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Abstract—This article proposes a computational procedure that applies a quantumalgorithm to train classical artificial neural networks.

The goal of the procedure is to apply quantumwalk as a search algorithm in a complete graph to find all synaptic weights of a classical

artificial neural network. Each vertex of this complete graph represents a possible synaptic weight set in thew-dimensional search space,

wherew is the number of weights of the neural network. To know the number of iterations required a priori to obtain the solutions is one of

themain advantages of the procedure. Another advantage is that the proposedmethod does not stagnate in local minimums. Thus, it is

possible to use the quantumwalk search procedure as an alternative to the backpropagation algorithm. The proposedmethodwas

employed for aXOR problem to prove the proposed concept. To solve this problem, the proposedmethod trained a classical artificial

neural network with nine weights. However, the procedure can find solutions for any number of dimensions. The results achieved

demonstrate the viability of the proposal, contributing to machine learning and quantum computing researches.

Index Terms—Artificial neural networks training, quantum computing, quantum walk, search algorithm

Ç

1 INTRODUCTION

THE need for increased computing power and the minia-
turization of components at scaleswhere quantum effects

cannot be ignored [1] support the idea that quantum physics
can redefine a new frontier for computing problems by tak-
ing an essential role in the computational race [2]. Quantum
effects can provide computational gains and algorithms that
are mostly more efficient than their classical counterparts for
many problems. Quantum computing seeks through the use
of aspects of quantum mechanics to expand computational
horizons [3], [4]. An example of the computational power of
quantum computing is performing a search for elements in a
disordered database in justOð ffiffiffiffiffi

N
p Þ [5], whereN is the size of

the database. The gain is quadratically faster than its classical
analog.

In this perspective, efforts are employed in the search for
more efficient algorithms. In particular, there is a branch of
research called quantummachine learning (QML) [6], where
machine learningmethods and artificial intelligence are inte-
grated into the world of quantum computing in the hope to
find more efficient procedures than classical algorithms.
According to V. Dunjko, J. M. Taylor, and H. J. Briegel [7],
the quantum processing of information from quantum
machine learning is interactively configured in two parts
called the agent-environment. These parts are grouped into
four categories:CC,CQ,QC, andQQ, whereC means Classi-
cal, Qmeans Quantum. The first letter is referent to the agent

and the second to the environment. CC encompasses classi-
cal machine learning. CQ analyzes how classical learning
techniques can help in quantum tasks. QC represents the
quantum variants of classical learning algorithms facing a
classical environment, where this work is classified. QQ is
the quantum systemsworld.

Papers grouped within the QC category are developed to
improve classical procedures with the quantum information
processing (QIP) paradigm. E. Aı̈meur, G. Brassard, and S.
Gambs [8] showed that it is possible to accelerate unsuper-
vised learning algorithms by quantizing some of their sub-
routines. Y. Zheng, S. Lu, and R. -B. Wu [9] designed an
algorithm to train a perceptron usingGrover’s Algorithm [5].
M. Schuld, I. Sinayskiy, and F. Petruccione [10] developed a
procedure that uses a quantum phase estimation algorithm
in the classical neural network training process. P. Date, C.
Schuman, R. Patton, and T. Poto [11] presents a Classical-
QuantumHybrid Approach for training unsupervised prob-
abilistic machine learningmodels.

Machine learning (ML) studies techniques to give
machines the ability to learn from past experiences. Its core
tasks include classification or regression in supervised learn-
ing and density estimation or clustering in unsupervised
learning, for example. Usually, in the ML context, the train-
ing of a machine is performed using a learning algorithm
that uses as input a training data set [12] to extract informa-
tion, adjust its parameters, and solve a given problem.

One of the ML techniques widely employed for many
problems is the Artificial Neural Network (ANN), wherein
the classical (non-quantum) world is a Classical ANN. Clas-
sical ANNs are one of the best-known classifiers and predic-
tors. Classical ANNs have proven to be very competitive in
solving real-world problems compared to other conven-
tional data analysis methodologies [13]. Its optimization is
observed from various perspectives, but in general, classical
ANN training is performed mainly using a gradient descent
algorithm. However, optimization methods based on the
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descending gradient algorithm have limitations. Aspects
such as weight initialization, network architecture, activa-
tion functions, meta parameters, and learning environment
can influence the optimization process [14], [15]. In this
way, the training algorithm may not obtain a set of weights
that train the neural network, staying stagnated at local
minimums.

Therefore, a neural network’s training algorithm based
on the descending gradient method can be seen as a search
problem and seeks to minimize an error function. This
ANN training is a search problem for an appropriate weight
configuration that allows learning the network [16]. On the
other hand, in the quantum computing branch, some search
algorithms are more efficient than their classical analogue.
For example, Grover’s quantum search algorithm [5] and
quantum walks [17], [18], [19], [20], [21]. In this perspective,
quantum search algorithms have already been used for the
training process of classical ANN [9], [10].

Based on the incipient work developed by L. S. de Souza,
J. H. A. de Carvalho, and T. A. E. Ferreira [22] with extreme
learning machines, this article generalizes and extends the
quantumwalk proposal to train a classical ANN. Here, a full
graph lackadaisical quantum walk algorithm [17], [19], [21]
is applied as a search method to find all the synaptic weights
that optimize the learning procedure of a classical ANN.

This paper is organized as follows. Section 2 introduces
some concepts of the one-dimensional and the generaliza-
tion for n-dimensional quantum walks, and it also presents
the quantum walk on a complete graph. Section 3, it shows
the computational procedure used in this paper. Section 4,
it shows the experiments performed. Section 5 discusses the
results obtained. Finally, Section 6 is the conclusion of the
work.

2 QUANTUM WALK

The simplest model of the classical random walk can be
described by a particle’s classical movement in a straight
line [23]. Let the s the particle probability of going to the
right. Let ð1� sÞ the probability of going to left. Therefore,
the direction of the particle is conditioned by tossing a coin.
This process is probabilistic, so it is impossible to know
with certainty where the particle will be at any given time.
However, it is possible to calculate the probability p that
particle is at a point n at time t, as shown in Equation (1) for
the case s ¼ 1=2

pðt; nÞ ’ 2ffiffiffiffiffiffiffiffi
2pt
p e�

n2

2t : (1)

The quantum walks generalize the concept of a classical
random walk, i.e., the quantum mechanical counterpart of
classical random walks [24]. It is assuming a walker repre-
sented by a normalized vector in Hilbert space. The quan-
tum walk evolves in the Hilbert space HM �HP , where HM

is the coin space that controls the walker’s movement, and
HP defines the position of the walker [23].

Suppose the quantum walk takes place in a one-dimen-
sional space. In this case, the coin space needs two degrees
of freedom. Therefore, the coin space HM is generated by
the computational base f 0j i; 1j ig. A qubit can represent this

quantum information. The possible states that one qubit can
assume are represented by the state vectors 0j i and 1j i
described in Equations (2) and (3), respectively

0j i ¼ 1
0

� �
; (2)

and

1j i ¼ 0
1

� �
: (3)

Walker space HP is generated by base f nj i : n 2 Zg
which represents all integers of one-dimensional space.
Consider an operator S that, when applied to the system
formed here by a coin and a walker, will shift the position
of the individual to nþ 1j i or n� 1j i depending on the state
of the coin according to Equation (4)

S 0j i nj i ¼ 0j i nþ 1j i
S 1j i nj i ¼ 1j i n� 1j i: (4)

A unitary transformation describes the evolution of a
closed quantum system. This evolution depends on the
application of an operator U shown in Equation (5) to the
system over time [25]

U ¼ SðH � IÞ; (5)

whereH is the Hadamard operator and I is the identity.
For an operator U of a quantum system to be unitary, it

must satisfy the condition described in Equation (6), where
Uy is the adjunct of U . This condition is necessary for the
norm of the vectors to be maintained, for this we must cal-
culate k u k =

ffiffiffiffiffiffiffiffiffiffiffiffiffihu juip
, where hu jui is the inner product

UUy ¼ UyU ¼ I: (6)

The evolution of the quantum walk system is performed by
the Equation (7)

CðtÞj i ¼ Ut Cð0Þj i; (7)

where Cð0Þj i is the initial state of the quantum system.
Consider the initial state of the quantum system given by

the Equations (8) and (9). Asymmetrical and symmetrical
state, respectively. We can obtain the asymmetrical and
symmetrical probability distributions after one hundred
applications of U operator, shown in Figs. 1 and 2. Unlike
the classical case, where the distribution is an origin-cen-
tered Gaussian, for both case asymmetrical and symmetri-
cal, the quantum walk has a large spread with an interval of
�t= ffiffiffi

2
p

to t=
ffiffiffi
2
p

Cð0Þj i ¼ 0j i n ¼ 0j i (8)

Cð0Þj i ¼ 0j i � i 1j iffiffiffi
2
p n ¼ 0j i: (9)

For example, if the quantum walk starts in the initial
state described in Equation (8). Apply the Hadamard opera-
tor H as the coin of the quantum walk system and then
applies the shift operator S. We have the initial evolution
state presented in Equation (10) at the end of the first step.
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The Hadamard operator application in the computational
base vectors generates a superposition state, i.e, one of the
most well-known quantum effects that qubits are at the
same time in distinct states

Cð1Þj i ¼ 1ffiffiffi
2
p ð 0j i 1j i þ 1j i �1j iÞ: (10)

With the successive application of the evolution operator
U described in Equation (5), at the end of the third stage, we
can observe in Equation (11) that the state Cð3Þj i is asym-
metrical about the origin. This asymmetry will keep for all
system evolution, as can be observed in Fig. 1

Cð2Þj i ¼ 1

2
ð 0j i 2j i þ ð 1j i þ 0j iÞ 0j i � 1j i �2j iÞ

Cð3Þj i ¼ 1

2
ffiffiffi
2
p ð 0j i 3j i þ ð2 0j i þ 1j iÞ 1j i

� 0j i �1j i þ 1j i �3j iÞ:

(11)

2.1 One-Dimensional QuantumWalk

This section will describe the one-dimensional quantum
walk model analytically and recursively. The generic state
for a one-dimensional quantum walk model is described in
Equation (12) [23].

CðtÞj i ¼
X1

n¼�1
ðanðtÞ 0j i þ bnðtÞ 1j iÞ nj i; (12)

where the coefficients anðtÞ and bnðtÞ satisfy the condition
described in Equation (13).

X1
n¼�1

anðtÞj j2þ bnðtÞj j2¼ 1: (13)

Applying the operator H � I to state CðtÞj i, we find recur-
sive formulas involving the coefficients a and b in Equa-
tions (14) and (15).

anðtþ 1Þ ¼ an�1ðtÞ þ bn�1ðtÞffiffiffi
2
p (14)

bnðtþ 1Þ ¼ anþ1ðtÞ � bnþ1ðtÞffiffiffi
2
p : (15)

As already shown in Figs. 1 and 2, the quantum walk
probability distributions are dependent on the initial state.
Therefore, the initial state of the system can generate a walk
with symmetrical or asymmetrical probability distribution
about the origin. The probability distribution can be calcu-
lated using the Equation (16)

pðt; nÞ ¼ anðtÞj j2þ bnðtÞj j2: (16)

2.2 n-Dimensional QuantumWalk

It is possible to generalize the concept presented in Sec-
tion 2.1 to any number of dimensions. Consider the quan-
tum walk in an infinite n-dimensional grid with the
associated Hilbert space HM �HP , whose HP ’s computa-
tional base is f x; y; . . . ; nj i : x; y; . . . ; n 2 Zg, and the Coin
space HM ’s computational basis is f ix; iy; . . . ; in

�� �
: ix; iy;

. . . ; in 2 f0; 1gng. The generic state for this quantum walk
model at time t is presented in Equation (17).

CðtÞj i ¼
X1

ix;iy;...;in¼0

X1
x;y;...;n¼�1

cix;iy;...;in;x;y;...;nðtÞ
ix; iy; . . . ; in
�� �

x; y; . . . ; nj i;

(17)

where cix;iy;...;in;x;y;...;nðtÞ are complex functions that satisfy
the condition shown in Equation (18) for all time t

X1
ix;iy;...;in¼0

X1
x;y;...;n¼�1

cix;iy;...;in;x;y;...;nðtÞ
��� ���2¼ 1: (18)

Moreover, it is possible to calculate the distribution of prob-
abilities using Equation (19).

px;y;...;nðtÞ ¼
X1

ix;iy;...;in¼0
cix;iy;...;in;x;y;...;nðtÞ
��� ���2: (19)

Applying the standard evolution operator U ¼ SðC � IÞ
(C is the coin operator) to the generic state described in
Equation (17) and making the expansions, we obtain Equa-
tion (20) which is the walker evolution equation [23]

Fig. 1. Probability distribution of the one-dimensional quantum walk after
100 steps. The initial state is described by the Equation (8). The points
with zero value were ignored.

Fig. 2. Probability distribution of the one-dimensional quantum walk after
100 steps. The initial state is described by the Equation (9). The points
with zero value were ignored.
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cix;iy;...;in ;x;y;...;nðtþ 1Þ

¼
X1

jx;jy;...;jn¼0
Cix;iy;...;in;jx;jy;...;jn

cjx;jy;...;jn ;xþð�1Þix ;yþð�1Þiy ;...;nþð�1Þin ðtÞ:

(20)

2.3 Lackadaisical QuantumWalk onCompleteGraph

The quantum walks presented in the previous sections are
the basis for other techniques that can be used in other search
spaces. One such variation is the quantum walk in a com-
plete graph developed byWong [17], represented in Fig. 3.

There are two types of vertex, a and b, marked as a solu-
tion and non-solution, respectively. Each one vertex has l
self-loops. This approach considers the walker’s movement
into the complete graph to create the states of the new
computational basis.

If the walker is on an a vertex, there are two movement
options. It can move to a vertex that is a solution (a! a) or
to a vertex that is not a solution (a! b). Defining the quan-
tum states aj i � a! a0j i and aj i � a! bj i. Similarly, if the
walker is on any vertex b. It can move to a vertex that is a
solution (b! a) or to a vertex that is not a solution (b! b0).
Defining the quantum states bj i � b! aj i and bj i � b! b0j i.

Note that the states aj i or bj i represent the graph vertices
and a! bj i, for example, represents the edges where aj i is
the walker’s current state and bj i is the state to which the
walker will move to it. Equation (21) shows the states
AAj i; ABj i; BAj i; and BBj i of the new quantum states for
the situation where there is only one solution (only one ver-
tex labeled as a). N is the total number of vertices. Since
there is only one solution, k ¼ 1, and the number of self-
loops is greater than zero, l > 0:

AAj i ¼ 1ffiffi
l
p aj i � a! a0j i

ABj i ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
N � 1
p

X
b

aj i � a! bj i

BAj i ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
N � 1
p

X
b

bj i � b! aj i

BBj i ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðN � 1ÞðN þ l� 2Þp X
b

X
b0

bj i � b! b0j i:

(21)

Equation (22) defines the initial state C0j i. This state is
described as the uniform superposition N�1

P
x;y xj i x! yj i

expressed in terms of the states AA;AB;BA and BB

C0j i ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NðN þ l� 1Þp ð

ffiffi
l
p

AAj i þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
N � 1
p

ABj i

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
N � 1
p

BAj i þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðN � 1ÞðN þ l� 2Þ

p
BBj iÞ:

(22)

The lackadaisical quantum walk is accomplished by suc-
cessive applications of a unitary operator U , defined in
Equation (23) which inverts the sign of solution states
aj i a! xj i using an oracle and swaps vertices on each edge,
xj i x! yj i ! yj i y! xj i as described in Wong [17]

U ¼
cos u � sin u 0 0
0 0 � cosf sinf

� sin u � cos u 0 0
0 0 sinf cosf

0
BB@

1
CCA; (23)

where u is defined such that

cos u ¼ N � l� 1

N þ l� 1
;

and

sin u ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðN � 1Þp

N þ l� 1
;

and f is defined such that

cosf ¼ N � l� 3

N þ l� 1
;

and

sinf ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N þ l� 2
p

N þ l� 1
:

Thus, the evolution of the system occurs in a four-dimen-
sional subspace, and each state of the new representation is
formed by overlapping vertices and edges [17].

2.3.1 Quantum Walk With Self-Loops for k Solutions

The previous section introduced the quantum walk in a
complete graph and describes the approach to the case of a
single solution (k ¼ 1) and the number of self-loops l > 0.
Now, consider a number of solutions k > 1 and only one
self-loop (l ¼ 1) per vertex.

The solution set has the number k of vertices, and the
non-solution set has N � k vertices, where N is the total
number of vertices. We will use the previous idea that con-
sidered the walker’s movement to define the states of the
new multiple solutions computational basis.

If the walker is in a vertex a moving to another vertex a0,
there will exist k edges of the type a! a0j i. If the walker is
in a vertex a moving to a vertex b, there will exist N � k

Fig. 3. Complete graph withN ¼ 7 vertices. The single vertex marked as
a is indicated by the double circle shaded. Adapted from Wong’s
work [17]. Grover search with lackadaisical quantum walks.
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edges of the type a! bj i. Similarly, if the walker is in a ver-
tex b moving to a vertex a, there will exist k edges of the
type b! aj i. And if walker is in a vertex b moving to
another vertex b0, there will exist N � k edges of the type
b! b0j i.
The number of vertices marked as solution must be of the

order oðNÞ because if k ¼ OðNÞ, then k ¼ cN (in the limit of
N !1 and c is a finite constant). In this last case, the search
for one solution could be performed classically in an effi-
cient way, i.e., in a constant number of guesses [17]. Thus,
the new quantum states are redefined in Equation (24).

AAj i ¼ 1

k

X
a

X
a0

aj i � a! a0j i

ABj i ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kðN � kÞp X

a

X
b

aj i � a! bj i

BAj i ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kðN � kÞp X

b

X
a

bj i � b! aj i

BBj i ¼ 1

N � k

X
b

X
b0

bj i � b! b0j i:

(24)

The initial state of the system is rewritten, as presented in
Equation (25).

C0j i ¼ 1

N
ðk AAj i þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kðN � kÞ

p
ABj i

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kðN � kÞ

p
BAj i þ ðN � kÞ BBj iÞ:

(25)

Amodification to the evolution operatorU (Equation (23))
ismade so that the number of solutions is included in the def-
initions of u and f [17]. Therefore, u is redefined according to
Equations (26) and (27).

cos u ¼ N � 2k� lþ 1

N þ l� 1
(26)

sin u ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðN � kÞðkþ l� 1Þp

N þ l� 1
; (27)

and f is redefined according to Equations (28) and (29).

cosf ¼ N � 2kþ l� 1

N þ l� 1
(28)

sinf ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kðN � kþ l� 1Þp
N þ l� 1

: (29)

The maximum success probability value is reached after
the number of steps t defined in Equation (30) [17]. Success
is defined as the measurement of some state AAj i or the
state ABj i. Both states represent the set of vertices marked
as a solution.

t ¼ pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð2kþ l� 1Þp ffiffiffiffiffi

N
p

: (30)

2.3.2 A Toy Example

Consider the particular case of the lackadaisical quantum
walk in a complete graph with N ¼ 8 vertices, k ¼ 2

solutions, and l ¼ 1 self-loops at each vertex. For illustrative
purposes, these vertices have also been marked with sub-
indices, so a1 and a2 are the solutions whereas vertices
b1; . . . ; b6 are not solutions. In practice, however, sub-indices
or whatever kind of information that can distinguish the sol-
utions from one another, or the non-solutions from one
another, are not available. The vertices are marked only with
a or b, exclusively.

The quantum state ABj i, for example, is formed by all
vertices that are solution combined with their respective
edges for non-solution vertices. Therefore, the state ABj i for
the given example is defined according to Equation (31).

ABj i ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kðN � kÞp X

a

X
b

aj i � a! bj i

¼ 1ffiffiffiffiffi
12
p

��
a1j i a1 ! b1j i þ a1j i a1 ! b2j i

þ a1j i a1 ! b3j i þ a1j i a1 ! b4j i
þ a1j i a1 ! b5j i þ a1j i a1 ! b6j i

�

þ
�
a2j i a2 ! b1j i þ a2j i a2 ! b2j i

þ a2j i a2 ! b3j i þ a2j i a2 ! b4j i

þ a2j i a2 ! b5j i þ a2j i a2 ! b6j i
��

:

(31)

The analysis for the quantum states AAj i, BAj i and BBj i
is analogous. With the new quantum states prepared, the
initial state of the system C0j i can be defined according to
Equation (32). This initial state is also normalized.

C0j i ¼ 1

8
2 AAj i þ

ffiffiffiffiffi
12
p

ABj i þ
ffiffiffiffiffi
12
p

BAj i þ 6 BBj i
� �

:

(32)

Making only three (t ¼ 3) successive applications of the
evolution operator U , represented by the matrix of Equa-
tion (33), the probability of success (the measurement of a
solution state) tends to 1. A measurement made in C3j i
makes the system to collapse to the state AAj i. All energy of
the system is concentrated at this state AAj i:

U ¼ 1

2

1 � ffiffiffi
3
p

0 0
0 0 �1 ffiffiffi

3
p

� ffiffiffi
3
p �1 0 0
0 0

ffiffiffi
3
p

1

0
BB@

1
CCA: (33)

3 PROPOSAL PROCEDURE

Quantum walks are algorithms that can be applied to search
problems [19], [20], [26], where the proof of its correctness
can be found in [27]. Thus, it is possible to idealize this
algorithm’s application to find the set of synaptic weights
that train a classical artificial neural network. Based on the
concept of quantum information processing called agent-
environment presented in Section 1, the objective is to
replace the classical algorithm with a quantum search
algorithm in a neural network training process.

In a classical environment, we replace the backpropaga-
tion algorithm for a quantum walk to search synaptic
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weights. The evolution of the quantum walk occurs by
applying a unitary operator U over an initial state. Subse-
quently, a measurement of the walker state is performed. If
the measurement is performed at each step, then the quan-
tumwalk falls in the classical case. In this situation, the corre-
lations between the different positions of the walker are lost.

For the correlations between the walker’s positions to be
maintained, the measurement should not occur at every sin-
gle step. Thus, the measurement process only will occur
after a predetermined time t. Once the correlations between
positions hold, constructive and destructive interference
occurs [23]. The interference caused by these relationships
between positions generates the probability amplitudes for
each position. Depending on the initial state of the system,
the probability distribution may be asymmetrical or sym-
metrical according to Equations (8) and (9), respectively, as
viewed in Section 2. As observed in Figs. 1 and 2, according
to the probability distribution, the chances of finding the
walker on the extremities are higher than finding it in
another position. In this way, it is possible to obtain these
extreme positions of the walker with a high probability of
measurement.

Therefore, it is possible to determine with a high probabil-
ity the walker’s extreme position after a given number of
steps. If this position does not contain a solution, the quan-
tumwalk search will not succeed. It is necessary to know the
position where there is a solution and guarantee an ampli-
tude amplification for this position. It is also necessary to
guarantee that the solution state at the time of measurement
has a high probability of measurement. The complete-graph
quantum walk proves to be adequate for these proposals.
The complete-graph quantum walk employed here consid-
ers only the information about the solution or no solution label
(a or b) contained in all vertices to execute the quantumwalk
evolution. However, to define these labels, the information
about the weights used to train the classical ANN is neces-
sary. Thus, besides the label for solution ( aj i) and no solution
( bj i), each vertex will also have the information about the
associatedweights used to train the classical ANN.

Consider a w-dimensional lattice. Let a classical ANN
with the number of weights equal to the lattice’s dimension,
wweights. In the discrete representation, each intersection of
lattice lines can represent an ANN w weights configuration.

Fig. 4 represents this idea for the 2-dimensional case. In this
way, each point i in thisw-dimensional latticewill be a vertex
in a complete graph,where it was labeled as a if its value con-
figuration of weights ri is a solution for the ANN. Otherwise,
it was labeled as b. The labels a and b are created by applying
the oracle to the grid. Change the grid representation to the
complete graph creates a new representation, where all i
grid point is a vertex with the information ri (the weight set)
and the label a or b. Wong’s quantum walk [17] is applied in
the complete graph, where now each vertex has the label a or
b, and the associated weight set (ri) used to train the classical
ANN. Then, the search procedure is done, where a vertex
labeled by aj i is searched.

Thus, to recover the synaptic weights that trained the
ANN after the quantum walk evolution, it is necessary to
obtain the specific weight values configuration ri of the state
measured. For this reason, a modification is proposed to
the original procedure, including the weight vector ~rij i in
the base states definition. All quantum walk search proce-
dure is the same, where the state with label a is sought.
However, with this new associated information about the
weight vector ~rij i, it is possible to determine the walker’s
position on the grid (or lattice) in the final measurement
procedure in the final state found by the quantum walk
algorithm. In this way, the information about the set of
weight values used to train the classical ANN can be recov-
ered. The new definition of states is presented in Equa-
tion (34). With this modification, it is proposed the search
procedure presented in Algorithm 1.

AAj i ¼ 1

k

X
a

X
a0

~raj i aj i � a! a0j i

ABj i ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kðN � kÞp X

a

X
b

~raj i aj i � a! bj i

BAj i ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kðN � kÞp X

b

X
a

~rbj i bj i � b! aj i

BBj i ¼ 1

N � k

X
b

X
b0

~rbj i bj i � b! b0j i:

(34)

Initially, it is necessary to define some initial parameters
of the Algorithm 1. A w-dimensional grid (or a lattice) will

Fig. 4. On the left side, a discrete schematic representation of the set of weight values of an artificial neural network. This representation generates a
grid, represented here by a lattice. Each intersection point i of the lattice has the information about the set of weight values ri. With an oracle opera-
tor, the state solution label (a for a solution and b for no solution) is determined. On the central figure, the complete graph representation of the grid.
On the right side, a neural network with one neuron demonstrates the relationship between the labels on the grid, the complete graph, and the defini-
tion of synaptic weights w0 and w1, where gð�Þ is the activation function, and u ¼ x0�w0 þ x1�w1 � u.
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define the possible weight configurations for the walker,
where each dimension represents an ANN weight set.
Therefore, the user defines the number of grid points, N ,
and the distance between adjacent points, Dp. In this way,
N will be the number of possibles positions state of the sys-
tem for the walker, represented by the complete graph, and
Dp will define the granularity of the weights representation.
If Dp is small, the weight representation will have high reso-
lution, but a significant N value is necessary to search for a
solution in practice. If Dp is large, the weight search will
have low resolution, but a small N value is sufficient to
cover a given search space. The algorithm employs an ora-
cle, which defines the vertices that are solution and non-
solution. The oracle employed here is described in Sec-
tion 4.5. In this way, it is considered that the oracle used in
this work is independent of the algorithm proposed. An
w-dimensional sparse matrix with N elements represents
classically the oracle, where the element marked with num-
ber one denotes a solution and with zero a non-solution.
The user also defines the number of self-loops per vertex, l.
However, the number of self-loops per vertex here always
was l ¼ 1 for all experiments.

Algorithm 1. Training Algorithm

1 begin
2 Set the parameters: Dp, N and l
3 Quantum count execution
4 Preparation of the initial state
5 for j 1 to pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ð2kþl�1Þ
p ffiffiffiffiffi

N
p

do

6 Cj

�� � U Cðj�1Þ
�� �

7 end
8 Make the measurement
9 Initialize the weights of the Artificial Neural Network
10 end

After defining the initial parameters, the proposed algo-
rithm performs a quantum count to estimate the number of
solutions k in the search space, as indicated in line 3 of the
Algorithm 1. It is necessary to know the quantity k of solu-
tions to determine the initial state, the shift operator U , and
the number t of iterations. It is possible to define the number
of solutions by combining the phase estimation technique
based on the Fourier Quantum Transform with the Grover
iteration [25]. Alternatively, it is also possible to apply the
amplitude estimation to the problem of approximate count-
ing [28], or to use techniques inspired by Shor’s celebrated
quantum factorization algorithm and combines them with
Grover’s algorithm [29]. Note that the number of solutions
is known at this moment, but their search space positions
are not known.

With the number k of solutions determined, the states
will be constructed according to Equation (34). The quan-
tum walk occurs in a complete graph, as shown in Fig. 3,
where the quantum walk will be performed in a four-
dimensional space according to in Section 2.3, reducing the
search space. Thus, the search space is represented by the
superposition of vertices and edges already presented in
Equation (34).

Following the Algorithm 1 in line 4, the initial state prep-
aration is performed considering the space size, the number

of solutions, and the relations between vertices and edges,
according to Equation (25).

After preparing the system, the quantum walk is per-
formed. Line 5 of the Algorithm 1 defines the total number
of steps t, according to Equation (30). At each step j, the evo-
lution operator U is applied to the quantum system Cj�1

�� �
,

where j ¼ 1; 2; . . . ; t, as shown in line 6.
Once the evolution is completed, a measurement in the

basis xj i x! yj i is performed, as presented in line 8. Thus,
the states aj i a! a0j i or the states aj i a! bj i, which both
have the solutions, is obtained with high probability. It is
worth noting that the vertex information where the walker
stays defines the found solution at the time of the measure-
ment. The direction where the walker points for the next
quantum movement (defined by its edge) is only relevant to
define the quantum walk evolution, not to define the solu-
tion state at the measurement time.

After recovering the states aj i a! a0j i or aj i a! bj i with
high probability after the measurement, in the line 9, the
algorithm initializes the classical neural network weights as
shown on the right side of Fig. 4.

4 EXPERIMENT SETUP

A simple classification problem was performed to assess the
concept of the proposed algorithm. An artificial neural net-
work of MLP type (Multilayer Perceptron Type) was
employed to solve the “EXCLUSIVE-OR” classification prob-
lem. The neural network was initialized with the weights
generated by the procedure proposed in this work.

4.1 Exclusive-OR Function

The EXCLUSIVE OR (XOR) problem, a simple but nonli-
nearly separable problem, was used as the function to be
learned by the neural network. The XOR function, also
known as exclusive disjunction, is an operation on two
binary values, x0 and x1, where if only one of these binary
values is equal to 1, then the function returns 1, otherwise
returns 0 [30].

Consider the problem of classifying points in the unitary
hypercube. The EXCLUSIVE OR can be understood as a
particular case of this problem. In this case, it is sufficient to
consider only the four vertices of the unit square corre-
sponding to the points fð0; 0Þ; ð0; 1Þ; ð1; 0Þ; ð1; 1Þg. Each set
of patterns determine outputs that are called classes. The
inputs fð0; 0Þ; ð1; 1Þg generate outputs x0 � x1 ¼ 0, where it
will be called class 0. The inputs fð0; 1Þ; ð1; 0Þg generate out-
puts x0 � x1 ¼ 1, class 1 [14]. Therefore, it is a pattern classi-
fication problem that consists of associating an input
pattern ðx0; x1Þ with one of the previously defined classes
f0; 1g [31].

4.2 Neural Network Architecture

The EXCLUSIVE OR problem can be solved by a Multi-
Layer Perceptron (MLP) neural network with three neurons,
where two of them are in the hidden layer, and the other
neuron is in the output layer. The neural network used in
this work follows this architecture.

The input layer has two values fx0; x1g that are inputs
data. The hidden layer has two neurons. The output layer
has one neuron. Each neuron has a bias. Thus, the neural
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network has nine synaptic weights. Six weights are in the
hidden layer fv00;v01;v02;v10;v11;v12g and three are in the
output layer fv20;v21;v22g according to Fig. 5. The sigmoid
logistic, described by Equation (35), is the activation func-
tion for all neurons of the hidden layer and the neuron of
the output layer is linear

fðxÞ ¼ L

1þ e��ðx�z0Þ
; (35)

where � ¼ 1 is the declivity of the curve, L ¼ 1 is the maxi-
mum value of the curve, and z0 ¼ 0 is the value of x at the
midpoint of the curve.

4.3 Hardware and Software Setup

The simulations were performed using the following hard-
ware configurations. For simulate neural network training
with classical backpropagation algorithm, it was used,

� Operational System: Debian GNU/Linux 10 Buster;
� Memory: 4 GiB;
� Processor: Intel Core i3-5005U CPU @ 2.00 GHz x 4;
� OS type 64-bit;
� HD: 1 terabytes.
To simulate the procedure using a quantum walk in the

complete graph, it was used

� Operational system: Debian GNU/Linux Jessie 8.11;
� Memory: 16 GiB;
� Processor: Xeon Intel 5th gen CPU @ 3.6 GHZ x 8;
� OS type 64-bit;
� HD: 4 terabytes.

The programming languages used to write the algorithms
were Python 3.6 with the open-source machine learning
framework PyTorch.1

4.4 Search Space

Theoretically, the quantum walk is performed in an infinite
space. However, in practice, because of memory and hard-
ware limitations, we have determined sub-spaces or win-
dows. Once the window size is defined, the procedure
performs the search within it.

Geometrically, the windows employed here will always
be hyper-cubes in the search space. For example, in the 2-
dimensional case, a window is a square with N ¼ z2 points,

where z is the number of points in a dimension. For the
d-dimensional case, a window is a hyper-cube whit N ¼ zd

points, where there are z points in each dimension.
If there is no solution in the sub-region defined by the

windows, the windows will be shifted. By applying offsets,
the windows are moved by performing the search in the
infinite search space regions. To illustrate, consider an infi-
nite two-dimensional search space as illustrated in Fig. 6.
These window shifts in infinite space are carried out until at
least one solution is found in the current window. There are
many forms to define the shift of the windows. However,
the simplest way is to sum an offset of size z for each dimen-
sion with respect to the current window, which was the
approach used in this work.

4.5 Representation of the Oracle

An oracle is a structure capable of generating answers to
binary questions. The circuit shown in Fig. 7 represents the
implementation of the Deutsch algorithm. Conditional port
Uf implements the NOT-controlled port with control bit
fðxÞ and acts as Uf : x; yj i ! x; y� fðxÞj i.

Port Uf is a black box with no explicit implementation,
often called an oracle [32]. In this way, a quantum oracle is a
“black box” operator that, when applied to a system state,
return if this specific state is a solution or is not a solution.
An example of oracle implementation can be seen in the
work of Yu Zheng, Sicong Lu, and Re-Bing Wu [9], which
uses Grover’s oracle as a central part of the circuit that imple-
ments their proposal of quantumperceptronmodels [33].

In this way, it was necessary to create a representation of
an oracle to perform the simulations. The solution employed
uses a sparse matrix with the size of the search space. The
positions filled with 1 indicate the points that are a solution
and 0 otherwise. In practice, the oracle answers whether a
given point in the walker space, after converted to synaptic
weights, correctly classifies the input patterns or not. How-
ever, a formal conception of this quantum oracle for this

Fig. 5. Configuration of a multilayer neural network. The letters u1, u2 and
u3 mean the bias and the letters y1, y2, and y3 mean the outputs of
neurons.

Fig. 6. Illustration of a search in an infinite two-dimensional grid using a
window with a finite set of points.

Fig. 7. The circuit that implements the Deutsch algorithm [4].1. https://pytorch.org/
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purpose is beyond the scope of this work. Therefore, we con-
sidered it existing.

4.6 Weight Generation

The quantumwalk performs a search in quantum states that
represent points in an integer space. At the end of the pro-
cess, it is necessary to convert these points into synaptic
weights values represented by real numbers. Thus, a real
value was defined, Dp, where it will multiply each mea-
sured point at the end of the process. That is, the walker
grid space is in Dp units. The walker starts at the window
center, and the walker will move by the positive and nega-
tive integer indices of each dimension of the grid.

Therefore, when the proposed algorithm makes the mea-
surement at the walker position in the grid rij i (where i is
the label for each point in the w-dimensional search space),
the integer components of ri ¼ ðn1; n2; . . .; nwÞ for each
dimension are converted to the real values Dp � nj (j ¼ 1;
2; . . . ; w), generating the synaptic weights for the neural net-
work. In this way, the search is performed only among the
factors of Dp. Also, the value defined for Dp establishes the
search refinement level.

4.7 Measurement Process

Through unitary transformation, closed quantum systems
evolve. In order to be able to access information that is in
the Cj i state, an observation must be made. In practice,
measurements are made in laboratories using physical devi-
ces, such as lasers, magnets, scales, and stopwatches, but in
theory, this measurement process is described mathemati-
cally [23]. According to the postulate of quantum mechan-
ics, the probability of a state occurs is

pðmÞ ¼ hC jMy
mMm jCi; (36)

whereM is a measurement operator, y is the symbol used to
describe the conjugate transpose operation, and the indexm
represents the results that can occur in the experiment after
the measurement. The state C0j i described in Equation (37)
is the state of the system just after the measurement [25]

C0j i ¼ Mm Cj iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hC jMy

mMm jCi
q : (37)

As an example we are going to measure the state Cj i
whose states are described in Equation (34). Considering
the system with four possible results we will define the
operators f AAj i AAh j; ABj i ABh j; BAj i BAh j; BBj i BBh jg. So
when applying Equations (36) and (37) we have

pðmÞ ¼ �mj j2

C0j i ¼ �m

�mj j mj i;

wherem ¼ AA;AB;BA;BB.
In this way, the measurement is a probabilistic process,

where theoretically, the probability of measuring a given
state mj i will be j�mj2. Thus, after the quantum walk evolu-
tion, it is possible to observe from the final quantum state
the quantity j�mj2 for each state component mj i.

Statistically, as we can see in Section 5, the chances of
measuring the states that contain a solution were much
more significant than measuring a state that did not contain
a solution.

4.8 Comparison Against Backpropagation
Algorithm

Since the search space contains solutions to the problem, the
approach proposed in this paper can find a solution with
high probability after the number of iterations defined in
Equation (30). It implies that, in addition to ensuring a suc-
cessful search, the number of iterations required to reach
the artificial neural network training is known a priori.

The classical backpropagation algorithm seeks to mini-
mize an error function based on the gradient descent meth-
odology. For this reason, it can stagnate in local minimums.
The practical implication is the possibility that the algorithm
runs indefinitely and yet does not generate correct outputs.
These limitations of a gradient descent methodology are
overcome with the proposed quantum algorithm.

Furthermore, many experiments were done with both
approaches to compare the proposed algorithm with the tra-
ditional backpropagation algorithm. The criterion to mea-
sure the performance was the number of iterations needed to
find an ANN weight set that solves the XOR problem. The
number of epochs for the backpropagation and the number
of iterations for the proposed algorithmwere observed.

Comparing the number of epochs of the backpropagation
algorithm with the number of iterations of the procedure
developed in this work was applied to measure how much
better one approach is than the other. The efficiency of the
proposed procedure is the order of Oð ffiffiffiffiffiffiffiffiffiffi

N=k
p Þ. However, it

was not possible to compare the efficiencies in terms of run-
ning time between our procedure and the backpropagation
algorithm.

5 EXPERIMENTAL RESULTS AND DISCUSSIONS

A set of experiments with classical backpropagation was
done to define a comparative baseline. Employing the same
ANN architecture 2� 2� 1 (two inputs, two hidden neu-
rons, and one output – according to Section 4.2), five differ-
ent learning rates h ¼ f0:5; 0:1; 0:01; 0:001; 0:0001g were
investigated, where 1200 simulations were computed for
each one. The maximum number of epochs of 150000, the
training stagnation, and the zero classification error were
the stopping conditions employed. The network was con-
sidered in a stagnation training situation if its MSE error
did not decrease by 1000 consecutive epochs. The classifica-
tion error is zero when the ANN can classify all the four
XOR inputs correctly.

For these conditions, none of the classical backpropaga-
tion experiments reached a stagnation situation. The experi-
ments with learning rates of 0.5 and 0.1 never reached the
maximum number of epochs, always reaching the perfect
classification. The summarization of this experimental
behavior can be viewed in Table 1, where lr indicates the
learning rates, Epochs limit is the number of times that the
experiment reached the maximum number of epochs stop
condition, and Successful is the number of experiments that
obtained zero classification error.
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Table 2 presents the descriptive statistics for the baseline
experiments. For each learning rate, it is presented the mini-
mum, mean, maximum value of the Epochs number, and its
standard deviation (Std.).

Table 3 presents the results of the simulations performed
using the proposed computational procedure described in
Algorithm 1. Here, k represents the number of solutions, N
the number of vertices, l the number of self-loops (for all
experiments l ¼ 1), and t the number of iterations. Dp ¼ 0:5
was utilized for all experiments. Here, it was investigated
three configurations of N ð29 ¼ 512; 49 ¼ 262144; 89 ¼
134217728Þ in five experiments. Two experiments with N ¼
512, 2 points per dimension. Two experiments with N ¼
262144, 4 points per dimension, and one experiment with
N ¼ 134217728, 8 points per dimension. The search spaces
are sub-regions (windows) of an infinite v-dimensional
grid, as presented in Section 4.4. However, the initialization
of these sub-regions can occur in different positions of the
infinite grid. If there are no solutions in the current sub-
region, the sub-region is moved to another region of the infi-
nite grid. All simulations had their sub-region initiated ran-
domly around the origin. The shift of the sub-region occurs
until a region with at least one solution is found. With a few
interactions, the sub-space converged to a region with solu-
tions in all cases studied here.

Coincidentally, although the experiments 1 and 2 used
distinct search windows, the proposed procedure converged
to sub-spaces with 12 solutions (see Table 3). AsN ¼ 512 and
k ¼ 12 for those experiments, the iteration number t is also
equal, being t ¼ 11, which was theoretically defined to 10.26
by Equation (30). For the simulations 3 and 4, the proposed
procedure converged to sub-spaces with 17 and 20 solutions,
respectively. Thus, the iteration number t is different for
those simulations, being 196 and 180, theoretically defined to
195.83 and 179.83, respectively. For the simulation 5, the

procedure converged to a sub-space with more than eighty
thousand solutions (80295), which implied in t ¼ 65 itera-
tions (theoretical number of iterations of 64.22).

The procedure developed using the quantum search
algorithm, even in spaces with a high number of vertices,
was able to amplify the amplitudes in a relatively low num-
ber of iterations compared with the results for the classical
backpropagation procedure. In the best case, the maximum
iteration number for the quantum walk algorithm was 11,
while the mean number of epochs obtained by the backpro-
pagation algorithm (in the best case) was 33.

It is also possible to see in Table 2 that the minimum
number of epochs of backpropagation is less than the num-
ber of the interactions of the quantum walk procedure, see
Table 3. Although it appears that the classical backpropaga-
tion algorithm has an advantage over the quantum walk
procedure, it is essential to observe that the number of inter-
actions t is known before start the search in the quantum
walk algorithm, but it is not for the classical backpropaga-
tion. Thus, the critical measure to characterize the practical
cost expectation is the mean number of epochs for the classi-
cal backpropagation. Prior knowledge of the amount of
interaction required for the algorithm to converge is a great
advantage of the quantum walk algorithm.

Therefore, observing the mean result of epochs required
for network training by the backpropagation (Table 2) and
the values of t in Table 3, the computational proposed proce-
dure is more efficient on average. Depending on the size of
the search space of the proposed algorithm, the network
training using the backpropagation algorithm, in some cases,
performs a smaller number of iterations. However, on aver-
age, the iterations number of the proposed algorithm is
decidedly smaller than the backpropagation procedure. As
seen in the backpropagation simulations, the random initiali-
zation of weights is one factor that influences the result of
time convergence for the network. However, because of the
impossibility of determination for an excellent region to ini-
tialize the weights, the mean value and standard deviation
are the information statistically relevant for backpropagation
experiments, where low performance and high variation in
training epochs number results are obtainedwhen compared
with the proposed quantum algorithm.

Nevertheless, the proposed algorithm is quantum. Table 4
shows themeasurement probabilities for the five simulations
for neural network training. It was considered both states
AAj i and ABj i are solutions, given that for these states, the
walker is in a vertex a. At least 98.55 percent of the

TABLE 1
Classical Backpropagation Simulations

lr Epochs limit Successful

0.5000 None 1200
0.1000 None 1200
0.0100 452 748
0.0010 467 733
0.0001 726 474

The column lr presents the investigated learning rate,
Epochs limit shows the experiment number that reached
the maximum number of epochs, and Successful the num-
ber of experiments with zero classification error.

TABLE 2
Descriptive Statistics

Epoch Statistics

lr Minimum Mean Maximum Std.

0.5000 1 33.60 319 35.68
0.1000 3 433.84 3279 463.78
0.0100 2 5277.48 132199 17927.67
0.0010 9 12949.18 148256 22451.79
0.0001 295 46987.00 149644 36780.22

Parameters of the backpropagation algorithm experiment for the number of
epochs. lr means the learning rate. Std. means Standard Deviation.

TABLE 3
Weight Search Experiment by the QuantumWalk Procedure

Experiment k N t

Theoretical Simulated

1 12 512 10.26 11
2 12 512 10.26 11
3 17 262144 195.83 196
4 20 262144 179.83 180
5 80295 134217728 64.22 65

K means the number of solutions. N is the total number of vertices. The num-
ber of iterations is represented for letter t. For all experiments, the number of
self-loops was l ¼ 1.
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measurements find a solution (experiment 1), reaching 100
percent for the experiment 3. At mean, the proposed
quantum procedure find a solution in 99.44 percent of the
measurements.

6 CONCLUSION

Training based on the backpropagation algorithm (or descen-
dant gradient algorithms) may fall to local minimums. Many
factors can influence this result and carry training for many
epochs until the network converges to a solution or even stag-
nates. Therefore, it is impossible to say whether the training
will stop or that good accuracy can be guaranteed in a prior
way.

The non-stagnating in local minimums and the knowing
in advance the number of iterations required to obtain a solu-
tion are some advantages of the proposed procedure. It is not
possible to guarantee that the solution obtained is optimal
because the probability is equal between all weight set solu-
tions within the state AAj i and the state ABj i. However,
with a high probability, there will have a valid solution at the
end of the procedure. So, the procedure proposed here guar-
antees the neural network training with high probability.
However, the proposed methodology is a theoretical pro-
posal. In practice, the proposed algorithm needs a quantum
computer, which does not exist yet.

Another critical point is the oracle. In a quantum system,
an oracle is an operator that can answer if a given state is or
is not marked, i.e., if a given state is or is not a solution. For
the proposed methodology, an oracle would be an operator
capable of determining whether a given state would train a
network or not. Here, an oracle was simulated by a simple
matrix of zeros and ones. Each position in the oracle matrix
is a possible state in the quantum system. If the value is 1,
then the state is a solution. Otherwise, the state is not a solu-
tion. The creation of a real quantum oracle operator is a
future research.

As seen before, the execution time of the proposed algo-
rithm is of the order of Oð ffiffiffiffiffiffiffiffiffiffi

N=k
p Þ, i.e., there a quadratic gain

when compared with the classical analog. In this case, the
search problem grows exponentially, the window’s search
space isOðPvÞ, where P ¼ ffiffiðp

NÞ,N is the number of points
in the search window (a squared window), and v is the
number of ANN weights. The number of qubits required to
represent v synaptic weights is equal to v � log 2ðNÞ. The
proof of correctness of the quantum walk algorithm can be
found in [27].

Finally, classical simulations showed a significant gain in
training an artificial neural network using the procedure

that applies a quantum walk to find the set of weights com-
pared with the use of the backpropagation algorithm.
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