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Abstract— This paper introduces a novel approach, inspired
by the principles of Quantum Computing, to address web bot
detection in terms of real-time classification of an incoming
data stream of HTTP request headers, in order to ensure the
shortest decision time with the highest accuracy. The proposed
approach exploits the analogy between the intrinsic correlation
of two or more particles and the dependence of each HTTP
request on the preceding ones. Starting from the a-posteriori
probability of each request to belong to a particular class, it is
possible to assign a Qubit state representing a combination of the
aforementioned probabilities for all available observations of the
time series. By leveraging the underlying mathematical details
of superposition and entanglement on specific subsequences,
it is possible to devise a measure of membership to each class,
thus enabling the system to take a reliable decision when a
sufficient level of confidence is met or to continue with additional
observations. The results reported in this paper objectively
show the effectiveness of our quantum-inspired algorithm which
outperforms other state-of-the-art approaches, including our own
one based on the Sequential Probability Ratio Test.

Index Terms— Quantum-inspired computing, bot detection,
sequential classification, early decision, multinomial classification,
multivariate sequence classification.

I. INTRODUCTION

IN THE era of Big Data, huge volumes of varied data
are collected at high velocity in several contexts, posing

new challenges concerning timely recognition of anomalous
or critical events.

Whenever event data are indexed on time, the relevant
dataset represents a time series where each observation is
somehow related to its temporal neighbors. Being able to
automatically classify a sequence is a highly valuable task
and even more important is the ability to label a time series
with the fewest possible observations [1], [2].
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Many time series applications consider classification accu-
racy as the essential point and no particular importance is given
to the speed of decision. An example of such tasks is forgeries
detection on signatures, where on-the-fly (OTF) classification
is not required whereas high accuracy is a crucial performance
metric [3].

Conversely, timely decisions are an essential feature on an
extrusion line in order to detect and amend possible defects
before the product integrity gets compromised [4].

These simple considerations denote the dual aspects of time
series analysis, that turn out in selecting different approaches
to deal with the various problems. As reported in [5], the
approaches can be categorized in offline, whenever a complete
sequence should be analyzed before labeling, or online (also
known as on-the-fly), if a decision must be made as soon as
possible, based on incoming observations.

The latter is commonly known as early classification of
time series [1]. Examples of such challenging problems can
be found in various industrial scenarios, as shown in Table I,
often related to the processing of data streams from connected
devices or sensors (Internet of Things), which enable harvest-
ing huge amounts of data, most frequently as a sequence of
correlated observations or measures. Even video sources can
be treated as a sequence of time related events, where each
event is associated to a single video frame.

In all those cases, such as the ones listed in Table I,
measures are collected over time and need to be analyzed in a
timely manner to extract useful information about potentially
critical conditions.

Time series classification models usually target the recog-
nition rate as their main goal, but this is not sufficient for
early classification or prediction where earliness of decision
becomes a mandatory key performance indicator.

A sequence of events that, for whatever reason, may end up
compromising a piece of equipment should be detected in the
shortest possible time, as any delay could cause damages and
unnecessary costs [6].

This paper addresses the problem of on-the-fly early clas-
sification for online data streams, where data are usually
statistically dependent and inherently correlated over time as
in the case of web bot detection, a highly critical task in cyber-
security applications, where we need to distinguish automatic
web robots from human users.

Moreover we aim at labeling a temporal sequence of events
using the smallest number of observations. The task is there-
fore an early decision problem, based on an incomplete set
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TABLE I

EXAMPLE OF EARLY CLASSIFICATION PROBLEMS FOR TIME SERIES

of events that requires OTF evaluation and stretches over an
undefined time horizon. A critical aspect is finding the optimal
trade-off between decision speed, defined in relation to the
number of observations required by the trained system to take
a decision, and classification accuracy, which are conflicting
constraints.

To this aim, we present a new method for early classification
of online data streams, inspired by the principles of quantum
computing, able to classify a series of HTTP requests with
outstanding accuracy and very effective in early decision
making without any knowledge of sequences’ time horizon.
Please consider that no physical interpretation of quantum
theory is implied by our algorithm despite the analogical
adoption of the underlying mathematical details. The proposed
approach is completely myopic and no delay cost estimate
is required to force early decision because it leverages the
intrinsic structure of data to propose a class label.

One important remark is that, to the best of our knowledge,
no public datasets are available for bot detection, making it
difficult to compare the presented results to other relevant
studies; hence, the SPRT approach, originally discussed in [7],
has been compared with the quantum-inspired algorithm to
confirm its efficacy both in terms of classification metrics and
decision time.

The remainder of this paper is organized as follows:
Section II presents the state of the art on possible approaches
to early data stream classification; Section III introduces
the theoretical background on quantum computing, which
is required to understand the proposed method; Section IV
illustrates the validation process of the proposed method using
synthetic data; Section VI describes the test problem that has
been used to verify this novel approach while Section VII
presents the structure of the dataset used for bot detection and
the relevant features. Section VIII describes its application to
the chosen classification problem, regarding the analysis of
web traffic logs of a real e-commerce portal; in Section IX
the experimental results are reported and commented; lastly,
Section X offers concluding remarks and cues for extending
the research and the possible areas of future application.

II. STATE OF THE ART

Monitoring natural and industrial processes often produce
massive volumes of sequential data (data streams), usually
indexed over time.

Several methods are available for modeling sequential data
but Statistical models, such as ARMA or ARIMA [8], [9],
aimed at time series prediction, assume the linearity of data
model which means that the time series is either stationary
or convertible into stationary. Most often, time series are non-
stationary because their statistical properties vary over time
and thus require data models built on training data [10], such
as Artificial Neural Networks (ANN) [9].

Often, machine learning techniques are not suitable for
sequential data because these algorithms disregard the statisti-
cal structure of a time series and are sensitive to noise, which
is always present in data streams.

Many effective time series classification approaches are
available in literature [2], [11], but they are not suitable for
early decision: it is worth underlining that early decision is
a task for analyzing data streams collected in real time and
locating the earliest event that supports a reliable decision,
according to a given cost function, from an incomplete set of
temporally related data. It is an example of optimal stopping
theory [12] because a given action is taken from sequential
observations of a random variable, according to misclassifica-
tion or delay costs.

The authors of [13] present a time series classification
strategy from incomplete information, introducing the notion
of reliability as the probability required when labeling an
incomplete time series as if it were the complete data stream.

As an alternative for sequential binary classification, the
authors also refer to SPRT [14], which is a Bayes-optimal
approach, but put in evidence the greedy connotation of this
probabilistic model, where new observations have no impact
on the cumulative log-likelihood calculated from previous
ones.

SPRT has also been successfully used in [7] as a probability
integrator, with reject option, on the same BOT detection task
proposed in this paper; it outperforms a real time binomial
classification approach, presented in [15], that relies on a
first-order Discrete Time Markov Chain (DTMC) [16], [17]
to estimate the class conditional probability according to the
likelihoods of initial state and the following transition patterns.

In [18], the authors address early classification for some
time-sensitive applications in healthcare by means of an
effective 1-Nearest Neighbor (1NN) classifier, whose major
advantage is not needing any feature selection, pre-processing,
training nor configuration parameters.
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In [6], early classification is made by means of probabilis-
tic classifiers, named Early Classification framework based
on class Discriminativeness and Reliability of Predictions
(ECDIRE), that learn the timestamps when accuracy begins to
exceed class defined thresholds. The predictions are released
only when timestamps match the learned values. It focuses
on a set of time series of equal length, but ECDIRE can be
utilized on variable or unknown length sequences with few
minor changes.

Early odor identification by means of electronic nose sen-
sors is addressed in [19], where the authors analyze subsequent
signal chunks collected at the sensors to feed an ensemble of
serially connected classifiers, with a reject option, and assign
a class label when sufficient confidence is attained.

Most early classification approaches in literature, such
as [2], [20], work on univariate time series and need the entire
sequence upfront. The approaches for multivariate sequences
become more complex because the distance measures must be
able to express the correlation among features [21].

Multivariate time series cannot be treated as a collection
of univariate ones, because there exists a hidden relationship
among features that holds important information for the rep-
resentation of real processes.

In order to leverage the correlation property in multivariate
time series, [22], [23] propose Correlation Based Dynamic
Time Warping (CBDTW), which creates a non-overlapping
segmentation of a time series by means of:

• Principal Component Analysis (PCA) based similarity
measures to segment an unclassified sequence;

• a cost function to map each chunk to a non-negative real
number and DTW distance to train the classifier.

Statistical analysis drives an interesting adaptive
non-myopic approach [24] that requires the entire sequence
be available upfront and considers a penalty factor, similarly
to [19], related to decision delay and a misclassification cost
to balance quality of prediction and speed of decision.

Another early classification model suitable for multivariate
time series is presented in [25] on biomedical data, specifically
in multivariate gene expression. This hybrid approach binds
a generative Hidden Markov Model (HMM) model [26], that
exploits dependencies among observations on temporal seg-
ments, and a Support Vector Machine (SVM) [27] for efficient
discrimination of sequences.

A totally different approach to early classification of bio-
medical multivariate time series based on shapelets is proposed
in [28]. The method, named Multivariate Shapelet Detection
(MSD), can achieve highly accurate classification rates ana-
lyzing up to 64% of each test sequence.

The strategy proposed in [29] looks for sub-concepts or
sub-clusters that characterize the same class label. The feature
variables are independently scanned to uncover the inner
structure of the MTS by means of core shapelets eligible for
the classifier.

In [54], the authors report various quantum algorithms that
are equivalent to classical machine learning but use quan-
tum optimization to accelerate the training process or target
binary classification problems such as Quantum SVM [55]
or Quantum PCA [56]. They also propose an interesting

Quantum Neural Network (QNN) for time series prediction
and modeling.

A true quantum algorithm for time series classification is
proposed in [57] where the authors make use of quantum com-
puting by formulating the reconstruction task as a quadratic
unconstrained binary optimization (QUBO) problem, although
not quantum-inspired.

To the best of our knowledge, only a very limited number of
quantum-inspired classification methods are available, mainly
focused on binary problems.

Binary classification is the objective of a very recent
quantum-inspired method, proposed by [30], that applies quan-
tum formalism to classical computational problems, confirm-
ing a growing interest on the topic and its promising outcomes.

A binary classifier is used to solve the quantum state dis-
crimination problem introduced by Helstrom [31] considering
that multiple copies of a quantum state can provide more
information than the state itself. This supervised algorithm,
tested on real-world and simulated binomial datasets from
Penn Machine Learning Benchmark repository [32], outper-
forms, on average, all the most frequently used classifiers.

Another approach, described in [33], might look similar to
the one in this paper: it estimates the density operators for each
class and applies projective measurement on quantum states
to label each data element. Though, it does not address time
series, nor it exploits entanglement in classification, which
confirms the innovative nature of our work.

The algorithms analyzed so far propose several possible
approaches to early time series classifications, but are either
too specific for particular tasks or present some limitations
with regard to the number of features in the input stream or
the number of classes in the target or require that the whole
time series be available upfront. Our proposal gets over the
aforesaid limitations by introducing a real-time classification
approach that, in principle, works with any number of features
and classes to determine a reliable decision at the earliest
moment in time, never considering the complete sequence.

III. THE QUANTUM CLASSIFIER

Quantum computing applies quantum-mechanical principles
to data processing [34].

Those fundamental principles are:
• Superposition that results from linearity of the solu-

tions of Schrödinger’s equation. Adding together multiple
quantum states determines another valid state and, con-
versely, any quantum state can be split up as sum of any
number of valid states.

• Entanglement that occurs when the state of a composite
system cannot be written as a product of states of its
component systems [53]. Entangled particles can express
stronger connection than their classical analogues.

The quantum bit or qubit is a two-state quantum system
that can be in a superposition of state 0 and 1 at the same
time, unlike the classical bits.

The quantum equivalent of classical 0 and 1 logic states is
defined by the basis states of a qubit, which can be represented
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in ket notation by the following column vectors [35]:

|0〉 =
(

1
0

)
and |1〉 =

(
0
1

)
.

The state vectors form an orthonormal basis, hence their
inner products 〈x |y〉 are:

〈0|0〉 = 〈1|1〉 = 1 and 〈0|1〉 = 〈1|0〉 = 0,

where the bra operator 〈x | is the conjugate-transpose of ket ,
defined as 〈x | = |x〉†.

A pure qubit state |ψ〉 can be expressed as superposition of
the basis states

|ψ〉 = α |0〉 + β |1〉 , (1)

where α and β, termed probability amplitudes, are usually
complex numbers such that |α|2 and |β|2 represent the prob-
ability that, after a measure, the state |ψ〉 is detected in the
state |0〉 or |1〉 respectively, thus leading to

|α|2 + |β|2 = 1. (2)

The factorization of two or more qubits [36] is called a
composite state, computed by means of the tensor product ⊗,
as in the following example:

|011〉 = |0〉 ⊗ |1〉 ⊗ |1〉 . (3)

As sequential data streams are generally characterized by
an intrinsic correlation among nearby samples, entanglement
becomes a fundamental property to enforce the interrelation-
ship among observations of a time series.

By definition, a state is considered entangled if it is not sepa-
rable into its fundamental parts, that is, two distinct particles of
a system are entangled if an item cannot be described without
considering the other one. Moreover, they can be entangled
even if separated by considerable distance [37].

As an example,

|ψ〉 = 1√
2
(|00..0〉 + |11..1〉)

represents n entangled qubits in equal superposition, or Cat-
State; in the example, states |00..0〉 and |11..1〉 have equal

probabilities | 1√
2
|2 = 1

2
. The above equation is not separable

because it is impossible to write it as a tensor product.
The term CatState refers to quantum superposition of two

macroscopically distinct states and is derived from the hypo-
thetical Schrödinger cat’s experiment.

The behavior of a physical system can be described by
a general framework defined by four postulates of quan-
tum mechanics. Two postulates are related to superposition
and measurement principles, whereas the third one describes
the evolution of a closed quantum system in terms of the
Schrödinger equation. Finally, the fourth one describes the
admissible states for composing two or more subsystems and
asserts that the state space of a composite quantum system
is the tensor product (symbol ⊗) of the state space of its
components [38].

If |ψ1〉 . . . |ψn〉 describe the state of n isolated quantum
systems, the state of the composite system is

|ψ〉 = |ψ1〉 ⊗ · · · ⊗ |ψn〉 .
The last aspect to consider is how to measure the probabili-

ties of each basis state from the resulting composite state: in a
real quantum system, the measurement process alters its state,
which turns into the pure state corresponding to the outcome
of measurement. It can be regarded as an interface between
the quantum and the classical domains, being the only way to
extract useful information from a quantum system [38].

According to the third postulate of quantum mechanics,
a collection of measurement operators acting linearly on the
state space of the system can be used to measure a quantum
state: this is commonly termed projective measurement.

If a system can have M possible valid outcomes, a set of
{Pm : m ∈ M} operators can be identified in order to obtain
the probability of measuring m from the system state |ψ〉,
which is

p(m) = 〈ψ| P†
m Pm |ψ〉 ,

where the symbol † indicates complex conjugation and trans-
position.

The operators are subject to the following condition:∑
m∈M

P†
m Pm = I,

which ensures that all probabilities add up to 1, as per:∑
m∈M

p(m) =
∑

m∈M

〈ψ| P†
m Pm |ψ〉 = 〈ψ| I |ψ〉 = 1.

For the two basis states |0〉 or |1〉, measurement is per-
formed through the projectors P0 = |0〉 〈0| or P1 = |1〉 〈1|
respectively, gathering the probabilities p0 and p1.

Therefore, the probability p0 of a qubit being in state |0〉 can
be obtained through projective measurement by the following
equation

p0 = 〈ψ| P0 |ψ〉 . (4)

Alternatively, whenever post-measurement state is not sig-
nificant, it is possible to define a density operator that
describes the whole system [38]

ρ =
∑

i

Pi |ψi 〉 〈ψi | , (5)

with the following constraints:
1) Trace condition: Tr(ρ) = 1,
2) Positivity condition: ρ is a positive operator.

The trace is a linear operator, hence in the case of a two state
quantum system, the trace condition can be expanded as

Tr(ρ) = Tr(
1∑

i=0

Pi |ψi 〉 〈ψi |)

= Tr(P0 |ψ〉 〈ψ|)+ Tr(P1 |ψ〉 〈ψ|),
which leads to the generalized probability pi of state |i〉,
expressed by

pi = Tr(Pi |ψ〉 〈ψ|). (6)
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In this paper, we propose a multinomial generalization
of this setting, called Quantum Entangled Multinomial
Classifier (QEMC), by defining the reference orthonormal
basis for N classes as

|0〉 =

⎛
⎜⎜⎜⎝

1
0
...
0

⎞
⎟⎟⎟⎠ |1〉 =

⎛
⎜⎜⎜⎝

0
1
...
0

⎞
⎟⎟⎟⎠ … |N − 1〉 =

⎛
⎜⎜⎜⎝

0
0
...
1

⎞
⎟⎟⎟⎠ .

A pure qubit state |ψ〉 derives from the superposition of all
basis states, according to equation

|ψ〉 = α0 |0〉 + α1 |1〉 + · · · + αn−1 |N − 1〉 , (7)

where |αi |2 is the probability of state |i〉 and
∑ |αi |2 = 1.

At each time step t , let fi (xt ), i ∈ [0, N − 1] be the class
conditional probabilities of current observation xt in the data
stream.

Let

αi,t = √
fi (xt )

then T subsequent observations of class i can be composed
into a T -qubit state |ψi 〉 by means of:

|ψi 〉 = αi |i i . . . i〉
= αi,0 |i〉 ⊗ αi,1 |i〉 ⊗ · · · ⊗ αi,T −1 |i〉 .

As an example, the state |ψ0〉 for a hypothetical class 0 at
the fifth observation can be computed through:

|ψ0〉 = α0 |00000〉
= α0,0 |0〉 ⊗ α0,1 |0〉 ⊗ α0,2 |0〉 ⊗ α0,3 |0〉 ⊗ α0,4 |0〉 .

The state |ψ〉 representing a whole data stream after T
observations can be expressed as the superposition of N states,
each featuring some correlation among collected observations
of the relevant class, according to:

|ψ〉 = |ψ0〉 + |ψ1〉 + · · · + |ψN−1〉 . (8)

At every time step t, the state of quantum system |ψ〉
can be measured to provide the individual class probabilities
pi (t), i ∈ [0, N − 1] and, given a task dependent level of
confidence C, make appropriate decisions as:{

i i f pi (t) ≥ C

None i f otherwi se
(9)

If None is still output when the session ends, it is eventually
classified as undecided (reject option) and considered an error.

Undecided sessions appear as a separate indicator to be
considered when tuning the appropriate level of confidence C .
As a matter of fact, undecided sessions represent the inability
of our classifier to fulfill its purpose but, even if it is clear
that the correct class cannot be designated, none of the wrong
ones can be elicited as most representative without committing
a mistake.

Eventually, as the probabilities pi (t) measured on state
|ψ〉 are normalized, for any value of C greater than 0.5, the
condition expressed by (9) becomes necessary and sufficient
for a mutually exclusive decision.

TABLE II

EXAMPLE OF GENERATED PROBABILITIES THE Session COLUMN
INDENTIFIES THE ELEMENTS IN THE SAME SERIES, WHOSE CLASS

PROBABILITIES ARE REPORTED IN THE Classi COLUMNS;
THE Label IS THE GROUND TRUTH

QEMC is also characterized as a greedy algorithm, as it
tries to achieve the best classification results by analyzing local
probability maxima, which are not guaranteed to be optimal
overall.

IV. VALIDATION ON SYNTHETIC DATA

A. Generation of Synthetic Data

The applicability of QEMC was first validated on synthetic
datasets of probabilities, generated for an increasing number
of classes.

The synthetic datasets simulate the results of an
element-wise stream classification, therefore they contain a
list of N class probabilities for a specified number of sessions
having variable length up to a desired maximum number of
samples.

In order to ensure a sensible bias for a specific class, every
session is randomly assigned a ground truth value and, for each
sample, the probability ptrue of the True class is randomly
taken from a continuous uniform distribution in the [0, 1)
interval.

The residual probability value, pres = 1 − ptrue, is then
used in combination with a Dirichlet distribution to generate
N random values that add up to pres : these likelihoods are
arbitrarily allotted to each class and ptrue is added to the True
class.

Even if a single event line doesn’t express a clear statement
on which is the True class, the session is clearly biased and
this is what the algorithm is supposed to exploit in order to
make a timely decision.

Table II displays the sample structure of a N classes data
stream, which is saved as a CSV file.

B. Measuring the Quantum State

In section III, the measurement process for determining the
qubit state has been addressed from the theoretical viewpoint,
but it is also useful to add some practical considerations about
its actual implementation.

Measurement is the only way to extract useful information
from a quantum system and, in the real world, it exhibits some
peculiar properties that should, in principle, be replicated in
software simulations. These are:

1) in a real quantum system, the measurement process
alters the state of the system;

2) after measurement, the system turns into the pure state
associated to the outcome of measurement.
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TABLE III

NUMBER OF SESSIONS PER CLASS IN SYNTHETICALLY
GENERATED DATASETS

As a consequence, in a real system, it is impossible to
estimate the likelihood of all possible basis states because,
once measured, the qubit no longer contains information about
the other ones.

Simulation software usually measures the quantum states
by generating a random number and reading the associated
output, which is what quantum theory would require.

Nevertheless, in our quantum-inspired algorithm, we are
not concerned about using a strictly rigorous approach to
measurement and, conversely, we utilize the density operator
defined in (6) to assess the probability, integrated over time,
of each individual basis state and return the top value and its
associated basis state.

Normalization of the resulting quantum state, before
measurement takes place, ensures that all probabilities add
up to one and therefore the classification threshold can be
constrained within zero and one.

V. EXPERIMENTAL SETUP

All experiments were executed on an Intel Core i7 3.4 GHz
workstation, with 16GB RAM, running Microsoft Windows
10 operating system with no CUDA support.

The software procedures were developed in Python
language [39], at version 3, with additional support of the
following standard distribution libraries: Numpy [40], Mat-
plotlib [41], Scikit-Learn [42] and Pandas [43].

Extensive testing was executed on three synthetically gen-
erated datasets, containing from two to four well balanced
classes respectively, totaling 10.000 sessions whose individual
length does not exceed 100 observations.

The detailed breakdown of sessions by class label is
reported in Table III.

A. Complexity Analysis

In its simplest implementation, the proposed algorithm
would have an intractable exponential spatial complexity and
cubic time complexity due to the use of tensor product.
Specifically, if N is the number of classes and Lmax is the
maximum length of the time series, the spatial complexity
is O(N Lmax +1) whereas the temporal one is O(L3

max ). How-
ever, the finite-memory property of the addressed application
problem can be exploited to bound the spatial requirements
and, consequently, the time complexity. A sliding window
mechanism was set up to limit the number of observations con-
sidered when calculating the entangled states. This technique
was termed peep, for it acts as a peephole on the data stream,
and it was empirically verified that peep values (window sizes)
greater than 8, in most cases, don’t bring any improvement to

the overall classification scores, which tend to flatten for peep
values greater than or equal to 4.

As an exception, in the binomial case, it is possible to com-
pute the entangled states with a simpler procedure independent
of peep. With more than three classes, experimental evidence
shows that accuracy reaches its upper limit before exceeding
the greatest bearable peep value, which was at the upper limit
of 10 on our machine.

B. Results on Synthetic Data

The problem basically aims at optimizing two contrasting
goals:

• maximize classification accuracy,
• minimize the number of observations required to make a

decision.
A possible approach is based on multi-objective optimiza-

tion, also known as Pareto optimization [44], to pick the
optimal threshold as a function of selected indicators and
optimization objectives.

Possible solutions in the decision space are rated according
to multiple objective functions to find a setting which is
optimal in some sense.

Pareto strategy defines a set of non-dominated solutions that
cannot be improved on one objective without degrading at least
one of the others.

With two objective functions, it is possible to plot the
solution space and visualize the set of Pareto optimal solutions,
which is also called Pareto frontier.

The performance indicators required to plot the Pareto fron-
tier are collected by means of a grid search on the following
algorithm parameters:

• the confidence level C , or decision threshold, with values
C ∈ {0.55, 0.6, . . . , 0.9, 0.95, 0.99, 0.995, 0.998},

• the sliding window size with peep ∈ {4, 8}.
For each configuration of the grid search, the legend for

parameters and summary indicators used in this paper is
reported in Table IV.

Table V reports, for a peep equal to four, the parameters
and their relevant metrics for those points on the Pareto front
that maximize classification accuracy, minimize the number
of undecided sessions or the length of the decision sequence.
In order to consider the worst case, undecided sessions were
included in the accuracy score.

It is evident that for low values of decision threshold,
we have contrasting results depending on the aim of Pareto
optimization, whereas on more selective thresholds the per-
formance metrics are exactly the same on both sides. At low
threshold values, it is possible to zero the number of unclas-
sified sessions, with about 5% decrease in accuracy at the
advantage of decision speed, even if the greatest number of
sessions is classified within the second or third observation.

At higher thresholds, accuracy increase exceeds 14.5% at
the cost of having 251 undecided sessions, which definitely
compensates the number of erroneously classified ones of the
former scenarios. Undecided sessions could be considered a
limitation at first glance but, if the algorithm were analyzing
a real time data feed instead of a fixed size dump file, further
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TABLE IV

PARAMETERS AND SUMMARY INDICATORS LOGGED ON GRID SEARCH

TABLE V

CLASSIFICATION RESULTS FOR 10.000 SESSIONS WITH 3 CLASSES (INCLUDING UNDECIDED SESSIONS)

observations might become available for undecided sessions
and sooner or later make a reliable decision.

With the same settings, the classifier performance can
also be assessed on an increasing number of classes, easily
generated with our tool. The metrics reported in Table VI share
DT = 0.995 and PEEP = 4 as common settings.

The ADS indicator is defined as the average, over the total
number of sequences N of decision timestamps ti weighted
by the number of sequences classified at a given instant ni ,
that is:

ADS = 1

N

N∑
i=1

ti · ni .

Even if the number of undecided sessions reduces the
overall accuracy, its value stays steady above 97%, with very
few classification errors in the binary case. If we hadn’t
considered unclassified streams, as if we could observe more
events to support a trustful decision, we could ideally reach
100% accuracy for three and four classes and 99.98% for the
binomial case respectively, with as many as 27 observations
analyzed in the single worst case.

Moreover, seventy percent of classified sessions is correctly
labeled within the fifth observation and QEMC needs only
8 steps to classify the ninety percent.

According to specific goals of the classification task, it is
possible to tune the threshold to favor either accuracy or
LDS, given that in all cases ADS indicator denotes high
classification speed on average.

This initial experimental session pointed out an intrin-
sic limitation of the proposed quantum-inspired approach,
allegedly due to the hardware specifications of our machine.
Basically, in addition to the exponential complexity related to
sequence length, also the number of classes represents a sort
of barrier hampering the adoption of QEMC.

On the test machine, whose technical specifications are
reported at the beginning of this section, up to 10 classes
could be detected simultaneously without compromising over-
all system performance: alternative hierarchical approaches
are possible but major changes to the proposed classifica-
tion architecture are required to support two or more levels
of refinement. For instance, if we were to predict possible
component failures on a cyber-physical system, it would be
possible to implement a first classification level capable of
discriminating among the potentially affected subsystem and
then pass only the involved data streams to a specialized
classifier that is fine tuned for the given subsystem.

In principle, this hierarchical approach allows to cope with
multinomial classification problems of any size, even on edge
computers with extremely limited resources.

VI. THE BOT DETECTION PROBLEM

The application area on which we focused our experiments
is cyber-security and specifically web robot detection from
HTTP request server logs [5], [45], [46], similarly to the work
of [47]–[49].
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TABLE VI

CLASSIFICATION RESULTS FOR 10.000 SESSIONS WITH 2-3-4 CLASSES

As evidenced in preceding sections, the multinomial version
of our algorithm is a generalization of the binary approach,
originally designed for bots classification from real-time HTTP
traffic data at the web server and uses the same dataset for the
experimental part in order to compare the results.

It is an early decision, multivariate, sequential classification
task on a non-stationary data stream.

Web robots, or simply bots, are software programs capable
of autonomously executing specific tasks over the internet,
whose aim can be either good or malicious [50], [51].

These autonomous agents are pervading the net and many
bots have useful purposes, such as search engine crawlers or
price comparers, but some others have malicious goals, like
stealing sensitive data, injecting malware or executing other
harmful activities, and therefore must be identified as soon as
possible to reduce their negative effects.

Usually, bots are detected through offline analysis of web
server logs because it allows for a deeper understanding of
their behavioral model thus putting in evidence the crawling
differences between humans and robots [52]. Nevertheless,
it would be helpful to enable web servers to tell robots and
humans apart in real time and implement specific management
policies that ensure the best user experience.

Concerning real time detection, to the best of our knowl-
edge, two methods require special attention and therefore will
be analyzed in detail and compared to the present quantum-
inspired algorithm. The first method, described in [15],
is based on transition maps and hidden Markov models,
whereas the second one leverages Wald’s Sequential Probabil-
ity Ratio Test (SPRT) to gather information from subsequent
events and eventually make a decision [7].

The solution proposed by Doran and Gokhale in [15] is
an integrated method for real time and offline web robot
detection that analyzes the differences between human and
software visitors in the resource request patterns, considered
time invariant by the authors, and imposes a minimum number
of events to be observed before deciding.

Some basic concepts have to be defined for a common
understanding of the remainder of this document:

• a session, according to common practice, is a series of
requests pertaining to the same IP address and user agent
string, separated by a time gap shorter than thirty minutes;

• a request pattern is the ordered sequence of resource
requests received at the web server during a session.

Though humans and robots request different specific
resources during each visit, it is not possible to characterize
visitors by the mere list of requested resources. Conversely,
the order by which resource files are accessed by a human
visitor is inherently different from crawling algorithms, that
are unlikely to exhibit human-like behaviors.

These considerations took the authors of [15] to defining a
sensible taxonomy of possible resource file types, organized
into 9 more general aggregations, whence they derived a
semantical representation of all resource request patterns,
which is capable of expressing the differences between humans
and robots.

VII. THE DATASET FOR BOT DETECTION

The dataset used to test the proposed algorithm has been
already utilized for [7], [46] to compare DTMC versus SPRT
and contains the sequences of HTTP request headers from
many different working sessions.

Each session has been manually labeled as bot (label 1) or
human (label 0) generated and the classifier tries to take a
reliable decision before the session ends or labels the session
as undecided. Appropriate actions can then be taken on the
undecided sessions according to the specific task objectives.

In order to apply the different classification models to
the same bot dataset, no feature selection policy is imple-
mented and all available features are considered, but proper
pre-processing transformations are needed on the original
features depending on their type.

The features, as shown in Table VII, can be divided
into three categories, each requiring different pre-processing
actions:

• numerical features (N) are standardized by subtracting the
mean and scaling to the unit variance;

• categorical features (C) are transformed into the corre-
sponding one-hot encoding;

• boolean features (B) are simply translated to their numer-
ical equivalent: 0 for False and 1 for T rue.

After each feature has been transformed as explained above,
each HTTP request is represented as a 25-feature vector and
the corresponding session becomes a series of time related
vectors.

The entire dataset contains 13.395 sessions for a total
number of 1.397.838 HTTP requests. The session breakdown
is detailed as 6.190 sessions labeled as bots, 7.200 can be
associated to human activities and 5 sessions were excluded
because it was not possible to allot them to any class with
sufficient confidence.

Finally, the dataset was prepared for a 10-fold cross-
validation training by manually partitioning the sessions into
ten roughly balanced subsets, each consisting of 619 and
720 sessions for bot and human classes respectively.

The good balancing between bot and human sessions
involves that either accuracy or F1 score can be indifferently
selected as representative metrics to evaluate the performance
of the proposed algorithm.
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TABLE VII

FEATURES LIST OF THE FEATURES AVAILABLE FOR MODEL TRAINING BEFORE PRE-PROCESSING

VIII. THE SOFTWARE MODEL FOR BOT CLASSIFICATION

A. The Two-Stage Classification Model

The classification model can be ideally divided into two
logical stages. The first stage, built upon a deep neural
network, is responsible for learning the classification model
and assigning an a-posteriori conditional class probability
estimate to each individual HTTP request, independently of
any other entry of the training sequences. It can eventually be
replaced by any classifier which best fits the available data size
to produce the aforesaid probability estimates: in the present
case, the multi-layer perceptron was selected as the best option
amongst the model we tested.

The second stage is based on the quantum-inspired entan-
gled classifier described in section III designed for a two
classes setting. It is noteworthy that, even if the problem is
intrinsically binary, the classification outcome of the quan-
tum module is three-state valued because a session might
end before the system can take any reliable decision. Those
sessions are then provisionally labeled as undecided and can
be either neglected or included in the performance metrics
computation, slightly affecting the overall results.

B. Stage 1: Probability Estimation

The neural network implements supervised learning, setting
aside a fraction of the dataset for model validation and using
the remaining part for training with 10-fold cross-validation.
The neural network is based on the MLPClassifier of the scikit-
learn toolkit [42] and it is designed as a sigmoid output unit
on top of two 50-units hidden layers with ReLU activation
function. This neural network configuration has heuristically
proved to be the most effective among those tested for the
dataset under examination. The terminal sigmoid layer has
been selected because its output is a real number constrained
between zero and one and therefore can be interpreted by the
cascade stage as a probability estimate for the relevant class.

In the generalized approach for N classes, the output layer
is composed by N Softmax units that calculate probabilities
whose sum is always 1.

C. Stage 2: The Quantum Classifier Module

The second stage is the Quantum Entangled Multinomial
Classifier proposed in section III for the binomial setting.

The reference orthonormal basis is defined as:
|0〉 =

(
1
0

)
|1〉 =

(
0
1

)
.

Let xt be a sequence of HTTP request samples associated
to a specific session and y ∈ {0, 1} be the relevant ground
truth, which is obviously the same across each session. The
probability of request i being bot or human generated is
computed by means of the Multi-Layer Perceptron at stage
one and is stored in pki , k ∈ {0, 1}.

As explained earlier in this document, quantum entangle-
ment can be used to express a higher level of correlation
among quantum states, therefore, as each request in a session
belongs to a specific class across the whole sequence and
they are reasonably correlated because they are generated
by the same entity, it sounds sensible to hypothesize that
quantum entanglement be capable of capturing and exposing
the intrinsic correlation within each session.

The probabilities of the two classes, estimated by the neural
network, can be used to build a quantum entangled represen-
tation of all subsequent requests in a session. The multi-layer
perceptron classifier does not capture temporal information;
here we use it to assign the likelihood of each individual
sample to belong to either class. As the request order in each
sequence is preserved to reflect the web navigation pattern,
QEMC deals with correlation by means of entanglement.

As expressed by (1), given the probabilities of the i -th
observation in the sequence of length T , it can be linked to
the two basis states |0〉 and |1〉, hence it is possible to compute
αi and βi as

αi = √
p0i βi = √

p1i (10)

and then create the T -qubits separable states |ψ0〉 and |ψ1〉,
according to (3), from{

|ψ0〉 = α |00 . . . 0〉 = α0 |0〉 ⊗ α1 |0〉 ⊗ . . .⊗ αT −1 |0〉
|ψ1〉 = β |11 . . .1〉 = β0 |1〉 ⊗ β1 |1〉 ⊗ . . .⊗ βT −1 |1〉

(11)

The entangled state represented by a stream of n requests
can be then expressed as the superposition of the two states
from (11):

|ψ〉 = |ψ0〉 + |ψ1〉 (12)

In order to tell whether the current sample is due to a bot
or a human, it is necessary to measure, from the entangled
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state |ψ〉 by means of (4) or (6), the probabilities of the basis
states |0〉 and |1〉 and compare those measurements against
a properly tuned threshold C to take a decision, if enough
information is contained in the given |ψ〉.

If no decision can be taken at current step, then a new |ψ〉
is computed by adding another observation until one of the
measures meets the threshold or the session ends, thus leaving
the output as undecided.

Finally, a variation of the approach described above has been
tested by computing the probability amplitudes, as of (10),
by means of αgrade

i , grade ∈ R
+. Even if αgrade

i cannot
be considered a probability amplitude anymore, this option
adds a degree of freedom to the proposed quantum-inspired
algorithm, acting like a fuzziness index, that is helpful to
improve the classification results and tune the output of the
classifier, say for instance to reduce the number of unclassified
sessions. Moreover, when grade = 0.5, the solution is
equivalent to the formal theory.

IX. EXPERIMENTAL RESULTS AND DISCUSSION

A. The Test Scenarios

The effectiveness of the proposed method can be demon-
strated with respect to the most representative performance
metrics for the analyzed dataset and it is helpful to compare
the algorithm with one that shows optimal results on the same
problem.

In this regard, the Sequential Probability Ratio Test from
Wald [14] has been compared with QEMC on the same prob-
abilities estimated by the training of stage 1. Presently, to the
best of our knowledge, SPRT, proposed in [7], outperforms all
other state-of-the-art approaches.

The main focus of the present work is not necessarily
showing that the new approach outperforms the best state-
of-the-art methods, but proving the effectiveness of a new
paradigm that exploits quantum properties to take timely and
reliable decisions.

The implemented two-stage model was beneficial to support
the deployment of both Sequential Probability Ratio Test and
the Quantum-inspired Entangled Multinomial Classifier along
with the synoptical comparison of the respective results.

Three scenarios have been chosen to fairly and extensively
compare the proposed and the reference approaches and
possibly highlight any weaknesses in the new method. The
reported results were computed as the average over more than
two hundreds runs to provide a reliable assessment of our
algorithm.

The number of sessions used for training has been reduced
down to the 30% of entire dataset and the peep and grade
hyper-parameters are relevant only to the Quantum-inspired
approach. Moreover, as the SPRT algorithm has been imple-
mented in the logarithmic form [7], the threshold reported in
Table VIII are actually converted into their log. The Validation
column represents the portion of dataset set apart for algorithm
performance assessment. It is worth noting that the peep
mechanism, though required to limit the computational effort,
is a disadvantage for QEMC algorithm because it bounds the
method’s memory.

Fig. 1. Scenario A - accuracy vs grade classification accuracy at increasing
values of grade.

For each scenario described in Table VIII, our aims are
the minimization of the number of requests analyzed to make
a decision and of the number of unclassified sessions, along
with the maximization of classification accuracy, hence the
same performance indicators have been considered:

• LDS: length of the decision sequence; the shorter the
better,

• ACC: accuracy of classification, defined as the total num-
ber of correct assignments divided by the total number of
sessions; the higher the better,

• TOTUC: total number of unclassified sessions left; to be
minimized.

Pareto front plots have been generated for we need to
optimize more than one objective function simultaneously
at the time of decision making. These are contrasting goals
because we would like to maximize accuracy whereas the
length of the decision sequence and the number of unclas-
sified sessions should be minimized. This implies that no
single solution exists that can optimize all objectives but
every nondominated solutions is Pareto-optimal and represent
an acceptable solution for the problem. A solution is said
nondominated if any improvement on an objective function
implies a downgrade on the other ones. For the analysis of
our results, only the solutions at extremes of the values range
have been considered.

B. Scenario A

This scenario has been setup to assess the impact of different
values of grade on the performance indicators.

The decision thresholds have been set to fixed values,
identified as optimal by means of Pareto analysis, and 50%
of available sessions have been set aside for model validation.
The SPRT classification ends with ACC equal to 0.9422,
leaving only 4 unclassified sessions and using 3 steps for
LDS. As of QEMC, different values of grade have been tested,
as shown in figure 1 but, according to the Pareto frontier plot in
figure 2, the optimal points to consider for the comparison with
SPRT correspond to grade 0.4, which maximizes the accuracy,
and 2.6 which minimizes the length of decision sequence to
the same value as SPRT.
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TABLE VIII

EXPERIMENTAL SCENARIOS

Fig. 2. Scenario A - pareto front analysis classification accuracy versus lengh
of the decision sequence at variable values of Grade.

At grade 0.4, the ACC value is 0.9585, the highest for the
setting, but the number of unclassified sessions is 50, which is
extremely high compared to SPRT, and LDS is 10. Conversely,
at grade 2.6, accuracy is only slightly less than in the previous
case (ACC = 0.9512, � = 0.0073) but LDS is exactly the
same as in SPRT and the number of unclassified sessions drops
to zero. Nevertheless, in both cases, classification accuracy is
greater than in SPRT (worst case � = 0.009).

C. Scenario B

This scenario evaluates the classification results with regard
to variable threshold values on 70% of sessions used for
validation with grade set at 0.5, which is the default value
for QEMC.

The best results for SPRT are achieved with lower and upper
thresholds set to the logarithm of 0.1 and 0.85 respectively;
in this configuration, ACC is 0.9205, TUC is 8 and LDS is 3.
The metrics for QEMC at the best thresholds for SPRT are
slightly better in accuracy (0.9302), which means that the
overall number of correctly classified sessions is greater, but
it might take longer to take a decision (LDS = 5), even if
in both cases the 90% of sessions is classified at the first
step, and the number of unclassified sessions is almost double
(TUC = 15).

For the current setting, figure 3 visualizes the rate of
correctly classified sessions for the two methods: SPRT iden-
tifies a greater percentage at the first two requests but no
great improvement is achieved on the third and last step.
Conversely, QEMC takes over at the third request and the
overall performance is nearly 1% better than SPRT.

The best threshold pair for QEMC is 0.25 for the lower and
0.95 for the upper threshold where, despite even greater values
of LDS (7) and TUC (23), the accuracy sensibly rises to 0.9527

Fig. 3. Accuracy vs decision step classification accuracy achieved versus the
number of requests analyzed to make a decision.

(� = 0.0322 versus best SPRT) and the 90% of sessions is
classified within the second step. For these threshold values,
the accuracy of SPRT is slightly lower (0.9204) than the best
case, but the number of unclassified sessions decreases to
4 while maintaining the same LDS value.

D. Scenario C

The third scenario compares the performance indicators
when varying grade in the threshold setting that is best
for SPRT and with peep = 6, which should improve the
accuracy of QEMC by considering more samples in the
decision process. Even in this case the results for SPRT are
ACC is 0.9205, TUC is 8 and LDS is 3 because the peep
mechanism only applies to QEMC, which conversely improves
its classification performance depending on the Pareto optimal
values of grade.

The optimal value to maximize accuracy is 0.2, as shown
figure 5, where accuracy is 0.9589, a bit higher (� = 0.0004)
than in Scenario A with peep at 4, showing that it is possible
to achieve better classification rates by considering more
samples. This is paid for in terms of LDS, that grows to 15,
TUC that spikes to 91 and on the number of steps required to
classify the 90% of the sessions which becomes 3.

On the other side, the optimal value of grade to minimize
LDS is 2.4, which not only requires at most 2 samples to
take a reliable decision but also allows to achieve zero on
the total number of unclassified sessions. The good point here
is that accuracy is only 10−4 worse than for SPRT, with only
1 request needed to classify 90% of the sessions in both cases.

The three scenarios proposed above are representative of the
various combinations of post-training hyper-parameters and
expose both the pros and cons of the novel quantum-inspired
approach.
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Fig. 4. Scenario C - accuracy vs grade classification accuracy at increasing
values of grade.

Fig. 5. Scenario C - pareto front analysis classification accuracy versus lengh
of the decision sequence at variable values of grade.

Classification accuracy for QEMC can be sensibly boosted
by properly selecting the peep and grade values, at the same
threshold conditions, by means of Pareto analysis. Moreover
the same parameters can be used to achieve particular objec-
tives, such as zero unclassified sessions or a shorter decision
sequence, while preserving the performance indicators that,
in the worst case, are fairly equal. In fact, by tuning peep
and grade, it is possible to increase the convergence speed of
the classification algorithm and reduce the number of requests
needed to take a decision to even less than SPRT.

It is worth noting that a reduction in the training size of
the dataset has a smaller impact on classification accuracy
for QEMC than for SPRT, in the same setting: experimental
evidence shows that, with a validation ratio of 50%, accuracy
is 0.9573 for QEMC and 0.9421 for SPRT whereas, with
30% of the sessions used for training, the relevant values are
0.9535 and 0.9204 respectively. Hence �Q E MC = 0.0038 and
�S P RT = 0.0217, which is nearly 6 times greater than the
former.

Another important consideration is related to the peep value:
the adoption of such mechanism is imposed by the computa-
tional performance downgrade on long sequences when the
decision process requires to consider many requests to meet
the desired confidence level. However, regardless of the length
of a session, the number of samples that have to be taken into

account, as shown in sections IV and IX, it is often limited to
4 to 6 samples. Greater peep values do not bring any benefit to
the classification performance but increase the computational
effort.

Finally, while SPRT is designed as a binary classifier and
requires a modified approach to be applied in a multi-class
problem, the QEMC method is natively suited for multinomial
problems by simply expanding the orthonormal basis through
the addition of further basis states.

X. CONCLUSION

In the present paper, we analyzed the general structure of a
temporal sequence of data and pointed out the benefits of real
time classification of non stationary data streams, underlining
its application in cyber-security with on-the-fly bot detection.

We introduced QEMC, a novel quantum-inspired multino-
mial classifier for early detection of significant events on time
series, that has been validated in a synthetic experimental
setting to confirm the motivating results obtained with its
binary version applied to bot detection.

The proposed technique relies on superposition and entan-
glement to integrate the class probability of each individual
event in the time series, estimated by an upstream stage,
and produce an overall score, with reject option, capable of
supporting trustful decisions even in case of a limited number
of events.

Our method has been successfully compared with another
effective bot detection approach, namely SPRT, and its results
have been analyzed with reference to the contrasting objectives
of classification accuracy, number of undecided sessions and
speed of decision.

The extensive experimental studies, tested on traffic streams
from an actual Polish e-commerce server, showed that SPRT
is able to detect, in real time, over 90% of all bots and is espe-
cially powerful given a very limited number of observations,
despite it requires no minimum quantity of HTTP requests to
be observed before making a decision.

Nonetheless, our innovative quantum-inspired multinomial
classifier for early detection of significant events on time series
can produce better overall scores and is similarly capable of
supporting trustful decisions even in case of a limited number
of events, both in the binary and in the multinomial setting.

The results were analyzed with reference to the contrasting
objectives of classification accuracy, number of undecided
sessions and speed of decision, showing that the proposed
quantum-inspired algorithm, in our opinion, natively covers
an area of application (non-stationary data stream classifica-
tion) that so far has not yet found reliable and performing
approaches.

This paper demonstrates the effectiveness of the proposed
algorithm that, compared to other approaches, was proven to
outperform not only SPRT but also, by transitive property,
other very powerful state-of-the-art techniques.

Moreover, the proposed approach represents a complete real
time classification framework for a critical application, such
as bot detection, and can easily be integrated, as a plug-in,
in a web architecture.
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With regard to the methods analyzed in section II, some
additional notes are worth reporting to highlight the advan-
tages and disadvantages of current implementation of the new
approach:

1) QEMC is tolerant against non-standardized numerical
features, which is usually considered a compelling trans-
formation for machine learning tasks;

2) with QEMC, it is possible to dramatically reduce
the number of training sequences with no significant
decrease of classification scores;

3) in current configuration of the classification framework,
solutions are not interpretable, therefore some areas of
application might be precluded to QEMC;

4) no estimate on reliability of decisions is currently avail-
able in QEMC;

5) dependencies on grade parameter have not yet been
explored in depth, but could open the way to a fuzzy
flavor of the classifier.

In our opinion, considering the interesting results achieved
with this initial formulation of QEMC, the last three items
represent interesting areas of investigation, where near future
research should be directed. We also believe that the proposed
algorithm might open the way to new approaches for time
series prediction and clustering, but so far we do not envisage
any sensible evolution.

Replacement of the ANN with explainable ways to compute
the probability estimates of observations might also open new
perspectives for the quantum-inspired technique, especially if
accompanied by a measure of decision reliability.
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