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Abstract—In this article, a novel training paradigm inspired
by quantum computation is proposed for deep reinforcement
learning (DRL) with experience replay. In contrast to the tradi-
tional experience replay mechanism in DRL, the proposed DRL
with quantum-inspired experience replay (DRL-QER) adaptively
chooses experiences from the replay buffer according to the
complexity and the replayed times of each experience (also
called transition), to achieve a balance between exploration and
exploitation. In DRL-QER, transitions are first formulated in
quantum representations and then the preparation operation
and depreciation operation are performed on the transitions.
In this process, the preparation operation reflects the relation-
ship between the temporal-difference errors (TD-errors) and the
importance of the experiences, while the depreciation operation is
taken into account to ensure the diversity of the transitions. The
experimental results on Atari 2600 games show that DRL-QER
outperforms state-of-the-art algorithms, such as DRL-PER and
DCRL on most of these games with improved training efficiency
and is also applicable to such memory-based DRL approaches
as double network and dueling network.

Index Terms—Deep reinforcement learning (DRL), quantum
computation, quantum-inspired experience replay (QER), quan-
tum reinforcement learning.

NOMENCLATURE
⊗

Tensor product.
δ Temporal-difference error.
δĩ,i Kronecker delta.
ε ε-greedy factor.
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γ Discount factor.
ι Angle of the uniform state.
|ψ〉 State vector (quantum state).
H Hilbert space.
μ Hyperparameters for the rotation time mk.
ω Depreciation factor.
� Rotation angle.
π Policy function.
i i = √−1.
σ Preparation factor.
τ1,2 Hyperparameters for the depreciation factor ω.
θ Parameters of the evaluation network.
θ− Parameters of the target network.
ζ1,2 Hyperparameters for the preparation factor δ.
A Action space.
at Selected action according to policy π (st) at time t.
et t-th experience.
h Eigenvalue.
k Label of experience in buffer.
M Size of experience replay buffer.
P State transition probability.
P(h) Probability of obtaining h.
Q(s, a) State–action values.
R Reward function.
rt Scalar reward at time step t.
RTmax Maximum value of times of being replayed.
S State space.
st State at time step t.
SK Label of the selected experience in experience

replay.
T Terminal time of one episode.
U Unitary operator.
U† Transposed conjugate matrix of U.
Xh Projector onto the eigenspace of H with h.
Y Pauli Y matrix.

I. INTRODUCTION

REINFORCEMENT learning (RL) is an intelligent
paradigm that learns through the interaction with the

environment. During the training process of this interaction-
based algorithm, similar to human behaviors [1]–[3], the agent
adjusts its behavior to maximize the cumulative rewards for
the entire control task according to the retroaction it receives
from the environment. When it comes to the general situation
of the real-world environment, most control tasks often come
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with high-dimensional inputs, where traditional RL approaches
cannot work well. Fortunately, deep learning provides a new
approach to handle the complex input information and has
achieved a huge breakthrough in various fields [4]–[10]. In
particular, by combining deep learning with RL, a new frame-
work of deep RL (DRL) arises, where the deep Q network
(DQN) becomes one of the most famous DRL methods [11].

DQN was employed to estimate the action values to help the
agent make sequential decisions, where raw images were fed
into the convolutional neural networks followed by the fully
connected networks to output the action values that estimated
the future rewards. In order to improve the utilization of the
state–action transitions, an experience replay mechanism was
deployed in the DQN framework [12], where experiences were
stored in a finite-size buffer and were retrieved from the buffer.
This mechanism of experience replay effectively sped up the
processing of the experiences during training, but it ignored
the difference in the importance between experiences. A series
of experience replay variants has been developed to further
improve the learning process, such as prioritized experience
replay (PER) [13], deep curriculum RL (DCRL) [14], remem-
ber and forget for experience replay (ReF-ER) [15], attentive
experience replay (AER) [16], and competitive experience
replay (CER) [17].

In PER, temporal difference errors (TD-errors) determine
the priorities of the experiences and influence the probabili-
ties of those experiences’ being replayed. This method further
enhances the utilization of experiences compared to the origi-
nal experience replay, but the data generated by the agent are
noisy. Since DRL-PER gives higher priorities to transitions
with larger TD-errors, there might exist some experiences,
whose large TD-errors would not decrease even after many
times of replay. From this respective, DRL-PER may cause
some experiences to be overused, which might result in oscil-
lations of the neural network [18]. To improve the sample
efficiency of DQN, DCRL proposed a criterion for the sam-
ples’ importance based on the difficulties and diversities of
the experiences, where the difficulties are positively correlated
with TD-errors and the diversities are related to the number
of replaying times [14]. However, it introduced a number of
parameters that required more prior knowledge to tune accu-
rately. In ReF-ER [15], policy updates are penalized according
to the Kullback–Leibler divergence to accelerate convergence,
AER selects experiences according to the similarities between
their states and the agent’s current state [16], and CER sets
up two agents for competitive exploration between a pair of
agents [17]. These three methods may rely on high computing
resources and it is desirable to design a more effective and
general approach to enhance experience replaying for DRL.

At the same time, quantum physics has been employed
to dramatically enhance information-processing capabil-
ity [19]–[26] and has a positive influence on specific algo-
rithmic tasks of applied artificial intelligence [27]–[30]. In
particular, there has been much interest in the quantum
enhancement of RL and its applications. The idea of quan-
tum RL first originated from introducing the characteristics of
quantum parallelism into classical RL algorithms [31], which
achieved a better tradeoff between exploration and exploitation

and sped up the learning as well. Quantum mechanics was
found to be able to bring an overall quadratic speedup for intel-
ligent agents [32]. The general agent-environment framework
was also extended to the quantum domain [33]. In addition,
quantum RL with multiqubits was evaluated on superconduct-
ing circuits [34] and was extended to other cases, such as
multilevel and open quantum systems [35]. Multiple value
functions using the Grover algorithm were proved to con-
verge in fewer iterations than their classical counterparts [36].
Recent research also demonstrated the advantage of RL using
the quantum Boltzmann machines over the classical one [37].

Inspired by quantum machine learning, we may produce
atypical patterns in data. For example, the quantum super-
position state provides an exponential scale of computation
space in the n-qubits linear physical space [31], [38]. In
this article, we propose a quantum-inspired experience replay
(QER) approach for DRL (DRL-QER) to improve the training
performance of DRL in a natural way without deliberate hyper-
parameter tuning. In DRL-QER, the experiences are expressed
in quantum representations and the probability amplitudes
of the quantum representations of experiences are iteratively
manipulated by quantum operations, including the preparation
operation and depreciation operation. In particular, the prepa-
ration operation is designed according to the importance of
the experiences, and the depreciation operation is associated
with the replaying times for the selected experiences. With the
two operations, the importance of the experiences is distin-
guished and the diversity of experiences is guaranteed. To test
the proposed DRL-QER algorithm, experiments are carried out
on the Gym-Atari platform with a comparison to DRL-PER
and DCRL. In addition, DRL-QER is implemented with dou-
ble DQN and dueling DQN, and the DRL-QER variants are
compared with their classical counterparts.

The remainder of this article is organized as follows.
Section II introduces DRL, experience replay, and the basic
concepts of quantum computation as well. In Section III,
the framework of DRL-QER is introduced and quantum
representations and quantum operations are presented, fol-
lowed by the algorithm description of DRL-QER with specific
implementation details. In Section IV, experimental results
are demonstrated to verify the performance of the proposed
DRL-QER algorithm. The conclusion is drawn in Section V.

II. PRELIMINARIES

A. Deep Reinforcement Learning and Experience Replay

1) Markov Decision Process: The training process of RL
is based on the model of the Markov decision process,
whose basic components can be described by a tuple of
〈S,A,P,R〉 [1], where S is the state space, A is the action
space, P : S×A×S→ [0, 1] is the state transition probability,
and R : S× A→ R is the reward function.

In the process of interaction with the environment, the agent
forms state st ∈ S at the time step t ∈ [0,T] and chooses an
action at = π (st), at ∈ A, where T is the terminal time and
policy π is a mapping from state space S to action space A.
After carrying out the action at, the agent transits to the next
state st+1 and receives a scalar reward signal rt. Thus, we
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obtain a transition of et = (st, at, rt, st+1) at time step t. RL
aims at determining an optimal policy π∗ so as to maximize
the cumulative discounted future rewards Rt = ∑T−t

k=0 γ
krt+k,

where γ ∈ [0, 1] is a discount factor to balance the importance
of the current rewards and the future rewards. As a widely
used RL algorithm, Q-learning defines Q(s, a) as the expected
discounted reward for executing action a at state s following
the policy π , and a lookup Q table is established to store the
Q-values [39].

2) Deep Q Network: In high-dimensional environments, it
is a general and effective approach to approximate Q(s, a)
using a neural network with parameter θ , that is, Q(s, a; θ ) ≈
Q(s, a), instead of a lookup table that stores all state–action
values Q(s, a) [39]. In order to update the parameters of the
neural network with a gradient descent method, the “true val-
ues” y(s, a) of the state–action values Q(s, a) are estimated
from the maximum of the next state–action values Q(s′, a′),
that is, y(s, a) = r + γ maxa′ Q(s′, a′; θ−), where θ− denotes
the parameters of the target network, which are fixed during
the computation of y(s, a) and are updated after some training
steps.

The TD-errors δ can be measured by the deviation between
y(s, a) and Q(s, a) as

δ=y(s, a)−Q(s, a)=r+γ max
a′

Q
(
s′, a′; θ−

)−Q(s, a; θ).

(1)

Accordingly, the loss function Loss(θ ; Q, y) to be optimized is

Loss(θ ; Q, y) = 1

2

(

r + γ max
a′

Q
(
s′, a′; θ−

)− Q(s, a; θ)

)2

.

(2)

Differentiate the loss function Loss(θ ; Q, y) with respect to
parameter θ , and we obtain the gradient as

∇θLoss=
[

r+γ max
a′

Q
(
s′, a′; θ−

)−Q(s, a; θ)

]

∇θQ(s, a; θ).

(3)

3) Experience Replay: In most RL frameworks, agents
incrementally update their parameters while they observe a
stream of experiences. In the simplest form, the incoming
data are used for a single update and discarded immediately,
which brings two disadvantages: 1) strongly correlated tran-
sitions break the independent identically distributed (i.i.d.)
assumption that is necessary for many popular stochastic
gradient-based algorithms and 2) the rapid forgetting of pos-
sibly rare experiences that are potentially useful in the future
leads to sampling inefficiency. A natural solution would be to
put the past experiences into a large buffer and select a batch
of samples from them for training [12], [40], [41]. Such a
process is called experience replay.

In experience replay, how to choose the experiences (transi-
tions) to be replayed plays a vital role to improve the training
performance of DRL. When putting the transition et into a
fixed experience replay buffer with size M, a new index label
k ∈ {1, . . . ,M} is assigned to it, with its priority denoted as
Pk. As such, the entire experience buffer can be regarded as
a collection of transitions as {〈et,Pk〉}. A complete process

of experience replay is actually a store-and-sample process,
and the learning process works by selecting a minibatch sam-
ple from the entire buffer to update the parameters of the RL
agent. The key of experience replay lies in the criterion by
which the importance of each transition is measured, that is,
to determine Pk for each transition.

B. Quantum Computation

In quantum computation, the basic unit that carries
information is a quantum bit (also called qubit) and a qubit can
be in a superposition state of its eigenstates |0〉 and |1〉 [38],
[42], which can be written as the following form of:

|ψ〉 = α|0〉 + β|1〉 (4)

where α and β are complex numbers satisfying |α|2+|β|2 = 1.
Quantum mechanics reveals that measuring a qubit in the
superposition state |ψ〉 leads it to collapse into one of its eigen-
states of |0〉 with probability |α|2 or |1〉 with probability |β|2.
In particular, the coefficients can be written as α = 〈0|ψ〉 and
β = 〈1|ψ〉, where 〈a|b〉 represents the inner product between
|a〉 and |b〉.

In quantum computing, unitary transformation is an essen-
tial operation on quantum systems and can transform an initial
state |ψ〉 to another state |ψ ′〉:

∣
∣ψ ′

〉 = U|ψ〉 (5)

where U satisfies U†U = UU† ≡ I. For example, a Hadamard
gate that transforms |0〉 to (|0〉 + |1〉)/√2 and |1〉 to (|0〉 −
|1〉)/√2 can be formulated as

H = 1√
2

[
1 1
1 −1

]

. (6)

Another significant quantum gate is the phase gate, which is
an important element to carry out the Grover iteration [20]
for reinforcing the amplitude of the “target” item. More dis-
cussions about quantum operations and quantum gates can be
found in [38].

The Grover algorithm is one of the most important quantum
algorithms. It has been widely used in the problem of large-
scale database searching and is able to locate items with the
complexity of O(

√
N) in the unstructured database with high

probabilities. Its core idea is to represent items as a quantum
system and manipulate its state using a unitary operator in an
iterative way [20]. As one of the main operations in the Grover
algorithm, the Grover iteration has been successfully applied
to RL methods [31], where the action is represented in the
superposition of its possible eigen actions. Then, unitary trans-
formation is iteratively performed on the superposition states
to change the probability amplitudes of the “good” actions.

The state space of a composite quantum system is repre-
sented by the tensor product, denoted as

⊗
, of the state space

of each component system. For example, the composite quan-
tum system of two subsystems A and B can be defined on
a Hilbert space H = HA ⊗ HB, where HA and HB cor-
respond to the Hilbert space of the subsystems A and B,
respectively. Furthermore, its state |ψAB〉 may be described
by the tensor product of the states of its subsystems, that is,
|ψAB〉 = |ψ〉A ⊗ |ψ〉B.
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Fig. 1. Framework of DRL-QER. Step 1: Representing the newly generated
experience using a qubit; Step 2: Performing the preparation operation on the
quantum representation with Grover iteration; Step 3: Sampling experiences to
compose minibatch data; Step 4: Training the DRL agent with the minibatch
data; and Step 5: Updating the quantum representation of the experience by
the new TD-error (the preparation operation) and the new number of replayed
times (the depreciation operation) and then put it back into the replay buffer.

To obtain information by measuring or observing
a quantum system, positive-operator-valued measure
(POVM) can be applied [38]. For an observable H,
there exists a complete set of orthogonal projectors
{Xh :

∑
h Xh = I,Xh = X†

h,Xh̃Xh = δh̃,hXh}, where δĩ,i is
the Kronecker delta, Xh is the projector onto the eigenspace
of H with eigenvalue h, and we have H = ∑

h hXh. The
probability of obtaining outcome h can be calculated by
P(h) = 〈ψ |Xh|ψ〉.

III. DEEP REINFORCEMENT LEARNING WITH

QUANTUM-INSPIRED EXPERIENCE REPLAY

In this section, the framework of DRL-QER is first intro-
duced. Then, quantum representations and quantum operations
using the Grover iteration are designed to provide a natural
and appropriate experience replay mechanism. Finally, the
implementation of the integrated DRL-QER algorithm is
presented.

A. Framework of DRL-QER

In DRL-QER, quantum characteristics are borrowed to
design new manipulation methods to improve the experience
replay mechanism, which aims at providing a natural and
easy-to-use experience replay approach using quantum repre-
sentations and unitary transformation for the experiences and
their importance, respectively.

The framework of DRL-QER is described as in Fig. 1.
During each learning iteration, the agent interacts with the
environment and obtains the transition et at time step t. Such

a transition is first expressed in the quantum representation, or
more precisely, the kth qubit, where k is its index in the buffer.
Second, the state of the qubit evolves to a superposition state
through the preparation operation. Then, transitions are sam-
pled with probabilities proportional to their importance and
those selected samples compose the minibatch data for train-
ing the neural network. In addition, after each training step,
the amplitudes of the selected quantum representations are
manipulated by the combined unitary transformation, includ-
ing the preparation operation to adapt to the new TD-errors
and the depreciation operation to deal with the replaying
times of the transitions. This procedure is carried out itera-
tively until the algorithm converges, whose specific details are
implemented in the following sections.

B. Quantum Representation of Experiences

In the quantum theory, a qubit can be realized by a two-
level atom, a spin system, or a photon. For two-level atoms,
|0〉 can be the ground state, while |1〉 represents the excited
state. For spin systems, |0〉 can be the state of spin up, while
|1〉 represents the state of spin down. For photons, |0〉 can be
the state of horizontal polarization, while |1〉 represents the
state of vertical polarization. Here, in experience replay, one
experience can be regarded as a qubit system, and its two
eigenstates |0〉 and |1〉 represent the actions of rejecting and
accepting this experience, respectively.

During the learning process, the agent tries to interact with
its environment, which can be modeled as an MDP. For each
step t, with the current state st, the agent selects an action at

under a certain exploration policy (such as ε-greedy), and then
transfers to the next state st+1 and obtains a reward rt. Finally,
four elements together compose a transition (st, at, rt, st+1),
which is assigned a new index k to denote its order in the
experience buffer. In transforming the transition into quantum
representation, we define the action of accepting and reject-
ing the transition as two eigenstates. Then, the transition is
regarded as a qubit (as shown in Fig. 2) with its state as

∣
∣
∣ψ (k)

〉
= b(k)

0 |0〉 + b(k)
1 |1〉 (7)

where the coefficients b(k)
0 and b(k)

1 have probability amplitude
meanings and satisfy |b(k)

0 |2 + |b(k)
1 |2 = 1. In particular, the

probability of rejecting this transition is |b(k)
0 |2 = |〈0|ψ (k)〉|2

and the probability of accepting it is |b(k)
1 |2 = |〈1|ψ (k)〉|2. It

is worth noting that the coefficients of the qubit are related
with the significance of the experience. Before determining
its importance, it is practical to first set an initial state and let
the qubit evolve from the initial state to a desired state.

In quantum computing, a uniform state is one significant
superposition state and has the form as

|ψ0〉 =
√

2

2
(|0〉 + |1〉). (8)

It has equal probabilities for two eigenstates and means that
the least knowledge is given about the state with maximum
entropy, which makes it feasible to adopt the uniform state as
the initial state for each experience.
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Fig. 2. Experience represented in a qubit system. Here, |0〉 and |1〉 correspond
to rejecting or accepting the transition. The state of such a transition can be
formulated as |ψ〉 = b(k)

0 |0〉 + b(k)
1 |1〉, where |b(k)

1 |2 is the probability of

accepting and |b(k)
0 |2 corresponds to the probability of rejecting.

Fig. 3. State transition of a qubit system under unitary rotation U�, where
|ψ0〉 is the initial state and |ψf 〉 is the final state.

To adjust the probability amplitudes of qubit state in (7),
a rotation operator, which is the basic element of the Grover
iteration [20], [31], is applied with

U� = e−i�Y =
[

cos(�) −sin(�)
sin(�) cos(�)

]

(9)

where � is a real number and has the physical meaning of the
rotation angle. Pauli Y operator is given as

Y ≡
[

0 −i
i 0

]

. (10)

The operation of performing a rotation operator U� on a qubit
of experience is visualized in Fig. 3. The quantum system
evolves from the initial state |ψ0〉 (the green one) to the final
state |ψf 〉 (the blue one), under the unitary transformation
U�. Projecting |ψ0〉 and |ψf 〉 to the y-axis, the amplitude of

observing |1〉 increases, which reveals that the probability of
accepting the transition is slightly increased.

Since the kth experience in the buffer has the quantum repre-
sentation form of |ψ (k)〉, the state of a memory buffer, which
is composed of M experiences, is the tensor product of M
subsystems:

∣
∣
∣ψ total

〉
=

∣
∣
∣ψ (1)

〉
⊗

∣
∣
∣ψ (2)

〉
⊗ · · ·

∣
∣
∣ψ(M)

〉
. (11)

C. Quantum Operations on Experiences

To deal with the quantum representations of experiences,
three subprocesses are involved, that is: 1) preparation opera-
tion; 2) depreciation operation; and 3) experience selection by
quantum observation. First, the preparation operation is intro-
duced to steer the quantum systems toward the target states,
whose amplitudes are related to the TD-errors of the experi-
ences. In fact, whenever the TD-errors of the experiences have
changed, the preparation operation is performed to update their
probability amplitudes. From this respect, every time when a
suitable priority is determined, the quantum systems are to be
transferred to a new target state, which can be regarded as
a process of quantum state preparation. Hence, we call this
special operation the preparation operation. In addition, the
depreciation operation is utilized to make sure that the signifi-
cance of the experiences is adapted to the experience relaying
process, such as the times of the experiences’ being vis-
ited. Another significant operation is to select experiences by
quantum observation, to compose minibatch data for training.

To adjust the amplitudes of quantum systems in a natural
and appropriate way, a Grover iteration method is adopted
for both the preparation operation and depreciation operation.
The Grover iteration is a significant operation for dealing with
quantum states originated from classical information and it
aims at intensifying the probabilities of the target eigenstates,
with others at equal probabilities [20], [31]. Considering that
the probabilities of experiences’ being extracted from an expe-
rience buffer vary, we do not use the conventional method,
that is, performing the unitary transformation on the compos-
ite system (the entire experience buffer). Instead, the Grover
iteration is conducted on a single experience with its quan-
tum representation. This strategy helps to adaptively adjust
the probability amplitude of each transition and, therefore, to
circumvent the neglect of the differences between experiences.

1) Preparation Operation: To better optimize the process
of experience replay in DRL-QER, the importance of experi-
ences needs to be distinguished first. Since a single rotation
changes the probability amplitude of a qubit system, we define
a basic rotation operator as

Uσ = e−iσY =
[

cos(σ ) − sin(σ )
sin(σ ) cos(σ )

]

(12)

where σ ∈ R is a tiny rotation angle. Based on the exponential
approximation formula, that is, U� = (Uσ )m with an integer
m, several iterations of unitary rotations amount to an overall
rotation on the qubits. In addition, due to e−iσYe−i(−σ )Y = I,
the rotation in the reverse direction can be conducted with
U−1
σ (or U†

σ ). Hence, different rotations can be achieved by
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Fig. 4. Procedure of the preparation process using Grover iterations for the
kth qubit. |ψ0〉 is the uniform quantum state and |ψ (k)

f 〉 is the quantum state

after conducting the transformation U(k)
� .

performing multiple times of basic rotations in clockwise or
counterclockwise directions.

The preparation operation for a single experience (the kth
transition in the buffer) is described in Fig. 4, where four times
of basic rotations in the counterclockwise direction are per-
formed on the qubit to intensify the “accepting” amplitude of
the good experience or equivalently to strength the “rejecting”
amplitude of the bad experience. Generally, the state evolution
of such a quantum system can be expressed as

U(k)
� = (Uσ )mk ,

∣
∣
∣ψ

(k)
f

〉
= U(k)

� |ψ0〉 (13)

where mk represents the number of rotation times of the kth
qubit. Considering that TD-error reveals the importance of the
transition, we associate the value of mk with its TD-error. For
transition et with TD-error δt, the priority for the kth qubit is
given as Pk = |δt| + ε and the maximum priority of all the
experiences is Pmax. To convert the priority into the proba-
bility amplitude of the qubit, we try to map priority Pk to a
rotation angle, which corresponds to a unitary transformation
of quantum states. In particular, Pmax is mapped to a rota-
tion angle �max and then the angle of Pk can be recorded as
�k = �max × (Pk/Pmax). Since the Grover iterations aim at
iteratively performing unitary transformations until a desired
state is achieved, �max is split into μ pieces, and each piece
is assigned with σ . The initial state of the qubit is assigned
with rotation angle ι, so the angle of rotation can be defined
as the target angle minus the initial angle. Finally, the value
of mk reads as

mk = Floor(μ× Pk/Pmax − ι/σ ) (14)

where μ, ι ∈ R are two hyperparameters and Floor(x) takes
the largest integer not greater than x. In particular, the sign of
mk reflects the rotation direction relative to the angle of the
uniform state, that is, (π/4). For example, when mk is a posi-
tive integer, the Grover iteration works in the counterclockwise
direction; otherwise, it is conducted in the clockwise direction.

The value of σ in (13) is usually carefully set since it plays
an important role in the quantum representation of experiences.
From a convenient point of view, it is the most appropriate
to set a fixed value. While from the perspective of adapta-
tion to different environments, associating it with the training
process, such as the TD-errors, the maximum times of experi-
ences being visited, and the training steps are more preferable.
In this work, we describe it with a function associated with
the training episode TE

σ = ζ1

1+ e
ζ2
TE

(15)

where ζ1, ζ2 ∈ R are two hyperparameters.
By performing the same procedure to each transition, all

experiences will end up in their target quantum representa-
tions. For example, for most of those valuable transitions,
performing the preparation operation in the counterclockwise
direction makes them approach |1〉, while for those less impor-
tant experiences, the preparation operation in the clockwise
direction can be deployed on their quantum representations to
make them closer to |0〉.

2) Depreciation Operation: After the process of prepara-
tion, the probabilities of selecting the experiences are closely
associated with their TD-errors. However, in actual training,
some experiences are replayed at high frequencies and may
result in poor learning performance, which is called overtrain-
ing, and the limited size of the replay buffer may aggravate
this situation [43]. In RL, overtraining reveals the issue of
exploration–exploitation tradeoff [44]–[49]. Sufficient explo-
ration in the state–action space helps prevent the algorithm
from being trapped in locally optimal solutions while exploit-
ing the current policy helps the algorithm converge as fast
as possible. To achieve a balance between exploration and
exploitation, the sample diversity is considered to enhance
the learning performance of the agent. As such, the depre-
ciation operation is developed for the experiences according
to the replaying process. This is achieved by iteratively mod-
ifying their probabilities once the transitions are selected,
whose effect contains and is greater than the utilization of
the importance-sampling correction, which is demonstrated in
the ablation experiments in the supplementary material.

Once the experiences are selected and put back in the
memory buffer for training, their importance to the agent
is unavoidably changed, not only because their TD-errors
have been changed but also in that they are no longer brand
new to the agent. Therefore, their probability amplitudes
need to be modified. From this perspective, another unitary
transformation

Uω =
[

cos(ω) − sin(ω)
sin(ω) cos(ω)

]

(16)

is used for the depreciation operation, with ω ∈ R. In par-
ticular, it is implemented on the selected experiences using
the Grover iteration. Every time the experiences have been
accepted, their quantum representations go through a unitary
transformation as follows:

∣
∣
∣ψ

(k)
f

〉
← Uω

∣
∣
∣ψ

(k)
f

〉
. (17)

Authorized licensed use limited to: ULAKBIM UASL - DOKUZ EYLUL UNIVERSITESI. Downloaded on October 28,2022 at 12:58:47 UTC from IEEE Xplore.  Restrictions apply. 



9332 IEEE TRANSACTIONS ON CYBERNETICS, VOL. 52, NO. 9, SEPTEMBER 2022

The value of Uω, or more precisely ω, should be adapted
to the specific scenario. In experience replay, when the buffer
is full, new transitions are orderly put in the buffer, with the
old ones replaced. Besides, the period of the experiences being
replaced is a fixed number of steps. Hence, a transition will be
kept in the buffer for fixed-time steps, before it is replaced. In
that case, during fixed training steps, the total replaying times
of all the experiences are fixed. A large value of the max-
imum number of replaying times among all the experiences
(denoted as RTmax) reveals an uneven replaying distribution,
which means that some experiences have outstanding priorities
compared to other experiences. To weaken this phenomenon,
a smaller ω helps to retain those less important experiences;
otherwise, a large depreciation factor might result in sharp
declines in the accepting probabilities of those experiences.
Hence, the value of ω is decreased with RTmax.

In addition, ω should be adapted to the training episode TE.
In the early training stage, the importance of experiences is
ambiguous. After a period of training, the TD-errors of some
experiences tend to remain in large values, regardless of how
many times they have been selected to update the network.
Therefore, it is feasible to “intensify” the accepting probabil-
ities of the experiences that have been replayed with more
times compared with others at the early training stage and to
“cool” down their accepting probabilities to avoid overtrain-
ing at the later stage. This is realized by increasing ω with
the training episode TE. Finally, the depreciation factor ω is
given as

ω = τ1

RTmax
(
1+ eτ2/TE

) (18)

where τ1, τ2 ∈ R are two hyperparameters.
3) Experience Selection by Quantum Observation: To

accomplish the training process, samples are chosen from the
buffer and fed into the network for learning. Here, we draw
from the quantum measurement principle and determine the
probabilities of experiences based on quantum observation.
For the kth qubit in state |ψ (k)

f 〉, observing its probability of

being accepted is |〈1|ψ (k)
f 〉|2, which is actually the probability

of measuring |1〉. Then, by normalizing the probability based
on all transitions, we obtain its replaying probability as

bk =
∣
∣
∣
〈
1|ψ (k)

f

〉∣
∣
∣
2

∑
i

∣
∣
∣
〈
1|ψ (i)

f

〉∣
∣
∣
2
. (19)

The process of experience selection is summarized as in
Fig. 5, where each transition has its own probability in the
buffer. Inspired by the quantum observation principle, this pro-
cess determines the probabilities of being selected among the
buffer. During the sampling process, several times of sampling
one transition from the experience buffer are performed under
fixed probabilities. The sampling times are consistent with the
size of the minibatch, which is set as 32 in the simulations.

Remark 1: The process of obtaining minibatch data from
the buffer with fixed probabilities is a sampling process with
replacement. For each sampling process, the selected sample is
still retained in the buffer and is reset to the uniform state after

Fig. 5. Observation process for experience replay. The buffer is composed of
a number of transitions, where each one is accompanied with its probability
drawn from the quantum observation principle. The transitions are sampled
out from buffer according to their replaying probabilities to compose the
minibatch data.

being sampled. This idea is inspired by the phenomena that
observing a quantum system makes its state collapses. In that
case, the quantum operation (i.e., the preparation operation and
depreciation operation) on the selected quantum experience
starts from the uniform state, rather than its previous state.

D. Implementation

An integrated DRL-QER algorithm is shown as in
Algorithm 1. During each step, the agent encounters transi-
tion et. Considering that the newly generated transition does
not have a TD-error, we assign the maximum TD-error for it,
that is, δt = δmax to give it a high priority. This guarantees that
every new experience is sampled with a high priority. Then, the
transition is represented as a qubit, with its initial state as |ψ0〉.
The preparation operation using the Grover iteration is per-
formed on the experience until it reaches the final state |ψ (k)

f 〉.
After the buffer is full, transitions are sampled with probabil-
ities proportional to their amplitudes of quantum states, and
those selected samples compose the minibatch data for train-
ing the network. For the selected transitions, after being reset
to the uniform state, their corresponding quantum represen-
tations are manipulated through the preparation operation to
adapt to new priorities, and the depreciation operation to adapt
to the replaying times. This procedure is carried out iteratively
until the algorithm converges.

Remark 2: The proposed QRL-QER method works by rep-
resenting the classical information (experiences) into quantum
forms and performing quantum operations. Although it is
inspired by quantum laws, the process can be simulated on
a classical device. Hence, it is a quantum-inspired algorithm
and does not need to be implemented on a quantum device.

Remark 3: In DRL, the buffer is utilized to store the past
experiences, which can be used to update the parameters of
the agent. During this process, the agent interacts with the
environment under the new network parameters. Hence, the
experiences in the buffer should be updated after some training
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Algorithm 1: DRL-QER Algorithm
Input: size of experience buffer M, size of mini batch N.
Initialize the preparation factor σ , the depreciation factor ω, the maximum TD-error δmax, the replayed time vector
cn = [cn1, cn2, . . . , cnM] = �0, the index in the buffer k = 1, a variable LF = False;

for TE = 1→ TrainingFrames do
Observe s1 and choose a1 ∼ π (s1);
for t = 1→ T do

Observe rt, st+1 and then obtain a transition et;
if st+1 is terminal then

break;
end
Initialize the kth qubit as the uniform state |ψ0〉;
Set Pk = |δmax| and obtain mk according to (14);
Perform the preparation operation on kth qubit using Grover iteration, and obtain its final state
|ψ (k)

f 〉 = (Uσ )mk |ψ0〉;
Store the transition et with its quantum representation |ψ (k)

f 〉 in the buffer;
if LF==True then

Determine the probabilities of the experiences by quantum observations and obtain their replaying
probabilities [b1, b2, ..., bM] according to (19);

Update the preparation factor σ and the depreciation factor ω;
for j = 1→ N do

Sampling a transition with its index in the buffer as d ∈ {1, 2, ...,M} based on [b1, b2, ..., bM];
Reset the dth qubit back to the uniform state |ψ0〉;
Compute its TD-error δj = rj + ηmaxa Qtarget(sj+1, a)− Q(sj, aj);
Obtain its priority Pd = |δj| and obtain md according to (14);
Update the replaying time cnd by cnd = cnd + 1;
Conduct a complex Grover iteration process including both the preparation operation and depreciation
operation on the experience’s quantum representation |ψ (d)

f 〉 = (Uω)cnd (Uσ )md |ψ0〉;
Update δmax = max(δmax, |δj|) and update RTmax = max(cn1, cn2, ..., cnM);

end
Update weights θ by stochastic gradient descent;
Copy weights into target network θtarget ← θ ;
Remove the kth quantum representation of experience from the buffer and reset cnk = 0;

end
k← k + 1;
if k > M then

Set LF = True and set k = 1;
end
Choose action at+1 ∼ π (st+1);

end
end

steps to gain a better training effect. To achieve this, the buffer
is set as a fixed size and the oldest experience is discarded to
make room for the newly produced experience (reset k = 1 in
Algorithm 1) when the buffer is full (k >= M in Algorithm 1).
In addition, the procedure of updating the parameters of the
network begins after the buffer is full, that is, the variable LF
is set True. This technique is also applied to DRL-PER and
DCRL to achieve a fair comparison in the following experi-
ment section. In the implementation of Algorithm 1, we set
a predefined value for the maximum value of TD-error, that
is, δmax. During the entire learning process, δmax should be
updated once a larger TD-error is found. As such, new δmax
is assigned to the future newly generated transitions to give
them the highest priorities.

IV. EXPERIMENTS

To test the proposed DRL-QER algorithm, several groups
of experiments are carried out on Atari games with compari-
son to two benchmark algorithms (DRL-PER and DCRL). In
addition, DRL-QER is combined with a double network and a
dueling network and tested on additional experiments to verify
its performance.

A. Setup

The experiments are carried out on the widely used platform
OpenAI Gym to play Atari 2600 games [50], and the testing
games can be divided into four categories, namely: 1) shooting
games; 2) antagonistic games; 3) racing games; and 4) strategy
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TABLE I
HYPERPARAMETERS ADJUSTMENTS IN NUMERICAL EXPERIMENTS

games. For all games, the agent takes high-dimensional data
(210×160 color video) as input to learn good policies. In order
to win the games, the agent has to plan over the long term. All
the experiments are deployed on a computer of ThinkStation
P920 with 24xCPU@2.40 GHz, Nvidia Tesla p5000, Ubuntu
16.04.5 LTS, and Python.

To verify the effectiveness of DRL-QER, two baseline
algorithms, including: 1) DRL-PER [13] and 2) DCRL [14]
are also tested for comparison. The sampling method in
DRL-QER can be regarded as a generalization of that in
DRL-PER. DRL-PER sample experiences according to their
TD-errors with proportional prioritization, and this can be
regarded as a situation in which DRL-QER does not consider
the influence of overtraining and discards the depreciation
operation.

When deploying DRL-QER on Atari 2600 games, we adopt
a similar neural-network architecture and the same hyperpa-
rameter setting to those in [11] and [13]. Considering the
hardware limitation and the high computation cost, we make
some fine tuning on the hyperparameters and train for five mil-
lion frames instead of 50 million frames to avoid the expensive
cost of training. The quantum operations are implemented on
classical computers via necessary approximation for the sim-
ulation of DRL-QER, that is, the states of qubit systems are
represented by 2-D complex vectors and the preparation oper-
ation and depreciation operation are performed in the form
of unitary matrix transformation. In addition, the normalized
probabilities are stored in a special binary heap called “sum
tree,” where the value of a parent node is the sum of all val-
ues of its children. Last but not least, for performing necessary
operations on experiences, we introduce some hyperparame-
ters for the preparation factor σ and the depreciation factor ω,
and their values are provided in Table I. Specifically, ζ1 and ζ2
are tuned to make sure that μ·σ approaches 0 at the early stage
and approaches (3π/4) at the ending stage. Similarly, τ1 and
τ2 are tuned to ensure that ω is close to 0 and (μσ/RTmax) in
the beginning and the ending periods, respectively. The other
hyperparameters of DRL-QER are selected by performing a
grid search on the game breakout.

TABLE II
AVERAGE REWARDS PER EPISODE OF DRL-PER, DCRL, AND DRL-QER

B. Experimental Results

The experiments of the 12 games are deployed to compare
the performance of DRL-PER, DCRL, and DRL-QER. Similar
to DCRL [14], AER [16], and CER [17], each simulation is
run three times to collect the average performance for a fair
comparison. After the training process, we test the agents for
150 episodes and the average rewards with the standard devi-
ation are summarized in Table II. It is clear that DRL-QER
outperforms DRL-PER in most of the testing games. The sta-
tistical analysis also reveals that DRL-QER and DCRL achieve
a comparative performance for the 12 games and they have
different advantages in different games. Considering the total
reward metric tends to be noisy because small changes to the
weights of the DRL agent can lead to large changes in the
distribution of states the agent visits [11], we take the esti-
mated action value as the metric, which has been demonstrated
to be more stable than the reward metric to reveal the train-
ing performance of DRL methods. In particular, we divide the
training phase into 125 epochs and the average action values of
the testing frames are recorded after each training epoch. The
experimental results demonstrate that the learning progress of
DRL-QER is faster and more robust than that of DRL-PER
and is not worse than DCRL. It is worth noting that DRL-QER
merely changes the priorities of experiences without affecting
the convergence of the baseline DRL method [13]. However,
the efficient use of samples contributes to a faster convergence
under limited training epochs. Hence, the trends of the training
curves (shown in Fig. 6) reflect the superiority of our method.
What is more, DCRL involves many parameters that are diffi-
cult to fine tune for different games, while DRL-QER does not
require prior knowledge to fine tune parameters. In fact, the
parameter settings of DRL-QER are almost the same across
the 12 games. From this respective, DRL-QER is an effective
and general approach with enhanced performance.
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Fig. 6. Performance of DRL-QER with comparison to DRL-PER and DCRL regarding the average Q value. (a) Space invaders. (b) Carnival. (c) Breakout.
(d) Freeway. (e) Beam rider. (f) Kung-Fu master. (g) Road runner. (h) River raid. (i) Enduro. (j) Ms. Pacman. (k) Kangaroo. (l) Alien.

C. Additional Exploratory Experiments

The proposed DRL-QER aims at taking advantage of quan-
tum characteristics in the experience replay mechanism. To
figure out whether this mechanism can be applied to other
memory-based RL algorithms, we further apply DRL-QER to
the double network [51] and the dueling network [52] and

implement experimental simulations on randomly selected four
games using the same hyperparameter setting in Table I. In
Fig. 7, both double DQN and dueling DQN algorithms using
the QER method show faster convergence regarding the aver-
age Q value compared with their classical counterparts. The
average rewards of DRL-QER-Double and DRL-PER-Double
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Fig. 7. Performance of DRL-QER-Double/DRL-PER-Double and DRL-QER-Dueling/DRL-PER-Dueling regarding the average Q value. (a) Alien. (b) Carnival.
(c) River raid. (d) Space invaders.

TABLE III
AVERAGE REWARDS PER EPISODE OF DRL-PER WITH DOUBLE

NETWORK AND DRL-QER WITH DOUBLE NETWORK

TABLE IV
AVERAGE REWARDS PER EPISODE OF DRL-PER WITH DUELING

NETWORK AND DRL-QER WITH DUELING NETWORK

are summarized in Table III. Besides, the average rewards of
DRL-QER-Dueling and DRL-PER-Dueling are summarized
in Table IV. From these two tables, the average rewards
per episode are also increased in the “double network” and
“dueling network” for three games except for Riverraid.

V. CONCLUSION

In this article, the DRL-QER method was proposed by intro-
ducing quantum characteristics into the process of experience
replay in DRL to guarantee that the learning scheme focuses
on what the agent has learned from the interaction with the

environment instead of the prior knowledge. In DRL-QER, the
experiences are represented in quantum states, whose amplitudes
are correlated with the TD-errors and the replaying times. In
particular, the preparation operation and depreciation operation
in DRL-QER help speed up the training progress and achieve an
improved sampling efficiency. The experimental results demon-
strated the superior performance of the proposed DRL-QER
over DRL-PER and DCRL. Comparisons of DRL-PER and
DRL-QER in dueling DQN and double DQN further showed
that DRL-QER can also achieve improved performance for other
memory-based DRL algorithms. Our future work will focus on
in-depth theoretical research on the convergence of DRL-QER
and quantum-enhanced RL along with its applications to other
continuous control methods, such as deep deterministic policy
gradient (DDPG) [53], [54] and soft actor critic [55].
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