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ABSTRACT Quantum routing plays a key role in the development of the next-generation network system. In
particular, an entangled routing path can be constructed with the help of quantum entanglement and swapping
among particles (e.g., photons) associated with nodes in the network. From another side of computing,
machine learning has achieved numerous breakthrough successes in various application domains, including
networking. Despite its advantages and capabilities, machine learning is not as much utilized in quantum
networking as in other areas. To bridge this gap, in this article, we propose a novel quantum routing model
for quantum networks that employs machine learning architectures to construct the routing path for the
maximum number of demands (source–destination pairs) within a time window. Specifically, we present a
deep reinforcement routing scheme that is called Deep Quantum Routing Agent (DQRA). In short, DQRA
utilizes an empirically designed deep neural network that observes the current network states to accommodate
the network’s demands, which are then connected by a qubit-preserved shortest path algorithm. The training
process of DQRA is guided by a reward function that aims toward maximizing the number of accommodated
requests in each routing window. Our experiment study shows that, on average, DQRA is able to maintain a
rate of successfully routed requests at above 80% in a qubit-limited grid network and approximately 60% in
extreme conditions, i.e., each node can be repeater exactly once in a window. Furthermore, we show that the
model complexity and the computational time of DQRA are polynomial in terms of the sizes of the quantum
networks.

INDEX TERMS Deep learning, deep reinforcement learning (DRL), machine learning, next-generation
network, quantum network routing, quantum networks.

I. INTRODUCTION
There are high demands of network resources and security in
today’s network and next-generation network systems since
more and more devices are connected to the Internet and
new services are created. Quantum networking appears as
a promising technology to enhance exchanged information
security via the Internet [1]–[4]. With recent advances in
quantum computing technology [5]–[8], a quantum network
is built upon the conventional network (e.g., network slicing)
and is composed of various nodes (computers) equipped with
quantum processors to process and deliver information in the
form of quantum bits, called qubits [1], [2], [9], [10].
Quantum networks are not designed to replace the con-

ventional network communication. In fact, they supplement
the operation of the next-generation network system, where
quantum entanglement and swapping play the key role of

quantum network technology. In particular, quantum entan-
glement is designed with the no-cloning theorem, in which
it is impossible to produce independent and identical copies
of any unknown quantum states. This addresses the funda-
mental problem of network security: key distribution [11],
[12]. Specifically, quantum entanglement is set up based on
a strong correlation between two particles (i.e., photons).
Hence, quantum entanglement can enable the secured data
transmission, called teleportation, as shown in Fig. 1. A rout-
ing path in the quantum network is, therefore, built based on
quantum entanglement as well with the support of a quantum
repeater using the swapping protocol to enable entanglement
to be distributed over long distances [13]. We will present
details of the quantum repeater and swapping in Section II-A.
Since quantum routing is completely reliant on qubit en-
tanglement, the question of how to construct routing paths
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FIGURE 1. Transmission of qubit using teleportation in (a) and (b) and
quantum entanglement swapping in (c) and (d).

for a (or multiple) given pair(s) of source and destination
becomes how to assign qubit entanglements to appropriate
routing paths. In order to design scalable quantum networks,
existing works aim at proposing new optimization models to
efficiently assign qubits and repeaters to different quantum
entanglements. Van Meter et al. [14] study the method to
apply the Dijkstra algorithm to find the shortest path for
repeater assignments. On the other hand, Pirandola et al. [15]
discuss how to use a limited number of repeaters to enable
quantum communication [16] and propose multipath routing
in a diamond topology.
While machine learning has been a highly active research

area recently, works on machine-learning-based routing in
the quantum network are still relatively limited at this mo-
ment. Khatri [17] proposes a model that utilizes reinforce-
ment learning to schedule entanglements. Specifically, the
work in [17] focuses on optimizing entanglement times on
quantum channels across a path to ensure that an entangle-
ment state between the two end nodes can be established
before any channel decay. In this article, we focus on using
machine learning on a different aspect of routing, which is to
allocate quantum channels to accommodate multiple com-
munication requests in a quantum network. To our knowl-
edge, there are currently no such works in the literature.
With such motivation, in this article, we present a deep re-
inforcement routing scheme that is called Deep Quantum
Routing Agent (DQRA). We start with modeling the problem
of entanglement routing as a reinforcement learning problem
with the following settings.

1) Network environment includes information on the cur-
rent network graph (i.e., which nodes can establish en-
tanglement with which others), qubit capacity at each
node, and a set of pending routing requests (demands).

2) Episodes are the accommodation of all requests in a
given window. An episode ends by solving all requests
in a set or by entering an environment state, in which no
pending requests can be solved. Each step in an episode
refers to the accommodation of one request.

3) Actions that the agent makes at each step include se-
lecting then routing a pending request.

4) Rewards that the agent receives after an action are
designed to guide the agent to generate schedule that
maximize the number of accommodated requests in a
given time window.

DQRA then solves the problem using a combination of
a deep neural network and a shortest path algorithm. The
neural network first observes the current environment state
to select a pending request to accommodate. The selected re-
quest is then routed using a shortest path algorithm that uses a
metric representing the qubit capacities among nodes across
a path. We use two algorithms to train the deep network of
DQRA, as a deep reward network (DRN), and as a deep Q
network (DQN) [18]. In the first case, the neural network pre-
dicts the true reward obtained if a request is selected, and in
the second case, the neural network predicts the Q values of
selecting the requests. Both training algorithms are guided by
the previously mentioned reward function. Our experiment
study shows that, on average, both DQRA models are able
to maintain a rate of successfully routed requests at 85–90%
in a qubit-limited quantum network and 60–75% in extreme
conditions of network (i.e., all nodes can only be end nodes
or repeater exactly once). We also empirically show that the
routing time of DQRA increases as a polynomial function of
network sizes (i.e., number of nodes). Specifically, this arti-
cle has the following contributions and intellectual merits.

1) We tackle the problem of entanglement routing in
quantum networks from a machine learning perspec-
tive. Specifically, we propose a reinforcement learning
model for the problem with specific designs of envi-
ronments, actions, and rewards, which guide the agents
toward a schedule that fulfills the most traffic requests.

2) We present DQRA, a deep reinforcement routing
scheme that consists of an empirically designed deep
neural network that schedules requests and a qubit-
preserved shortest path algorithm that routes selected
ones. The deep network of DQRA can be trained either
as a DRN or a DQN. DQRA is shown to obtain good
request-resolving rates even in qubit-scarce networks
and is scalable in terms of model complexity and rout-
ing times.

Organization: The rest of this article is organized as fol-
lows. Section II discusses the definitions and notations that
are related to our work and mathematically formalizes our
research problem. Section III reviews the related concepts
in deep reinforcement learning (DRL). We discuss DQRA
in detail in Section IV and present the experiment study in
Section V. Finally, Section VI this article.

II. NETWORK MODEL AND RESEARCH PROBLEM
In the following sections, an overview of the quantum net-
work and basic mathematical notations are initially intro-
duced. We also illustrate simple examples and formally de-
fine the research problem to present the key ideas behind the
proposed model and methodology.

A. QUANTUM NETWORK: AN OVERVIEW
We first briefly introduce basic definitions in the context
of a quantum network. The main components of quantum
networks and their roles are briefly discussed as follows.
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Quantum nodes are computers equipped with quantum
processor(s) and are capable of manipulations on qubits.
Specifically, the nodes can establish quantum entanglements
between their qubits and qubits in other nodes or perform
entanglement swapping among their own qubits in the case
they work as repeaters.
Quantum entanglement and teleportation are the process

of establishing a quantum link between two qubits on two
nodes so that their states are interdependent on each other.
In short, this process involves performing a Bell state mea-
surement [19] on qubits at two end nodes then sending the
co-relation through a classical transmission channel using
two classical bits (e.g., via network slicing). Quantum en-
tanglement is the means to start a process of sending data via
a quantum network, called teleportation, as shown in Fig. 1.
Henceforth, we use the term “neighbors” to refer to nodes
that are capable of forming direct entanglement with each
other, i.e., they are connected through a classical channel,
and their physical distance is set below 143 km at this time.1

Entanglement swapping is used to extend quantum entan-
glement to a long-distant pair of nodes. In this case, each end
node can have a qubit entangled with a qubit in an interme-
diate node on the path connecting these two end nodes (i.e.,
repeater). The repeater then performs entanglement swap-
ping on its own qubits, which results in the entangled state
between qubits of the two end nodes. We further refer to
the intermediate node as a repeater. Since a repeater even-
tually needs to perform entanglement swapping, it must be
equipped with at least two qubits.
Quantum channels refer to established entanglement pairs

between two neighbor nodes. A chain of quantum channels
that are connected, i.e., except for the source node and desti-
nation node, all repeaters are connected to exactly two chan-
nels in the chain, is referred to as a quantum route.

B. NETWORK MODEL: MATHEMATICAL NOTATIONS AND
ILLUSTRATION
Mathematically, we model a quantum network as a graph
G = (V,E ), in whichV = {vi}Ni=1 represents the set of nodes
in the network of size N, and E = {ei, j; vi, v j ∈ V } repre-
sents the set of pairwise neighborhood relationships among
the nodes. More specifically, the neighborhood relationship
between vi and v j exists when there is a possibility to form
a quantum channel between them; in other words, qubits in
vi and v j can establish quantum entanglements. To elabo-
rate, there exists ei, j ∈ E only when vi and v j are connected
through a classical network channel, and the physical dis-
tance between them is within the threshold to establish qubit
entanglements (i.e., 143 km).
We define C = {ci; ci ∈ N}Ni=1 as the set of qubit capac-

ities in which ci is the maximum number of qubits that

1A long-distance entanglement decays exponentially with the physical
distance between the two entangled nodes [20]. Quantum teleportation over
a distance of 143 km has been deployed but still in the early stage.

node vi can generate to form entanglements with its neigh-
bors. If there exists ei, j ∈ E, vi and v j can establish at most
min(ci, c j ) entangled qubit pairs between them. In this arti-
cle, we assume that any nodes in the network can act as the
source, destination, or repeater of a flow of traffic; therefore,
we set the lower bound min({ci; ∀ ci ∈ C}) = 2 so that any
vi can connect to at least two neighbors and perform entan-
glement swapping.
We then define a quantum route in the net-

work between the source vs and the destination
vd as a path p = {ep1,p2 , ep2,p3 , . . ., epk−1,pk} with
ep1, p2 , ep2, p3 , . . ., epk−1, pk ∈ E, vp1 = vs, vpk = vd ,
and pi �= p j for any pair of (i, j) in the path; any nodes
beside vs and vd are repeaters in the path. p is further
constrained on the number of qubits available in the
repeaters. Mathematically, let qi be the number of qubits in
a repeater vi that has already been utilized in other quantum
channels; the remaining number of available qubits must be
at least two, i.e., ci − qi ≥ 2. A demand (vs, vd ) in the set of
network demands D is successfully resolved by determining
a quantum routing path between them that satisfies both
mentioned constraints.

C. PROBLEM FORMULATION
In this article, we advocate a novel routing scheme—
dubbed quantum routing scheme (QRS)—that implements
a DRL model to circumvent the computability limitations
of heuristic conventional qubit-assignment-based schemes,
while concurrently meeting the quality-of-service require-
ments (e.g., connectivity) of networks. Given a quantum
network G = (V,E ) with a set of qubit capacities and a set
of network demands D, our goal is to maximize the entan-
glement routing rate achieved by a routing scheme QRS as
follows:

QRS = max
(vs,vd )∈D

∑
P(vs,vd )1

{
E(p,q)=1 ∀ (p,q)∈P(vs,vd )

} (1)

where P(vs,vd ) denotes the entanglement path connecting the
source–destination pair (vs, vd ). Here, 1{.} is the indicator
function; it is equal to 1 if the condition in the subscript is
true, otherwise zero. E(p,q) denotes the entanglement status
between the two quantum nodes p and q. We further con-
straint the size ofD to be a fixed integer k. More specifically,
QRS performs routing on a window of k source–destination
pair at a time. It should be noted that this constraint does not
reduce the generality of the research problem, since a request
set can be split or padded to meet the size requirement.
As the number of paths for a set D grows exponentially

with |V | and |D|, determining the optimal solution for all
requests simultaneously could become highly challenging.
Furthermore, the network capacity may not be able to ac-
commodate all requests in D. Consequently, we break the
problem into two tasks: 1) to schedule demands to accom-
modate and 2) to determine the path for each one. These
two components make up the output of our QRS scheme.
We show an illustrative example on how the two components
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FIGURE 2. Example on quantum network and routing solutions for two
requests (v1, v7) and (v3, v6). (a) Original network. (b) Nonoptimal
solution. (c) Optimal solution.

affect the optimality of a solution in Fig. 2. Fig. 2(a) shows
the original network topology with eight nodes and their
maximum qubit capacities. At the same time, the network
needs to accommodate two demands (v1, v7) and (v3, v6).
Fig. 2(b) demonstrates the case in which (v1, v7) is routed
first using a least-hop strategy to select paths. In this case,
(v1, v7) is assigned with the path {e1,2, e2,4, e2,7}. This solu-
tion is not optimal as v4 and v7 do not have enough qubits
left to accommodate the demand (v3, v6). On the other hand,
Fig. 2(c) shows the optimal case in which (v3, v6) is re-
solved first. Using the same least-hop strategy, both demands
are sustained with two paths {e1,2, e2,3, e3,5, e5,8, e8,7} and
{e3,4, e4,6}.

III. DEEP REINFORCEMENT LEARNING
Reinforcement learning [21] is a branch of deep learning, in
which an agent is trained to interact with an environment by
observing its current states and then taking actions. The train-
ing process is performed on a trial-and-error basis, in which
each action the agent takes in an environment state results
in a return value, and the agent tries different actions based
on the current states to eventually learn a mapping between
states and actions that yields the highest returns. A Markov
decision process (MDP) [21] is among the models used to
represent a reinforcement learning problem.Mathematically,
an MDP consists of the following components:

1) a state space Ss that consists of all environment states;
2) an action spaceAs that consists of all possible actions;

3) a reward function R(s(t ), a(t ) ) with s(t ) ∈ Ss, a(t ) ∈
As, that maps a state–action combination (s(t ), a(t ) ) at
step t to a scalar return value R(t );

4) a state transition function T that yields the probabil-
ity of the agent taking an action a(t ) at a state s(t )

to move to the next state s(t+1): T (s(t ), a(t ), s(t+1)) =
p(s(t+1)|s(t ), a(t ) ).

The reward function at a step t is computed as the sum of
discounted future rewards

R(s(t ), a(t ) ) =
T∑
i=t

λi−tR(s(i), a(i) ) (2)

where λ is a discount factor. A common algorithm to train
a reinforcement learning agent is Q-learning [22], in which
a set of Q values is utilized for the agent to select actions to
take. The Q values represent the return if the agent takes an
action in a particular state, and an action is selected if it has
the highest Q value compared to others. Mathematically, we
have

Q(s(t ), a(t ) ) = R(s(t ), a(t ) )

+ λ
∑
s

T (s(t ), a(t ), s(t+1)) max
a(t+1)

Q(s(t+1), a(t+1)). (3)

In terms of training, at the beginning, the agent randomizes
a table of Q values for all state/action combinations. After
each action, the agent updates the corresponding Q value
using the following rule:

Q(s(t ), a(t ) )← (1− α)Q(s(t ), a(t ) )

+ α(R(s(t ), a(t ) )+ λ max
a(t+1)

Q(s(t+1), a(t+1))− Q(s(t ), a(t ) )).
(4)

Recently, deep learning emerges with multiple break-
throughs in numerous areas [23]. The advantages of deep
learning are threefold: 1) the deep neural network is able to
learn to solve a problem with minimal guidance from the
user; 2) the architecture of the deep neural network allows for
powerful representation capabilities in that the network can
represent very complicated function; and 3) different designs
of deep neural networks for different types of data can be
aggregated in one model, which further increases represen-
tation powers. Reinforcement learning also gets numerous
benefits from the advancement of deep learning. Various
deep reinforcement schemes have been proposed with dif-
ferent applications with great successes [24]. Particularly in
resource management in which the goal is to optimize the us-
ages of available resources over a set of tasks, DRL has been
shown to solve challenges of heuristic methods, including: 1)
the impossibility to model a complex system accurately; 2)
noisy inputs and diverse operating conditions may affect the
decision making of algorithms in practice; and 3) certain per-
formance metrics are difficult to optimized [25]. In resource
management, DRL is widely applied in domain, such as
communication and networking [26], Internet of Things [27],
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and 5G networks [28], for tasks such as scheduling, routing,
rate control, security, quality of services, etc. In quantum
networking, the only other work that utilizes DRL [17] fo-
cuses on optimizing entanglement times on quantum chan-
nels across a path to ensure that an entanglement state be-
tween the two end nodes can be established before any chan-
nel decay. In this article, we instead aim to optimize the
allocation of qubits in a network to maximize the number
of accommodated communication requests.
In general, DRL uses a deep neural network to represent

the mapping between input states to actions and rewards. Let
the function of a deep neural network be D(·); then, we have

(a(t ),R(t ) ) = D(s(t ) ). (5)

In this article, we utilize two DRL approaches. The first
uses a deep neural network to represent the reward function
R(·). In this case, we train the reward network using an
explicit reward function that is designed toward the optimiza-
tion goal in (1). In the second case, we utilize a DQN [18]. In
the DQN, the neural network is trained to predict theQ value
of the action. Two versions of the deep neural networks are
maintained during training: a predict network and a target
network. The predict network takes the input state at t and
generates Q(t ) values for the selected actions. The input state
is then updated to t + 1 and fed to the target network to gen-
erate theQ(t+1) values at t + 1. The network is trained so that
Q(t ) converges to Q(t+1). The predict network and the target
network share the same weights at the beginning. However,
the predict network is updated constantly during training,
whereas the target network is updated with the weights from
the predict network once every few hundred epochs.

IV. DEEP QUANTUM ROUTING AGENT
In this section, we describe our deep reinforcement routing
scheme to which henceforth referred as DQRA. DQRA uti-
lizes a novel deep neural network to schedule requests and a
shortest path algorithm for routing them. Depending on the
training algorithm, the deep neural network is either a DRN
or a DQN. Since the network architectures are identical in
both cases, for simplicity, we call the neural network a sched-
ule neural network (SNN) throughout this section. Given a
quantum network G(V,E ) with a qubit capacity set C and a
set of routing requests D, we define the accommodation of
all requests in D an episode, denoted as E . E consists of a
chain of consecutive action a(t ) that DQRA makes at each
step t to resolve one request in D.
Mathematically, at step t in E , the input of DQRA in-

cludes the current network topologyG(t )(V,E (t ) ), the current
qubit capacity C(t ), and the current request set D(t ). DQRA
then makes an action a(t ), which represents the selection of
source–destination pair to accommodate at step t. After that,
a shortest path algorithm is utilized to determine the path for
the selected request. DQRA decides the actions in an episode
using a reward function that is designed to guide the model to
solutions that fulfills more requests in an episode. An episode
ends when all requests in D are resolved or when no current

FIGURE 3. Example of input and output of DQRA at each step t .

requests can be accommodated. We demonstrate the input
and output of DQRA in Fig. 3.
In the following subsections, we discuss in detail our deep

reinforcement routing agent for quantum networks in terms
of input states, output actions, reward function, model archi-
tecture, and training.

A. INPUT STATE
At step t in an episode E , an input state to DQRA con-
sists of the following: 1) the connectivity in the network
G(t )(V,E (t ) ); 2) the qubit capacity of each node C(t ); and
3) the request set D(t ). All three inputs are fed to the SNN
component of DQRA to decide which request to resolve;
then, G(t )(V,E (t ) ) and C(t ) are utilized by the shortest path
component to route the selected request. First, we discuss the
data representation for each input type.
In terms of the network topology, G(t ) is generated as a

subset ofG, in which edges that connect to nodeswith current
qubit capacity of 0 are removed

G(t ) = (V,E (t ) )

E (t ) = {ei, j; ei, j ∈ E;C(t )
i > 0;C(t )

j > 0}. (6)

Then, we use a binary row vector of which elements cor-
respond to edges that originally exist in G. Let the input
vector that represents G(t ) be A(t ), and A(t )

k be the element
that corresponds to edge ei, j ∈ G; then, we have

A(t )
k =

{
1, ei, j ∈ G(t )

0, otherwise.
(7)

At each step t in an episode, the current request set D(t )

is another input to DQRA. We aim for the deep network to
analyze all pending requests beforemaking decisionwith this
design of inputs. In terms of representation, each node in a
request is modeled as binary vector v = [{vi; i = 1. . .|V |}],
in which

vi =
{
1, if current node is i

0, otherwise.
(8)

If a request is already resolved prior to step t, its source
and destination are replaced with 0-vectors. Overall, each
source–destination pair makes up one row in D(t ), which, in
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turn, become a binary matrix of size k × 2|V |

D(t ) =

⎡
⎢⎢⎢⎣

vs1 vd1

vs2 vd2

. . . . . .

vs|D| vd|D|

⎤
⎥⎥⎥⎦ . (9)

Finally, the qubit capacity at step t is modeled as a row vec-
tor C (t ) = [{c(t )i ; ci ∈ C}]. All three components make up the
state X (t ) that DRN observes from the environment at step t

X (t ) = {A(t ) D(t ) C (t )}. (10)

Overall, the algorithm takes X (t ) as input and outputs an
action that is described in the next subsection.

B. OUTPUT ACTION
In short, DQRA outputs actions that represent the routing
schedule for requests inD and their paths. More specifically,
at each step t in an episode, DQRA selects a single request in
the set of pending requests D(t ) and then assigns a path con-
necting the source and destination nodes. In general, a deep
neural network can be designed to output paths in a graph,
for example, as a binary vector of which elements represent
whether an edge is presented in the path or not. However, the
number of edges in a graph may be exceedingly high, which,
when coupled with the already high-dimensional input, may
lead to a highly complex neural network that is not ideal for
real-time settings. Accordingly, we utilize a hybrid approach,
that is to use the deep network SNN to output the sched-
ule of routing requests, and a shortest path algorithm with
customized metric to determine the path for each request.
Both components, however, contribute to the computation of
rewards for the actions, and therefore, both impact how the
deep network is trained.
For scheduling, the SNN outputs a reward vector

(or a Q vector the case of DQN) r(t ) of size |D|:
r(t ) = {r(t )0 , r(t )1 , . . . , r(t )|D|}, in which r(t )i represents the
reward at the end of step t if DQNA routes request i. The
request to be selected is the one with the highest reward

a(t ) = argmaxi(r
(t )
i ). (11)

With a(t ) selected, to determine the path between the
source and the destination, we utilize a shortest path ap-
proach, in which the metric expresses the qubit capacity of
the nodes. More specifically, a shortest path algorithm is
applied, in which the weight w

(t )
i, j of an edge ei, j at step t

in the episode is

w
(t )
i, j =

1

min (c(t )i , c(t )j )
(12)

where c(t )i is the current capacity of node vi. It can be seen

that w
(t )
i, j is high when either node connected to ei, j has low

capacity and low otherwise. Therefore, a shortest path of
which total metric is low is more likely to traverse nodes with
high qubit capacities and less likely to exhaust qubits in any

FIGURE 4. Example on updating state G(t ) to G(t+1) after selecting and
routing request (v1, v9). (a) G(t ). (b) G(t+1).

nodes. Overall, this path selection approach focuses on pre-
serving qubit capacities of nodes in each step, which, in turn,
extends the number of requests that can be accommodated in
an episode. To prevent a node with less than two qubits being
selected as a repeater, we apply the shortest path algorithm
on a node-induced subgraph G (t ) of G(t ) in which a node vi

is retained only if it has c(t )i ≥ 2 or vi is either the source or
the destination in the current request.
Since the size of the output reward vector is constant

at |D|, it is possible that a node vi is repeatedly selected
throughout an episode. To address this issue, we maintain
a list Lr of requests that are already resolved. If the highest
reward belongs to a request that is already in Lr, the network
moves on to the next highest reward request. In short, the
pending request with the highest reward value is selected in
each step.
At the end of each action, the input states are updated for

the next step t + 1. First, the row that associates to the request
resolved by a(t ) in D(t ) is replaced with 0s to obtain D(t+1).
Then, C (t ) is updated with new qubit capacities. Particularly,
given a routing path P (t ) = {es(t ),p1 , ep1,p2 , . . . , epk,d(t )} as-
signed to the selected request (vs(t ), vd(t ) ), each node vi ca-
pacity is updated as

c(t+1)i ←

⎧⎪⎨
⎪⎩
c(t )i − 1, if i ∈ {s(t ), d(t )}
c(t )i − 2, if i ∈ {p1, p2, . . ., pk}
c(t )i , otherwise.

(13)

Finally, G(t+1) is acquired by removing all edges that as-
sociate with any node vi that has c

(t+1)
i = 0 and updating the

weights of the edges using C (t+1) and (12). We illustrate the
updating from input state G(t ) to G(t+1) in Fig. 4. At G (t ),
the request to accommodate is (v1, v9); the routing path is
{e1,2, e2,5, e5,8, e8,9}. After assigning the path,G(t+1) has the
same nodes with new capacities, and v5 and v8 are discon-
nected from the rest of the network since they do not have
any available qubits left.

C. REWARD FUNCTION
As our research problem is to maximize the number of ac-
commodated routing requests in a window, we specifically
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design a reward function that addresses this target. In detail,
we directly associate the rewards that themodel receives with
the current and future numbers of resolved requests in an
episode. Mathematically, let the reward at step t be R(t ); then,
we have

R(t ) = n(t )r α + (|D| − n(t )r )β f + λR(t+1)(1− f ) (14)

where n(t )r is the number of requests that are resolved after
step t, f is a binary indicator that is 1 when t is the ending step
of and episode and 0 otherwise, α > 0 is the reward term,
β < 0 is the penalty term, and λ ∈ [0, 1] is a discount factor.
α, β, and λ are hyperparameters to be selected during the
training phase. Since the computation of R(t ) requires future
reward values, we let DQRA finish an episode to obtain the
final reward value and, then, gradually trace back to calculate
the rewards of prior steps. We select α, β, and λ so that the
reward for one action is significantly negative if it leads to
a failed episode (i.e., ending without being able to solve all
requests) in the next few steps. On the other hand, actions that
lead to a successful episode should be rewarded with pos-
itive value. Overall, the reward function design encourages
the agent to find schedules that accommodate more requests
and penalizes schedules that end too early—the less requests
solved, the heavier the penalties.

D. DRN ARCHITECTURE
In this subsection, we describe the architecture of the DRN
in DQRA. As described in Section IV-A, the input to the
DRN at step t in an episode consists of three components: 1)
D(t ) that represents the set of pending requests; 2) A(t ) that
encodes the network graph state; and 3) C (t ) that expresses
the qubit capacities of the nodes. We make two observations
on the input states. First, all components may have high
dimensionality when the graph size increases. Second, D(t )

is very sparse, and A(t ) may also become relatively sparse
after the first few steps. Overall, feeding all components to
a same layer is not ideal. Consequently, we first feed each
component into a different embedding network. In short, an
embedding network consists of multiple fully connected lay-
ers, which transform an input vector into embedding vectors,
usually of lower dimensionality. Let the mappings repre-
sented by the embedding networks for D(t ), A(t ), and C (t )

be MD(·),MA(·), and MC (·), respectively; then, we have

MD(D(t ) ) = UD =

⎡
⎢⎢⎢⎣

us1,d1
us2,d2
. . .

us|D|,d|D|

⎤
⎥⎥⎥⎦

MA(A(t ) ) = uA(t )

MC (C (t ) ) = uC(t ) .

(15)

It can be seen that the output of MD(·) is a matrix of |D|
vectors, whereas those of MA(·) and MC (·) are two single
row vectors. The reason for this design is that we want the
reward network to further learn the interrelationships among

FIGURE 5. DQRA deep neural network architecture.

all the pending requests using a self-attention layer [29], [30].
In short, an attention layer takes input as three matricesQ, K,
and V , and output a “context” matrix S as follows:

S = δ

(
QKT√|K|

)
V (16)

where δ is the SoftMax function and KT is the transposed
matrix of K. In S , each row represents the “context score” of
the corresponding row in Q with respect to all rows in K and
V . In a self-attention layer, Q, K, and V are identical, and
in our context, they are equal to UD. Overall, our purpose
of using a self-attention layer is to obtain a score matrix that
represents the “context” of each pending request with respect
to the rest. Let the context matrix SD and the mapping by the
self-attention layer be S(·); then, we have

SD = S(UD ) =

⎡
⎢⎢⎢⎣

σs1,d1

σs2,d2

. . .

σs|D|,d|D|

⎤
⎥⎥⎥⎦ . (17)

We then repeat uA(t ) and uC(t ) |D| times and, then, concate-
nate them with the rows inUD and SD to form the complete
embedding for each request

U =

⎡
⎢⎢⎢⎣

us1,d1 σs1,d1 uA(t ) uC(t )

us2,d2 σs2,d2 uA(t ) uC(t )

. . .

us|D|,d|D| σs|D|,d|D| uA(t ) uC(t )

⎤
⎥⎥⎥⎦ . (18)

Finally, U is input into a block of fully connected layers
that output a vector of |D| values r(t )1 , r(t )2 , . . . , r(t )|D| that rep-
resent the reward if DQRA selects each request. The archi-
tecture of DQRA’s deep neural network is shown in Fig. 5.

E. TRAINING ALGORITHM
We utilize two algorithms to train the DQRA deep neural
network, specifically, as a supervised DRN and as a DQN. In
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the supervised case, theDRN is trained as a supervisedmodel
to predict the true reward of taking an action.We generate the
training data as follows. At the beginning of an episode, we
randomize the request setD. For each step in an episode, the
three input components are fed to the model to generate ac-
tions. The inputs are then updated for the next step based on
the action DQRA makes using the process that is described
in Section IV-B. This action–update process repeats until the
episode ends by either fulfilling all requests or by DQRA not
being able to accommodate any more pending requests. At
the end of an episode, the reward values for each step are
computed backward using (14). Overall, for an episode Ei,
the training data (in the format [features]; [label]) obtained
are

Ei =

⎡
⎢⎢⎢⎣
A(0) D(0) C (0)

A(1) D(1) C (1)

. . . . . . . . .

A(T ) D(T ) C (T )

⎤
⎥⎥⎥⎦ ;

⎡
⎢⎢⎢⎣
R(0)

R(1)

. . .

R(T )

⎤
⎥⎥⎥⎦ (19)

with T being the number of steps in Ei. Following the expe-
rience replay [31] method, data from each episode are stored
and resampled for future training iterations. In terms of the
training objective, we utilize the mean squared error func-
tion. However, it can be seen that, at each step t, the output
of the reward network is a vector of size |D|, while the target
R(t ) is a scalar. This is because the model only knows the
reward of actions that it has taken. To address this problem,
we utilize a mask vector m(t ) of size |D| in which m(t )

i = 1 if
request i is selected in a(t ), and 0 otherwise. The loss for one
episode Ei is computed as

Li =
∑

t∈episode
(r(t ) ∗ m(t ) − R(t )m(t ) )2 (20)

where ∗ represents an elementwise multiplication, i.e., if x
and y are two vectors of size n, x ∗ y = [x1y1 . . . xnyn].
By using the mask vector, we prevent rewards from unse-
lected requests to participate in the loss function. Finally, the
overall loss is averaged across episodes in a training batch of
size nb

L = 1

nb

∑
i∈batch

Li. (21)

L can be used to train the reward network with any neu-
ral network training algorithms, such as stochastic gradient
descent (SGD) [32] or ADAM [33].
In the DQN training scheme, the output of the DRN is

considered the Q values of each action, and the loss of one
episode Ei is

Li =
∑

t∈episode
(Q(t )

P ∗ m(t ) − Q′(t )P ∗ m(t ) )2 (22)

where Q(t )
P is the output of the predict network at step t, and

Q′(t )P is the target Q value at step t, which is computed as

follows:

Q′(t )P = (1− lr ) ∗ Q(t )
P + lr ∗ (Q(t+1)

T + λR(t ) ) (23)

where lr is a learning rate, Q(t+1)
T is the Q value output by

the target network for t + 1, and λ and R(t ) are the discount
factor and reward function at t, respectively, as described in
(14). For the DQN, we still utilize the mask vector m(t ) to
remove rewards of unselected actions from the loss function.
The overall loss for one training batch is also calculated by
(21). The predict network can be trained using regular algo-
rithms such as SGD or ADAM; the target network is updated
with the predict network’s weights once every few hundred
of epochs. During decision-making phases, only the predict
network is utilized.

V. EXPERIMENT STUDY
All experiments are implemented in Python 3.6. We also
want to acknowledge the use of the Python packages:
Numpy [34], Matplotlib [35], NetworkX [36], and Tensor-
flow [37]. All experiments are performed on a workstation
with Intel(R) Core(TM) i9-9940X CPU, 128 GB of RAM,
and four Nvidia Quadro P6000 graphic cards.
In this experiment study, we focus on grid networks of size

nG × nG nodes and use a routing window size of nG requests,
with nG ∈ {5, 6, 7, 8, 9, 10}. We test four cases with differ-
ent nodes’ qubit capacities: 1) ci = 2∀ i; 2) ci ∈ [2, 4]∀ i; 3)
ci ∈ [3, 4]∀ i; and 4) ci = 4∀ i. The requests in each window
are completely randomized in terms of space, i.e., sources
and destinations. Furthermore, in the current stage of this re-
search, we are not considering the time component of entan-
glement. In other words, our assumption is that all entangle-
ments are maintained throughout their routing windows. The
test cases represent networks with increasingly more limited
qubit capacity. In all cases, a node can act as a repeater twice
within one window only if it has the maximum number of
qubits of 4 at the beginning of an episode. The simulation
with ci = 2∀ i represents the extreme case in which each
node can act as a repeater for exactly one path. Furthermore,
in this case, if a node is the source or the destination of a
request, it cannot be a repeater anymore. In all cases, each
node can be selected as the source or the destination of re-
quests within a window no more than once. Finally, in all
experiments, it is possible that the network does not have
enough resources to accommodate all requests in a window;
therefore, routing solutions at 100% request accommodation
rates are not to be always expected.
In terms of modeling, we utilize the same architectures

(i.e., equal number of layers and neurons) of deep networks
in both cases for both DQRA using the supervised reward
network (denoted as DQRA-DRN) and DQRA using the
deep Q network (DQRA-DQN) to ensure fair comparisons.
To simplify the hyperparameter space, we set the number of
layers in the three embedding components to be the same;
each layer has an equal number of neurons to its input dimen-
sionality and focus on fine-tuning the number of layers for
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TABLE 1. SNN Architecture by nG

each component (2, 3, and 4). After fine-tuning, the selected
deep network architectures are as in Table 1. The architecture
of each component is denoted as (l1, l2, . . . ), in which l1 is
the number of neurons in the first layer, l2 the second layer,
and so on. In short, the three embedding blocks have two
layers, and the decision-making block (that outputs returns
for actions) has three layers of 6|D| neurons. The hyper-
parameters α, β, and λ in (14) are set at 0.2, −1, and 0.9,
respectively. The learning rate lr for training DQRA-DQN as
in (14) is 0.1. Finally, the mini-batch size in all experiments,
nb in (21), is 512.
We implement two baseline routing strategies to compare

with DQRA. The first (Random) performs random selection
on requests, then assigning path to the selected request us-
ing the shortest path algorithm. The second (Shortest Path)
strategy selects requests based on a shortest-first strategy.
Specifically, in each step of an episode, the shortest paths for
each pending requests are first determined (independently to
each other); then, the one with the minimum value is chosen
to accommodate.
We use the average number of successfully solved requests

across 1000 windows as the evaluation metric. The five-run
averaged experiment results are shown in Fig. 6. In all ex-
periments, the deep networks are trained for 10 000 epochs.
As can be seen from Fig. 6, the two versions of DQRA yield
similar performances in all tests, both of which are signifi-
cantly higher than the two naive baselines in all test cases. In
Fig. 6(b) and (c), where each node has ci randomized, DQRA
models maintain a successful routing rates of over 80% in all
network sizes, with DQRA-DQN being slightly better than
DQRA-DRN. In the two extreme cases where each node has
exactly four and two qubits [see Fig. 6(a) and (d)], the perfor-
mances of DQRA models are almost identical. In networks
with ci = 4∀ i, the two achieve almost 100% resolving rates,
whereas in networks with ci = 2∀ i, they achieve the rates
from about 70% at nG = 5 to approximately 59% at nG = 10.

Next, we analyze the performances of the two
DQRA models in high scale settings. In this exper-
iment, the networks are of size nG × nG nodes with
nG ∈ {10, 15, 20, 25} and increasing window sizes
|D| ∈ {nG, nG + 5, nG + 10, nG + 15, nG + 20}. The nodes
in all experiments have a fixed capacity of four qubits. We
no longer consider the Random model and the Shortest Path
model as they have been shown to be inferior previously. The
result of this experiment is shown in Fig. 7. The evaluation
metric that is used is the rate of fulfilled requests across
5000 windows. All models are trained for 10 000 epochs.
It can be seen that in all network sizes, the two DQRA

FIGURE 6. Models’ performance on routing nG requests in grid networks
of size nG × nG nodes of qubit capacity ci . (a) ci = 4. (b) ci ∈ {3, 4}. (c)
ci ∈ {2, 4}. (d) ci = 2.

models perform almost identically with the DQN always
performing slightly better. Furthermore, as the network
size increases, the solved request rates of the model drop
more slowly. All models’ solving rates start around 95%
at |D| = nG; however, at |D| = nG + 20, the two models
solve less around 65% requests in 10× 10 networks, 70%
in 15× 15 networks, 80% in 20× 20 networks, and around
85% in 25× 25 networks. This result is to be expected,
since larger network sizes yield more alternative routes, and
therefore, the network can accommodate more requests.
We further investigate the learning capabilities of the deep

models. Fig. 8 illustrates the rewards value of the DRN and
the DQN throughout 10 000 training epochs in a network
of 10× 10 nodes with a window of ten requests. Reward
values are computed after every 100 epochs by averaging
reward from 1000 requests. Since the requests are random-
ized, we observe the fluctuations as can be seen in the figures.
Nevertheless, we see that training rewards in both models
effectively increase during around the first 8000 epochs. Af-
ter that, the DQN seems to stop learning, while the DRN
continues to learn albeit considerably more slowly.
Finally, we examine the training time and the routing time

of DQRA models. Since the deep architectures used in both
versions of DQRA are identical, and the DQRA-DQN only
uses the predict network when making decision, the two
DQRAmodels should have equal routing time performances.
Their training times, however, vary due to having different
training algorithms. In this experiment, we simulate the fol-
lowing three cases:
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FIGURE 7. DQRA models’ performances in high-scale (i.e., large number
of nodes and requests) settings. (a) 10 × 10 network. (b) 15 × 15
network. (c) 20 × 20 network. (d) 25 × 25 network.

FIGURE 8. Training reward of the DRN and the DQN in a 10 × 10 network
with window of 10 in 10 000 epochs. (a) DRN. (b) DQN.

1) constant window size of 10, network sizes nG ×
nG with nG ∈ {10, 15, 20, 25, 30, 35}. This effectively
means the numbers of nodes in the network being
{100, 225, 400, 625, 900, 1225}, respectively;

2) constant network size of 10× 10 nodes, window sizes
increase with |D| ∈ {10, 15, 20, 25, 30, 35};

3) network sizes of nG × nG and window size of nG with
nG ∈ {10, 15, 20, 25, 30, 35}. In other words, both net-
work sizes and window sizes increase in this experi-
ment.

To ensure an equal number of routing between the two
models, we set the qubit capacity of all nodes to a very high
number; therefore, all requests of the windows are always
accommodated. In all cases, training times are measured for
1000 training epochs, and routing times are measured for

FIGURE 9. Models’ training times and routing times when network sizes
increases [(a), (b)], window size increases [(c), (d)], and both network
and window sizes increase [(e), (f)]. (a) Training—variable network. (b)
Routing—variable network. (c) Training—variable window. (d)
Routing—variable window. (e) Training—nG variable. (f) Routing—nG
variable.

1000 windows. As can be seen in Fig. 9(a), (c), and (d),
training times of the DQRA-DQN are slightly lower than
those of the DQRA-DRN in all three experiments. We fur-
ther observe that the training time increases as a polynomial
function of network size [see Fig. 9(a)] and a linear function
of window size [see Fig. 9(c)]. In Fig. 9(e), where both the
network size and the window size increase, training times
of both models increase more sharply, however, still with
polynomial patterns. On the other hand, within the observed
experimental space, routing times of the models increase
with a linear pattern when the network size and the window
size increase individually and turn into a polynomial pattern
when both increase simultaneously.
We deem the result of the experiment on time performance

to be expected. In general, the complexity of neural networks,
which majorly involve matrix multiplications and summa-
tions, is a polynomial function of their number of parameters.
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FIGURE 10. Total number of parameters in the SNN in quantum
networks of size nG × nG.

In this case, this number is a quadratic function of the net-
work size due to the use of the adjacency matrix in the input,
and our designs make the number of parameters in a network
independent on the demand window sizes. Furthermore, the
shortest path algorithm is utilized exactly once for any re-
quests in a window. A final note to be emphasized is that,
while having lower training times, the DQRA-DQN must
maintain two deep neural networks (a prediction network
and a target network) during training and, therefore, is more
computationally intensive in this case. Therefore, it could
be challenging to train the DQRA-DQN for a large-scale
network in a system with limited computational resources.
We show the number of parameters in the scheduling neural
network in quantum networks of size nG × nG with nG ∈
{5, 10, 15, 20, 25, 30, 35} in Fig. 10. It can be seen that the
SNN has to maintain approximately 250 million parameters
when the quantum network size grows to 1225 nodes.

VI. CONCLUSION
Routing in quantum networks, one of the key problems of
the next-generation network system, and machine learning,
one of today leading research areas, have not seen much
integration. With such motivation, this article aims to bridge
that gap with a new machine-learning-powered quantum
routing model for quantum networks. In particular, given
a quantum network and a set of communication demands,
we have proposed a deep reinforcement routing scheme
(DQRA) to construct routing paths for all demands in the
network.
We have modeled the problem of entanglement routing

in quantum networks as a reinforcement learning problem
that consists of input states, actions, and rewards. At each
step in a routing window, we construct input states of the
model by considering the quantum network’s states, the qubit
capacities of nodes, and the set of pending demands; the
actions were defined as the demand selection to accom-
modate and the path connecting the two ends of the de-
mand; and the rewards were designed to guide the model
toward schedules that fulfill the maximum number of de-
mands in a time window. DQRA consists of two compo-
nents, an empirically designed deep neural network that
was used to observe the current input states to decide the

routing schedule and routing paths of the selected demands
were then determined by a qubit-preserved shortest path
algorithm. We further utilized two algorithms to train the
deep network of DQRA, as a DRN and as a DQN. Our
experiment study shows that DQRA is able to maintain a
rate of successfully routed requests at above 80% on av-
erage in a qubit-limited network and approximate 60% in
extreme conditions (i.e., each node in the network can be
a repeater exactly once in a window). We also empiri-
cally shown that DQRA is scalable with topology sizes and
window sizes.
This work will lay foundation for the research on us-

ing applied machine learning to leverage quantum routing
in quantum networks. For future works, we will examine
the following aspects: 1) incorporating the success rates
of qubit entanglement and qubit swapping into the input
states of the models; 2) exploring other designs of the re-
ward functions so that our model can route requests on
other basis such as fidelity or entanglement rates; and 3)
investigating different deep architecture designs to maxi-
mize the agents’ performances while further reducing their
complexities.
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