research [2],
social network [3], and natural language processing [4]. Within
these fields, graph comparison plays a core role in data mining
and target recognition. For instance, two molecules with the
same chemical properties usually have similar structures [5].
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Thus, people can successfully perform a prediction for an
unknown molecule via graph comparison with known ones.

As a general and effective similarity measurement for
graphs, graph kernels have been extensively investigated over
the past decades. Most existing methods belong to the group
of R-convolution kernels, which are the earliest and most
successful graph kernels in the whole literature [6]. Different
from other graph comparison methods, such as graph edit
distance [7] or the Bregman divergences [8], graph similarity
is measured in the method of an R-convolution kernel via
decomposing the graph into certain substructures and comput-
ing the frequency of the same substructures of the input graphs.
These substructures are, e.g., walks for the random walk kernel
(RWK) [9] and subtrees for the Weisfeiler–Lehman kernel
(WLK) [10].

Although many sophisticated R-convolution kernels have
been designed, there are still several problems.

1) The neglect of the relative locations of substructures
deteriorates the classification accuracy because reliable
structural correspondences between substructures cannot
be established [11].

2) These kernels are generally not expressive enough to
measure the similarity without the assistance of graph
attributes, which may not be available or maybe expen-
sive to capture.

3) Some similar but nonisomorphic graphs cannot be dis-
tinguished by these kernels due to the existence of
cospectral graphs and regular ones [12], which leads to
failures when trying to distinguish different graphs.

Since when it was first proposed in [13], the discrete-
time quantum walk (DTQW) has drawn much interest from
both machine learning and quantum computation communities.
The reasons why the DTQW is suitable to connect quantum
mechanics and R-convolution kernels are twofold: 1) due to
quantum interference, the DTQW can achieve better discrim-
ination for graphic data, compared with traditional methods
and 2) in contrast to the continuous-time quantum walk,
the local structural features of graph can be located in the
step-by-step simulation of DTQW, which is crucial to design
R-convolution kernels. However, the simulation complexity of
the DTQW is quadratic to that of a random walk because of
the approximately quadratic state space, which becomes the
fatal bottleneck for graph processing.

In this article, a fast quantum walk kernel (FQWK)
is proposed based on the DTQW. Via computing the
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quantum superposition amplitudes of DTQWs on two graphs,
the neighborhood-pair substructure matching can be achieved.
Because the quantum amplitude of one substructure will
be affected by its adjacent ones via quantum interference,
the relative location information of substructures is naturally
exploited in the matching computation. Meanwhile, a fast
recursive method for simulating DTQW is proven to reduce the
runtime consumption of the new kernel. Experimental results
show the effectiveness of FQWK in terms of classification
accuracy, runtime speed, and distinguishing ability.

B. Related Works

1) R-Convolution Kernels: The concept of R-convolution
kernel was first proposed in [14]. A graph is first decomposed
into some certain substructures, e.g., walks or subtrees, and
then, graph similarity is measured by computing the frequency
of the isomorphic substructure pairs. Here, we refer to the
definition of the cross-product graph kernel in [15], which is a
common instance of the generic R-convolution kernel. For two
graphs G A and G B , {GA;1, . . . ,GA;NA } and {GB;1, . . . ,GB;NB }
are the substructure sets of G A and G B , respectively. Gi; j is the
j th substructure of Graph Gi , i = A, B , in which NA and NB

are the total numbers of different substructures, respectively.
A kernel function for graph G A and G B is shown as follows:

K(G A, G B) =
NA∑

jA=1

NB∑
jB=1

�
(GA; jA ,GB; jB

)
(1)

where � denotes a Dirac kernel shown as follows:
�

(GA; jA ,GB; jB

) = {
1, if GA; jA

∼= GB; jB

0, otherwise.
(2)

Here, GA; jA
∼= GB; jB indicates that the substructure GA; jA is

isomorphic (or approximately isomorphic) to GB; jB .
Many R-convolution kernels have been proposed, and they

can be categorized into three classes, namely, walk-based
kernels, subtree-based kernels, and subgraph-based kernels.

a) Walk-based kernels: The random walk graph ker-
nel (RWK) was proposed in [9] based on the calculation of the
same walks between two graphs. The main drawback of RWK
is that the totter problem is not considered, i.e., a walker from
one node to another will possibly trackback to the starting node
in the next step. This will cause the fact that much redundant
information of nodes and edges is contained in a random walk,
which deteriorates the computation performance of this kernel.
To overcome this problem, the shortest path kernel (SPK) was
proposed [16], which is computed by comparing the shortest
paths of the graphs. Because there is no traceback in the short-
est path, the aforementioned totter issue is settled. However,
SPK only considers one path between any pair of nodes. The
GraphHopper kernel (GHK) [17] fixes this problem and per-
forms a convolution computation by counting all the subpath
similarities. Meanwhile, backtrackless walk kernel (BWK) was
proposed in [12] using the zeta function that has also no
traceback in the corresponding loop. No repeated nodes and
edges are contained in the loop except the start and end nodes.
Therefore, the totter problem is utterly solved. The return
probability-based graph kernel (RetGK) [18] utilizes the return

probability features of the random walk to improve the RWK
so that various node attributes can be effectively exploited.

b) Subtree-based kernels: One common defect of the
walk-based graph kernel is the limitation on structural infor-
mation because the substructures used are comparatively
simple. A feasible method to overcome this problem is
to construct graph kernels based on subtrees. The widely
used Weisfeiler–Lehman subtree graph kernel (WLK) [10] is
defined by comparing isomorphic subtree structures. Due to
the effective Weisfeiler–Lehman algorithm, WLK not only
can represent more powerful information than walk-based
graph kernels but also has a computation complexity of
O(hV E), where h, V , and E denote the depth of the
Weisfeiler–Lehman algorithm, the number of nodes, and
the number of edges, respectively. The multiscale Lapla-
cian graph kernel proposed in [19] and the aligned sub-
tree kernels (ASKs) proposed in [11] and [20] are the
improvements of WLK. Meanwhile, the invariant kernel is
explored for graphs with high-dimensional and continuous
node attributes [21]. However, the repeated-structure prob-
lem still exists for subtree-based graph kernels. Nevertheless,
the classification accuracy of subtree-based kernels is quite
high, especially in the data sets with typical tree structures,
such as molecular structures.

c) Subgraph-based kernels: From the definition in (1),
the R-convolution kernel is actually a subgraph-based kernel.
Walks and subtrees are only two special cases of subgraphs.
Thus, a walk-based kernel and a subtree-based kernel can only
capture limited structural features of graphs.

One of the classic subgraph-based kernels is the all graphlet
kernel (AGK) [22]. A graphlet is a subgraph with only three to
five nodes. AGK is constructed by comparing the distribution
of different graphlets in two graphs. The deep graphlet ker-
nel [23] is explored to learn the optimal representative features.
In addition, the attributes of nodes and edges are considered
in [24] for subgraph matching, which is another instance
of subgraph-based kernels for attributed graphs. However,
the subgraph decomposition is a complex procedure with
high time consumption, e.g., the time complexity of AGK is
exponential to the graphlet size. Therefore, the approximate
methods in [25] appear for large graph applications.

In addition, some novel frameworks for R-convolution ker-
nels are proposed in [26] and [27], which shows that the
performance of R-convolution kernels can be improved via
preprocessing graphs with valid optimal node assignment and
exploiting substructures at multiple different scales, respec-
tively.

2) Graph Kernels Based on Quantum Walk: Recent graph
kernel research based on quantum walk [28] can be classified
into two parts.

The Jensen–Shannon kernels (QJSK) were proposed
in [29]–[32] based on the quantum Von Neumann entropy.
Graph similarity is measured by the mutual information
entropy between the density matrices of quantum walks on
the two graphs. Bai et al. [33] improved the classification
accuracy by modifying the kernels using the Jensen–Tsallis
divergence information entropy. All of these kernels are called
information theoretic kernels [15]. However, they suffer from
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the problems of high computation complexity of calculating
the quantum entropy and the neglect of the local structural
features of graphs.

Distinct from the aforementioned methods, some other
works appeared for graph classification, which uses the quan-
tum walk as a tool for graph feature extraction or subgraph
matching. In [34], it is found that the amplitude of the quantum
interference approximates zero between similar nodes of two
graphs. This property can be used to design a probability
model to quantitatively evaluate the graph similarity. However,
the application of this method is limited by its time complexity
of O(N6). Based on the density matrices of quantum walks,
the edge-based matching and subtree-based matching are used
to construct the convolution kernels in [11] and [35], respec-
tively. The essence of these methods is using the quantum
walk as an attribute enhancement of the edges or nodes. The
problems for the traditional R-convolution kernels are still
unsettled.

C. Main Contributions

The characteristics of the proposed kernel and the main
contributions of this article are listed as follows.

1) A novel R-convolution graph kernel FQWK is proposed
based on the fast DTQW. The FQWK characterizes the
neighborhood-pair substructure between two nodes via
the superposition amplitude of all quantum walks of a
particular length that joins the two nodes. This allows
the interference between different paths, which has been
shown in previous works to allow better characterization
of graph substructure and a more powerful representa-
tive ability. Experimental results show that FQWK out-
performs the state-of-the-art methods on classification
accuracy for most of the data sets.

2) To achieve the neighborhood-pair substructure matching
effectively, a fast simulation method is proposed for
DTQW. Although the superposed transition amplitudes
of the original quantum walks need to be used for
matching tasks, there is no need to calculate the tran-
sition matrix of the multistep DTQW. Instead, a fast
recursive method is designed and proved, which can
greatly reduce the computation time of the proposed
kernel. Experimental results show that FQWK is the
fastest one among all the quantum walk-based kernels.

3) The high-dimensional structural information of graphs
can be explored via quantum mechanism so that the
slight structural differences between some similar but
nonisomorphic graphs can be located and even ampli-
fied via quantum constructive interference. Therefore,
the proposed graph kernel can be applied to distinguish
cospectral graphs, regular graphs, and even strong reg-
ular graphs.

D. Outline of This Article

The remainder of this article is structured as follows. First,
the background of the graph concept and DTQW is introduced
in Section II. Then, in Section III, the R-convolution kernel

based on fast DTQW is proposed. The detailed method and
the formal computation procedure of the novel kernel are
discussed. In Section IV, numerical experiments are given to
show the effectiveness of the proposed kernel for unattributed
graph classification. Finally, the concluding remarks are made
in Section V.

II. BACKGROUND

A. Basic Concepts

Graphs are widely used to represent structural and relational
information in a way that is abstracted from the actual data.

Definition 1 (Graph): A graph is a tuple G(V , E), where V
represents all the nodes in the graph with a set of the adjacent
relation E ⊆ V × V .

In this article, we will mainly focus on connected and
unattributed graphs, in which all the nodes have no attributes
and all the edges have no weights and directions. Only the
structural information can be used to perform the graph
analysis.

Definition 2 (Walk): A walk w = (v0, v1, . . . , vk) in a
graph G(V , E) is a node sequence with vi ∈ V , and
(vi , vi+1) ∈ E . The length �(w) = k of a walk is the number
of edges traversed in the sequence.

Definition 3 (Walk Set): The order-k walk set of a graph
is the set of all walks of length k, whichs exist in a graph:
W (k) = {w|�(w) = k}.

Definition 4 [Subgraph (or Substructure)]: A graph
G ′(V ′, E ′) is a subgraph of graph G(V , E), if and only if
V ′ ⊆ V and E ′ ⊆ E .

Definition 5 [Graph Isomorphic (or Graph Matching)]: A
graph G(V , E) is isomorphic to G ′(V ′, E ′) if there exists at
least one bijective mapping f : V → V ′ so that ∀v1, v2 ∈
V , (v1, v2) ∈ E ⇔ ( fv1 , fv2) ∈ E ′.

B. Discrete-Time Quantum Walk

The DTQW is the quantum counterpart of the discrete-time
classical random walk [36]. In DTQW, the states need to
specify both the current and the previous location of the walk
because of the reversibility of quantum processes. Therefore,
the state space for DTQW is the directed edge set.

Definition 6 (Directed Edge Set Ed): In an unattributed
graph G(V , E), every edge e(u, v) ∈ E is replaced with a
pair of directed edges ed(u, v) and ed(v, u). These directed
edges construct the directed edge set Ed , which can be shown
as follows:

Ed = {ed(u, v), ed(v, u)|e(u, v) ∈ E }. (3)

For a demo graph shown in Fig. 1(a), the corresponding
graph with directed edges is given in Fig. 1(b). On the directed
edge set, the directed line graph can be constructed.

Definition 7 [Directed Line Graph GL (VL , EL )]: For a
graph G(V , E), its directed edge set is Ed . The directed line
graph GL(VL , EL ) is a dual representation of the original
graph. The node set and edge set are defined as follows:

VL = Ed ,

EL = {(ed(i, m), ed(m, j)) ∈ Ed × Ed}. (4)
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Fig. 1. (a) Demo graph with four nodes. (b) Demo graph in (a) whose
edges are all replaced by the directed edge set Ed . (c) Directed line graph
G L(VL , EL). Note that DTQW based on the Grover diffusion matrix can be
regarded as a walk on G L . The red dashed arcs, black solid arcs, and blue
dashed–dotted arcs represent that the quantum transition amplitudes are 0,
positive, and negative, respectively.

Fig. 1(c) shows the directed line graph of the demo graph
in Fig. 1(a). In the directed line graph GL(VL , EL), each
node corresponds to a unique directed edge residing on the
corresponding edge in the original graph G(V , E).

In DTQW, if there is a directed edge from a node vL ∈
VL to a node uL ∈ VL , the transition of the quantum walk
on G(V , E) is allowed from the edge corresponding to vL

to the edge corresponding to uL , and vice versa. Therefore,
different from the classical random walk, the DTQW on a
graph G can be regarded as a walk performed on its directed
line graph GL . The state space of the walk is the node set VL ,
and the transitions are constrained by the directed edge EL in
the directed line graph.

We denote the state corresponding to the quantum walker
being on the directed edge ed(u, v) as |uv〉. It can be inter-
preted as that a quantum particle is currently at node v and
has a previous step at node u. The general state of DTQW is

|φ〉 =
∑

ed (u,v)∈Ed

αuv |uv〉 (5)

where the quantum amplitude αuv is complex, i.e., αuv ∈ C.
The probability that the quantum walker is at the state |uv〉
is given by Pr(|uv〉) = αuvα

∗
uv , where α∗uv is the complex

conjugate of αuv .
At each step, the evolution of the DTQW is governed by a

transition matrix U . The entries of U determine the transition
probabilities between states, i.e., |φt+1〉 = U |φt 〉. Since the
evolution of the walk is linear and conserves probability,
the matrix U must be unitary, i.e., U−1 = U †, where U †

denotes the Hermitian transpose of U .
It is common to adopt the Grover diffusion matrix as the

transition matrix. This matrix does not distinguish any forward
nodes (i.e., those other than the current and previous nodes),
and among such diffusion matrices, it is the furthest from the
identity one. The entries of the transition matrix U are shown
as follows:

Uim;n j =
⎧⎨
⎩Aim Anj

(
2

dm
− δi j

)
, if m = n

0, otherwise.
(6)

Here, Uim;n j shows the quantum amplitude for the transition
ed(i, m)→ ed(n, j), dm denotes the node degree for node m,
and δi j is the Kronecker delta, i.e., δi j = 1 if i = j ; otherwise,
δi j = 0. A is the adjacency matrix of the original graph.

Different from the random walk where the probability
propagates, what propagates during the DTQW is quantum
amplitude. Given a state |im〉, the Grover matrix assigns the
same amplitude to all transitions |im〉 → |m j〉 and a different
amplitude to the transition |im〉 → |mi〉, where i and j
are the adjacent nodes of m. Therefore, in the directed line
graph, as shown in Fig. 1(c), when the particle tracks back
and dm > 2, the transition amplitude is negative for this step
(the blue dashed–dotted arc); when the particle tracks back
and dm = 2, the transition amplitude of this step is equal to 0
(the red dashed arc); otherwise, it is positive (the black solid
arc). Obviously, the totter problem of the random walk will
be settled via the amplitude penalties for backtracks.

Furthermore, it is observed in [37] and [38] that the directed
line graph possesses some special properties that are not
available in the original graph. For instance, compared to
the original graph, the directed line graph spans a higher
dimensional feature space and thus exposes richer graph
characteristics. This is because the cardinality of the node
set for the directed line graph is greater than, or at least
equal to, that of the original graph. This property suggests
that the DTQW may reflect richer graph characteristics than
the classical random walk and the continuous-time quantum
walk, which are both the walks on the original graph.

III. R-CONVOLUTION KERNEL BASED ON FAST

DISCRETE-TIME QUANTUM WALK

In this section, a novel substructure matching method
is designed based on the DTQW via introducing the
neighborhood-pair substructure. One of the issues with using
the DTQW for probing graph structure is that the transition
matrix U is of size 2|E |×2|E | and so potentially quadratically
bigger that the random walk equivalent. In turn, this means a
computation time of O(N6) in the worst case of dense edges,
which is quite impractical even for moderate-sized graphs.
In order to solve this problem, a fast recursive method to
calculate an alternative transition matrix is proposed. All these
preparations lead to the newly proposed kernel FQWK.

A. Neighborhood-Pair Substructure Matching Based on
Discrete-Time Quantum Walk

In this article, the structural features based on the
neighborhood-pair substructure are analyzed, which is a kind
of auxiliary substructure. The formal definition is as follows.

Definition 8 (k-Level Neighborhood-Pair Substructure
S(k)

ab ): In a graph, for each node pair a and b, the k-level
neighborhood-pair substructure S(k)

ab is constructed which
contains all the k-length walks between a and b

S(k)
ab =

{
w ∈ W (k)|v0 = a, vk = b

}
. (7)

Fig. 2(a) illustrates that in the demo graph in Fig. 1(a), there
are totally 5 three-length walks from node a to node b, which
make up the auxiliary substructure S(3)

ab . All the walk-based
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Fig. 2. (a) Five three-length walks from node a to node b. (b) Corresponding
five two-step quantum walks on the directed line graph G L .

Fig. 3. Quantum transition amplitudes of the five three-length walks and the
neighborhood-pair substructure S(3)

ab .

kernels can be regarded as counting over the auxiliary sub-
structure S(k)

ab . For example, there are five walks contributing
to the RWK. The SPK and GHK compare only one walk which
is the nonrepeating path (acdb). Similarly, the BWK counts
the single nonbacktracking walk (acdb). However, the BWK,
GHK, and SPK do not account for the edges (ab) and (bc)
and the RWK treats all five paths identically. Therefore,
the topology characteristics of this substructure cannot be well
represented by the aforementioned simple features.

Our goal is to consider all these walks in S(k)
ab via a super-

position of the quantum amplitudes. As shown in Fig. 2(b),
the 5 three-length walks correspond to the 5 two-step DTQWs
on the directed line graph given in Fig. 1(c). According to (6),
the transition amplitudes of each walk can be calculated. And
we use different line types to denote that the walk is positive,
negative, or 0. In Fig. 3, we show explicitly that among all
of the 5 three-length walks, there are 2 walks with quantum
amplitudes 0, 2 with negative amplitudes, and 1 with positive
amplitude.

As we noted earlier, it is too expensive to compute the
amplitude for each individual walk. Instead, we would like to
compute the superposition of all the walks in S(k)

ab , for example
with S(2)

ab this includes all walks of length 2 and therefore
every walk which begins at a and ends at b via any single
intermediate node. This can be calculated by the summation
of amplitudes over all possible intermediate nodes

Mab =
N∑

m=1

N∑
n=1

Uam;nb. (8)

In a similar way, U t provides the amplitudes for all
(t + 1)-length walks, and again we can compute the transition
amplitude between a and b by summing the t-step quantum
amplitudes over all possible first and last steps

M (t)
ab =

N∑
m=1

N∑
n=1

U t
am;nb. (9)

This superposes all t-step quantum walks which start at a and
end at b, i.e., all the walks in S(t+1)

ab . This defines the transition
matrix M (t).

Note that the superscript t means the t th power of a
matrix, while the superscript (t) is the level index. In Fig. 3,
the summation of the amplitudes of these 5 walks achieves
1/9, which is just the superposition amplitude of the auxiliary
substructure S(3)

ab .
It is interesting that quantum interference exists in the

quantum walk on a graph and is therefore present in our
transition matrix M (t). Destructive interference will happen on
the intersection of two isomorphic substructures with opposite
amplitudes [34], which is always exploited to locate the
local symmetric subgraphs. On the other hand, constructive
interference may occur on the crossings of different quantum
walks, thereby the slight structural difference can be amplified.

We choose this particular transition matrix for our graph
kernel based on three factors. First, it is more compact than
the DTQW, since it is only of size |V |×|V |. Second, it retains
information about constructive and destructive interference
since it is a superposition of individual walks. Finally, as we
demonstrate in the next section, it can be computed efficiently
in only O(t|V |3) steps in contrast to the O(t|V |6) steps of the
DTQW.

B. Fast Simulation Method

According to the definition, after a t-step DTQW, the super-
position amplitude matrix M (t) is computed as

M (t)
i j =

N∑
m=1

N∑
n=1

U t
im;n j �=

[
Mt

]
i j
. (10)

It is obvious that though the size of the transition matrix M
is only |V |×|V |, as shown in Fig. 4, M (t) cannot be computed
via the exponential operation of M . However, the computation
complexity of the exponential operation of U is still about
O(|V |6), which is potentially quadratic to the transition matrix
of the random walk. Therefore, it is not time-acceptable to
perform graph processing directly.

In Fig. 4, the demo graph contains four nodes and eight
directed edges. The size of the transition matrix of the random
walk is 4 × 4 because the state space of the random walk is
the node set. However, the size of the quantum walk transition
matrix is 8× 8 as the state space is the directed edge set.

Therefore, we need to find a fast method to simulate the
DTQW and compute the matrix M (t). In Fig. 5, an arbitrary
t-step DTQW from node i to node j is shown as an example.
This walk consists of a (t−1)-step quantum walk from i to n
and a one-step walk from n to j . We find a recursive method
for fast computing the superposition transition matrices of
t − 2, t − 1, and t-step DTQW.

Authorized licensed use limited to: ULAKBIM UASL - DOKUZ EYLUL UNIVERSITESI. Downloaded on October 28,2022 at 12:58:35 UTC from IEEE Xplore.  Restrictions apply. 



ZHANG et al.: R-CONVOLUTION GRAPH KERNEL BASED ON FAST DTQW 297

Fig. 4. Demo graph and the comparisons of its three transition matrices.

Fig. 5. t-step quantum walk from node i to node j . Node n is the previous
step of node j . Node a is the previous step of node n.

Theorem 1: Assume that a graph has N nodes. A is the
adjacency matrix, and dn is the degree of node n. Let a
diagonal matrix D = diag((2/d1), (2/d2), . . . , (2/dN )), and
let another matrix Q = D A. The series of the superposition
amplitude matrices {M (t)} can be computed as

M (t) =

⎧⎪⎨
⎪⎩

AQ − 2D−1, t = 1

M Q − A, t = 2

M (t−1) Q − M (t−2), t ≥ 3.

(11)

Proof:

1) When t = 1, for every item in matrix M

Mi j =
∑
m,n

Uim;n j =
∑

m

Uim;mj

(
Uim;n j �= 0⇒ m = n

)
=

∑
m

2Aim Amj

dm
−

∑
m

δi j Aim Amj

= [
AQ − 2D−1

]
i j
. (12)

2) When t = 2

M (2)
i j =

∑
m,n

U 2
im;n j =

∑
m,n,a

Uim;anUan;n j

=
∑

n,m,a

Uim;anUan;n j

=
∑

n,m,a

2Uim;an Aan Anj

dn
−

∑
n,m,a

Uim;anδa j Aan Anj

=
∑

n,m,a

2Uim;an Anj

dn
−

∑
n,m

Uim; jn A jn Anj

(
for an unattributed graph A jn = Anj

)
=

∑
n,m,a

2Uim;an Anj

dn
−

∑
n,m

Uim; jn

=
∑

n

2Min Anj

dn
−

∑
n

Ui j; jn

=
∑

n

2Min Anj

dn
−

(∑
n

2Ai j A jn

d j
− Ai j A ji

)

= [M Q]i j − Ai j . (13)

3) When t ≥ 3

M (t)
i j =

∑
m,n

U t
im;n j =

∑
m,n,a

U t−1
im;anUan;n j

=
∑

n,m,a

U t−1
im;anUan;n j

=
∑

n,m,a

2U t−1
im;an Aan Anj

dn
−

∑
n,m

U t−1
im; jn A jn Anj

(
U t−1

im;an �= 0⇒ Aan = 1
)

=
∑

n,m,a

2U t−1
im;an Anj

dn
−

∑
n,m

U t−1
im; jn

=
∑

n

2M (t−1)
in Anj

dn
−

∑
n,m

U t−1
im; jn

= [
M (t−1) Q

]
i j
−

∑
n,m

U t−1
im; jn . (14)

Then, we focus on how to compute the later part on the
right-hand side of the above equation∑

n,m

U t−1
im; jn =

∑
n,m,a

U t−2
im;a j Uaj; jn

=
∑

n,m,a

2U t−2
im;a j A jn

d j
−

∑
n,m

U t−2
im;n j

=
∑

n

2M (t−2)
i j A jn

d j
− M (t−2)

i j

= M (t−2)
i j . (15)

Thus, we get M (t) = M (t−1) Q −M (t−2). This is exactly
the formula stated in Theorem 1 when t ≥ 3.

From Theorem 1, all the operations in this recursion are no
more than O(N3) for a graph with N nodes. It means that
the series matrices M (t) can be computed in cubic time of the
graph size.

C. Kernel Design

1) Kernel Definition for Two Graphs: Here, we will propose
a novel graph kernel based on the fast DTQW, named FQWK.

As a novel R-convolution kernel, the FQWK for two graphs,
G A and G B , is defined as follows:

KF QW K (G A, G B) =
∑

t

Kt (G A, G B). (16)

After the t th step, a subkernel Kt (G A, G B) will be per-
formed to count all the t th-level isomorphic neighborhood-pair
substructures. The formal definition of the subkernel is

Kt (G A, G B) =
∑

m,n∈G A

∑
u,v∈G B

�
(
S(t)

mn, S(t)
uv

)
(17)
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where � is a Dirac function as follows:

�
(
St

mn, St
uv

) = {
1, if M (t)

mn = M (t)
uv

0, otherwise.
(18)

Here, M (t)
mn and M (t)

uv are the quantum superposition ampli-
tude of the t-level neighborhood-pair substructure S(t)

mn and S(t)
uv ,

in the graph G A and G B , respectively.
2) Kernel Computation for a Graph Data Set: In the above-

mentioned definition, the computation of the simulation of the
DTQW is the most time-consuming procedure. Therefore, for
a graph data set with many graphs, this procedure needs to
be performed only once on each graph actually, before the
pairwise kernel computation.

Suppose that a graph data set includes K graphs and each
one has N unattributed nodes.

First, a T -step DTQW will be processed step-by-step on
every graph. By using the fast simulation method, the superpo-
sition matrices M (t) can be computed according to Theorem 1.
In order to reduce the amplitude comparisons, for the i th
matrices M (i) of every graph G, the histogram of all the
N2 items is constructed as the i th feature F (i)

G of graph G.
Therefore, for each graph, a T -dimension feature vector can
be extracted. The pseudocode for the implementation of graph
feature extraction algorithm is shown in Algorithm 1.

Algorithm 1 Graph Feature Extraction Algorithm
Require: Graph G, with N nodes; di , i = 1, . . . , N are the

node degrees; T is the fixed step of discrete-time quantum
walk, T ≥ 3.

Ensure: F (t)
G : the t-step feature of G, t = 1, . . . , T .

1: function Graph Feature(G, T )
2: Get the adjacency matrix A
3: D = diag

(
2
d1

, 2
d2

, · · · , 2
dN

)
4: M ← AD A − 2D−1

5: F (1)
G ← histogram(M)

6: M (2) ← M D A − A
7: F (2)

G ← histogram
(
M (2)

)
8: for t = 3→ T do
9: M (t)← M (t−1) D A − M (t−2)

10: F (t)
G ← histogram

(
M (t)

)
11: end for
12: end function

Then, for each graph pair G A and G B in the data set,
every feature pair F (t)

G A
and F (t)

G B
will be compared to obtain

the number of the neighborhood-pair substructures with the
same quantum superposition amplitude. For convenience of
calculations, for every feature pair F (t)

G A
and F (t)

G B
, an aligned

and padding operation will be performed to obtain f (t)
G A

and
f (t)
G B

, so that the inner product 〈f (t)
G A

, f (t)
G B
〉 is just the frequency of

the isomorphic substructure pairs. The implementation of the
proposed kernel FQWK is shown in Algorithm 2. For the input
graph data set, the algorithm of FQWK can output a kernel
matrix KF QW K ∈ RK×K , where the entry KF QW K (Gi , G j )
denotes the number of isomorphic neighborhood-pair substruc-
tures of Gi and G j .

Algorithm 2 FQWK Algorithm
Require: Graph dataset {G1, G2, . . . , G K }, where K denotes

the number of graphs in the dataset; T is the fixed step of
node-to-node discrete-time quantum walk, T ≥ 3.

Ensure: Graph kernel KF QW K ∈ RK×K

1: for i = 1→ K do
2: F (t)

Gi
← Graph Feature(Gi , T ), t = 1, . . . , T

3: end for
4: for each graph pair Gi and G j do
5: for t = 1→ T do
6: f (t)

Gi
, f (t)

G j
= alignment

(
F (t)

Gi
, F (t)

G j

)
7: Kt

(
Gi , G j

)← 〈
f (t)
Gi

, f (t)
G j

〉
8: end for
9: KF QW K

(
Gi , G j

) =∑T
t=1 Kt

(
Gi , G j

)
10: end for

Finally, we will evaluate the time complexity of calculat-
ing the kernel matrix. For each graph G of the data set,
a T -step DTQW needs to be performed first to extract the
T -dimension feature vector FG . It will cost no more than
O(K T N3+K T N2logN) for lines 1–3 in Algorithm 2. In lines
4–9, to compute the kernel matrix, for all the graph pairs,
the neighborhood-pair matching procedures are performed,
which costs about O(K 2T N2). Overall, the total time com-
plexity of N2QWK is about O(K T (N3+N2logN)+K 2T N2).

D. Discussion

1) Kernel Validation: According to the Mercer’ theo-
rem [39], a valid graph kernel must be symmetric and positive
semidefinite (p.s.d.). Here, we will give a brief proof of the
validation of FQWK.

Theorem 2: The proposed graph kernel FQWK is valid.
Proof: The FQWK is symmetric and p.s.d, and thus, it is
valid.

1) Symmetric: Based on the definition of FQWK
in (16), it is obvious that KF QW K (G A, G B) =
KF QW K (G B , G A).

2) p.s.d.: In the definition of FQWK, after the tth step
of quantum walk, a matching subkernel Kt (G A, G B)
will be performed to count all the t th-level isomorphic
neighborhood-pair substructures. It is known that the
summation kernel of some p.s.d. ones is still p.s.d.
Because the Dirac function is p.s.d, the subkernel
Kt (G A, G B) is p.s.d. Therefore, FQWK is p.s.d.

2) Theoretical Analysis of FQWK: From the abovemen-
tioned definition, FQWK seems an instance of walk-based
graph kernels. It is close to RWK and BWK because we only
use DTQW to replace classical random walk and backtrack-
less walk. Therefore, the computation procedure of FQWK
is comparatively simple compared with other R-convolution
kernels.

Besides, compared with RWK and BWK, the proposed
FQWK can represent more powerful structural characteristics.
The reason is analyzed using the following example. Fig. 6(a)
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Fig. 6. (a) Example graph with node 8. (b) Three-level neighborhood of
node v2 and the substructures S(1)

23 , S(2)
23 , and S(3)

23 . (c) Neighborhood of v8

and the substructures S(1)
83 , S(2)

83 , and S(3)
83 .

shows an example graph with eight nodes; focus on two
node pairs: node v2 to node v3 and node v8 to node v3. The
neighborhood of node v2 and node v8 and the one-to-three
level neighborhood-pair substructures are shown in Fig. 6(b)
and Fig. 6(c), respectively. It is obvious that both S(1)

23 and
S(1)

83 have only one walk (path). S(2)
23 and S(2)

83 are both empty.
Meanwhile, there are six three-length walks included in S(3)

23
and S(3)

83 , and only one path (or backtrackless walk) exists in
each of them, namely, v2v5v6v3 and v8v7v6v3, respectively.
Based on the counting of walks or paths, the neighborhood-
pair substructures are isomorphic when using the RWK and
other walk-based kernels. Therefore, node v2 and node v8 can
be matched. However, it is obvious that the node v2 and node
v8 should not be matched as the adjacent node v1 and v4 cannot
be matched. Therefore, classification error will be caused by
using the RWK and BWK if such a kind of structure exists.
If the proposed FQWK is used, the superposition amplitude
of the substructure S(3)

v2v3
is −1/9, which is different from the

substructure S(3)
v8v3

with amplitude 1, so the two substructures
do not match. Therefore, the proposed FQWK outperforms
the existing walk-based kernels as more powerful features
can be represented by the auxiliary substructure S(k)

ab . The
false-positive substructure matching will be reduced, and the
classification performance can be improved by the FQWK.

In fact, FQWK is a member of the subgraph-based kernel
family as the core procedure is the neighborhood-pair sub-
structure matching based on the comparison of the quantum
superposition amplitudes over the sets S(k)

ab , rather than the

Fig. 7. Two example graphs with node 8. (a) Eight-node example graph with
two squares and one triangle. (b) Another eight-node example graph with two
squares and one triangle but the relative position is different with (a).

counting of individual walks. Compared with the existing
subgraph-based kernels, the FQWK is better because the
relative position between the substructures is considered. For
the graph in Fig. 6(a) and two graphs in Fig. 7, one triangle and
two squares are included in all the three example graphs, but
the relative position among these three graphlets are different.
Therefore, the three graphs should not be matched. In the com-
putation of the traditional subgraph-based kernels, the relative
position between the adjacent substructures is usually ignored
in the traditional kernel computation, which will lead to the
error matching of the three graphs. In FQWK, the auxiliary
substructure S(k)

ab can be regarded as the intersection between
the k-level neighborhood of node a and node b, and quantum
superposition amplitude of every neighborhood-pair substruc-
ture S(k)

ab will be affected by two kinds of quantum interference.

1) The inter-interference among all the quantum walks
that are included in the neighborhood-pair substructure.
In Fig. 6(b) and 6(c), the red solid lines denote these
included quantum walks. The quantum interference
among them will affect the superposition amplitude of
the substructure S(k)

ab .
2) The intra-interference from the adjacent

neighborhood-pair substructures. In Fig. 6(b) and 6(c),
the black dashed lines denote the quantum walks
excluded in S(k)

ab . However, via quantum interference,
the superposition amplitude of one substructure will
also be affected by its adjacent ones.

Therefore, compared with other subgraph-based methods,
FQWK can extract more powerful substructure features by
catching more extra information on the location relationships
of local substructures.

Previous work on quantum walks [28], [32], [34] has shown
that quantum walks are sensitive to structures in which random
walks are not. We demonstrate, empirically in Section IV,
that our transition matrix retains these properties and produces
excellent performance on standard data sets.

IV. EXPERIMENTS

In this section, the newly proposed kernel FQWK is evalu-
ated on classification problems for unattributed graphs. Here,
we perform a fast DTQW in the computation of FQWK.
In the test, we choose the user-defined fixed step T as 10.
The discussion of the choice of parameter T is given in
Section IV-B3. We also compare FQWK with several other
popular graph classification methods as follows.

1) RWK: The version of [40] is used to test.
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2) WLK [10]: For the sake of fairness, the highest dimen-
sion of the Weisfeiler–Lehman isomorphism is set to
be 10.

3) GHK [17]: The Dirac kernel is used to be the base node
kernel.

4) AGK [22]: The graphlet size is chosen to be 4.
5) ASK [11]: The density matrix of the continuous-time

quantum walk is used to enhance the node attributes.
The entropic representation layer is also set to be 10.
For WLK, GHK, and ASK, we use node degree as the
original node attribute for unattributed graphs.

6) Quantum Jensen–Shannon kernel (QJSK) [32]: The
density matrix of ten-step DTQW is used for the com-
putation of Von Neumann entropy.

7) Edge-Based Matching Kernel Based on DTQW
(DQMK) [35]: A ten-step DTQW is used to perform
edge matching, and the highest layer of the depth-based
representation is set to be 10.

8) PATCHY-SAN Convolutional Neural Network
(PSCN) [41]: Similar to the behavior of CNNs
on images, PSCN first extracts fixed-sized local patches
from nodes and neighborhoods as the receptive fields for
convolution filters and then uses the graph canonization
tool NAUTY to apply CNNs on these patches. Here,
we set the receptive field size as 10.

9) Deep Graph Convolutional Neural Network
(DGCNN) [42]: DGCNN inherits the PSCN idea
of imposing an order for graph nodes but integrates this
step into the network structure, namely the SortPooling
layer. We set the sortpooling parameter as 0.6 and the
learning rate as 0.0001. Both PSCN and DGCNN are
trained with the epochs of 150 and the batch size of 25.

All the experiments were tested in MATLAB R2016b on
an Intel Xeon Core E5-1620 CPU with 8-GB memory. All the
runtime consumption tests were executed with a single thread.

A. Data Sets

Both real-world and synthetic data sets are used to evaluate
graph kernels.

1) Real-World Data Sets: To evaluate the classification
accuracy, seven chemical data sets with ground-truth labels
are collected [43]. All the chemical molecules are converted
into unattributed graphs by representing atoms as nodes and
the covalent bonds as edges.

AIDS consists of graphs representing molecular com-
pounds from the AIDS Antiviral Screen Database of Active
Compounds. There are 2000 elements totally (1600 inac-
tive elements and 400 active elements), which represents
molecules with activity against HIV or not. COX2 has
467 cyclooxygenase-2 inhibitors and has been assembled in
this data set. DHFR consists of 756 inhibitors of dihydrofo-
late reductase for the inhibition of the enzymatic reduction
that converts dihydrofolate to tetrahydrofolate. ENZYME col-
lects 600 graphs representing tertiary protein structures, each
labeled with one of the six EC top-level classes. MUTAG
includes 188 graphs representing mutagenetic compounds,
labeled according to their mutagenic effects. NCI1 is a set
of 4110 graphs representing a subset of chemical compounds

TABLE I

DETAILED INFORMATION OF THE REAL-WORLD DATA SETS

TABLE II

THREE NONISOMORPHIC GRAPH DATA SETS. IN COSGRAPH, EVERY

COSPECTRAL GRAPH PAIR IS USED AS A TEST. IN REGGRAPH AND

SRGRAPH, PAIRWISE COMPARISONS OF THE GRAPHS IN EACH
CLASS ARE EVALUATED

screened for activity against nonsmall cell lung cancer cell
lines. The Predictive Toxicology Challenge (PTC) data set
records the carcinogenicity of several hundred chemical com-
pounds. These graphs are very small and sparse, with 20–
30 nodes and 25–40 edges. We select the graphs of male mice
(PTC MM) for evaluation. There are 336 test graphs in the
MM class.

Table I shows the statistical information of these chemical
data sets.

2) Synthetic Data Sets: In order to further evaluate the
distinguishing ability of the kernels, some special data sets
are chosen [44], as shown in Table II. CosGraph includes
5048 pairs of ten-node graphs. Each pair of graphs has the
same graph spectrum, which is called a cospectral graph pair.
RegGraph and SRGraph consist of 31 classes of regular graphs
and 11 classes of strong regular graphs, respectively. Within
each class, every graph is regular or strong regular but not
isomorphic with others.

B. Results

1) Test Result for Graph Classification: Graph classification
is an important application, which is quite related to the
measurement of the graph similarity. Here, we investigate
the performance of the novel graph kernel for the data sets
in Table I.

For each data set, tenfold cross-validation tests are per-
formed using all the mentioned methods. For graph kernels,
the classification accuracy is accomplished via using the
C-support vector machine (C-SVM) with the optimal parame-
ters [45]. The average accuracy (± standard error) and runtime
results are reported in Tables III and IV.

Table III reports the average classification accuracy and the
relative standard error of each method and data set. For the
data sets AIDS, COX2, DHFR, ENZYMES, and PTC_MM,
the new kernel FQWK achieves the highest accuracy, which
yields a remarkable improvement compared with the other
state-of-the-art kernels and graph neural networks. Only for
MUTAG and NCI1, GHK and WLK show a slightly better
performance than FQWK, respectively. Although the classifi-
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TABLE III

AVERAGE ACCURACY (IN % ± STANDARD ERROR) ON GRAPH CLASSIFICATION BENCHMARK DATA SETS

TABLE IV

COMPUTATION TIME OF THE GRAPH CLASSIFICATION METHODS (FOR GRAPH KERNELS, WE FOCUS ON THE COMPUTATION TIME OF KERNEL MATRIX.
FOR GRAPH NEURAL NETWORKS, THE TRAIN TIME OF THE NETWORK MODEL IS LISTED. THE LAST FOUR KERNELS ARE DESIGNED BASED

ON THE QUANTUM WALK)

cation for unattributed graphs is quite difficult, FQWK turns
out to be the best competitor in terms of accuracy on most of
these benchmark data sets.

The reasons for the effectiveness are threefold.

1) Due to the powerful discrimination of quantum inter-
ference, FQWK can establish the substructure location
relationship, which is deficient in the traditional methods
RWK, WLK, GHK, AGK, PSCN, and DGCNN.

2) Compared with the information-theoretic kernel QJSK
that computes the graph similarity via the global struc-
tural information, FQWK can reflect richer local con-
volutional characteristics of graphs via performing step-
by-step evolution of DTQW.

3) The quantum walk kernels, ASK and DQMK, perform
the edge matching and subtree matching to compute
graph similarity, while FQWK can capture finer-grained
features of graphs via matching the neighborhood-pair
substructures.

Table IV shows the runtime comparison of these classifi-
cation methods for each data set. FQWK achieves a moder-
ate performance. However, compared with ASK, QJSK, and
DQMK, FQWK is the fastest one among all the kernels
based on the quantum walk. Via the fast recursive method,
the runtime of FQWK is close to that of RWK.

2) Test Result for Distinguishing Ability: Some similar
and nonisomorphic graphs are usually difficult to distinguish
via inexact graph comparison methods. Therefore, a graph
kernel cannot be applied to some kinds of graphs. Here,
the distinguishing ability for similar graphs is used to compare

TABLE V

FAILURE RATES (%) FOR DISTINGUISHING THE NONISOMORPHIC GRAPHS
(- DENOTES THAT THE TEST CANNOT BE FINISHED BY THE KERNEL

IN TEN DAYS). HERE, ONLY GRAPH KERNELS ARE CONSIDERED

TO BE TESTED

the applicability of these graph kernels. We utilize the failure
rate as the applicability measurement for the graph kernels.
Table V shows the failure rates of these graph kernels for
distinguishing the similar graph pairs collected in Table II,
including the cospectral graphs, regular graphs, and strong
regular graphs.

RWK is the worst kernel, which cannot be used to dis-
tinguish these similar graphs. WLK can only locate the dif-
ference of the cospectral graphs but fails for regular graphs.
Generally, compared with the traditional kernels, the quantum
walk kernels achieve better distinguishing ability because the
slight topological difference will be amplified by quantum
interference. In particular, FQWK has the lowest failure rates
for all the three kinds of nonisomorphic graphs and, thus, out-
performs the other kernels. The powerful ability of FQWK for
distinguishing nonisomorphic graphs, even including strong
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Fig. 8. (a) Classification accuracy (%) and standard error of using FQWK
and WLK for the data set COX2 with different T ’s. (b) Classification accuracy
(%) and standard error of using FQWK and WLK for the data set PTC_MM
with different T ’s.

Fig. 9. (a) Computation time (s) of using FQWK and WLK for the data
set COX2 with different T ’s. (b) Computation time (s) of using FQWK and
WLK for the data set PTC_MM with different T ’s.

regular graphs, comes from the fact that both the interquan-
tum and intraquantum interferences of the neighborhood-pair
substructures are included.

3) Test Result About the Parameter T : In the proposed
algorithm, the maximum walk step T should be user-defined.
This parameter is also used in QJSK, ASK, and some other
kernels to restrict the walk steps. In essence, due to the fact
that the amplitude propagation occurs in the neighborhood of
nodes, the maximum walk step T actually limits the order of
the neighborhood-pair substructures that are explored in the
algorithm. In the former tests, we set T = 10.

In this part, the influence of T is under consideration. Our
proposed kernel FQWK and WLK are tested, for example,
using different T ’s for the data sets COX2 and PTC_MM.
We change T from 5 to 25. The accuracy and computation time
results are shown in Figs. 8 and 9, respectively. We find out
that the accuracy keeps almost unchanged. However, the com-
putation time has a nearly linear growth with the increase
in T . The reason is that much of the structural information has
already been contained in the low-order neighborhood of the
node, which is quite discriminative for the graph classification
based on the local structure matching. With the increase
in T , there are barely isomorphic and large substructures
between two graphs so that the classification accuracy nearly
maintains. Therefore, it is reasonable that we choose the same
parameter T for all graph kernels that extract features via node
neighborhoods.

V. CONCLUSION

In this article, a novel R-convolution graph kernel FQWK
is proposed based on the fast DTQW. Via the powerful
quantum interference of the DTQW, more reliable location
correspondences between the neighborhood-pair substructures
are located so that FQWK can extract finer-grained struc-
tural features, which the traditional R-convolution kernels
are deficient to. Extensive experiments demonstrate that the
classification accuracy of FQWK outperforms that of the state-
of-the-art graph kernels, and the distinguishing ability for
nonisomorphic graphs is significantly improved.

In addition, a novel and fast simulation method is proposed
for computing the transition matrices of the DTQW so that
FQWK can achieve the highest computation speed among all
the existing kernels based on the quantum walk.
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