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Capacities of Gaussian Quantum Channels With
Passive Environment Assistance

Samad Khabbazi Oskouei , Stefano Mancini , and Andreas Winter

Abstract— Passive environment-assisted communication takes
place via a quantum channel modeled as a unitary interaction
between the information carrying system and an environment,
where the latter is controlled by a passive helper, who can
set its initial state such as to assist sender and receiver, but
not help actively by adjusting her behaviour depending on
the message. Here we investigate the information transmission
capabilities in this framework by considering Gaussian unitaries
acting on Bosonic systems. We consider both quantum com-
munication and classical communication with helper, as well as
classical communication with free classical coordination between
sender and helper (conferencing encoders). Concerning quantum
communication, we prove general coding theorems with and
without energy constraints, yielding multi-letter (regularized)
expressions. In the search for cases where the capacity for-
mula is computable, we look for Gaussian unitaries that are
universally degradable or anti-degradable. However, we show
that no Gaussian unitary yields either a degradable or anti-
degradable channel for all environment states. On the other hand,
restricting to Gaussian environment states, results in universally
degradable unitaries, for which we thus can give single-letter
quantum capacity formulas. Concerning classical communication,
we prove a general coding theorem for the classical capacity
under an energy constraint, given by a multi-letter expression.
Furthermore, we derive an uncertainty-type relation between
the classical capacities of the sender and the helper, helped
respectively by the other party, showing a lower bound on the
sum of the two capacities. Then, this is used to lower bound the
classical information transmission rate in the scenario of classical
communication between sender and helper.

Index Terms— Quantum Gaussian channels, quantum
Gaussian capacity, super-activation.
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I. INTRODUCTION

IN QUANTUM mechanics, every noisy channel (completely
positive and trace preserving – CPTP – linear map) is

the marginal of a reversible (i.e. unitary) interaction with
an environment initially in a pure state; this is the content
of Stinespring’s dilation theorem [30], and of the subse-
quent structure theorems of Choi [6], Jamiołkowski [15]
and Kraus [18]. This feature, which distinguishes quantum
communication fundamentally from its classical counterpart,
is at the core of the possibility to perform unconditional secret
key agreement over a channel, since the channel essentially
uniquely determines the action on the environment. In this
picture, noise in the channel is entirely due to loss of infor-
mation into the environment, more precisely the build-up of
correlations between the system and the environment. A series
of prior work, starting with [9], [10] have asked how much one
can counteract the noise if one had access to the environment
output state and could feed classical information back into the
channel output system [11], [20], [21], [29], [34].

Somewhat dually, two of the present authors have asked
previously what benefit can be obtained by accessing the
initial state of the environment [16], [17]. In contrast to
the (active) interventions in the environment of the afore-
mentioned works, we call this passive environment-assistance,
since the role of the helper is restricted to choosing a suitable
initial state. These previous results were obtained in the
finite-dimensional setting. Here, we extend the model and
results to infinite-dimensional systems, with special attention
to Gaussian channels and their Gaussian unitary dilations.
Additional motivations for the model of passive environment-
assistance comes from the notion of environment-parametrized
quantum channels, which are used to describe quantum
memory cells [8].

The present paper is structured as follows: In Section II
we define the system model and establish basic notation.
In Section III we treat quantum communication capacities both
without and with energy constraints; we show that two-mode
Gaussian unitaries are never universally degradable or anti-
degradable, but restricting to Gaussian helper there are families
of either type, allowing us to explicitly calculate the passive
environment-assisted quantum capacity under this restriction.
In Section IV we analyze the classical capacity with a helper
under energy constraints both for sender and helper; we show
that the capacity of the sender assisted by the helper and of the
helper assisted by the sender cannot both be small, and apply
this insight to the case of conferencing encoder. In Section V
we prove that the passive environment-assisted quantum and
classical capacities with energy constraints are continuous
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Fig. 1. Diagrammatic view of the parties involved in the communication.
Sender (Alice) and receiver (Bob) control respectively the systems A and B.
A third party controls the environment input system E to assist the commu-
nication between sender and receiver. The inaccessible output-environment
system is labelled as F . All in all the quantum channel NAE→B is
established.

in the unitary interaction, and indeed uniformly so with
respect to the energy-constrained diamond norm. In Section VI
we conclude. Two appendices provide additional proofs:
In Appendix A we prove Theorem 7, stating that non-trivial
two-mode Gaussian unitaries are neither universally degrad-
able nor universally anti-degradable; Appendix B proves
tighter lower bounds on the sum of classical capacities for
two-mode Gaussian unitaries.

II. SYSTEM MODEL AND NOTATION

In the present paper, we consider a communication model
between Alice and Bob that involves also a third party (helper)
controlling the environment input system, whose aim is to
enhance the communication between Alice and Bob (see
Fig. 1). We assume that the helper sets the initial state of
the environment to enhance the communication from Alice to
Bob, and then has no role in the coding protocol, thus we refer
to this model as passive environment-assisted model.

We will be interested in the realization of this model
by infinite dimensional systems, particularly with Gaussian
unitary transformations W and then to the channels that arise
from them depending on the state η.

Let L(X) denote the space of linear operators on a (separa-
ble) Hilbert space X . We denote the identity operator in L(X)
as 1X and the identity map (ideal channel) id : L(X) → L(X)
is denoted by idX . For any linear operator Λ : A→ B between
Hilbert spaces we denote the trace norm

‖Λ‖1 := Tr
√

Λ†Λ = Tr |Λ|, (1)

and the operator norm

‖Λ‖∞ := sup
{∣∣Λ|ψ〉∣∣ : |ψ〉 ∈ A,

∣∣|ψ〉∣∣ = 1
}
, (2)

where | · | denotes the Hilbert space norm. Let T (X) ⊂ L(X)
denote the set of trace class operators whose trace norm,
defined above, is finite; likewise, B(X) ⊂ L(X) is the set of
bounded operators, whose operator norm is finite. Any positive
semidefinite element ρ ∈ T (X) with Tr ρ = 1 is called a
density operator. Obviously the set S(X) of such operators is
a proper subset of T (X). A quantum channel N from system
A to a system B is a completely positive and trace preserving
(CPTP) linear map from T (A) to T (B).

Coming back to Fig. 1, consider an isometry W : A⊗E →
B ⊗ F which defines a channel N : L(A ⊗ E) → L(B),

whose action on the input state σ on A⊗ E is

NAE→B(σ) = TrF WσW †. (3)

Then an effective channel Nη : L(A) → L(B) is estab-
lished between Alice and Bob once the initial state η on
E is set:

NA→B
η (ρ) := NAE→B(ρ⊗ η). (4)

The complementary channel is

ÑA→F
η (ρ) := TrB W (ρ⊗ η)W †, (5)

while the adjoint channel N ∗B→A
η acts on the bounded

operator b ∈ B(B) such that

Tr
[
N ∗B→A

η (b) ρ
]

= Tr
[
bNA→B

η (ρ)
]

b ∈ B(A). (6)

It can be written in the explicit form

N ∗B→A
η (b) = TrE W

†(b⊗ 1F )W (1A ⊗ η), (7)

using the isometry W and the state η.
The consideration of the model of Fig. 1 is motivated also

by the fact that it can give insights for quantum multiple-access
channels whose characterization is usually quite challenging.
Indeed the channel (3) can equivalently be seen as quan-
tum multi-access channels (two-sender-one-receiver) [36].
Additionally, the channel (4) can be intended as an
environment-parametrized quantum channel and hence can be
used to describe quantum memory cells [8] and to characterize
quantum reading capacity [22].

Since we will deal with infinite dimensional systems, we
have to specify a couple of other things.

First, we will use natural logarithm ln in entropic quantities,
as is customary in settings of continuous alphabets, resulting
in the entropies be counted in units of nats. For a density
operator α, the von Neumann entropy is defined as [38]

S(α) := −Trα lnα. (8)

For two density operators α and β such that supp(α) ⊆
supp(β), the quantum relative entropy of α with respect to β
is defined as

D(α‖β) := Trα(lnα− lnβ); (9)

otherwise, D(α‖β) := ∞.
Second, we have to introduce a Hamiltonian operator to

constrain the states of a system in order to avoid unphysical
results.

A Hamiltonian HA is a densely defined self-adjoint operator
on the Hilbert space of a quantum system A, that is bounded
from below. One way of defining such an operator is to let
{|ej〉} be an orthonormal basis for the Hilbert space under
consideration (e.g. Fock basis), and {aj}, a sequence of real
numbers bounded from below. Then,

HA|ψ〉 :=
∞∑

j=1

aj |ej〉〈ej |ψ〉, (10)

defines HA on the dense subspace I ={
|ψ〉 :

∑∞
j=1 a

2
j |〈ej |ψ〉|2 < +∞

}
, with {aj} the eigenvalues
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corresponding to the eigenvectors {|ej〉}. All Hamiltonians
with discrete spectrum arise in this way.

For an arbitrary state ρ, the expectation of HA is given by

Tr ρHA =
∞∑

j=1

aj〈ej |ρ|ej〉. (11)

The n-th extension HAn of the energy observable HA to the
system An = A⊗n is defined in an i.i.d. fashion as follows:

HAn := HA ⊗ 1⊗ · · · ⊗ 1

+ 1⊗HA ⊗ · · · ⊗ 1

+ . . .+ 1⊗ · · · ⊗ 1⊗HA. (12)

A. Gaussian States

We recall here some basic facts about Gaussian states
that are at the core of our treatment, which also serves the
purpose of fixing the notations used in following sections.

The canonical observables r̂ = (q̂1, p̂1, . . . , q̂N , p̂N)� describe
a Bosonic system of N harmonic modes in a Hilbert space
X =

⊗N
k=1Xk. On such a system, we consider by default a

quadratic Hamiltonian, whose most general form is

HX = r̂XΩX r̂�
X , (13)

where ΩX is positive symmetric matrix, assumed for the
sake of simplicity to have a unique N -fold degenerate
eigenvalue ωX . Hence in normal form, HX = ωX

∑N
j=1

(q̂2j + p̂2
j)/2.

Hereafter we denote vectors (resp. matrices) by lower (resp.
upper) case bold symbols. The Heisenberg canonical commu-
tation relations satisfied by the canonical observables can be
compactly represented as

[r̂j , r̂k] = iΣjk, ∀j, k ∈ {1, . . . , 2N}, (14)

with

Σ :=
N⊕
1

(
0 1
−1 0

)
, (15)

and r̂2k−1 = q̂k, r̂2k = p̂k. For any density operator ρ
acting on X , the vector mean (or first moment) is the vector
d ∈ R2N , whose components are given by

dk := Tr ρr̂k. (16)

The 2N × 2N covariance matrix (CM) V is given by

Vjk := Tr ρ{(r̂j − dj)(r̂k − dk) + (r̂k − dk)(r̂j − dj)},
(17)

which is real, symmetric and positive definite. Furthermore,
for the CM to correspond to a bona fide quantum state it
has to satisfy the following Heisenberg-Robertson uncertainty
relation

V + iΣ ≥ 0. (18)

Conversely, if the uncertainty relation is satisfied, there
exists a quantum state with CM V , in fact a Gaussian

state ρ, that is uniquely defined by its associated Gaussian
characteristic function

χρ(ζ) = exp
(
−i(Σd)�ζ − 1

4
ζ�ΣV Σ�ζ

)
, (19)

where ζ ∈ R2N . Recall that the (zero-ordered) characteristic
function is defined as

χρ(ζ) := Tr(ρWζ), (20)

with the Weyl displacement operator given by

Wζ := exp
(
−ir̂�Σζ

)
. (21)

Thus, Gaussian states are completely characterized by
d and V .

The von Neumann entropy (8) of an N -mode Gaussian
state ρ can be evaluated through its covariance matrix as

S(ρ) = S(V ) =
N∑

i=1

g(νi), (22)

where ν1, . . . , νN are the symplectic eigenvalues of V. Note
that for Gaussian states, the entropy is a function entirely of
the CM, and so we slightly abuse notation writing S(V ). Here
the function g is defined by

g(x) :=
(
x+

1
2

)
ln
(
x+

1
2

)
−
(
x− 1

2

)
ln
(
x− 1

2

)
,

(23)

and as such g(x) is an increasing and concave function.

B. Gaussian Unitaries

Since we shall consider Gaussian unitaries in place of W
in Fig. 1, let us recall basic notions about them.

Consider N Bosonic modes. A Gaussian unitary on them
exp(−iH) with H as in Eq. (13), can be simply described by
an affine map

(S, ζ) : r̂ → S r̂ + ζ, (24)

where ζ ∈ R
2 N and S ∈ Sp(2N,R) because the transfor-

mation must preserve the commutation relations (14). Clearly
the eigenvalues r of the quadrature operators r̂ must follow
the same rule, i.e.,

(S, ζ) : r → S r + ζ. (25)

Thus, a Gaussian unitary is equivalent to an affine symplec-
tic map (S, ζ) acting on the phase space, and can be denoted
by US,ζ . In particular, we can write

US,ζ = WζUS, (26)

where the canonical unitary US corresponds to a linear
symplectic map r → S r, and the Weyl operator Wζ to a
phase-space translation r → r + ζ.

In terms of the statistical moments, d and V , the action of
US,ζ is characterized by the following transformations

d → Sd + ζ, V → SV S�. (27)
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Therefore, the action of a Gaussian unitary US,ζ over
a Gaussian state ρ(d,V ) will be completely described by
Eq. (27).

Note that the above arguments also apply if we replace
the vector of quadrature operators r̂ by the vector of ladder
operators (also known as annihilation and creation operators)
υ̂ = (â1, â

†
1, · · · , ân, â

†
n)�, where

âj =
q̂j + ip̂j√

2
. (28)

In such a case however, it will be S ∈ Sp(2N,C).
Let us now focus on two-mode Gaussian unitaries. Consider
υ̂ = (â, â†, b̂, b̂†)� with

â =
q̂a + ip̂a√

2
, b̂ =

q̂b + ip̂b√
2

. (29)

Then, the canonical unitary of Eq. (26), named here Uab,
satisfies

Uab υ̂ U †
ab = S · υ̂, (30)

with S ∈ Sp(4,C). Define

q := |S11|2 − |S12|2, (31)

where S11 and S12 are matrix elements of S. In [4, App. A],
it is shown that for q > 0, q �= 1

Uab = (Sa ⊗ Sb)U
(q)
ab

(
Ia ⊗ S′

b

)
, (32)

where Sa, Sb and S′
b denote (generally different) one-mode

squeezing transformations. For q ∈ (0, 1), U
(q)
ab is character-

ized by the symplectic matrix

S
(q)
ab =⎛⎜⎜⎝

√
q 0 −

√
1 − q 0

0
√
q 0 −

√
1 − q√

1 − q 0
√
q 0

0
√

1 − q 0
√
q

⎞⎟⎟⎠, (33)

while for q > 1, by

S
(q)
ab =⎛⎜⎜⎝

√
q 0 0 −

√
q − 1

0
√
q −

√
q − 1 0

0 −
√
q − 1

√
q 0

−
√
q − 1 0 0

√
q

⎞⎟⎟⎠. (34)

The case q < 0 can be traced back to the case q > 0 by
the following argument. Consider the transformation SWAPab

swapping (exchanging) the two modes, defined by

SWAPab = SWAP†
ab,

SWAPab â SWAP†
ab = b̂,

SWAPab b̂ SWAP†
ab = â. (35)

Therefore, one gets the following relation:

SWAPabUabυ̂U †
abSWAPab = S̃ · υ̂, (36)

where S̃ is a 4×4 matrix obtained by shifting by 2 the columns
of the symplectic matrix S describing the unitary Uab. In other
words,

S̃ij = Si,j⊕2, (37)

where ⊕ denotes the sum modulo 4. This, in turn, causes a
parameter change q �→ 1 − q > 1 so that (32) has to be
rewritten like

SWAPabUab = (Sa ⊗ Sb)U
(1−q)
ab

(
Ia ⊗ S′

b

)
, (38)

where U
(1−q)
ab will be characterized by a symplectic matrix

S
(1−q)
ab of the same form of (34) (with the substitution

q �→ 1 − q). Consequently, for q < 0,

Uab = SWAPab(Sa ⊗ Sb)U
(1−q)
ab

(
Ia ⊗ S′

b

)
. (39)

C. Gaussian Quantum Channels

Here, in the perspective of dealing with channels (3), (4), (5)
that would be mostly Gaussian, we recall the definition of
this latter kind of quantum channels. Moreover we present
Lemma 1 showing how separate energy constraints on systems
A and E reflect onto system B of Fig. 1.

A Bosonic Gaussian channel (BGC) NA→B is a linear
completely positive and trace preserving map defined on T (A)
and taking values in T (B), that maps every Gaussian state to
a Gaussian state. As Gaussian states span all states and are
completely characterized by their first and second moments,
the BGC NA→B can be completely characterized by the rule
of transformations on the vector mean and the covariance
matrix. On the level of vector mean and covariance matrices,
the action of NA→B is as follows:

dA �→ dB = XdA + dE ,

V A �→ V B = XV AX� + Y , (40)

where X and Y are real matrices with Y = Y � and Y ≥ 0.
For this transformation to represent a quantum channel,
we must have

Y + iΣ ≥ iXΣX�. (41)

In particular, when Y = 0, the channel NA→B represents
a unitary evolution of the system and from Eq. (18), it follows
that X is a symplectic matrix. Thus, the action of a Gaussian
unitary UA→B on the state ρA with NA modes can be
described by a symplectic matrix of size 2NA × 2NA as
follows:

ρB = UρAU † ↔ V B = SV AS�. (42)

It is furthermore well-known that a quantum channel can
be seen as part of a unitary evolution on a larger system
whose ancillary parts are not under our control. Actually, every
BGC acting on NA modes can be represented by a unitary
operation UAE→BF on the system and a minimal environment
of NE modes, where NE ≤ 2NA. This unitary interaction,
extending the argument of Subsection II-B) to multimodes,
can be described by a symplectic matrix S, written in block
form as follows:

S =
(

M N
O P

)
. (43)

When the input state in the environment is V E , the effective
channel NA→B

V E
can be described as

V A �→ V B = MV AM� + NV EN�. (44)
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In turn, the complementary channel ÑA→F
V E

acts on the
CM as

V A �→ V F = OV AO� + PV EP�. (45)

Lemma 1: Let NAE→B be a Gaussian channel from system
AE to system B with input Gaussian states subject to the
conditions Tr ρHA ≤ PA and Tr ηHE ≤ PE , for density
operators ρ and η on systems A and E, respectively. Then,
there exists a quadratic Hamiltonian HB on system B such
that

TrN (ρ⊗ η)HB ≤ 2PA + 2PE ,

and
Tr e−βHB <∞, ∀β > 0. (46)

Furthermore, it holds

sup
η:Tr(ηHE)≤PE

sup
ρ:Tr(ρ(HA))≤PA

S(N (ρ⊗ η)) <∞. (47)

Proof: Let us generically consider each system A, E, B
to be composed of N modes, and recall from Eq. (13), that

HA = r̂AΩAr̂�
A, (48)

as well as
HE = r̂EΩE r̂�

E , (49)

to be quadratic Hamiltonians, where ΩA and ΩE are positive
matrices with eigenvalues ωA and ωE .

On the system A (resp. E), for a given state ρ (resp. η)
with covariance matrix V ρ (resp. V η) the constrained energy
is given by Tr ρHA = TrΩAV ρ + dAΩAd�

A ≤ PA, (resp.
Tr ρHE = TrΩEV η + dEΩEd�

E ≤ PE ). Let us define

HB,η := c
(
r̂B r̂�

B − (Tr V ηN�N)1B

− dηN�Nd�
η 1B

)
, (50)

where c is a positive real constant. We know that M , N ,
ΩA and ΩE are finite dimensional matrices. Therefore, it is
possible to choose constants cA > 0 and cE > 0 such that
M�M ≤ cAΩA and N�N ≤ cEΩE . As a consequence,

Tr V ηN�N + dηN�Nd�
η

≤ cE TrΩEV η + cEdηΩEd�
η

= cE Tr ηHE

≤ cEPE , (51)

hence
HB,η ≥ c(r̂B r̂�

B − cEPE1B). (52)

In other words, the eigenvalues of HB,η are bounded from
below. Therefore, we have

Tr exp(−βHB,η) ≤ Tr exp(−βcr̂B r̂�
B) exp(βccEPE)

<∞. (53)

On the other hand, we have

Tr ρN ∗
η (HB,η) = TrNη(ρ)HB,η

= cTrNη(ρ)r̂B r̂�
B − cTrV ηN�N

− cdηN�Nd�
η , (54)

hence

Tr ρN ∗
η (HB,η)

= cTr(M�V ρM + N�V ηN)

+ c
(
dρM

� + dηN�
)(

dρM
� + dηN�

)�

− cTrV ηN�N − cdηN�Nd�
η

= cTrM�V ρM

+ c
(
dρM

� + dηN�
)(

dρM
� + dηN�

)�

− cdηN�Nd�
η . (55)

From the triangle inequality, we have(
dρM

� + dηN�
)(

dρM
� + dηN�

)�

≤ 2dρM
�Md�

ρ + 2dηN�Nd�
η . (56)

From the above inequality, one gets

Tr ρN ∗
η (HB,η)

≤ cTr ρ r̂AM�Mr̂�
A + 2cdρM

�Md�
ρ

+ 2cdηN�Nd�
η − cdηN�Nd�

η

≤ cTr ρ r̂AM�Mr̂�
A + 2cdρM

�Md�
ρ

+ cdηN�Nd�
η

≤ ccA Tr ρ r̂AΩAr̂�
A + 2ccAdρΩAd�

ρ

+ ccEdηΩEd�
η

≤ Tr ρ r̂AΩAr̂�
A + 2dρΩAd�

ρ + dηΩEd�
η

≤ Tr ρHA + dρΩAd�
ρ + dηΩEd�

η

≤ 2PA + PE , (57)

where c is selected such that ccA, ccE ≤ 1. Now, set

HB := c r̂B r̂�
B, (58)

which evidently is a positive self-adjoint operator independent
of η and ρ. It trivially satisfies

TrN (ρ⊗ η)HB = TrNη(ρ)HB

= Tr ρN ∗
η (HB)

= Tr ρN ∗
η (HB−ccEPE1)

+ Tr ρN ∗
η (ccEPE1), (59)

and thanks to Eq. (57), we have

TrN (ρ⊗ η)HB ≤ Tr ρN ∗
η (HB,η) + ccEPE

≤ 2PA + PE + ccEPE

≤ 2PA + 2PE , (60)

concluding the proof.

III. QUANTUM COMMUNICATION

In this section, we discuss the model of quantum commu-
nication with environment-assistance. We first focus on the
unconstrained quantum capacity, for which we refer to isome-
tries giving rise to BGC for each choice of Gaussian initial
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Fig. 2. Schematic of the protocol for transmitting quantum information
with passive assistance from the environment; E and D are the encoding and
decoding maps respectively.

environment state, and then move on to energy-constrained
quantum capacities.

Referring to Fig. 2, given a Gaussian isometry W : AE →
BF , to send quantum information down the channel Nη(ρ) =
TrF W (ρ ⊗ η)W † from Alice to Bob, we need an encoding
CPTP map E : T (A0) → T (An) and a decoding CPTP map
D : T (Bn) → T (B0), where the number of qubits of A0 is
equal to that of B0. The output, upon inputting a maximally
entangled state ΦRA0 with R being an inaccessible reference
system, reads σRB0 = D

(
N⊗n

(
E
(
ΦRA0

)
⊗ ηEn))

.
Definition 2: A passive environment-assisted quantum code

of block length n is given by a triple
(
EA0→An

, ηEn

,
DBn→B0

)
of an encoding map, a helper state and a decoding

map. Its fidelity is given by TrΦRA0σRB0 and its rate by the
number of qubits of A0 divided by n.

A rate R is called achievable if there are codes for all block
lengths n with fidelity converging to 1 and rate converging
to R. The passive environment-assisted quantum capacity of
W , denoted by QH(W ), is the supremum of all achievable
rates.

If the helper is restricted to fully separable states ηEn

, i.e.
convex combinations of tensor products ηEn

= ηE1 ⊗ . . . ⊗
ηEn

, the supremum of all achievable rates is called separable
passive environment-assisted quantum capacity and denoted
by QH⊗(W ).

If in addition the helper is restricted to Gaussian states,
we get the Gaussian separable passive environment-assisted
quantum capacity, which we denote QGH⊗(W ).

Theorem 3: For a Gaussian isometry W : AE → BF ,
the passive environment-assisted quantum capacity is given by

QH(W ) = sup
n

max
η(n)

1
n
Q
(
N⊗n

η(n)

)
= sup

n
max

ρ(n),η(n)

1
n
Ic

(
ρ(n);N⊗n

η(n)

)
, (61)

where the maximization is over states ρ(n) on An and states
η(n) on En.

Similarly, the capacity with separable helper is given by the
same formula,

QH⊗(W ) = sup
n

max
η1⊗...⊗ηn

1
n
Q(Nη1 ⊗ · · · ⊗ Nηn)

= sup
n

max
ρ(n),η(n)

1
n
Ic

(
ρ(n);N⊗n

η(n)

)
, (62)

but now varying only over product states η(n) = η1⊗ . . .⊗ηn.
Consequently,

QH(W ) = lim
n→∞

1
n
QH⊗(W⊗n). (63)

Proof: It is known that the coherent information for
nontrivial Gaussian channels without constrained energy is
finite [3]. However, relations (61) and (62) without energy
constraint may be infinite. To guarantee their finiteness, one
has to exploit energy constraints together with subadditivity
and concavity of von Neumann entropy.

The direct part, i.e. the “≥” inequality, follows from the
Lloyd-Shor-Devetak theorem applied to the channel (N )η(n)

(to be precise, to many copies of this block channel, so that
the i.i.d. theorems apply, cf. [31]).

For the converse part, i.e. “≤”, the proof is like [16],
which is based on the argument of [1], [25], [26]. More
specifically, given a code of block length n, whatever is the
environment state η(n), the upper bound on (61) is found
by applying the Fannes inequality and the convexity of the
coherent information.

A. Universal (Anti-)Degradability Properties

One of the main problems in quantum information theory
is to express the quantum capacity by a single-letter for-
mula. This can be done when the channel possesses the
(anti-)degradability property, which guarantees the additivity
of the coherent information [7]. Here we want to understand,
for a given two-mode Gaussian unitary, whether or not this
property can hold true irrespective of the environment state.

Recall that degradability of NA→B
ηE

is defined by the exis-
tence of a CPTP map ΓB→F such that

ÑA→F
ηE

= ΓB→F ◦ NA→B
ηE

. (64)

Analogously, anti-degradability is defined by the existence
of a map Γ̄F→B such that

Γ̄F→B ◦ ÑA→F
ηE

= NA→B
ηE

. (65)

Remark 4: By looking at the discussion in Subsection II-B,
we can see that any two-mode unitary U (q) with q ≥ 1/2
is degradable with respect to all Gaussian environment pure
states; we say that the unitary is Gaussian universally
degradable.

This comes from the fact that for the Gaussian quantum
channel NA→B

V E ,q we can find the required channel ΓB→F in
Eq. (64) as ÑF→B

V E , 2q−1
q

, because

ÑA→F
V E ,q = ÑB→F

V E , 2q−1
q

◦ NA→B
V E ,q . (66)

Remark 5: By looking at the discussion in Subsection II-B,
we can see that any two-mode unitary U (q) with 0 ≤ q ≤ 1/2
is anti-degradable with respect to all Gaussian environment
pure states; we say that the unitary is Gaussian universally
anti-degradable.

This comes from the fact that for the Gaussian quantum
channel NA→B

V E ,q we can find the required channel Γ̄F→B in
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Eq. (65) as ÑF→B
V E , 1−2q

1−q

, because

NA→B
V E ,q = ÑF→B

V E , 1−2q
1−q

◦ ÑA→F
V E ,q . (67)

Definition 6: A two-mode Gaussian unitary U is said to be
universally degradable (resp. universally anti-degradable) if
Eq. (64) (resp. (65)) holds true for all environment states ηE .

Theorem 7: Any two-mode Gaussian unitary U (q) is neither
universally degradable, nor universally anti-degradable, unless
q = 1.

The proof of this theorem, which we give in Appendix A,
is obtained by assuming the existence of a quantum channel Γ
satisfying the degradability condition (64) and then showing
that this leads to a contradiction. In particular, for q ≤ 1/2 the
claim follows from the fact that the channel is Gaussian uni-
versally anti-degradable, but has positive coherent information,
and hence cannot be anti-degradable, for some non-Gaussian
environment states [19].

Corollary 8: The two-mode Gaussian unitary U (q) : AE →
BF with q ≥ 1/2 is Gaussian universally degradable, and
hence its Gaussian separable passive environment-assisted
quantum capacity is given by the single-letter formula

QGH⊗(U (q)) = max
ηG

sup
ρG

Ic(ρG;Nη), (68)

where the optimization can be restricted to Gaussian input
states ρG (cf. [12, Thm. 12.38]). Note that, for each fixed
ηG, finding a local maximum of Ic corresponds to finding the
global one, thanks to the concavity of coherent information.

For q ≤ 1/2, the two-mode Gaussian unitary U (q) :
AE → BF is Gaussian universally anti-degradable, and hence
its Gaussian separable passive environment-assisted quantum
capacity vanishes, QGH⊗(U (q)) = 0. �

Armed with this corollary, we can now proceed to calculate
the Gaussian separable passive environment-assisted quantum
capacity of the two-mode unitaries U (q). Note that for each
Gaussian environment state ηG, the resulting channel Nη

is an OMG, a one-mode Gaussian channel. Their complete
classification is given in [13]. In particular, when η = |0〉〈0| is
the vacuum state, U (q) gives rise to an attenuator channel for
q < 1, and an amplifier channel for q > 1; for q = 1, N|0〉〈0|
is the identity.

For an OMG channel described by Eq. (40), the parameters
that characterize it are

x :=
√

detX, y := detY . (69)

Furthermore, we define another parameter dependent on
these two, K := 1

2 (y − |1 − x|).
For OMG channels, whenever the coherent information is

non-zero, the supremum over all Gaussian input states is
achieved for infinite input power, PA → ∞. It is known
from [3] that the optimised coherent information (over all
Gaussian input states) is given by

sup
ρG

Ic(ρG;N ) =
K

|1 − x| ln
K

|1 − x|

− K + |1 − x|
|1 − x| ln

K + |1 − x|
|1 − x|

+ ln
x

|1 − x| . (70)

For 0 ≤ q ≤ 1, U (q) with the symplectic matrix (33)
describes a beam splitter with transmissivity q and is denoted
hereafter by B(q). Considering 1/2 ≤ q < 1, then from
Corollary 8 we have

QGH⊗(B(q)) = max
V E

sup
V A

Ic(V A;B(q)), (71)

where the maximization over environment states can be
restricted to pure one-mode states given by the covariance
matrix

V E =
(

cosh(2s)(1 + cos θ) sin θ sinh(2s)
sin θ sinh(2s) cosh(2s)(1 − cos θ)

)
, (72)

with s ∈ R and θ ∈ [0, 2π). Eqs. (33) and (69) yield x = q and
y = 1 − q for all one-mode squeezed input environment V E .
Invoking Eq. (70), we get

QGH⊗(B(q)) = ln
q

1 − q
. (73)

For q > 1, U (q) is a two-mode squeezing transformation
with gain q, which has symplectic matrix (34) and is denoted
hereafter by A(q). Then from Corollary 8 we have

QGH⊗(A(q)) = max
V E

sup
V A

Ic(V A;A(q)), (74)

where the maximization over environment states can again
be restricted to states of the form (72). Eqs. (34) and (69)
yield x = q and y = q − 1 for all one-mode squeezed input
environment V E . Invoking (70), we get

QGH⊗(A(q)) = ln
q

q − 1
. (75)

Both for q > 1 and q < 1, the formulas recover the infinite
capacity of the identity channel in the limit q → 1.

B. Energy-Constrained Passive Environment-Assisted
Quantum Capacities

We now move on to energy-constrained quantum capacities.
Suppose that PA (resp. PE) is the maximum allowed average
energy per mode on A system (resp. E system). Then we
modify the Definition 2 as follows.

Definition 9: An energy constrained passive environment-
assisted quantum code of block length n is a triple(
EA0→An

, ηEn

,DBn→B0
)

such that, Tr
[
TrR E

(
ΦRA0

)]
HAn

≤ nPA and Tr η(n)HEn ≤ nPE .
Its fidelity is given by TrΦRA0σRB0 and its rate by the

number of modes of A0 over n.
A rate R is called achievable if there are codes for all block

lengths n with fidelity converging to 1 and rate converging
to R. The energy constrained passive environment-assisted
quantum capacity of W , denoted by QH(W ;PA;PE) is the
supremum of all achievable rates.

If the helper is restricted to fully separable states ηEn

,
i.e. convex combinations of tensor products ηEn

= ηE1 ⊗
. . .⊗ ηEn

, the supremum of all achievable rates is denoted by
QH⊗(W ;PA;PE).
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Theorem 10: For a Gaussian isometry W : AE → BF ,
the energy-constrained passive environment-assisted quantum
capacity is given by

QH(W ;PA;PE) = sup
n

sup
η(n)

1
n
Q
(
N⊗n

η(n) , nPA

)
= sup

n
sup
η(n)

max
ρ(n)

1
n
Ic

(
ρ(n);N⊗n

η(n)

)
, (76)

where the maximization is over states ρ(n) on An with
Tr ρ(n)HAn ≤ nPA and states η(n) on En with Tr η(n)HEn ≤
nPE .

The capacity with separable helper is given by the
same formula, but now varying only over product states
η(n) = η1 ⊗ . . . ⊗ ηn and respecting the energy constraints
Tr ρ(n)HAn ≤ nPA and

∑n
i=1 Tr ηiHEi ≤ nPE . Conse-

quently, QH(W ;PA;PE) = lim
n→∞

1
n
QH⊗(W ;nPA;nPE).

Proof: Considering the Hamiltonian operator HAnEn =
HAn ⊗ 1En + 1An ⊗HEn on the system AnEn, we have

Tr ρ(n) ⊗ η(n)HAnEn ≤ nPA + nPE , (77)

where ρ(n) ⊗ η(n) is an arbitrary allowed input state to the
system AnEn. Using the fact that

Tr exp(−βHAn), Tr exp(−βHEn) <∞ for all β > 0,
(78)

we get

Tr exp(−βHAnEn)
=

(
Tr exp(−βHAn)

)(
Tr exp(−βHEn)

)
<∞. (79)

Thus, according to [12], the set C = {ρ(n) ⊗ η(n) :
Tr ρ(n) ⊗ η(n)HAnEn ≤ nPA + nPE} is compact.

Using [28, Cor. 14] and the fact that

sup
ρ(n)⊗η(n)∈C

S(N⊗n(ρ(n) ⊗ η(n))) <∞, (80)

coming from Lemma 1, we see that the coherent information
Ic

(
ρ(n);N⊗n

η(n)

)
, for any fixed η(n), is continuous and hence

it takes its maximum on the set {ρ(n) | Tr ρ(n)HAn ≤ nPA}.
By applying (80), we then have

−∞ < −S(N⊗n
η(n)(ρ(n)))

≤ Ic

(
ρ(n);N⊗n

η(n)

)
≤ S(N⊗n

η(n)(ρ
(n)))

< +∞. (81)

Therefore, the quantity QH(W ;PA;PE) is finite.

Remark 11: If η(n) is pure, we have Ic

(
ρ(n);N⊗n

η(n)

)
=

Ic
(
ρ(n) ⊗ η(n);N⊗n

)
and the latter is continuous with maxi-

mum on C. Consequently, the supη(n) in Theorem 10 can be
turned into maxη(n) .

Let us evaluate the energy-constrained environment-assisted
quantum capacities for unitaries that are universally degradable
with respect to Gaussian environment states. To do so, recall

Fig. 3. Schematic of the protocol for transmit classical information with
passive assistance from the environment; E and D are the encoding and
decoding maps respectively.

[33, Thms. 13 and 14] that for a degradable channel NA→B ,
the energy-constrained quantum capacity is given by

Q(N , PA) = sup
ρ : Tr ρHA≤PA

S
(
N (ρ)

)
− S

(
Ñ (ρ)

)
, (82)

where the supremum is achieved by the Gibbs state γA(PA).
In particular for degradable channels Ni,

Q(N1 ⊗ . . .⊗Nn, nP )

= max
{Pi}

∑
i

S(Ni(γA(Pi))) − S
(
Ñi(γA(Pi))

)
s.t.

∑
i

Pi = nPA, (83)

an optimization that can be performed by Lagrange multipliers
in the cases of interest.

For unitaries that are universally degradable with respect to
Gaussian environment states, the energy-constrained Gaussian
separable environment-assisted capacity is bounded below by

QGH⊗(U,PA, PE) ≥
max

ηG : Tr ηHE≤PE

S(TrF UηG(γA(PA)))

− S(TrB UηG(γA(PA))). (84)

With this we can find lower bounds for beam splitter
and amplifier unitaries, and additionally also find their upper
bounds when letting PA → ∞. For example, the upper
bounds for single mode beam splitter and amplifier channels
are provided by (73) and (75), respectively.

IV. CLASSICAL COMMUNICATION

In this section, we consider classical communication in
the passive environment-assisted model. After deriving the
classical capacity, we put forward an uncertainty relation for
it, that arises when exchanging the roles of active and passive
users. Finally we will briefly discuss conferencing encoders.

Referring to Fig. 3, suppose Alice selects some classical
message m from the set of messages {1, 2, . . . , |M |} to
communicate to Bob. An encoding CPTP map E : M →
T (An) can be realized by preparing states {αm} to be input
across An of n instances of the channel. Here M is a Hilbert
space with orthonormal basis {|m〉}. A decoding CPTP map
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D : T (Bn) → M can be realized by a positive operator-
valued measure (POVM) {Λm}. The probability of error for
a particular message m, i.e. of decoding m̃ �= m, is

Pe(m) = 1 − Tr
[
ΛmN⊗n

(
αAn

m ⊗ ηEn
)]
. (85)

Definition 12: A passive environment-assisted classical
code of block length n is a family of triples {αAn

m , ηEn

,Λm}
with the error probability P e := 1

|M|
∑

m Pe(m) and the
rate 1

n ln |M |. A rate R is achievable if there is a sequence
of codes over their block length n with P e converging to
0 and rate converging to R. The passive environment-assisted
classical capacity of W , denoted by CH(W ), is the maximum
achievable rate.

If the helper is restricted to fully separable states ηEn

,
i.e., convex combinations of tensor products ηEn

= ηE1 ⊗
. . .⊗ηEn , the largest achievable rate is denoted by CH⊗(W ).

Since the error probability is linear in the environment state,
without loss of generality the latter may be assumed to be pure,
for both unrestricted and separable helper.

Theorem 13: For a Gaussian isometry W : AE → BF ,
the energy-constrained passive environment-assisted classical
capacity is given by

CH(W,PA, PE) = sup
n

max
η(n)

1
n
C
(
N⊗n

η(n) , nPA

)
, (86)

where the maximization is over environment input states η(n)

respecting energy constraint Tr η(n)HEn ≤ nPE .
Similarly, the capacity with separable helper is given by the

same formula,

CH⊗(W,PA, PE) =

sup
n

max
η(n)=η1⊗...⊗ηn

1
n
C(Nη1 ⊗ . . .⊗Nηn , nPA), (87)

where the maximum is only over product states, i.e.
η(n) = η1 ⊗ . . . ⊗ ηn respecting the energy constraint
Tr η(n)HEn ≤ nPE .

As a consequence of the theorem, we have CH(W,PA,
PE) = limn→∞ 1

nCH⊗(W,nPA, nPE).
Proof: Consider the Hamiltonian operator HAE = HA ⊗

1 + 1⊗HE on the system AE together with

HAnEn := HAE ⊗ · · · ⊗ 1 + 1⊗HAE ⊗ · · · ⊗ 1

+ . . .+ 1⊗ · · · ⊗HAE . (88)

For a given density matrix η(n) = η1 ⊗ · · · ⊗ ηn, we have

sup
ρ(n):Tr ρ(n)HAn≤nPA

S
(
N⊗n

η(n)

(
ρ(n)

))
≤ sup

ρ(n):Tr ρ(n)HAn≤nPA

S
(
N⊗n

(
ρ(n) ⊗ η(n)

))
(89)

≤ sup
ρ(n):Tr ρ(n)HAn≤nPA

n∑
i=1

S(N (ρi ⊗ ηi)) (90)

≤
n∑

i=1

sup
ρi:Tr ρiHA≤PA

S(N (ρi ⊗ ηi)). (91)

In getting the above sequence of inequalities we exploited
the subadditivity of the von Neumann entropy by introducing
ρi as submarginal of ρ(n), for i = 1 . . . n. Next, we have

sup
η(n):Tr(η(n)HEn )≤nPE

sup
ρ(n):Tr(ρ(n)HAn )≤nPA

S
(
N⊗n

η(n)

(
ρ(n)

))
≤ n2 sup

η:Tr ηHE≤PE

sup
ρ:Tr ρHA≤PA

S(N (ρ⊗ η)). (92)

By Lemma 1 the quantity (92) is finite and so is the l.h.s.
of (89).

Let us consider ρ =
∫
pxρxdx as the average input on a

single channel use. Clearly we have

Tr ρHA ≤
∫

Tr ρxHApxdx ≤ PA. (93)

Replacing ρ by Nη(ρ) and using Lemma 1, the Holevo
χ-quantity

χ({px,Nη(ρx)}) = S(Nη(ρ)) −
∫
S(Nη(ρx))pxdx, (94)

results finite. Then by means of (92), it is clear that

C
(
N⊗n

η(n) , nPA

)
= sup

pxn , ρ
(n)
xn

χ
({
pxn ,N⊗n

η

(
ρ
(n)
xn

)})
, (95)

is finite as well and so CH is correctly defined. Now, the
proof of the direct parts, i.e. “≥”, follows immediately from
the Holevo-Schumacher-Westmoreland theorem [14], [27].

For the converse parts, i.e. “≤”, the proof goes like
[17, Thm. 1].

For unitaries of most interest, like beam-splitter and ampli-
fier, we can give a lower bound on the classical capacity with
separable helper. Let us encode classical stochastic variable
m, distributed according to a probability density Pm, into the
quantum states ρA

m. The modulation due to encoding is given
by V mod and V A = V A+V mod gives the average input state
after encoding. We assume that the distribution of the classical
messages is a Gaussian distribution with zero mean whose
covariance matrix is given by V mod. The average energy of the

input states in terms of the CM is given by PA = Tr V A

4n − 1
2 ,

and likewise PE = Tr V E

4n − 1
2 for the environment. Then, for

beam splitter and amplifier we get the following form for the
environment-assisted capacities when the helper is restricted
to separable states in the environment,

CH⊗(U,PA, PE) ≥

max
s

{
g

(
|x|PA + y cosh(2s) +

|x| − 1
2

)

− g

(
y +

|x| − 1
2

)
;PA ≥ Pth

}
, (96)

where we used the notations x and y from Eq. (69) with
x �= 0, 1. Furthermore, cosh(2s) ≤ 2PE +1 and Pth = e2|s|+
2y sinh(2|s|)

|x| −1. For a general one-mode environment state we
can find a symplectic orthogonal transformation, that makes
V E diagonal (this symplectic orthogonal transformation is
a rotation, thus the effective state is a squeezed one-mode
state), which does not affect the energy constraints on the
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input environment. Now using [23, Thm. 1], we have V A

and V mod to be diagonal in the same basis as V E . In fact
we can choose the seed state of the input to be V E (in its
diagonal form). Then following the calculation in [24], we get
the claimed result.

A. Capacities Uncertainty Relation

For a given isometry W : AE → BF , the following quan-
tity corresponds to the product-state capacity with separable
helper

χH⊗(W,PA, PE) =
max

ρ,η : Tr ρHA≤PA, Tr ηHE≤PE

χ({pxdx,Nη(ρx)}), (97)

where on the r.h.s we have the Holevo χ quantity for the
effective channel NA→B

η (ρ) := NAE→B(ρ⊗ η) [see Eq. (4)]
upon inputting the ensemble {pxdx, ρx}, and ρ =

∫
pxρxdx.

Now, besides this channel A→ B, we can also define
another effective channel E → B by fixing the state of A
and tracing over F , namely NE→B

ρ (η) := NAE→B(ρ ⊗ η)
[see again Eq. (4)]. For the latter, the following quantity
corresponds to the product-state capacity with separable helper

χA⊗(W,PA, PE) =

max
ρ,η : Tr ρHA≤PA, Tr ηHE≤PE

χ
({
pxdx,N ρ(ηx)

})
. (98)

Theorem 14: Let W : A ⊗ E −→ B ⊗ F be a Gaussian
unitary on NA +NE modes with associated symplectic matrix
of the following canonical form

S =

⎛⎜⎜⎝
1 0 1− J−� 0
0 J 0 −J
1 0 1 0
0 1− J 0 J

⎞⎟⎟⎠,
or

S =

⎛⎜⎜⎝
1 0 0 J−� − 1

0 J −J 0
0 J−1 − 1 1 0

−J� 0 0 J�

⎞⎟⎟⎠, (99)

where 1 and J are (NA + NE) × (NA + NE) identity and
block-diagonal (in the real Jordan form) matrices respectively.
Assuming

(1− J−�)(1− J−1) ≤ 1, (100)

and Hamiltonians HA and HE for Alice and the helper as in
Eq. (13), with an average photon number per mode constrained
by PA and PE respectively, we have

χA⊗(W,PA, PE) + χH⊗(W,PA, PE) ≥
min{PA, PE}

2 max{PE , PA} + 1
. (101)

Remark 15: The condition (100) is weaker than the degrad-
ability condition for canonical forms (99) considered in
[5, Eq. 97]. More precisely, the latter is equivalent to the semi-
positivity of a block matrix(

Ξ1 Ξ2

Ξ†
2 Ξ3

)
, (102)

while semi-positivity of block Ξ1 is enough for (100).
Thus, a Gaussian channel might be not degradable, while
satisfying (101).

Remark 16: Eq. (101) is a kind of uncertainty relation
for χH⊗ and χA⊗, reminiscent of the entropic uncertainty
relations for complementary observables (see e.g. [32]), saying
that both cannot be arbitrarily small simultaneously.

Proof: Since the involved capacities refer to product states
with separable helper, we can consider single systems A,
consisting of NA modes, and E, consisting of NE modes.

From the relation (44), the covariance matrix of input state
for system A changes to the following

V A �→ V B = MV AM� + NV EN�. (103)

Instead, considering as input the system E and as helper A,
the corresponding output is obtained by exchanging A and E
in the above expression, namely

V E �→ V B = MV EM� + NV AN�. (104)

As input ensembles, we consider coherent states subject
to Gaussian distributions with zero mean, whose covariance
matrix are given by V A,mod and V E,mod for Alice and the
helper, respectively. The action of encoding is described as
follows:

V A = V A + V A,mod,

V E = V E + V E,mod. (105)

The respective average output states are then given by

V A �→ V B = MV AM� + NV EN�, (106)

V E �→ V B = MV EM� + NV AN�. (107)

Coherent input states on the systems A and E means V A =
V E = 1

2I . Then, using Eqs. (103) and (106), we can find

χH⊗ ≥ S

(
M

(
1
2
I + V A,mod

)
M� +

1
2
NN�

)
−S

(
1
2
MM� +

1
2
NN�

)
, (108)

and analogously using Eqs. (104) and (107), we can find

χA⊗ ≥ S

(
N

(
1
2
I + V E,mod

)
N� +

1
2
MM�

)
−S

(
1
2
MM� +

1
2
NN�

)
. (109)

Choosing V A,mod = PAI for the channel N and
V E,mod = PEI for the channel N , we get

χH⊗ ≥ S

((
PA +

1
2

)
MM� +

1
2
NN�

)
−S

(
1
2
MM� +

1
2
NN�

)
, (110)

and

χA⊗ ≥ S

((
PE +

1
2

)
NN� +

1
2
MM�

)
−S

(
1
2
MM� +

1
2
NN�

)
. (111)
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Now define the functions

f(t) := str
(
tMM� +

1
2
NN�

)
,

and

h(t) := str
(

1
2
MM� + tNN�

)
= 2tf

(
1
4t

)
, (112)

where str denotes the symplectic trace, i.e. str(A) =∑
i νi(A), with νi(A) the symplectic eigenvalues of A.

Notice that these functions are strictly increasing with respect
to the parameter t, and so they are invertible functions.

By the Cauchy-Lagrange mean value theorem, for the
function g(x), we know there exists a c ∈ (a, b) such
that

g(b) − g(a) = g′(c)(b − a). (113)

Thus, by choosing tb = f−1(b), ta = f−1(a) and c1 =
f−1(c), we get

g(f(tb)) − g(f(ta)) = g′(f(c1))(f(tb) − f(ta)). (114)

Consequently we can write

g

(
f

(
PA +

1
2

))
− g

(
f

(
1
2

))
=

[
f

(
PA +

1
2

)
− f

(
1
2

)]
ln
(
f(c1) + 1

2

f(c1) − 1
2

)
(115)

≥
f
(
PA + 1

2

)
− f

(
1
2

)
f(c1)

(116)

≥
f
(
PA + 1

2

)
− f

(
1
2

)
f
(
PA + 1

2

) (117)

≥ 1
PA + 1

2

f
(
PA + 1

2

)
− f

(
1
2

)
f
(

1
2

) . (118)

From Eqs. (115) to (116) we used the elementary relation
x ln x+ 1

2
x− 1

2
≥ 1, valid for x ≥ 1

2 . From Eqs. (116) to (118)

we used the property str(A) ≥ str(B), valid for symplectic
matrices A and B such that A ≥ B [2]. Analogously,
by choosing in Eq. (113), tb = h−1(b), ta = h−1(a) and
c2 = h−1(c), we get

g(h(tb)) − g(h(ta)) = g′(h(c2))(h(tb) − h(ta)). (119)

As a consequence, we can write

g

(
h

(
PE +

1
2

))
− g

(
h

(
1
2

))
≥

1
PE + 1

2

h
(
PE + 1

2

)
− h

(
1
2

)
h
(

1
2

) . (120)

Assuming for the moment PA ≤ PE , and taking into
account that f and h are increasing functions, together with

the fact that f
(

1
2

)
= h

(
1
2

)
, we obtain from Eqs. (118)

and (120)

g

(
f

(
PA +

1
2

))
− g

(
f

(
1
2

))
+ g

(
h

(
PE +

1
2

))
− g

(
h

(
1
2

))
≥ 1
PE + 1

2

f
(
PA + 1

2

)
+ h

(
PE + 1

2

)
− 2f

(
1
2

)
f
(

1
2

)
≥ PA

PE + 1
2

str
(
MM�

)
+ str

(
NN�

)
str

(
MM� + NN�

) . (121)

By means of Eq. (121) we immediately arrive at

χH⊗ + χA⊗ ≥ PA

PE + 1
2

str
(
MM�

)
+ str

(
NN�

)
str

(
MM� + NN�

) .

(122)

Now, using the assumption (100), we have

str
(
MM� + NN�

)
≤ 2 str

(
MM�

)
. (123)

Finally, replacing this in (122), we arrive at

χH⊗ + χA⊗ ≥ PA

PE + 1
2

str
(
MM�

)
+ str

(
NN�

)
2 str

(
MM�

)
≥ PA

2PE + 1
. (124)

Remark 17: Relaxing the requirement (100), we may have
the following:

• Relation (101) still holds if M and N have diagonal
form such that

str
(
MM�

)
+ str

(
NN�

)
=

str
(
MM� + MM�

)
. (125)

• Relation (101) still holds if MM� ≤ NN� or
MM� ≥ NN�.

• A bound tighter than Eq. (101) exists if NA = NE = 1
(see Appendix B).

In conclusion, unless one of the two energy constraints PA

and PE is zero, the sum of the classical capacities with helper
is always strictly greater than zero. On the other hand, if one
of PA or PB is zero, the identity or the SWAP unitary show
that it can happen that both capacities are zero.

B. Conferencing Encoders

Here we consider conferencing encoders, that is a situation
where Alice and the helper can freely communicate classical
messages, to prepare signal states for the transmission of a
common message (see Fig. 4). The classical capacity with
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Fig. 4. Diagrammatic view of the parties involved in the communication
with conferencing encoders. Differently from Fig. 1, here the party controlling
the environment input system E and the sender A can freely communicate
classically.

Fig. 5. Schematic of the protocol for transmitting classical information with
conferencing encoders; EA and EH are the encoding maps of Alice and helper
respectively. The decoding map is D.

conferencing encoders is then defined in such a way that the
encoders (Alice and the helper) are restricted to use product
states between A and E.

By referring to Fig. 5, an encoding CPTP map E : M →
T (An) ⊗ T (En) can be thought of as two local encoding
maps performed by Alice and Helen, respectively, and given
by EA : M → T (An) and EH : M → T (En). These can
be realized by preparing pure product states {|αm〉 ⊗ |ηm〉}
to be input across An and En of n instances of the channel.
A decoding CPTP map D : T (Bn) → M can be realized
by a POVM {Λm}. The probability of error for a particular
message m is

Pe(m) = 1 − Tr
(
ΛmN⊗n

(
αAn

m ⊗ ηEn

m

))
. (126)

Definition 18: A classical code for conferencing encoders
of block length n is a family of triples {|αm〉An

, |ηm〉En

,Λm}
with the error probability P e := 1

|M|
∑

m Pe(m) and rate
1
n ln |M |. A rate R is achievable if there is a sequence of
codes over their block length n with P e converging to 0 and
rate converging to R. The classical capacity with conferenc-
ing encoders of W , denoted by C

�
(W ) is the maximum

achievable rate. If the sender and helper are restricted to
fully separable states αAn

m and ηEn

m , i.e., convex combinations
of tensor products αAn

m = αA1

1m ⊗ . . . ⊗ αAn

nm and ηEn

m =
ηE1

1m ⊗ . . . ⊗ ηEn

nm, for all m, the largest achievable rate is
denoted by C

�⊗(W ) and is henceforth referred to as classical
capacity with product conferencing encoders.

Theorem 19: For a Gaussian isometry W : AE → BF , sat-
isfying the condition the classical capacity with conferencing

encoders is given by

C
�

(W,PA, PE)

= sup
n

max
{p(xn), αAn

xn ⊗ηEn

xn }
1
n
χ
({
p(xn),N⊗n(αAn

xn ⊗ ηEn

xn )
})
,

(127)

where the maximization is over ensembles respecting
energy constraints

∑
xn p(xn)Tr(αAn

xn HAn) ≤ nPA and∑
xn p(xn)Tr(ηEn

xn HEn) ≤ nPE .
Similarly, the product state capacity of conferencing

encoders is given by the formula,

C
�⊗(W,PA, PE) =

max
{p(x), αA

x ⊗ηE
x }
χ
({
p(x),N (αA

x ⊗ ηE
x )

})
, (128)

where the maximization is over ensembles respecting
energy constraints

∑
x p(x)Tr(αA

xHA) ≤ PA and∑
x p(x)Tr(ηE

x HE) ≤ PE .
Proof: The direct part, i.e. the “≥” inequality, fol-

lows from the HSW Theorem [14], [27]. For the converse
part, i.e. the “≤” inequality, the proof goes like that of
[17, Thm. 4].

A lower bound on the classical capacity with conferencing
encoders follows from the uncertainty relation of Theorem 14.
In fact from the definition of the conferencing encoder,
we obtain directly

C
�⊗ ≥ max{χH⊗(W ), χA⊗(W )}, (129)

and thus

C
�⊗ ≥ χH⊗(W ) + χA⊗(W )

2

≥ 1
2

min{PA, PE}
2 max{PE , PA} + 1

. (130)

In other words, the classical capacity with conferencing
encoders is always positive, provided the energy is non-zero
on both inputs.

Consider a symplectic transformation S, given in the block
form Eq. (43). Consider seed states with covariance matrices
V A and V E with zero vector mean. Suppose the classical
message is encoded by applying displacement operator to the
seed states. We assume that the distribution of the classical
messages is a Gaussian distribution with zero mean whose
covariance matrix is given by V mod. The action of encoding
is described as follows:

V A = V A + V mod,

V E = V E + V mod. (131)

The covariance matrices of the output state and the output
averaged state are labelled V B and V B respectively and
given by

V B = MV AM� + NV EN�,

V B = MV AM� + NV EN�. (132)

Let us evaluate the transmission of classical information by
conference encoders using the seed states V A = V E = I/2
and V mod = cI/2.
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Imposing the input energy constraint we have (assuming that
Alice and the helper are bounded by same energy) in terms
of covariance matrices:

TrV A

2n
≤ PA +

1
2
. (133)

Choosing c = 2 PA we get the Holevo function of this
ensemble to be

n∑
i=1

[
g

(
(2PA + 1)νi − 1

2

)
− g

(
νi − 1

2

)]
, (134)

where νi are the symplectic eigenvalues of MM� + NN�.
As g is concave monotonic in the argument we have the above
quantity non-zero whenever PA > 0. In particular, for the case
of beam-splitter, amplifier and conjugate amplifier, MM� +
NN� = I , we have the classical information transmission
for the above setting given by g(PA), which is the transmission
of ideal channel with mean photon number PA.

V. CONTINUITY OF CAPACITIES IN COMMUNICATION

ASSISTED BY HELPER

The quantum and classical capacities assisted by separable
helper that we defined and studied above also satisfy uniform
continuity.

Theorem 20: For input and output energy-
limited Gaussian channels NAE→B and MAE→B ,
if ‖NAE→B −MAE→B‖ ≤ 2ε, then

|CH⊗(N ) − CH⊗(M)| ≤ 28
√
ε S

(
γB

(
4PB√
ε

))
+ 3g

(√
ε+

1
2

)
(135)

|QH⊗(N ) −QH⊗(M)| ≤ 28
√
ε S

(
γB

(
4PB√
ε

))
+ 3g

(√
ε+

1
2

)
, (136)

where g is given in Eq. (23) and γX(P ) is the Gibbs state of
system X .

Proof: The proof immediately follows from [37, Thm. 9]
by noticing that

‖NA→B
η −MA→B

η ‖ ≤ ‖NAE→B −MAE→B‖
≤ 2ε, ∀η ∈ E (137)

the channels NA→B
η , MA→B

η being restrictions of NAE→B ,
MAE→B respectively. Furthermore, for any η ∈ E, the energy
limitation for the output state, according to Eq. (46) of
Lemma 1, will be as follows

TrNη(ρ)HB = TrNAE→B(ρ⊗ η)HB

≤ 2PA + 2PE ≡ PB, (138)

thus concluding the proof.
Remark 21: If we take dρ = dη = 0 in Lemma 1, then

we have TrNη(ρ)HB ≤ PA + ccEPE . By choosing c > 0
such that ccE ≤ α together with HB = cr̂B r̂�

B , the quantity
PB = PA + αPE plays the role of Ẽ = αE + E0 in [37].

VI. CONCLUSION

We have created a model of communication via infinite-
dimensional channels defined by a bipartite unitary, when
assisted by a passive helper in the environment. In this model,
we have investigated quantum and classical capacities, proving
various general capacity theorems, the former without and
with energy constraints, the latter with energy constraints,
with respect to natural assumptions on the Hamiltonians
involved.

In particular, in Bosonic Gaussian systems, where the
Hamiltonian is that of several quantum harmonic oscilla-
tors and with a Gaussian unitary defining the interaction,
we showed that the capacity formulas lead to simple expres-
sions, when the helper is restricted to Gaussian states.
Furthermore, for the classical capacity we showed a tradeoff
(“uncertainty”) relation between the capacity of Alice assisted
by the helper, and that of the helper assisted by Alice in
terms of the respective input powers, and a lower bound on
the classical capacity with conferencing encoders Alice and
helper.

Practically all of our general capacity formulas are multi-
letter, and it remains to find bipartite unitaries for which any of
them is both non-trivial and explicitly computable, or at least
a single-letter formula. In that respect, although we proved
the impossibility of having a universally (anti-)degradable
Gaussian unitary, it remains open the possibility that for every
environment state η the effective channel Nη has a well
defined degradability property (not the same for all η). More
generally, we would like to know unitaries that are universally
degradable (not just for Gaussian helper inputs), for a single-
letter quantum capacity, and likewise unitaries resulting in
universally additive channels for the Holevo capacity. The
lower bound on conferencing encoders based on the capacity
uncertainty relation seems very weak, and it remains open to
prove better bounds.

Finally, it could be interesting to turn the role of helper
into that of an adversary and study how the quantum commu-
nication capabilities between Alice and Bob will be hampered
by this adversary and the energy constraint it applies. In this
sense, the presented model paves the way to investigate arbi-
trarily varying quantum channels also in infinite dimensional
spaces, a topic of particular relevance for the secrecy of
practical (in fiber and free space) quantum communication.

APPENDIX A
PROOF OF THEOREM 7

The proof is divided into two parts, one concerning the case
q < 1 and another the case q > 1. In the former, for 1√

2
≤ q <

1
2 +

√
3

6 , we obtain a special convex combination of quantum
density matrices which has an image through Γ with some
negative eigenvalues. Since the method for other cases within
the interval 1/2 ≤ q < 1 is similar, we just numerically show
the negativity of some eigenvalues for the images through Γ of
special convex combinations of density matrices. In contrast,
the case q > 1 is different, as a contradiction is achieved based
on the fact that the quantum relative entropy cannot increase
by quantum operations.
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A. Case q < 1

Proposition 22: The two-mode Gaussian unitaries U (q) for
1√
2
≤ q < 1

2 +
√

3
6 are neither universally degradable, nor

universally anti-degradable.
Proof: It is enough to prove that there exists a state ηE

for which the channel NA→B
ηE

is anti-degradable. In view of
Remark 4, this state is necessarily non-Gaussian.

The U (q) corresponding to (33) turns out to be

U (q) = earccos
√

q (â†b̂−âb̂†), (139)

for q ∈ (0, 1). Then, for the Fock state |n〉|1〉, we have

U (q)|n〉|1〉 = − 1√
(n+ 1)(1 − q)

n+1∑
�=0

(−1)�

√(
n+ 1
�

)
(1 − q)�/2q

n−�
2 ((n+ 1)(1 − q) − �)|n+ 1 − �〉|�〉.

(140)

By selecting n = 0, 1, we get

U (q)|0〉|1〉 =

− 1√
1 − q

(
(1 − q)|1〉|0〉 +

√
q(1 − q)|0〉|1〉

)
, (141)

and

U (q)|1〉|1〉 = − 1√
2(1 − q)

(
2
√
q(1 − q)|2〉|0〉

−
√

2
√

1 − q(1 − 2q)|1〉|1〉

− 2(1 − q)
√
q|0〉|2〉

)
. (142)

Consider now the channel with environment in the Fock
state |1〉〈1|, i.e.

Nq(ρ) = TrE

(
U (q)(ρ⊗ |1〉〈1|)U (q)†

)
. (143)

Let us assume that there exists a channel Γ such that

Γ ◦ N (ρ) = Ñ (ρ). (144)

Inputting ρ = |0〉〈0|, we find that

Nq(|0〉〈0|) = q|0〉〈0| + (1 − q)|1〉〈1|, (145)

and
Ñq(|0〉〈0|) = q|1〉〈1| + (1 − q)|0〉〈0|. (146)

Therefore, according to (144), we should have

qΓ(|0〉〈0|) + (1 − q)Γ(|1〉〈1|) = q|1〉〈1| + (1 − q)|0〉〈0|.
(147)

Analogously, inputting ρ = |1〉〈1|, we get

Nq(|1〉〈1|) =
1

2 − 2q

(
4q(1 − q)2|0〉〈0|

+ 2(1 − q)(1 − 2q)2|1〉〈1|

+ 4q(1 − q)2|2〉〈2|
)
, (148)

and

Ñq(|1〉〈1|) =
1

2 − 2q

(
4q(1 − q)2|2〉〈2|

+ 2(1 − q)(1 − 2q)2|1〉〈1|

+ 4q(1 − q)2|0〉〈0|
)
. (149)

Hence, according to (144), we should have

1
2 − 2q

(
4q(1 − q)2Γ(|0〉〈0|)

+ 2(1 − q)(1 − 2q)2Γ(|1〉〈1|)

+ 4q(1 − q)2Γ(|2〉〈2|)
)

=
1

2 − 2q

(
4q(1 − q)2|2〉〈2|

+ 2(1 − q)(1 − 2q)2|1〉〈1| + 4q(1 − q)2|0〉〈0|
)
. (150)

Now, from (147), we derive

Γ(|1〉〈1|) =
q

1 − q
|1〉〈1| + |0〉〈0| − q

1 − q
Γ(|0〉〈0|), (151)

which, inserted into (150), yields

q
(
1 − 2q2

)
Γ(|0〉〈0|) + 2q(1 − q)2Γ(|2〉〈2|) =

2q(1 − q)2|2〉〈2| + (1 − 2q)3|1〉〈1|
+ (1 − q)(−1 + 6q − 6q2)|0〉〈0|. (152)

Isolating the term Γ(|2〉〈2|) at l.h.s., we arrive at

Γ(|2〉〈2|) = − 1 − 2q2

2(1 − q)2
Γ(|0〉〈0|) + |2〉〈2|

+
(1 − 2q)3

2q(1 − q)2
|1〉〈1| + −1 + 6q − 6q2

2q(1 − q)
|0〉〈0|. (153)

At this point, taking a convex combination of Γ(|1〉〈1|) and
Γ(|2〉〈2|) must give a positive operator, given that Γ is a CPTP
map. Consider then

1 − q

q
Γ(|1〉〈1|) +

2(1 − q)2

2q2 − 1
Γ(|2〉〈2|), (154)

with q ≥ 1√
2

, we get

1 − q

q
Γ(|1〉〈1|) +

2(1 − q)2

2q2 − 1
Γ(|2〉〈2|)

=
2(1 − q)2

2q2 − 1
|2〉〈2| +

[
1 +

(1 − 2q)3

q(2q2 − 1)

]
|1〉〈1|

+
[
1 − q

q
+

(1 − q)(−1 + 6q − 6q2)
q(2q2 − 1)

]
|0〉〈0|. (155)

Now, if we analyze the coefficients at r.h.s. (which cor-
respond to the eigenvalues of the convex combination of
Γ(|1〉〈1|) and Γ(|2〉〈2|)) we have

2(1 − q)2

2q2 − 1
≥ 0 for

1√
2
≤ q < 1, (156)

1 +
(1 − 2q)3

q(2q2 − 1)
< 0 for

1√
2
≤ q <

1
2

+
√

3
6
, (157)

1 − q

q
+

(1 − q)(−1 + 6q − 6q2)
q(2q2 − 1)

> 0

for
1√
2
≤ q < 1. (158)
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Fig. 6. Quantities c(kn, km) vs q. In particular, in the range [1/2, 1/
√

2]
it is plotted c(k4,−k2). In the range [1/

√
2, 1/2 +

√
3/6) it is plotted

c(k2,−k1), according to Proposition 22. Finally, in the range [1/2 +√
3/6, 0.8] it is plotted c(−k4, k2). In the point q = 1/2 +

√
3/6, it is

c(k2,−k1) = 0 while c(−k4, k2) = −0.0303.

Fig. 7. The quantity minn,m≤50 C(|kn|, |km|) vs q when knkm < 0.

Thus, we can conclude that the channel Γ does not exist
(at least for 1√

2
≤ q < 1

2 +
√

3
6 ) because its eigenvalues

should have been positive. This in turn means that in the above
range of q values the Gaussian unitaries are neither universally
degradable nor universally anti-degradable.

Remark 23: Numerical investigations (see below) suggests
that the statement of Proposition 22 holds actually true for q
between 1/2 and 1.

Let us consider the convex combination of states as

km

km + kn
Γ(|n〉〈n|) +

kn

km + kn
Γ(|m〉〈m|), (159)

where km and kn are the coefficients in front of Γ(|0〉〈0|) for
the expressions of Γ(|m〉〈m|) and Γ(|n〉〈n|), respectively.

Define c(kn, km) the coefficient of |1〉〈1| for the combina-
tion (159). Figures 6 and 7 show that there is always a negative
c(kn, km) for q ∈ [ 12 , 1).

B. Case q > 1

The U (q) corresponding to (34) turns out to be

U (q) = ei arccosh
√

q(â†b̂†+âb̂). (160)

Using the disentangling formula for the SU(1, 1) group,
it is possible to rewrite it as

U (q) = erâ†b̂†e−s(â†â+b̂b̂†)erâb̂, (161)

where

r = i

√
q − 1
q

, s = ln
√
q. (162)

Let us now compute the action of U (q) on the Fock state
|m〉|1〉. It results

U (q)|m〉|1〉

= eâ†b̂†re−(â†â+b̂b̂†)s

⎛⎝ ∞∑
n=0

rn
(
âb̂
)n

n!
|m〉|1〉

⎞⎠ (163)

= eâ†b̂†re−(â†â+b̂b̂†)s
(
|m〉|1〉 +

√
mr|m− 1〉|0〉

)
(164)

= eâ†b̂†r

⎛⎝ ∞∑
n=0

(−1)nsn
(
â†â+ b̂b̂†

)n

n!

⎞⎠(
|m〉|1〉

+
√
mr|m− 1〉|0〉

)
(165)

= eâ†b̂†r
( ∞∑

n=0

(−1)nsn(m+ 2)n

n!
|m〉|1〉

+
√
mr

∞∑
n=0

(−1)nsn(m− 1 + 1)n

n!
|m− 1〉|0〉

)
(166)

= eâ†b̂†r
(
e−(m+2)s|m〉|1〉 +

√
mre−ms|m− 1〉|0〉

)
(167)

= e−(m+2)s
∞∑

n=0

√
n+ 1

√(
n+m

m

)
rn|n+m〉|n+ 1〉

+
√
mre−ms

∞∑
n=0

√(
n+m− 1
m− 1

)
rn|n+m− 1〉|n〉

(168)

=
√
mre−ms|m− 1〉|0〉

+
∞∑

n=0

(
e−(m+2)s

√
n+ 1

√(
n+m

m

)

+
√
mr2e−ms

√(
n+m

m− 1

))
rn|n+m〉|n+ 1〉.

(169)

Then, we can get

N (|m〉〈m|) = m|r|2e−2ms|m− 1〉〈m− 1|

+
∞∑

n=0

(
e−(m+2)s

√
n+ 1

√(
n+m

m

)

−
√
m
q − 1
q

e−ms

√(
n+m

m− 1

))2

|r|2n|n+m〉〈n+m|,

(170)
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and

Ñ (|m〉〈m|) = m|r|2e−2ms|0〉〈0|

+
∞∑

n=0

(
e−(m+2)s

√
n+ 1

√(
n+m

m

)

−
√
m
q − 1
q

e−ms

√(
n+m

m− 1

))2

|r|2n|n+ 1〉〈n+ 1|.

(171)

It is known that for any completely positive map Γ and two
density matrices ρ and σ, the following inequality for quantum
relative entropy holds true (contractive property)

D(Γ(ρ)‖Γ(σ)) ≤ D(ρ‖σ). (172)

By assuming the degradability condition for N , we should
have

D
(
Ñ (|m1〉〈m1|)

∥∥∥Ñ (|m2〉〈m2|)
)
≤

D
(
N (|m1〉〈m1|)

∥∥N (|m2〉〈m2|)
)
, (173)

for all m1 > m2 ∈ N. From Eqs. (170) and (171), we have

D
(
N (|m1〉〈m1|)

∥∥N (|m2〉〈m2|)
)

= m1|r|2e−2m1s ln
m1|r|2e−2m1s

cqm2(m1−m2−1)

+
∞∑

n=0

cqm1n ln
cqm1n

cqm2(m1−m2+n)

, (174)

and

D
(
Ñ (|m1〉〈m1|)

∥∥∥Ñ (|m2〉〈m2|)
)

= m1|r|2e−2m1s ln
m1|r|2e−2m1s

m2|r|2e−2m2s

+
∞∑

n=0

cqm1n ln
cqm1n

cqm2n
, (175)

where, according to (170) and (171), we have defined

cqmn :=

(
e−(m+2)s

√
n+ 1

√(
n+m

m

)

−
√
m
q − 1
q

e−ms

√(
n+m

m− 1

))2

|r|2n. (176)

By simple calculations, we get

cqmn :=
(n+ 1 −m(q − 1))2

(n+ 1)qm+2

(
n+m

m

)(
q − 1
q

)n

. (177)

Then, Eq. (173) reads

m1|r|2e−2m1s ln
m1|r|2e−2m1s

m2|r|2e−2m2s
+

∞∑
n=0

cqm1n ln
cqm1n

cqm2n

≤ m1|r|2e−2m1s ln
m1|r|2e−2m1s

cqm2(m1−m2−1)

+
∞∑

n=0

cqm1n ln
cqm1n

cqm2(m1−m2+n)

, (178)

or more simply

m1|r|2e−2m1s ln
m2|r|2e−2m2s

cqm2(m1−m2−1)

+
∞∑

n=0

cqm1n ln
cqm2n

cqm2(m1−m2+n)

≥ 0. (179)

However this inequality can be violated. In fact, it happens
that cqm2 n = 0 when

n = m(q − 1) − 1. (180)

It is then clear that (179) may be violated when q is close
to integer numbers. More precisely the following result holds
true.

Theorem 24: For an arbitrary q > 1, there exist integers
m1 > m2 such that Eq. (179) is not true.

Proof: Let us consider a fixed rational number q = x
y > 1.

By selecting m2 = y and n′ = x− y − 1, we have

n′ = m2(q − 1) − 1, (181)

that, from (177), guarantees cqm2 n′ = 0. On the other hand,
if there exists n′′ such that cqm2(n′′+m1−m2)

= 0 for such q,
then we should have

n′′ +m1 −m2 + 1
m2

= q − 1 ⇒

n′′ +m1 −m2 + 1
y

=
x− y

y
. (182)

We choose m1 such that m1 − y �= x− y−n′′ − 1 for any
integer n′′ = 0, 1, . . . , in order to have cqm2(n′′+m1−m2)

= 0.
We also have cqm1 n′ �= 0 to ensure that

cqm1n′ ln
cqm2n′

cqm2(m1−m2+n′)
= −∞, (183)

By considering the above descriptions, we show that relation
(179) violates for given small radius ε > 0 and q < q′ < q+ε.
In other words, it is clear that cq

′
m2 n �= 0, ∀ n1 and so we have

the condition supp(N (|m1〉〈m1|)) ⊆ supp(N (|m2〉〈m2|)).
Now, for each n ≥ m2(q − 1) +m1, we have

cq
′

m2n

cq
′

m2(m1−m2+n)

=
(n+1−m2(q

′−1))2

(n+1)q′m2+2

(n+m1−m2+1−m2(q′−1))2

(n+m1−m2+1)q′m2+2

×

(
n+m2

m2

)(
q′−1

q′

)n

(
n+m1−m2+m2

m2

)(
q′−1

q′

)n+m1−m2
(186)

1This holds true for q′ irrational number. If q′ is a rational number such
that cq

m2 n = 0, we should have

k + 1

m2
= q′ − 1. (184)

On the other hand, we have |q − q′| ≤ ε and hence

|q − q′| ≤ ε ⇒
�
�
�
�

x

m2
− k + 1 + m2

m2

�
�
�
�
≤ ε, (185)

which implies that x = k + m2 + 1 and so q′ = q.
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≤
(n+1−m2(q′−1))2

(n+1)

(
n+m2

m2

)
(n+m1−m2+1−m2(q′−1))2

(n+m1−m2+1)

(
n+m1

m2

)(
q′−1

q′

)m1−m2
(187)

≤
cqm2n

cqm2(m1−m2+n)

(
q−1

q

q′−1
q′

)m1−m2

(188)

≤
cqm2n

cqm2(m1−m2+n)

. (189)

Eq.(188) derives from

n+ 1 −m2(q′ − 1)
n+m1 −m2 + 1 −m2(q′ − 1)

≤

n+ 1 −m2(q − 1)
n+m1 −m2 + 1 −m2(q − 1)

, (190)

taking into account that n ≥ m2(q − 1) +m1.
On the other hand, we have

lim
n→∞

cqm2n

cqm2(m1−m2+n)

=
1

|r|2m1
=

(
q

q − 1

)m1−m2

.

(191)

Therefore, for a given η > 0 the exists a number Nη such
that for any n ≥ Nη ≥ m2(q − 1) +m1, it is

cqm2n

cqm2(m1−m2+n)

≤
(

q

q − 1

)m1−m2

+ η. (192)

It then follows, using (179) and the fact
Tr(N (|m1〉〈m1|)) = 1, that

∞∑
n=Nη

cqm1n ln
cqm2n

cqm2(m1−m2+n)

≤ ln

{(
q

q − 1

)m1−m2

+ η

} ∞∑
n=0

cm1n

≤ ln

{(
q

q − 1

)m1−m2

+ η

}
. (193)

Using relations (189) and (193), we can get

∞∑
n=Nη

cq
′

m1n ln
cq

′
m2n

cq
′

m2(m1−m2+n)

≤
∞∑

n=Nη

cq
′

m1n ln
cqm2n

cqm2(m1−m2+n)

(194)

≤
∞∑

n=Nη

cq
′

m1n ln
cqm2n

cqm2(m1−m2+n)

(195)

≤ ln

{(
q

q − 1

)m1−m2

+ η

} ∞∑
n=Nη

cq
′

m1n (196)

≤ ln

{(
q

q − 1

)m1−m2

+ η

}
. (197)

Finally, we find that Eq. (179) holds for q′ ≤ Θ1 + Θ2,
where

Θ1 ≡ m1|r|2e−2m1s ln
m2|r|2e−2m2s

cq
′

m2(m1−m2−1)

+
Nη−1∑

n=0,n�=n′
cq

′
m1n ln

cq
′

m2n

cq
′

m2(m1−m2+n)

+ ln

{(
q

q − 1

)m1−m2

+ η

}
, (198)

Θ2 ≡ cq
′

m1n′ ln
cq

′
m2n′

cq
′

m2(m1−m2+n′)

. (199)

Now, when ε goes to 0, the quantity Θ1 will remain finite
(it is continuous with respect to q), while the quantity Θ2

diverges to −∞. Therefore, for any rational number q we can
find a set (q, q+ ε), for q′, which violates (179). Since the set
of rational numbers is dense into the set of reals, the proof
follows.

APPENDIX B
BOUNDS ON CAPACITIES UNCERTAINTY

In this appendix, we derive, on the basis of relations (110)
and (111), tighter lower bounds on the sum χH⊗ +χA⊗ than
the one from Theorem 14 for one-mode Gaussian channels.
The reasoning is based on the classification of OMG channels
given in [13], and the bounds are derived by using coherent
states encoding.

• Class A1: M = 0, NN� = I .
We have

χH⊗ ≥ S

(
1
2
I

)
− S

(
1
2
I

)
= 0, (200)

and

χA⊗ ≥ S

((
PE +

1
2

)
I

)
− S

(
1
2
I

)
≥ g

(
PE +

1
2

)
. (201)

Therefore, we get

χH⊗ + χA⊗ ≥ g

(
PE +

1
2

)
. (202)

• Class A2: M =
(

1 0
0 0

)
, NN� = I .

We have

χH⊗ ≥ S

((
PA + 1 0

0 1
2

))
−S

((
1 0
0 1

2

))
, (203)

and

χA⊗ ≥ S

((
PE + 1 0

0 PE + 1
2

))
−S

((
1 0
0 1

2

))
. (204)
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Therefore, we get

χH⊗ + χA⊗ ≥ g

(√
(PA + 1)

1
2

)

+ g

(√
(PE + 1)

(
PE +

1
2

))

− 2g

(√
1
2

)
. (205)

• Class B1: M = I , NN� = 1
2N0+1

(
1 0
0 0

)
.

We have

χH⊗ ≥ S

((
PA + 1

2 + 1
2N0+1 0

0 PA + 1
2

))
−S

((
1
2 + 1

4N0+2 0
0 1

2

))
, (206)

and

χA⊗ ≥ S

((
PE+ 1

2
2N0+1 + 1

2 0
0 1

2

))

−S
((

1
2 + 1

4N0+2 0
0 1

2

))
. (207)

Therefore, we get

χH⊗ + χA⊗

≥ g

(√(
PA +

1
2

+
1

2N0 + 1

)(
PA +

1
2

))

+ g

⎛⎝√
PE + 1

2

4N0 + 2
+

1
2

⎞⎠
− 2g

(√
1
4

+
1

4N0 + 2

)
. (208)

• Class B2: M = I , NN� = N0
N0+

1
2
I .

We have

χH⊗ ≥ S

((
PA +

1
2

+
N0

2N0 + 1

)
I

)
−S

((
1
2

+
N0

2N0 + 1

)
I

)
, (209)

and

χA⊗ ≥ S

((
(PE + 1

2 )N0

N0 + 1
2

+
1
2

)
I

)
−S

((
1
2

+
N0

2N0 + 1

)
I

)
. (210)

Therefore, we get

χH⊗ + χA⊗ ≥ g

(
PA +

1
2

+
N0

2N0 + 1

)
+ g

(
(PE + 1

2 )N0

N0 + 1
2

+
1
2

)
− 2g

(
1
2

+
N0

2N0 + 1

)
. (211)

• Class C Att: M =
√
κI , N�N = (1−κ)I, 0 < κ < 1

We have

χH⊗ ≥ S

(((
PA +

1
2

)
κ+ 1 − κ

)
I

)
−S

(
1
2
I

)
, (212)

and

χA⊗ ≥ S

(((
PE +

1
2

)
(1 − κ) + κ

)
I

)
−S

(
1
2
I

)
. (213)

Therefore, we get

χH⊗ + χA⊗ ≥ g

((
PA +

1
2

)
κ+ 1 − κ

)
+ g

((
PE +

1
2

)
(1 − κ) + κ

)
. (214)

• Class C Amp: M =
√
κI, NN� = (κ − 1)I, for

κ > 1.
We have

χH⊗ ≥ S

(((
PA +

1
2

)
κ+ κ− 1

)
I

)
−S

((
κ− 1

2

)
I

)
, (215)

and

χA⊗ ≥ S

(((
PE +

1
2

)
(κ− 1) + κ

)
I

)
−S

((
κ− 1

2

)
I

)
. (216)

Therefore, we get

χH⊗ + χA⊗ ≥ g

((
PA +

1
2

)
κ+ κ− 1

)
+ g

((
PE +

1
2

)
(κ− 1) + κ

)
− 2g

(
κ− 1

2

)
. (217)

• Class D: M =
√
−κZ, N�N = (1−κ)I , κ ∈ (−∞, 0)

We have

χH⊗ ≥ S

(((
PA +

1
2

)
|κ| + |1 − κ|

)
I

)
−S

(
|κ| + |1 − κ|

2
I

)
. (218)

and

χA⊗ ≥ S

(((
PE +

1
2

)
(|1 − κ|) + |κ|

)
I

)
−S

(
|κ| + |1 − κ|

2
I

)
. (219)
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Therefore, we obtain

χH⊗ + χA⊗ ≥ g

((
PA +

1
2

)
|κ| + 1 − κ

)
+ g

((
PE +

1
2

)
(1 − κ) + |κ|

)
− 2g

(
|κ| + |1 − κ|

2

)
. (220)

Remark 25: For an easy comparison with the bound in
Theorem 14, let us consider the class C. The r.h.s. of (214)
and (217) can be put together as

g

((
PA +

1
2

)
κ+ |1 − κ|

)
+ g

((
PE +

1
2

)
|1 − κ| + κ

)
− 2g

(
|1 − κ| + κ

2

)
. (221)

Due to the properties of the function g defined in (23), it is

Eq.(221) ≥ g

((
min{PA, PE} +

1
2

)
κ

+ |1 − κ|
)

+ g

((
min{PA, PE} +

1
2

)
|1 − κ| + κ

)
− 2g

(
|1 − κ| + κ

2

)
. (222)

Still referring to the properties of the function g, we have
that the quantity (222) grows, in terms of min{PA, PE}, faster
than (101). Thus, the minimum difference between the two
bounds ((221) and (101)) is achieved when min{PA, PE} goes
to zero and results greater than or equal to{

g
(
1 − 1

2κ
)

+ g
(

1+κ
2

)
, κ < 1,

2g
(

3
2κ− 1

)
− 2g

(
κ− 1

2

)
, κ > 1.

(223)

These two quantities being positive show the tightness of
(221) with respect to (101).
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