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Abstract—Boson sampling is expected to be an important milestone that will demonstrate quantum computational advantage (or

quantum supremacy). Thiswork establishes the benchmarking of Gaussian boson sampling (GBS) with threshold detection based on the

Sunway TaihuLight supercomputer. To achieve the best performance and provide a competitive scenario for future quantum computing

studies, the selected simulation algorithm is fully optimized based on a set of innovative approaches, including a parallel framework with

almost perfect load balance and an instruction-level optimizing scheme based on a shortest-path-based instruction scheduling. In

addition, data precision is carefully processed by an integer-instruction-based andmultiple-precision fixed-point implementation,

including 128- and 256-bit precisonmode, which can be appropriately selected based on an adaptive precision optimizing scheme.

Based on thesemethods, a highly efficient parallel quantum sampling algorithm is designed. The largest run enables us to obtain one

Torontonian function of a 100� 100 submatrix from 50-photonGBSwithin 20 hours in 128-bit precision and 2 days in 256-bit precision.

To our knowledge, this was the largest quantum computing simulation based on Boson Sampling by using modern supercomputers.

Index Terms—Boson sampling simulation, quantum computation, parallel computing, sunway TaihuLight supercomputer

Ç

1 INTRODUCTION

THE extended Church-Turing (ECT) thesis states that a classi-
cal computer can efficiently simulate any physical process

with only polynomial overheads [1]. In the 1980s, Feynman
observed that many-body quantum problems cannot be effi-
ciently solved by classical computers due to the exponential
size of quantum state Hilbert space [2]. This observation
inspired Feynman to envision a quantum computer to solve
quantum problems. Efficient quantum algorithms were pro-
posed for classically hard problems, such as integer factoring
[3], [4]. Today, achieving quantum computational advantage
(or quantum supremacy) based on quantum computers is antic-
ipated to be an importantmilestone in the post-Moore era.

Recently, it was found that quantum computers can sim-
ulate quantum sampling problems in polynomial time,

while classical computers require exponential time unless
the polynomial hierarchy (PH) collapses [5]. Therefore, the
quantum sampling problem has become a feasible way to
demonstrate the quantum computational advantage on
noisy intermediate-scale quantum (NISQ) devices [6]. Based
on numerical estimation, quantum sampling with 50 � 100
quantum particles is beyond the computational capabilities
of state-of-the-art supercomputers [7].

Candidates for quantum sampling problems include the
instantaneous quantum polynomial time circuit [8], random
circuit sampling (RCS) [9], [10], boson sampling [5], and
Gaussian boson sampling (GBS) [11], [12]. To implement
quantum computing, an instantaneous quantum polyno-
mial time circuit and RCS are based on quantum bits, while
boson sampling and GBS are based on bosons, such as sin-
gle photons.

Because the proposal of GBS shows its capacity to solve
several NP-problems with polynomial time and markedly
simplifies its quantum implementation, quantum sampling
based on bosons becomes an important branch of demon-
strating quantum computational advantage [1], [13]. Based
on the method of GBS with threshold detection, H. Zhong
announced a quantum machine prototype that can manage
up to 76 output photon-clicks. The work was published in
SCIENCE in Oct. 2020 [14], and was claimed to be a signifi-
cant milestone in achieving quantum computational advan-
tage. Our work in this paper is an important part for the
designing of the prototype, and works as convincing classi-
cal benchmarking for GBS with threshold detection. With lit-
tle modifications, corresponding optimizing techniques are
also applicable to other computational problemswith similar
algorithms.

More specifically, in this work, we establish the quantum
computational advantage frontier of classical simulation for
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the boson-based quantum sampling problem. To achieve
the best performance and provide a competitive and con-
vincing benchmarking for quantum computers, the selected
algorithm is fully optimized based on the Sunway Taihu-
Light supercomputer, which is one of the most powerful
classical computers in the world. This work served as the
classical counterpart of H. Zhong’s study and can serve for
future boson-based studies. More than that, since the GBS
method links to potential applications in several fields,
including certifiable random numbers, graph optimization
[15], [16], [17], graph similarity [18], point process [19],
molecular docking [20], quantum chemistry [21], [22], and
quantum machine learning [23], this work has the potential
to simulate practical applications.

The major contributions include:

� An integer-instruction-based and fixed-point preci-
sion scheme with careful precision analysis is
designed to enable customizable precision modes for
different precision requirements of different matrice.

� An adaptive framework based on upper- and lower-
bound estimation is proposed and applied to auto-
matically determine the best precision configurations.

� An effective parallel framework is proposed to
reduce the requirements of cache-level storage and
obtain a nearly ideal load balance of the selected
boson sampling algorithm.

� To further accelerate kernels at the instruction level,
a shortest-path-based method that uses DAG to
describe dependences is used to develop the optimal
instruction scheduling.

All contributions are aimed at resolving the precision
and performance issues, which are critical for scientific
applications. In terms of the precision issue, Sections 4 and
5 provide analysis and solutions to the precision problems,
Section 4 analyzes the precision requirements of the worst
case, and Section 5 provides a customized precision imple-
mentation and an adaptive framework. In terms of the per-
formance optimizations, Section 6 introduces the proposed
parallel framework, and Section 7 describes our sophisti-
cated instruction scheduling strategy that provides the opti-
mal performance based on the parallel framework.

Combining all the above mentioned innovations, we
design a highly efficient parallel quantum sampling algo-
rithm. Sustained performance of 2.78 PFLOPS for 128-bit
precision and 1.27 PFLOPS for 256-bit precision can be
achieved with a proper N. The largest run enables us to
obtain one Torontonian function of a 100� 100 submatrix
from 50-photon GBS within 20 hours in 128-bit precision
and 2 days in 256-bit precision.

2 RELATED WORKS

In 2019, Google first claimed the quantum computational
advantage by using 53 superconducting quantum bits in an
RCS experiment [24]. The quantum device took 200 seconds
to sample one instance of a quantum circuit one million
times, while classical benchmarking was expected to need
10,000 years on the Summit supercomputer. To confirm and
establish this quantum computational advantage, there have
been many developments in the classical benchmarking

algorithm [25], [26], [27], [28], [29], [30] before and after the
experiments. The latest result found by IBM indicates that by
leveraging secondary storage, the calculation can be run on
the same supercomputer within two and a half days rather
than 10,000 years [31], [32]. Even though the classical super-
computer can solve the problem in a few days, the increase
in speed of approximately one thousand times demonstrates
the overwhelming power of quantum computing.

Additionally, many other studies have investigated the
RCS problem. In general, the classical simulators of RCS prob-
lems can be categorized into three classes. The first and second
classes are the direct evolutions of the quantum state [25], [27],
[33], [34], [35] and the perturbation of stabilizer circuits [36],
[37], [38], respectively. The tensor network contraction class
[28], [29], [39] is the most suitable method for current flop-ori-
ented architectures such as on the Fugaku [40] and Summit
[41] supercomputers. Additionally, several hybrid algorithms
[26], [31], [42] achieve strong performances when simulating
or benchmarking with � 50 quantum bits. Other studies [27],
[43] have attempted to build up the benchmarking of the quan-
tum computational advantage based on the RCS problem
using the Sunway TaihuLight supercomputer.

The boson sampling problem, introduced by Aaronson and
Arkhipov [44], was the first protocol to conclusively demon-
strate the quantum computational advantage. Because it is
actually difficult to scale the standard boson sampling to high
photon numbers due to its intrinsic photon cost, GBS [45] and
GBS with threshold detection [12] were recently proposed to
obtain higher-order photon numbers than those of boson sam-
pling. Based on this branch of quantum sampling, a 76-output-
photon-clicks (i.e., 76 quantumbits or 276 states) quantum com-
puter was built [14] as the largest boson-based quantum com-
puter in the world to demonstrate the quantum computational
advantage.

In terms of the classical benchmarks of boson-based meth-
ods, several algorithms have been designed, and experiments
have been conducted [46], [47], [48], [49], [50]. There are also
several classical benchmarks for GBS. Based on the Titan
supercomputer, Brajesh Gupt et al. [51] proposed a benchmark
for GBS with threshold detection. However, due to the limita-
tions of the method, it can only manage approximately 22
clicks (or photons)whenusing the entire Titan supercomputer.

Diverging from previous studies, we establish the first
classical benchmarking for GBS with threshold detection
based on a calculation of the Torontonian function. The pro-
posed method can calculate a single Torontonian for a 50-
photon GBS within one day. This work thus describes the
largest boson-based quantum simulation and benchmark-
ing to support the quantum computational advantage.

3 BACKGROUND

3.1 Selected Algorithm: Boson Sampling

In a typical boson sampling experiment, as shown in
Fig. 1a, N indistinguishable single photons are sent to an
M-port linear optical network, and the output scattered
photons are detected by N single-photon detectors. The
probabilities of theseN-photon events are related to the per-
manent function of an N �N sampling matrix, which is
shown to be #P-hard for classical computers. However, a
large-scale experiment suffers from the formidable
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challenge of preparing N perfect single photons [46], [48],
[49], [52], [53], [54], [55], [56].

As shown in Fig. 1b, a practical improvement was pro-
posed to change the input single photons to nonclassical
Gaussian light and use single-photon detectors without
photon-number resolution to register N-click events, which
is called GBS with threshold detection [11], [12], [57], [58].
In this case, the probability ofN-click events is the Torontonian
function of a 2N � 2N sampling matrix, which is expected to
still be exponentially hard for classical computers.

In a GBS experiment [12], [59], [60], before photon detec-
tion, the output Gaussian state is described by a covariance
matrix

P
that can be approximately expressed as

X
¼ 2� h

2
I þ h

2
VSSHV H; (1)

in which h is a constant around 1. The definitions of S
and V can be found in the appendix, which can be found
on the Computer Society Digital Library at http://doi.
ieeecomputersociety.org/10.1109/TPDS.2021.3111185/.

The sampling matrix A is then defined as A ¼ I �P�1 ,
and the probability pðSÞ of an N-click event S ¼ s1; s2; . . . ;
sM is determined by

pðSÞ ¼ hSjrPjSi ¼ TorðAfSgÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðPÞp ; (2)

where rP is the output quantum state of a covariance

matrix
P

, S is the threshold click pattern with sk 2 0; 1 andPM
k¼1 ¼ N , and AfSg is the 2N � 2N submatrix of A by

selecting the kth and ðM þ kÞth row and column when sk ¼
1. The matrix function Torð�Þ is the Torontonian function,

which is defined as

TorðAÞ ¼
X
Z2PN
ð�1ÞN�jZj 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijdetðI �AZÞj

p ; (3)

where PN is the power set of 1; 2; . . . ; N , and thus, there are

2N determinant terms in the summation [12]. The computa-

tional complexity of the Torontonian function is Oð2NÞ,
which is the same as the permanent function in standard

boson sampling with N photons.
In this work, the major task is to calculate the Toronto-

nian function, which has exponential complexity. Accord-
ing to the formulation, the summation loop is suitable for
large-scale parallelism, and the determinant is very compu-
tationally intensive that needs to be carefully optimized.

3.2 Sunway Architecture

To achieve the best simulation performance, this work uses
the Sunway TaihuLight supercomputer as the classical plat-
form. The system consists of 40,960 many-core processors
called SW26010s and can provide a peak performance of
125 PFlops and a sustainable performance of 93 PFlops.

As shown in Fig. 2, each SW26010 processor consists of
four core groups (CGs). Each CG has a memory controller
(MC) with 8 GB main memory, a management processing ele-
ment (MPE) and 64 computing processing elements (CPEs).
Both MPE and CPEs has the frequency of 1.45 GHz. The
MPE is a fully functional 64-bit RISC general-purpose core
that a customized linux kernel with a busybox is equipped
onto, while the CPE is a simplified 64-bit RISC computing-
oriented core that only runs a bare machine daemon com-
municating with MPE and handles necessary jobs, such as
loading ELFs, handling interrupts. MPE contains a 32-KB
L1 data cache and 256-KB L2 instruction/data cache. CPE
has a private 16-KB L1 instruction cache and 64-KB scratch-
pad memory (SPM, also called the local data memory (LDM)).

Data exchange mechanism is important for such a hetero-
genuous architecture. Direct memory access (DMA) is the pri-
mary method for CPEs to access data from global memory,
and helps achieve MPE-CPEs communication. Additionally,
the effective inter-CPEs communication is enabled by regis-
ter communication, which provides direct data exchanges
between CPEs in the same row or column.

The specific instruction sets of the Sunway architecture
provide futher potentials for accelerating the Torontonian
function. Here we list some specific instructions that will be
used in later sections. As shown in Table 1, the Sunway
architecture has 256-bit large integer instruction sets. The
first five instructions (multiplication, addition, subtraction
and shifting) belong to the 256-bit large integer instruction
sets. Note that the multiplication instruction is not a
straightforward 256-bit version; instead, it performs an
unsigned multiplication of two 128-bit unsigned numbers
and obtains a full 256-bit result.

The remainder of the instructions in Table 1 are also very
useful for vector instructions. The parameters of instruction
vshff are a, b and mask. a and b are two 256-bit registers
that contain four 64-bit numbers. mask provides informa-
tion on how to construct a new register from a (the first two
digits of mask) and b (the last two digits of mask). Fig. 3a
shows an example: based on the four digits of mask, 0 and 2
of A (corresponding value a0 and a2), and position 0 and 1
of B (corresponding value b0 and b1) are selected to con-
struct a new register.

Fig. 2. Block diagram of a CG.

Fig. 1. (a) Standard boson sampling; (b) GBS with threshold detection.
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The conditional selection instruction vsellt requires
the three parameters c, a, and b, which are all 256-bit regis-
ters composed of four 64-bit numbers. c is the conditional
register, used to make choices between a and b. As shown in
Fig. 3b, if one of the 64-bit numbers in c is below 0, then the
corresponding 64-bit number of the result comes from the
corresponding bits of a and vice versa.

4 PRECISION REQUIREMENT ANALYSIS

Before designing the parallel framework for better computa-
tional performance and parallel efficiency, the precision
requirement of the quantum simulation shall be analyzed
and satisfied. This section points out the shortcoming of
using only standard precision types to calculate the Toron-
tonian function and analyzes the minimum precision
requirement using mathematic methods. The fastest preci-
sion strategy with the fewest bits can be designed based on
the analysis of minimum precision requirement.

4.1 Motivation

For real-world data, the result of the Torontonian function is
a small decimal, which results in a high-precision require-
ment. For example, when we calculate a practical matrix of
size 45, the result is 1:44� 10�25. Thus, at least 25 decimal
digits (roughly equivalent to 83 binary bits) are required to
achieve adequate accuracy in the determinant calculation.
Based on the IEEE 754 standard [61], the double-precision
type, which has only 53 binary bits of significant precision,
cannot sufficiently represent these numbers. Therefore, a
customized multiple-precision type should be designed for
the Torontonian function.

In this section, we analyze the precision requirement of
the Torontonian function, which depends on the upper and
lower bounds of the absolute value of the intermediate calcu-
lating results. Several mathematic derivations and approxi-
mations are used to estimate the bounds. Additionally, the
proposed approximation formulae are also a critical and
essential part of the adaptive precision framework that will
be introduced afterwards.

4.2 Mathematical Analysis

Based on Equation (1) and the analysis in the Appendix
attached in the end, available in the online supplemental
material, the matrix A ¼ I �P�1 can be derived and
rewritten as

A ¼ mI �lU2

�lUH2
mI

�������������
� �

��
��
�

; (4)

wherem and l are constants only related to r and h described
at Equation (1); while U is a random unitary matrix whose
values multiplied by l can be proved much smaller than m,
which makes the diagonal elements dominant in the deter-
minant. The upper-left and lower-right parts of the sampling
matrices are diagonal matrices with diagonal elements less
than 1, which gives this kind of matrices some mathematical
properties similar to the diagonal matrices.

As for the boundary of the intermediate results for such
kind of matrix, the upper bound of the intermediate result
of Gaussian elimination is the absolute reciprocal of det B
(where B denotes to I �A), which is intuitive for such a
nearly diagonal matrix. This is explained in the Appendix
part attached in the end, available in the online supplemen-
tal material. Meanwhile, according to the physical charac-
teristics of Gaussian boson sampling, the lower bound is
reached by the final result TorðAÞ.

The upper bound det B can be easily calculated with lit-
tle cost. However, as an NP problem, the final result TorðAÞ
is difficult to be calculated directly because of the huge cost.
Thus, in order to obtain the lower bound, an approximation
of TorðAÞ should be taken. As Hermitian positive definite
matrices, the determinant of BZ , which denotes to I �AZ

(where Z is a subset of the power set of 0; 2; . . . ; N � 1), can
be expanded recursively by the Laplace expansion. With
these recursive expansions, det BZ can be rewritten as

det BZ ¼ b00 det fBZ � xHadj fBZx

¼ det fBZ b00 � xHfBZ

�1
x

� �
¼
Y2N�1
i¼0

bii � xH
i
fBZ

�1
i xi

� �
;

(5)

where fBZ denotes to the submatrix of BZ by removing the
first row and column. BZ0 is equivalent to BZ , and BZi is
equivalent to the gBZi�1, i.e., the submatrix without the first i
rows and columns. Similarly, xi denotes the subvector of x
by removing the first i elements.

According to this expression, we can begin the approxi-
mation. Considering that the diagonal parts of A or each BZ

are all multiple of I, we can assume that the non-diagonal
elements make only few contributions to det BZ . The matrix-
vector multiplication xHi

fBZ

�1
i xi can be approximated as the

vectormultiplication
xH
i
xi
b with a constant b. Then, its numera-

tor xH
i xi can be approximated in a linear form as kjZj, which

treats each xi as the same value
ffiffiffi
k
p

. Consequently, the
expression can be simplified as

det BZ � b� kjZj
b

� �2jZj
: (6)

TABLE 1
Main Instructions in This Work

Instruction Description Latency

umulqa 128-bit unsigned 6
complete multiplication

uaddo_carry 256-bit unsigned addition 2
usubo_carry 256-bit unsigned subtraction 2
sllow 256-bit logical left shifting 2
srlow 256-bit logical right shifting 2
vshff shuffle based on 1

two vectors and a mask
vsellt vector ”less than” 1

conditional selection

Fig. 3. Example (a) vshff instruction, and (b) vsellt instruction.
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Substituting this value back into TorðAÞ yields a much
simpler expression of TorðAÞ

TorðAÞ � �1N þ
XN
i¼1
ð�1ÞN�i N

i

� � 
b� ik

b

!�i
: (7)

The expression is also too complex; thus, we change the
fraction ik

b to Nk
b to make it suit to the binomial theorem.

With this approximation, we can obtain the final form as

TorðAÞ �
  

b�Nk

b

!�1
� 1

!N

: (8)

In real-world experiments, TorðAÞ is always below det B;
thus, the lower bound can be estimated by this expression.

In real-world experiments, the range of b is 0:84� 0:06.
Because the diagonal elements affect the determinant of B
most strongly, the range of b can be used to determine the
range of det B, which is determined to reach its minimum,
10�12 at N ¼ 50. After the analysis, the upper bound can be
estimated as 1012.

Conversely, if we use a looser formula of Equation (8)

TorðAÞ � ðb�1 � 1ÞN; (9)

which can be guaranteed to be below the real result, the
lower bound will reach 10�51 atN ¼ 50.

Based on the bounds, the range of the intermediate
results lies within 10�51 and 1012, which can be represented
by a large fixed-point number. According to the range,
around 12þ j � 51j ¼ 63 significant digits and 12 integer
dights are required. A fixed-point precision type with 256
bits is absolutely enough for the Torontonian calculation.

5 MULTIPLE FIXED-POINT PRECISION DESIGN

This section provides the entire precision design of the clas-
sical simulation of Gaussian boson sampling. In general, a
fixed-point number is composed of an integer in comple-
ments form with a scaling factor. The first two subsections
introduce our detailed implementations of the fixed-point
type based on the Sunway-specific large integer instruction
set described in Section 3.2. Moreover, to select the proper
fixed-point precision configurations (the scaling factor and
the bit length) automatically, an adaptive precision frame-
work based on the mathematical analysis in Section 4 is pro-
posed in the end of this section.

5.1 256-Bit Operations

Based on the calculation of the Torontonian function, five
operators are required: addition, subtraction, multiplica-
tion, reciprocal and reciprocal square root. Addition and
subtraction can be directly implemented by uaddo_carry

and usubo_carry instructions, respectively. While recip-
rocal and reciprocal square root require marginally complex
designs.

Multiplication, which requires several instructions and
must be calculated OðN3Þ times, is the bottleneck and should
be designed carefully. The large integer instruction set only
provides the multiplication between two 128-bit unsigned
numbers. Constructing a 256-bit signed multiplication based

on the 128-bit unsigned multiplication is the major chal-
lenge of the multiplication design. A direct method is to
convert negative numbers to positive numbers by intro-
ducing IF statements, which causes a pipeline stall when
branch prediction fails. Fortunately, an efficient method
without IF statements can be designed by exploiting prop-
erties of complement.

A 256-bit multiplication between two 256-bit negative
numbers a and b is considered as an example to explain
the following idea. The complements of a and b can be
expressed as ð2256 � jajÞ and ð2256 � jbjÞ because they are
negative. Then, the unsigned multiplication can be repre-
sented and expanded below

a�U b ¼ ð2256 � jajÞ �U ð2256 � jbjÞ
¼ 2512 � ðjaj þ jbjÞ �U 2256 þ jaj �U jbj
¼ 2512 þ ðaþ bÞ �U 2256 þ a�S b

¼ 2512 þ ðaþ bÞ< < 256þ a�S b;

where �S indicates the signed multiplication and �U indi-
cates the unsigned multiplication. Consequently, a�S b can
be expressed as a�U b� ðaþ bÞ< < 256, in which the term
2512 can be truncated for a 512-bit number. Considering the
four combinations of positive and negative, the signed mul-
tiplication can be expressed as

a�S b ¼ a�U b� ða< < 256Þ � ðb < 0Þ
� ðb< < 256Þ � ða < 0Þ; (10)

a�U b can be further rewritten as ða1 �U b1Þ< < 256þ
ða1 �U b0 þ a0 �U b1Þ< < 128þ a0 �U b0 for 256-bit multipli-
cation due to the limitation of bit length, where a1 and a0
are the upper and lower 128 bits of a, respectively.

The remaining problem is to handle the computation of
scaling factor (SF ). For the consideration of efficiency, scal-
ing is achieved by a shift operation. Fig. 4 describes the
shifting factor of each term in the expansion of a�S b. In the
figure, the orange bar, which indicates a � ðb < 0Þ, b � ða <
0Þ, and a1 � b1, has a left-shifting factor of 256� SF , and the
yellow and green bars have right-shifting factors of SF �
128 and SF , respectively.

Combining all the derivations above, Algorithm 1
describes the pseudo code of the proposed 256-bit signed
multiplication based on the large integer instruction set.
Line 2 - 3 use vshff instructions to obtain a1 and b1 from a
and b. Line 4 uses vshff instructions to obtain the sign bit
as of a from a. Line 6 is used to calculate a � ðb < 0Þ using
the vsellt instruction. Line 8 - 11 are used to calculate

Fig. 4. Scaling factor implemented by shifting.
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four 128-bit multiplications. Line 12 - 14 and Line 17 man-
age left and right shifting. The left lines with respect to
uaddo_carry and usubo_carry are used to sum all
terms to obtain the final result. Thus, one 256-bit signed
multiplication requires 19 instructions.

Algorithm 1. 256-Bit Signed Multiplication

Require: 256-bit signed number a and b
1: functionmul256a, b
2: a1  VSHFFð0; a; 0x0eÞ ⊳ SHUFFLE(0, a, {2, 3, 0, 0})
3: b1  VSHFFð0; b; 0x0eÞ ⊳ SHUFFLE(0, b, {2, 3, 0, 0})
4: as  VSHFFð0; a; 0xffÞ ⊳ SHUFFLE(a, a, {3, 3, 3, 3})
5: bs  VSHFFð0; b; 0xffÞ ⊳ SHUFFLE(b, b, {3, 3, 3, 3})
6: ax  VSELLTðbs; a; 0Þ
7: bx  VSELLTðas; b; 0Þ
8: c UMULQAða; bÞ
9: c10  UMULQAða1; bÞ
10: c10  UMULQAða; b1Þ
11: c11  UMULQAða1; b1Þ
12: c SRLOWðc; SF Þ
13: c10  SRLOWðc10; SF � 128Þ
14: c01  SRLOWðc01; SF � 128Þ
15: c11  USUBO CARRYðc11; axÞ
16: c11  USUBO CARRYðc11; bxÞ
17: c11  SLLOWðc11; 256� SF Þ
18: c UADDO CARRYðc; c10Þ
19: c UADDO CARRYðc; c01Þ
20: c UADDO CARRYðc; c11Þ
21: returnc
22: end Function

For reciprocals and reciprocal square roots that are not
bottlenecks, bitwise-based trial division approaches are
used and carefully optimized at the instruction level.

5.2 128-Bit Operations

Research on precision reduction has become a new trend in
scientific computing recently because increasing existing
commercial hardware supports effective and efficient low-
precision components that were designed for deep learning
originally. By reasonably reducing the precision, the perfor-
mance of scientific computing can be markedly improved
without affecting correctness.

The proposed idea can be used to calculate the Toronto-
nian function from two reasons. One reason is that the
requirement of 256 bits is not strict. The requirement derives
from the analysis of upper and lower bounds of some
extreme cases in Section 4. However, real-world data rarely
reaches these bounds, and thus 256-bit precision is too
expensive and wasteful for these data. The other reason is
that performance can be improved by reducing the preci-
sion from 256 bits to 128 bits, since the specific large integer
instruction set intrinsically supports 128-bit multiplication.
Thus, 128-bit operations are supported in the proposed pre-
cision design to provide a higher performance option with
reduced but sufficient precision.

Equation (10) can also be used to construct the 128-bit
signed multiplication algorithm. Compared to the 256-bit
multiplication, it is no longer necessary to construct the
term a�U b with four multiplications, which are costly.
Algorithm 2 describes the 128-bit multiplication at the

instruction level, which requires only 9 instructions and is
thus approximately twice as faster as the 256-bit version.

Algorithm 2. 128-Bit Signed Multiplication

Require:128-bits signed number a and b
1: functionmul128a, b
2: c UMULQAða; bÞ
3: as  VSHFFða; 0; 0x55Þ ⊳ SHUFFLE(0, a, {1, 1, 1, 1})
4: bs  VSHFFðb; 0; 0x55Þ ⊳ SHUFFLE(0, b, {1, 1, 1, 1})
5: ax  VSELLTðbs; a; 0Þ
6: bx  VSELLTðas; b; 0Þ
7: c1  UADDO CARRYðax; bxÞ
8: c SRLOWðc; SF Þ
9: c1  SLLOWðc1; 128� SF Þ
10: c USUBO CARRYðc; c1Þ
11: returnc
12: end Function

However, the algorithms designed for 128-bit reciprocals
and reciprocal square roots are similar to the 256-bit ver-
sions with several trivial modifications.

5.3 Adaptive Precision Framework

After addressing the precision implementations, the
remaining work is to find a way to determine the configura-
tions of the fixed-point type, i.e., the scaling factor and the
bit length. The scaling factor, which only depends on the
upper bound of the intermediate computing result, can be
obtained during the progress of estimating the bit length.
Thus we mainly focus on the selection of bit length.

According to the proposed precision implementations,
there are two options for the bit length — either 128 bits or
256 bits. To select one of them, the estimated requirement of
number of precision bits, which is called the estimated bit
length (EBL), shall be calculated. The 128- or 256-bit preci-
sion type can be selected by comparing EBL and 128. If
EBL is greater than 128, the 256-bit precision type should
be selected and vice versa. EBL must avoid any false posi-
tive cases, i.e., there is no case where EBL is less than 128
but 256-bit precision type is required.

Fig. 5 describes each part of the estimate formula of EBL.
To calculate EBL, the integer part that depends on the
upper bound Bupper should be determined first. To avoid
false positive, Bupper must be able to represent the strict
upper bound. Any intermediate computing results that are
greater than Bupper will lead to overflow errors. The decimal
part is comprised of three estimated parts Blower, Bsgnf , and
Bcumu should be calculated. Blower denotes the estimated
lower bound, which indicates the number of leading zeros
after the decimal point of the Torontonian function. To

Fig. 5. Four parts of the estimated bit length (EBL) calculation. The log2x
in the figure is used to calculate the number of required bits according to
the estimated value.

1362 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 6, JUNE 2022

Authorized licensed use limited to: ULAKBIM UASL - DOKUZ EYLUL UNIVERSITESI. Downloaded on October 28,2022 at 12:39:49 UTC from IEEE Xplore.  Restrictions apply. 



avoid false positive, the Blower needs to be an estimated
value less than the actual value. Bsgnf denotes the number
of significant digits that is fixed at 10 (which is the number
of binary bits of 3 decimal dights) in this work due to the
scientific requirement. Bcumu denotes the cumulative error
caused by the sum of many truncated det B.

The bound analysis in Section 4 provide algorithms for
Bupper and Blower. For Bupper, we can directly count the bit
number of the reciprocal of det B rather than using an esti-
mated value. As mentioned, det B is a strict upper bound
and thus Bupper is qualified as the integer part of EBL. For
Blower, because the cost of calculating Torontonian function
is too high, Equation (8) is used to provide the estimated
lower bound. Note that Equation (8) is supposed to be a
lower bound estimate of Torontonian function. Therefore,
the two formulae from Section 4 satisfy the requirement of
EBL calculation.

For the cumulative error Bcumu, probability analysis is
used. Each truncation forms an uniform distribution whose
expectation is 0, and standard deviation su can be simply
approximated as EBL=2

ffiffiffi
3
p

. With the central limited theo-
rem, the sum of 2NN2 truncation that is independent and
identically distributed can be approximately expressed as a
normal distribution, of which the standard deviation s is
su

ffiffiffiffiffiffiffiffiffiffiffiffi
2NN2
p

. Based on the 3s principle, the error in the range
of 3s has a correct rate of 99.74%. Therefore, the cumulative
error Bcumu can be calculated by 3s.

According to the EBL, the precision type can be finally
determined. As mentioned, the bit length of the precision
type depends on the relationship between EBL and 128.
Besides, the scaling factor is equal to Bupper.

6 PARALLEL FRAMEWORK

Since the precision problem is solved by a customized preci-
sion method mentioned in previous two sections, this sec-
tion focuses on obtaining an effective parallel framework
for the computational kernel described in Equation (3)
based on the selected precision method. Generally, in order
to achieve the highest floating-point efficiency, the issues of
workload partition and memory access must be carefully
addressed. Our parallel framework is able to distribute the
workloads almost evenly (Section 6.1), and eliminate the
memory access in the computing kernel (Section 6.2).

6.1 Load-Balanced Partition Strategy

For the Torontonian function described in Equation (3), the
best dimension to partition is the enumeration of Z due to
its embarrassing parallelism. To describe the proposed
strategy, we map each Z onto a number mask ”maskZ”
ranging from 1 to 2N � 1. If i 2 Z, the ith bit in the binary
representation ofmaskZ is ”1” and vice versa.

To balance the load, we classify all masks into N groups
based on jZj (i.e., the number of ”1” in the maskZ). Matrices
AZ within a group have the same size, and different groups
are calculated in order. Because computation time only
depends on the size of these matrices, the proposed strategy
can obtain a nearly perfect load balance.

Algorithm 3 describes the pseudo code of our parallel
framework of Torontonian function based on the proposed
partition strategy. Line 3 indicates the enumerating of the N

groups that we have classified; in Line 4, the masks assigned
to a process or a thread are determined; in Line 6, the calcu-
lating matrix AZ is generated by the current mask and the
input matrix A; Line 7 is the determinant calculation, which
is the most expensive part of the calculation; Line 8 is the
updating of the result; and in Line 9, the next mask is derived
from the currentmask, and then, the next loop begins.

Algorithm 3. Calculate TorontonianðAÞ
Require:Matrix A
Ensure: A is Hermitian positive definite
1: function TorontonianA
2: result 0
3: for ijZj ¼ 1! N do
4: getmaskZ andmaskZEnd of the process or the thread
5: whilemaskZ 6¼ maskZEnd do
6: AZ  GEN AZðmaskZÞ
7: det GET DETERMINANTðI �AZÞ
8: result resultþ ð�1ÞN�ijZj 1ffiffiffiffiffiffiffi

jdetj
p

9: maskZ  GET NEXT MASKðmaskZÞ
10: end while
11: end for
12: return result
13: end Function

6.2 Zero-Memory-Access Storage Strategy

According to Algorithm 3, two matrices need to be stored
during the calculation of Torontonian function. One is the
input matrix of Torontonian function A, which is used to
generate the calculating matrices I �AZ based on the enu-
merated masks (Line 6); the other is the calculating matrix
I �AZ , which needs to perform a determinant calculation
with customized precision (Line 7). When N is 50 in 256-bit
precision mode, each complex number requires 64 B stor-
age space. The total storage requirement of input or calcu-
lating matrix is ð2NÞ 	 ð2NÞ 	 64 B ¼ 625 KB, far exceeding
the 64 KB LDM capacity. Therefore, this part aims to
reduce the storage requirement of two matrices to put them
into LDM entirely and thus achieve zero memory access in
the main loop (Line 3-11 of Algorithm 3).

Matrix I �AZ participates in the customized-precision
calculations and thus each element of it needs a full preci-
sion storage. We use the Hermitian symmetric and distrib-
ute the matrix into several CPEs to reduce LDM space
requirements for the calculating matrix. Based on Hermitian
symmetry, half of the LDM requirement can be reduced but
the LDM space remains insufficient. Distributing the matrix
can further save the space. But additional data exchange
overhead among CPEs are introduced as well. Fortunately,
on the Sunway architecture, the inter-CPEs communication
based on the register communication mechanism is very
efficient, so that the overhead is greatly minimized.

Fig. 6 shows the utilization of register communication
when the matrix is scattered to two CPEs. Each matrix row
is alternately assigned to two CPEs. In the upper panel, the
row with a pivot is located at CPE 0. In this round, CPE 0
sends the row with a pivot to CPE 1 via register communica-
tion. Then, each CPE multiplies this row by a proper scalar
and adds the scaled row to other rows to finish reduction.
In the next round of row reduction, as shown in the lower
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panel, the row with a pivot is input to CPE 1, and thus, the
data must be transferred from CPE 1 to CPE 0. The reduc-
tion process is the same as in the previous round.

As for matrix A, which is only used to generate the calcu-
lating matrix, we can apply lossy compression and use
matrix symmetries simultaneously. As scientific measure-
ment data, each element of matrix A contains only three to
five significant digits. Therefore, a 16-bit number with an
error of �1:525� 10�5 is sufficient to describe the measure-
ment data, and 32-bit lossy compression is also supported
for higher precision requirements. Additionally, based on
the symmetries derived from physical properties, only 1=4
elements in the matrix Amust be stored.

Due to the two storage strategies, the LDM space is now
sufficient for the two matrices. WhenN is 50, and the matrix
I �AZ is distributed to eight CPEs, each CPE occupied by
625 KB=2=8 ¼ 39:0625 KB of LDM space, where 625 KB is
the LDM requirement with no optimization, the division
factor 2 is due to Hermitian symmetry, and 8 is due to the
utilization of eight CPEs. On the other hand, when using 32-
bit compression, the size of the input matrix is ð2NÞ 	 ð2NÞ 	
2 	 4=4 ¼ 19:53125 KB. The total LDM requirement is
approximately 39:0625 KBþ 19:53125 KB ¼ 58:59375 KB,
which is below the 64 KB LDM capacity limit. Therefore
memory access is no longer required in the main loop.

7 OPTIMAL INSTRUCTION SCHEDULING

To fully exploit the performance of the GBS algorithm on a
classical supercomputer, the instruction arrangement within

the kernel of the Torontonian functionmust be carefully con-
sidered. Unfortunately, on the Sunway architecture, the
default Open64-based compiler yields a poor scheduling
solution with the large integer instruction set. Existing open-
or closed-source instruction scheduling tools cannot be
directly or conveniently ported and used with this special
architecture. Given the situation, a new method, which is
available and effective on the Sunway architecture, is helpful
to accelerate the calculations. Register allocation is another
critical problem that must be considered. In the Torontonian
function, the kernel is a multiple-precision complexmultipli-
cation that is composed of at least three real multiplications
[62], which may lead to a shortage of register resources.
Thus, optimal instruction scheduling may not produce the
fastest solution without awareness of register usage due to
undesirable and additional overhead from saving and load-
ing registers. To optimize the two interdependent problems
simultaneously, we propose a shortest-path-based method
to obtain an optimal solution.

7.1 DAG-Based Data Dependence

Before introducing the shortest-path-based method, we first
describe a directed acyclic graph (DAG) to indicate data
dependences and several symmetric optimizations.

In the field of instruction scheduling, DAG is widely
used to indicate data dependences [63], which is also suit-
able for this work. Fig. 7 shows the entire design of the
DAG for two 256-bit fixed-point multiplications, including
the basic edges that are derived from data dependences and
two types of additional edges based on symmetry.

The right part of the figure describes the skeleton of the
DAG based on big nodes. Each big node represents a section
of the same instructions in Algorithm 1 that have similar
purposes, and each edge between two big nodes implies
that their instructions have several dependent relationships.
The detailed dependences within a big node and between
two nodes are described in the left part of the figure.

In the left part of the figure, local and detailed dependen-
ces are described. The vshff node from Line 2 - 3 and the
umulqa node from Line 8 - 11 of Algorithm 1 are selected
as a typical example. Each big node has several instructions
from two proposed fixed-point multiplications; the number
in the bracket after an instruction name indicates which
fixed-point multiplication the instruction comes from. The
dependencies of the two nodes are shown via the black dot-
ted edges; only the instructions at the corresponding posi-
tions have dependences. More importantly, the primary
idea of symmetric optimization is shown. In addition to

Fig. 6. Gaussian Elimination based on register communication. The
upper and lower panels represent two adjacent rounds of reduction.
Each block indicates a matrix row. Because the matrix is an upper trian-
gular matrix due to Hermitian symmetry, the lower block has fewer ele-
ments than the upper block. A block with a red box indicates a row
where the pivot is located. A green arrow indicates the direction of regis-
ter communication. A green block indicates a buffer for receiving the row
with pivot from the other CPE.

Fig. 7. Directed acyclic graph (DAG) to describe data dependences.
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basic dependences, two types of symmetric relationship can
be added to the DAG. One derives from the symmetry of
the two multipliers. Instructions related to a can always be
executed before b. The other one is due to multiple multipli-
cations. Instructions related to previous multiplication can
always be executed first. In the figure, dependencies that
are colored blue represent the first symmetry, and those
that are colored red represent the second symmetry.

7.2 Shortest-Path-Based Solution

In this subsection, we introduce the proposed shortest-path-
based solution in detail. We first build a naive graph to be
used to manage the instruction scheduling. A node in the
graph represents an arbitrary permutation of an arbitrary
subset of instructions. There is an edge between two nodes
only if the former node can arrive at the latter node by push-
ing back a given instruction. The weight of an edge depends
on the pipeline stall caused by the newly added instruction.
The shortest path from the node denoted as the empty set to
a node denoted as the full set represents the optimal instruc-
tion scheduling.

Even if the naive method has the capacity to find the
optimal solution, it requires markedly more time to solve
the model. We merge nodes from the naive graph to sim-
plify and optimize the model. The weight of an edge (i.e.,
the pipeline stall) is irrelevant to the order of instructions
ahead and only related to the last few instructions that are
not finished in the pipeline. Therefore, we can use a combi-
nation instead of a permutation of most instructions and
only record the order of the last few instructions.

A tuple ðS;M; lÞ can be used to represent a node, where S
is the set of used instructions, M indicates the position and
permutation of umulqa in the last five positions of instruc-
tions, and l denotes the last instruction. In the kernel of the
Torontonian function, umulqa is the only instruction requir-
ing greater than two clocks, which must be specifically
recorded for handling data dependencies. Thus,M is used to
manage data dependences stemed from umulqa, while l is
used for other instructions below or equal to two clocks.

Based on the definition of a node, the only source s is
ð;; ;; �Þ, which indicates that no instructions are scheduled.
Its distance function used by shortest-path algorithm is
DðsÞ ¼ 0. How to determine the edges of the graph and their
weight is the remaining key issue. To address the issue, we
consider how to generate all successors of a node instead. For
a node ðS;M; lÞ, we enumerate each unused instruction i to
obtain the successor node ðS þ i;M 0; iÞ, where M 0 indicates
the new status of umulqa after pushing back instruction i,
and calculate the edgeweight by the following three steps:

1) Checking dependences. To guarantee the availability
of adding an edge, instruction i must satisfy the data
dependencies represented by the DAG described in
the previous subsection. Every instruction is in set S
is checked to ensure that there is no directed edge
from i to is in the DAG.

2) Checking data hazard. Data hazard is a major factor
that causes pipeline stalls in most architectures and
thus must be avoided. Unlike the first step that
checks dependencies, the DAG is not used in this
step. The data hazard due to umulqa instructions in

set M is checked first. The last umulqa instruction
contained data dependence with instruction i deter-
mines the clock cycles of pipeline stall. If all umulqa
instructions have no dependencies, whether the
instruction l has dependency and whether it requires
two clocks are checked.

3) Checking the structural hazard of the write-back
stage. On the Sunway architecture, the write-back
stage’s structural hazard is another critical factor that
impedes pipeline efficiency. If a previous instruction
and the current instructionwill enter write-back stage
in the same clock, the current instruction cannot be
issued during that clock. Based on the preliminary
result of pipeline stall obtained based on the data haz-
ard, we check whether instruction i conflicts with
instructions inM or l in this step. If structural hazards
occurs, the issuance of i must be delayed until the
conflict disappears.

With regard to the implementation, we choose the classic
and effective Dijkstra algorithm, and use a hash table to
record tuples and identify nodes.

7.3 Register Usage Awareness Optimization

As mentioned above, register allocation is another critical
problem in compilation optimization. Fortunately, the pro-
posed method can conveniently add the awareness of regis-
ter usage and obtain the optimal register allocation.

Using many dimensions of information is a common
method to manage complex multi-target optimization. To
manage register usage, two types of additional information
with respect to register resources should be added and
recorded in the states of all nodes. One is the historical max-
imum usage of register resources, which indicates the
requirement of register resources of a certain instruction
permutation. This information can also be used to obtain
the clock of the best instruction scheduling scheme under a
specific register resources constrains. The other is the cur-
rent usage of registers, which is used to update the histori-
cal maximum. As explained later, the records of current
usage information can be omitted because it can be uniquely
determined based on the set S.

Several definitions in the field of compiler technology are
useful to describe this method. A program point is a loca-
tion between two consecutive instructions. A temporary is
live at a program point if it holds a value that will be used
later. The live range of a temporary is the set of program
points where the temporary is live.

Fig. 8 shows a simple code snippet and the live range of
each temporary within it. t2 is considered as a typical exam-
ple. In the figure, the instruction in line 1 writes the result to
t2 and is called aWRITE instruction with respect to t2. After
line 1, the live range of t2 begins, and two instructions read
its value, which are called READ instructions. After line 3,
the current value of t2 is never used, and thus the live range
ends. At line 5, t2 is written again, and its live range begins
again. Thus, the live range of a temporary t is composed of
several consecutive segments of program points, and each
segment is composed of a WRITE instruction and following
several READ instructions with respect to t.

Due to the data dependencies represented by a DAG, for
each temporary t, the order of WRITE instructions cannot
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be changed. Additionally, READ and WRITE instructions
cannot be exchanged. Only READ instructions between two
WRITE instructions can be rearranged, or scheduled. Thus,
if the number of instructions related to t are determined,
whether t is live or not is determined regardless of the
scheduling of instructions. Thus, when set S is determined,
the number of instructions for each temporary is deter-
mined and thus the current register usage is determined.

Now, nodes in the new graph that aim to manage register
allocation can be defined as ðS;M; l; rÞ, where r represents
the historical maximum of the number of register usage. For
the source node ð;; ;; �; r0Þ, r0 denotes the number of registers
of the input parameters. When adding a new instruction i,
the current register usage c is recalculated and used to
update and determine the new r0 of successor node ðS þ
i;M 0; i; r0Þ. If c is greater than r, r0 is set to c, otherwise r0 is
equal to r.

7.4 Effectiveness Analysis

This part presents the effectiveness analysis of the proposed
instruction scheduling method. The Knuth’s algorithm [62],
by which a complex multiplication can be expressed by 3
multiplications and 5 additions and subtractions, is suitable
for the scene where the real multiplication is much slower
than real addition and subtraction. Table 2 shows the results
of 128-bit and 256-bit complex multiplications based on the
Knuth’s algorithm.

In the table, the Naive-Clocks indicates the CPU
clocks of a naive method, in which all multiplications and
additions are performed sequentially without rearrange-
ment. Opt-Clocks and Opt-RegNums indicate the CPU
clocks and register usage of the proposed optimal method,
respectively. To analyze the effectiveness, the 256-bit com-
plex multiplication is considered as an example. The naive
method requires 130 clocks, which is much larger than 62,
i.e., the number of fixed-point instructions. The extra clock
consumption derives from two sides: one is the pipeline
stalls inside the multiplication; the other is register moving
and saving/storing data to/from the stack introduced by
register allocation.

The shortest-path-based method can accelerate the per-
formance on both two sides. For the pipeline stall, the
method provides a 64 clocks instruction scheduling, which
only remains two stalls. For the register allocation, the opti-
mal scheduling interleaves three fixed-point multiplications
are interleaved, each of which requires totally 12 variables
according to the Algorithm 1. The proposed method can
provide the optimal register allocation of 14 registers for

these 12� 3 ¼ 36 variables, when the scheduling is also
optimal. As a result, the optimal method is approximately 2
times faster than the naive method and results in more than
95% pipeline efficiency.

The results of the proposed method in the 128-bit preci-
sion mode also show the remarkable improvement.

8 EVALUATION

8.1 Performance Analysis

This section discusses the performance results. Unless oth-
erwise specified, we use 39,286 nodes (157,144 processes) of
the Sunway TaihuLight supercomputer for experimenta-
tion, which is nearly the entire capacity of the supercom-
puter (a total of 40,960 nodes).

8.1.1 Time to Solution

Fig. 9 shows the execution time of both precision modes
based on a log-transformed distribution. In the figure, two
obvious parts can be found — the left nonlinear part and
the right linear part. Initially, the execution time is nonlinear
and grows slowly because the workload occupancy is insuf-
ficient. At arount 27 photons, the workloads become suffi-
cient to the entire Sunway Taihulight and the shape of the
execution time line changes. Due to the computation’s high
scalability of our method, the line is almostly linear in the
right part.

To obtain a sample, the computer typically must calcu-
late approximately 100 probabilities of the candidate sam-
ples using the Markov Chain Monte Carlo (MCMC)
sampling method [50]. To calculate one Torontonian proba-
bility for a 50-click photon detecting event, the execution
time in the proposed benchmark is 73,773s (approximately
20 hours) for 128-bit mode and 170,891s (approximately 2
days) for 256-bit mode, respectively.

Fig. 8. Live ranges for an example code snippet.

TABLE 2
Results of the Shortest-Path-Based Methods

on 128-bit and 256-bit Kernels

Precision Instructions Naive-Clocks Opt-Clocks Opt-RegNums

128 bits 32 68 34 9
256 bits 62 130 64 14

Fig. 9. Execution time for obtaining a single Torontonian. Two precision
modes are tested with different number of photons on the entire Sunway
TaihuLight supercomputer.
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Fig. 10 shows a comparison with other methods that handle
GBS. In the figure, most methods cannot process 50 pho-
tons, except for the proposed method (red line) and the
results of [66] (green line). Compared to the study repre-
sented by the green line, the proposed method is hundreds
of times faster. The time-to-solution results exemplify the
excellent performance of the proposed method.

8.1.2 FLOPS

For FLOPS counting, we count all arithmetic operations in
the Torontonian function. In general, a real space linear
solver requires 2=3n3 þOðn2Þ floating- or fixed-point opera-
tions (FLO) with a size n matrix [67]. However, we must
adjust the method of FLO counting due to the particularity
of determinant calculation in the Torontonian function.
First, the input matrix is guaranteed to be an Hermitian pos-
itive definite complex matrix, which can be solved by com-
plex space Chomsky decomposition. Additionally, the
matrix size n is typically small and thus the term Oðn2Þ
should not be omitted. Therefore, we count the operations
of the determinant calculations accurately combining these
two factors, as shown in Formula (11)

FLOdet ¼ 4

3
n3 þ n2 � 4

3
n: (11)

To obtain the total FLO of Torontonian function, the
FLOdet is substituted into the determinant part of Toronto-
nian function (Equation (3)). As the determinant parts with
the same N have the same FLOdet, summation of them can
be replaced by one term FLOdet multiplied by a factor. So
the number of summations in Equation (3) can be reduced
from 2N to N in the FLOtor equation. The derivation result
can be shown as follow:

FLOtor ¼
XN
i¼1

N

i

� �
32

3
i3 þ 4i2 � 8

3
i

� �
: (12)

Fig. 11 shows the performance results of two different
precisions based on the final formula. The highest sustained
performance of 128-bit mode and 256-bit mode are 2.78
PFLOPS when N ¼ 45 and 1.27 PFLOPS when N ¼ 37; the

highest peak performance is 3.67 PFLOPS when N ¼ 45 and
1.85 PFLOPS when N ¼ 41, respectively.

The highest FLOPS did not occur at N ¼ 50 because
when N becomes larger, LDM requirement becomes larger.
Thus, as mentioned in Section 6.2, a calculating matrix is
distributed to more CPEs with larger N , which results in
additional overhead, as explained in Section 8.1.5. This issue
is particularly severe in 256-bit mode.

8.1.3 Scalability

For strong scalability, we choose the data scale N ¼ 36 and
use 4,096 to 131,072 processes. Fig. 12 shows the strong scal-
ability results that both precision modes achieve a nearly
linear strong scalability.

8.1.4 Effectiveness of Each Optimization

The effectiveness of each optimization are evaluated in this
subsection. Basic, Storage, and All are the three evaluated
versions with different optimizations, respectively. Basic is
the baseline version, which only contains a basic parallel
framework including the load-balanced partition strategy
and the proposed fixed-point precision operations. It has no

Fig. 10. CPU � Time results of various GBS classical benchmarks. Red
line indicates the proposed method in 256-bit precision mode. Blue, yel-
low, green, and pink lines indicate the results from [64], [65], [66], and
[51], respectively.

Fig. 11. Peak and Sustained Performance of (a) 128-bit precision; (b)
256-bit precision.

Fig. 12. Strong scalability of (a) 128 bits; (b) 256 bits.
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deep computational and storage optimization. The matrix is
not distributed at the CPE level. So each CPE needs to han-
dle an entire matrix, which causes insufficient LDM space.
Therefore, in every Gaussian elimination step, the matrix
needs to be read into the LDM by DMA gradually, and
transferred back to the main memory afterwards, which
brings very heavy memory-access overhead. Storage version
applies all proposed storage strategy in Section 6.2 to
achieve zero-memory-access in the main loop. In this ver-
sion, the computational kernel simply uses 256-bit precision
operations without fine optimizations, which is also the
naive version in Section 7.4. All is the final version with full
optimizations, including the storage reduction and instruc-
tion scheduling.

Fig. 13 shows the PFLOPS of each version when N is 50.
According to the figure, compared with the Basic version,
the storage optimizations bring an overall acceleration of 4-
6 times; the instruction scheduling contributes to another
1.6-1.7 times speedup based on the Storage version. Com-
pared with the Basic version, the All version is 6.39 and
10.27 times fast on 128-bit and 256-bit precision mode,
respectively.

8.1.5 Performance of Each Part

Fig. 14 shows the percentage of time cost of each part when
N ¼ 50. As shown in Algorithm 3, GenAz corresponds to
Line 6, which is used to generate the matrix AZ based on the
current mask. Inv, Sync, RCom, and Elimi correspond to Line
7 (i.e., the function get_determinant). More specifically,
Inv relates to the reciprocal calculation, while RCom relates
to the register communication.

Sync represents the time cost of synchronization with
others’ CPEs, which primarily occurs when several CPEs
are working together to compute an identical matrix. Only
one CPE must calculate the reciprocal of the pivot, and the
other CPEs simply wait. Fig. 14 shows that the time cost of

Sync in 256 bits is much higher than that in 128 bits because
the matrix is distributed to more CPEs in 256 bits; this is the
primary factor that affects performance when N becomes
larger.

Elimi is related to the inner loop, which is composed of
Oð2NN3Þ times of the arithmetic operations and thus is the
bottleneck that takes up 70% � 90% of the time.

Last, SInv corresponds to Line 8, which computes the
reciprocal square root.

8.2 Verification for Adaptive Precision Framework

Although the availability of the proposed adaptive preci-
sion framework is guaranteed by the mathematical proof
and the physical characteristics of boson sampling as ana-
lyzed in Sections 4 and 5, experiments can further
describe the accuracy and efficiency of the proposed pre-
cision selection algorithm. According to Section 5.3, three
factors are important for evaluating the algorithm —
Bupper, Blower, and EBL. This part provides experiments
with some real-world matrices that were provided in [14].
Based on several observations and estimations, the turn-
ing point of precision selection occurs when n ¼ 41. Thus,
100 real-world matrices with n 2 ½39; 43
 are chosen to set
up the experiments. The results are plotted into three fig-
ures with different x- and y-axis, to present the evalua-
tions of the three factors respectively.

Fig. 15a are used to evaluate Bupper, which illustrates the
strict upper bound of the intermediate results. The x-axis
denotes the real maximum intermediate result and the y-axis
denotes the chosen upper bound Bupper, which can be
obtained by 1=jdet Bj. All points are located on the lower
right part of the figure splitted by the red line y ¼ x, which
indicates that Bupper is less than the real result at every data
point. Moreover, all data points are very close to the line y ¼
x, which indicates that the estimation of maximum result is
quite accurate.

Fig. 13. PFLOPS of time cost of each version with different optimizations
whenN ¼ 50.

Fig. 14. Percentage of time cost of each part.

Fig. 15. Experimental results of 100 random real-world matrices with
n 2 ½39; 43
.
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Fig. 15b shows the evaluation of Blower. The x-axis refers
to the real result of Torontonian function (calculated with
256-bit type) and the y-axis refers to the estimated result
based on Equation (8). Similar to Fig. 15a, this figure shows
that the estimation of Blower is under expectations.

In Fig. 15c, EBL is evaluated. The x-axis refers to EBL.
The y-axis Tor_Diff refers to the absolute of difference
between the 128- and 256-bit results of Torontonian func-
tion, which represents the differences between the real
results and 128-bit results. When the difference is great
than 10�3 (i.e., below three significant decimal digits), the
128-bit precision type is insufficient for the Torontonian
calculation. The horizontal red line y ¼ �3 divides the
figure into two parts. The lower part can be calculated
with 128-bit type correctly, while the upper part cannot.
Meanwhile, the vertical line x ¼ 128 is the boundary of
the actual selection of precision type made by the pro-
posed algorithm. The figure is thus divided into four
parts based on two metrics. The upper left part is empty,
which indicates that the proposed precision selection
strategy does not produce any false negative results. Con-
sequently, the proposed method provides an accurate
and efficient adaptive precision framework.

8.3 Performance Comparisons With Counterparts

This section provides performance results based on different
platforms. First, while the Torontonian function has not yet
been implemented on traditional platforms, such as Intel
CPU and GPU, we cannot obtain straightforward compari-
sons of the Torontonian function. However, according to the
analysis in Section 8.1.5, the most time-consuming part of
Torontonian function is theGaussian elimination part, which
is dominated by numerous fused multiply-add (FMA) oper-
ations using customized multiple precision type. As a result,
it is a reasonable alternative to directly use the FMA kernels
(only contain multiple precision FMA operations) for tradi-
tional platforms.

In the meantime, as the large integer instruction set is not
supported by traditional platforms such as x86 CPU and
GPU, our proposed method is still inapplicable. Therefore,
for traditional platforms, this paper achieves efficient multi-
ple precision arithmetic operations by representing higher
precision numbers with unevaluated sums of several float-
ing-point numbers (e.g., several Doubles). In this way, two
Doubles can represent a 106-bit floating-point number
((mantissa þ1Þ � 4), and four Doubles can represent a
212-bit number. Details of the algorithm based on such
representation can be found in some existing efforts [68],
[69]. As far as we know, the most state-of-the-art multiple

precision libraries are mainly based on such designs, includ-
ing the QD library [69] that supports CPU, and the CAMP-
ARY library [70] that supports both CPU and GPU. Unlike
traditional high precision libraries GMP [71] and MPFR
[72], QD and CAMPARY are specifically optimized for 106-
and 212-bit types and are thereby more efficient for these
two types.

Table 3 lists the performance results based on different
platforms. The Sunway design (SW26010) directly shows
the peak performance when calculating the Torontonian
function, which are 93.5 GFLOPS and 46.5 GFLOPS for
128- and 256-bit precision, respectively. So the efficiency
(the ratio of customized multiple precision FLOPS to dou-
ble precision FLOPS), are 3:06% and 1:52%, respectively.
On the other hand, QD library with version 2.3.22 and
CAMPARY library with version 01.06.17 are used for CPU
(E5-2680) and GPU (Tesla A100) designs, respectively.
Intel compiler 2019 and CUDA V11.4 are used as for the
compilers. As analyzed before, while the cost of the rest
parts can be neglected, only the FMA kernels are imple-
mented on these two platforms.

As shown in Table 3 , due to lower performance of CPU
and heavier dependence of automatic vectorization of QD
library, the performance of CPU design is the worst. The
performance of GPU design in 106 bit mode is better than
the Sunway design in 128 bit. But the Sunway design has
slightly higher accuracy. The performance of Sunway
design in 256 bit (46.5 GFLOPS) is 1.32 times better than
the GPU design in 212 bit (35.1 GFLOPS), even though
Tesla A100 is two to three generations more advanced.
Note that the 256-bit mode is provided for large experi-
ments (e.g., cases with N � 50), and is usually more
important for demonstrating quantum computational
advantage. In terms of the efficiency, the Sunway design
in 256-bit mode (1:52%) is 4.1 times better than the GPU
design (0:37%).

Consequently, the proposed benchmarking (256-bit
mode) has better performance and shall be an excellent clas-
sical benchmark for GBS with threshold detection.

9 DISCUSSION

In addition to introducing an state-of-the-art classical
benchmark for GBS with threshold detection, the pro-
posed method provides certain new insights from the
perspective of computing. The proposed instruction-
scheduling method is suitable for other applications with
a hand-written assembly kernel that may contain specific
instruction sets. With minor modifications, the proposed
method can also be applied to other platforms to find
the optimal scheduling.

The multiple-precision fixed-point design is one of the
major contributions of this work. Based on an architec-
ture-specific large integer instruction set, a set of fast
operators is achieved to support calculation of the Toron-
tonian function, which includes addition, subtraction,
multiplication, reciprocal, and reciprocal square root. The
proposed design can be easily applied to other scientific
applications that require high accuracy. In addition to the
Sunway architecture, any current or future machine with
such a specific instruction set can benefit. In future work,

TABLE 3
FLOPS Compared to Other Architectures

Hardware Library Kernel Bits Peak. FLOPS Effi.

Sunway(SW26010) - TorðAÞ 128 3.06T 93.5G 3.06%
Sunway(SW26010) - TorðAÞ 256 3.06T 46.5G 1.52%
CPU(E5-2680 v3) QD FMA 106 0.96T 23.4G 2.43%
CPU(E5-2680 v3) QD FMA 212 0.96T 0.97G 0.10%
GPU(Tesla A100) CAMPARY FMA 106 9.50T 532G 5.6%
GPU(Tesla A100) CAMPARY FMA 212 9.50T 35.1G 0.37%
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we may increase the number of operators and improve
their performance to establish an efficient and cross-plat-
form fixed-point multiple-precision library based on hard-
ware instructions.

Last, the proposed program exhibits good portability
by replacing the proposed customized precision design
with existing multiple-precision libraries under other
platforms.

10 CONCLUSION

Based on the Sunway TaihuLight supercomputer, we estab-
lished a state-of-the-art classical simulation of the GBS with
threshold detection in demonstrating quantum computa-
tional advantage. This benchmark served as the classical
counterpart of H.Zhong’s study, which is a significant mile-
stone in achieving quantum computational advantage
based on photon quantum method [14].

To simultaneously achieve nearly optimal performance
and sufficient accuracy, a series of methods, including a par-
tition strategywith excellent load balancing, optimal instruc-
tion scheduling based on the shortest path algorithm,
multiple-precision fixed-point design based on an architec-
ture-specific instruction set, and adaptive precision mode
selection based on upper- and lower-bound estimates, was
proposed and used.

Thus, sustained performance of 2.78 PFLOPS for 128-
bit precision and 1.27 PFLOPS for 256-bit precision was
achieved with a proper N . The largest run enabled us to
calculate one Torontonian function with a 100� 100 sub-
matrix from 50-photon GBS within 20 hours with 128-bit
precision and 2 days in 256-bit precision. To our knowl-
edge, this was the largest quantum computing simula-
tion based on Boson Sampling by using modern
supercomputers.
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