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ABSTRACT Control modular addition is a core arithmetic function, and we must consider the computa-
tional cost for actual quantum computers to realize efficient implementation. To achieve a low computational
cost in a control modular adder, we focus on minimizing KQ (where K is the number of logical qubits
required by the algorithm, and Q is the elementary gate step), defined by the product of the number of
qubits and the depth of the circuit. In this article, we construct an efficient control modular adder with small
KQ by using relative-phase Toffoli gates in two major types of quantum computers: fault-tolerant quantum
computers (FTQ) on the logical layer and noisy intermediate-scale quantum computers (NISQ). We give
a more efficient construction compared with Van Meter and Itoh’s, based on a carry-lookahead adder. In
FTQ, T gates incur heavy cost due to distillation, which fabricates ancilla for running T gates with high
accuracy but consumes a lot of especially prepared ancilla qubits and a lot of time. Thus, we must reduce the
number of T gates. We propose a new control modular adder that uses only 20% of the number of T gates
of the original. Moreover, when we take distillation into consideration, we find that we minimize KQT (the
product of the number of qubits and T -depth) by running �(n/

√
log n) T gates simultaneously. In NISQ,

cnot gates are the major error source. We propose a new control modular adder that uses only 35% of the
number of cnot gates of the original. Moreover, we show that the KQCX (the product of the number of qubits
and cnot-depth) of our circuit is 38% of the original. Thus, we realize an efficient control modular adder,
improving prospects for the efficient execution of arithmetic in quantum computers.

INDEX TERMS Carry-lookahead adder, control modular adder, fault-tolerant quantum computers (FTQ),
noisy intermediate-scale quantum computers (NISQ), Shor’s algorithm.

I. INTRODUCTION
Recently, functional but imperfect quantum computers,
called noisy intermediate-scale quantum comput-
ers (NISQ) [1] with machines from IBM [2], [3], Google [4],
Rigetti [5], IonQ [6], and Honeywell [7] all accessible via
the web, have emerged.

Many researchers have constructed simple quantum cir-
cuits for NISQ machines. Researchers at IBM implemented
the first 15 = 3 × 5 factoring circuit on a liquid nuclear
magnetic resonanc machine in 2001 [8]. Since then, re-
searchers have implemented Shor’s algorithm on a variety
of machines [9]–[14], although care must be taken not to
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extrapolate too far from these demonstrations [15]. Re-
searchers have also demonstrated small instances of Grover’s
algorithm [16], [17].
However, we cannot realize large-scale quantum compu-

tation on NISQ, due to the high error rate. These errors
propagate as the calculation proceeds, and we cannot extract
the correct result. Thus, we must reduce the error rate in
quantum computers. To realize computation with high accu-
racy, research on fault-tolerant quantum computers (FTQ) is
proceeding [18]–[20].
Jones et al. [21] proposed a method for constructing FTQ

as a layered architecture. Specifically, we conduct the ac-
curate computation on the Logical layer, which is achieved
using large numbers of physical qubits with errors.
However, T gates impose an additional cost when run on

FTQ. By the Gottesman–Knill theorem [22], we can conduct
classical simulation of quantum circuits composed only of
Clifford gates, but to realize universal quantum computation,
we require non-Clifford gates, such as a T gate, taking us
into a realm that cannot be simulated classically. We achieve
high-fidelity T gates by incorporating distillation [23], which
requires a lot of logical qubits and a lot of time; research
on optimization of distillation is being carried out [24]. In
FTQ, we may realize large-scale quantum algorithms, such
as Shor’s algorithm [25] and Grover’s algorithm [26]. Shor’s
algorithm is of particular interest if it can implemented ef-
fectively because it solves the factorization problem or the
discrete logarithm problem in polynomial time, breaking
the security of current cryptosystems, such as RSA [27]
or elliptic curve [28], [29], whose security is based on the
factorization problem or the discrete logarithm problem,
respectively.
In Shor’s algorithm, the control modular exponentiation

step dominates the total cost, leading many researchers to
study its construction [30]–[40]. The control modular expo-
nentiation calculates

| j〉|1〉 → | j〉|a j mod N〉 (1)

where a, N, and j are nonnegative integers satisfying a < N.
One strategy realizes a control modular exponentiation

by the repeated calling of control modular additions. More
precisely, this construction is realized by following two steps:

1) decomposition of a control modular exponentiation
into control modular multipliers;

2) decomposition of a control modular multiplier into
control modular adders.

The first decomposition is based on the following equation
where j can be expressed in n-bit, namely j = ( jn−1 . . . j0)2:

a j mod N =
n−1∏
l=0

(
a2

l
mod N

) jl
mod N (2)

where a j is decomposed into n-timesmultiplications, namely
a2

l jl . For example, a exponentiation 25 is decomposed into
25 = 21012 = 24 × 21.

FIGURE 1. Overview of a control modular adder. The first register has a
single qubit, which is used as a control bit. The second register has n
qubits, which are used to store the result. a and N are n-bit classical
numbers.

Next, we consider the second decomposition. In quantum
computation, a multiplication ka is based on the following
operation:

|k〉|0〉 → |k〉|0 + ka〉 → |k − a−1(ka)〉|ka〉 = |0〉|ka〉. (3)

The operation of (3) requires an addition by the result of
multiplication. This addition can be decomposed as follows,
where a and b are nonnegative integers less than N, and k is
a n-bit number expressed as k = (kn−1 . . . k0)2:

b+ ak mod N = b+
n−1∑
l=0

(
a2kl mod N

)
mod N. (4)

For example, 6 · 5 is decomposed into 6 · 5 = 6 · (4 + 1) =
6 · 4 + 6 · 1, because 5 = 1012 = 4 + 1.
From the aforementioned discussion, a control modular

exponentiation is decomposed into control modular adders.
Thus, if we reduce the cost of a control modular adder, the
total cost of Shor’s algorithm will shrink. In this article, we
focus on the efficient construction of a control modular ad-
dition.

A. BACKGROUND
A control modular addition is defined by a control qubit x
and n-bit numbers a, b, and N. a and b satisfy 0 ≤ a, b ≤
N − 1, and a andN are classical numbers. A control modular
addition calculates

|x〉|b〉 → |x〉|b+ xa mod N〉. (5)

An overview is shown in Fig. 1.
However, the optimal construction of a control modular

adder is not obvious. A control modular adder is constructed
from simple adders [31], [32], [34], [37]–[40], and there are
many kinds of adders [38], [39], [41]–[45]. Previous con-
structions follow similar overall structure, but differ in detail.
We need to determine which combination is the best.
This article focuses on minimizing KQ [46] to construct

a circuit with low execution cost, where K is the number
of logical qubits required by the algorithm, and Q is the
elementary gate step. KQ is defined by the product of the
number of qubits and the depth of the circuit. Minimizing
KQ benefits both FTQ [21] and NISQ [17]. Much previous
research focuses only on depth or the number of qubits, but
reducing only one metric improves only one performance.
We believe KQ more accurately represents the total resource
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FIGURE 2. Optimization of a control modular adder. In first-level
optimization, we optimize the construction of a control modular adder.
In second-level optimization, we minimize KQ for FTQ or NISQ by using
relative-phase Toffoli gates.

consumption, especially for deep circuits, capturing the total
“qubit-time steps” of a circuit.
This article proposes our new circuit based on Van Me-

ter and Itoh’s construction [38], which uses three of Draper
et al.’s carry-lookahead adders [42]. Van Meter and Itoh’s
construction has small KQ values than the other construc-
tions but has room for further minimization of KQ. For ex-
ample, Thapliyal et al. [47] proposed a means of minimizing
the number of T gates in a carry-lookahead adder by using
Gidney’s relative-phase Toffoli gates (GRT) [44]. Thapliyal
et al.’s construction reduces KQ in FTQ, but similar opti-
mization can be applied to NISQ by Maslov’s relative-phase
Toffoli gates [48]. Thus, we reduce KQ by applying relative-
phase Toffoli gates on the Van Meter-Itoh construction.

B. OUR CONTRIBUTION
In this article, we propose a method for optimizing a control
modular adder based on a carry-lookahead adder for both
FTQ and NISQ. We apply two-level optimization on the
original Van Meter-Itoh construction [38] as in Fig. 2.
In first-level optimization, we optimize the construction

of a control modular adder (see Section III). Specifically, we
optimize by focusing on the efficiency of the comparator in
a carry-lookahead adder and reduce some control operations
by taking advantage of the classicality of a and N.
In second-level optimization, we minimize KQ for FTQ or

NISQ by using relative-phase Toffoli gates (see Section IV).
In this study, we assumed all qubits are connected, without
considering the physical or logical topology [32], [49], [50].
We assume full connectivity because some current NISQ
machines, such as IonQ [6] and Honeywell [7], realize full
connectivity. Future workmust consider the problem of map-
ping circuits to other NISQ machines and to FTQ machines.
First, we clarify the definition of KQ in each device, be-

cause the cost of gates is different in FTQ or NISQ. For many
implementations, the most expensive gates are T gates [21]
and cnot gates [2], [3], respectively. We define KQT for use
with FTQ and KQCX on NISQ as the product of the number
of qubits and T -depth or cnot-depth, respectively. Next, we

use GRT [44] in FTQ circuits and Maslov’s relative-phase
Toffoli gates [48] in NISQ circuits, instead of the standard
Toffoli gates. However, the construction for FTQ does not
consider the cost of distillation, and there is a tradeoff be-
tween T -depth and the number of T gates running simulta-
neously. We show that we achieve smallest KQT when we
run �(n/

√
log n) T gates simultaneously.

II. PRELIMINARIES
In this article, we optimize a carry-lookahead adder by re-
placing Toffoli gates with relative-phase Toffoli gates. To
maintain an accurate calculation, we must consider the role
of Toffoli gates well. Moreover, we reduce computational
costs by decomposing Toffoli gates into single-qubit gates
and cnot gates.
In Section II-A, we explain the quantum gate set used

in this article. Next, to clarify the role of Toffoli gates, we
review Draper et al.’s carry-lookahead adder [42] briefly
in Section II-B. We explain T -minimization [47] by using
GRT [44] in Section II-C. Finally, we review the general
construction of a control modular adder in Section II-D.

A. QUANTUM GATE SET
In this article, we use the following quantum gate set.

1) Clifford gates: X gate, Y gate, Z gate, H gate, S gate,
and cnot gate.

2) Non-Clifford gates: T gate.

The cnot gate is a two-qubit gate, and the others are one-
qubit gates. We express X gates as ⊕ in the circuit.

In this article, we focus on the following two gates: T and
cnot:

T =
⎡
⎣1 0

0 exp

(
iπ

4

)⎤
⎦ ,

CNOT =

⎡
⎢⎢⎢⎣
1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

⎤
⎥⎥⎥⎦ . (6)

B. DRAPER ET AL.’S CARRY-LOOKAHEAD ADDER
In this subsection, we use the same notations as in Draper
et al.’s article [42]. First, we explain the calculation of
a+ b when a and b are n-bit numbers. We express a as
an−1an−2 . . . a0 and b as bn−1bn−2 . . . b0, where ai and bi are
0 or 1. To calculate a+ b, we employ a carry ci. Carry ci is
defined as an overflow from the (i− 1)th bit to the ith bit. In
more detail, we define ci as

ci =
⎧⎨
⎩
0 if i = 0⌊
ai−1 + bi−1 + ci−1

2

⌋
otherwise.

(7)
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Then, (a+ b)i, the ith bit of a+ b, is calculated as

(a+ b)i = ai ⊕ bi ⊕ ci. (8)

Thus, we need carries to calculate an addition.
Now, we give a brief explanation of a carry-lookahead

adder. Before calculating an addition, we determine the prop-
agation of a carry from the ith bit to the jth bit as a function
of the following three conditions.

1) propagate: A carry is propagated from the ith bit to the
jth bit. Namely, c j = ci.

2) generate: A carry is generated in the jth bit, namely
c j = 1, regardless of the value of ci.

3) kill: A carry is killed in the jth bit, namely c j = 0,
regardless of the value of ci.

To calculate the propagation, we define two functions
p[i, j], g[i, j] ∈ {0, 1}. p[i, j] is true when the carry from the
ith bit to the jth bit should be propagated. Similarly, g[i, j] is
true when the carry out at the jth bit is true independent of
the value of the carry in at the i bit. We do not need a separate
function for kill, as its value can be inferred from p and g. By
using these functions, we can calculate the propagation state
over a wider span. Specifically, when i < k < j

p [i, j] = p [i, k] ∧ p [k, j] (9)

g [i, j] = g [k, j] ⊕ (g [i, k] ∧ p [k, j]) (10)

where ∧ is Boolean and, and ⊕ is Boolean xor. By using
these properties, we calculate c j = g[0, j].
Now, we explain Draper et al.’s carry-lookahead adder for

|a〉|b〉 → |a〉|b+ a〉. This requires an additional n qubits for
the carry register |c〉 and n qubits for register |p〉, containing
p[i, j]. Thus, a carry-lookahead adder requires 4n qubits.
Now, we explain the implementation briefly. This imple-

mentation consists of five phases: initialization, P-rounds,
G-rounds, C-rounds, and inverse P-rounds. In each round, we
calculate the following, and clean |p〉 in inverse P-rounds.

1) Initialization: We calculate g[i, i+ 1] in |ci+1〉 and
p[i, i+ 1] in |bi〉.

2) P-rounds: We calculate the p-function and write result
in |p〉.

3) G-rounds: We calculate |c2k 〉 (k ∈ N ) by calculating
some g-function.

4) C-rounds: We calculate all carry |c〉 by calculating
some g-function.

After inverse P-rounds, we calculate each bit of a+ b by
using these carries |c〉. In this calculation, we run P-rounds
and G-rounds simultaneously, and we run C-rounds and in-
verse P-rounds simultaneously. However, the value of carries
remain on |c〉. Thus, we must clean |c〉 to |0〉 except for cn.
Draper et al. found that the value of carries ci except cn in a+
b is the same in a+ (2n − 1 − a− b). Therefore, we erase
carries by performing the addition a+ (2n − 1 − a− b) on
the lower n− 1 qubits. The block-level circuit is shown in
Fig. 3.

FIGURE 3. Block-level figure of Draper et al.’s carry-lookahead adder. In
this figure, we sort qubits from the lowest qubits to the highest qubits,
which is different from Fig. 1. |ci〉 is given as |0〉 at the beginning of this
circuit and these are cleared to |0〉 after erasing carry. The detailed circuit
is shown in Appendix A.

FIGURE 4. Calculation circuit of p[i, j] and g[i, j]. (a) Calculation circuit
of p[i, j] as (9). (b) Calculation circuit of g[i, j] as (10).

As noted previously, a carry-lookahead adder is mainly
constructed by a calculation on p and g. We calculate p and
g with (9) or (10), respectively, and those are implemented
by Toffoli gates as shown in Fig. 4. The detailed explana-
tion of Draper et al.’s adder, including which p-function or
g-function we calculate, is given in Appendix A. In total,
a carry-lookahead adder requires 10n Toffoli gates and 4n
cnot gates. Moreover, the Toffoli depth is 4 log n.

Up to this point, we have explained the construction of
an adder. Draper et al. also proposed other operations, such
as a subtractor and a comparator, based on their adder. The
number of gates and the depth in a subtractor is almost the
same as those in an adder. In a comparator, the number of
gates is 60% of an adder and the depth is 50% of an adder.
Draper et al. implement a comparator using only Initializa-
tion, P-rounds, G-rounds, and their inverses. More precisely,
Draper et al. regard a and b as 2	log n
-bit numbers by padding
0 in higher bits, but we do not use these qubits. If we calcu-
late p[i, j] or g[i, j] when i ≤ n− 1 and j ≥ n, we calculate
p[i, n] or g[i, n], respectively. Then, we calculate g[0, n] after
G-rounds.

C. T -COUNT MINIMIZATION OF A CARRY-LOOKAHEAD
ADDER
Thapliyal et al. [47] proposed T -count minimization by
using relative-phase Toffoli gates. The standard Toffoli
gate (ST) [22] decomposition is given in Fig. 5. However,
we can calculate correctly even if we replace some Toffoli
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FIGURE 5. Standard decomposition of a Toffoli gate [22]. We call this
decomposition ST. The control bits are the first and second qubits, and
the target bit is the third qubit. This calculation preserves the phase.

FIGURE 6. Gidney’s relative-phase Toffoli gate [44] given by the unitary
matrix (11). We call this decomposition GRT. The control bits are the first
and second qubits, and the target bit is the third qubit. This calculation
preserves the phase only when the target qubit is |0〉 on input.

FIGURE 7. Inverse of Gidney’s relative-phase Toffoli gate [44]. We call
this decomposition IGRT. This calculation preserves the phase when we
input |000〉, |010〉, |100〉, or |111〉, which are outputs of GRT having valid
phase. Control-Z is a Clifford gate, and we use no T gate.

gates with GRT or its inverse (IGRT) [44]. GRT is shown in
Fig. 6 and the corresponding unitary matrix of GRT in the
computational basis is⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0

0 i 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 −i 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 −i 0 0

0 0 0 0 0 0 0 −i
0 0 0 0 0 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(11)

and we calculate correctly when the target bit is |0〉. IGRT
is shown in Fig. 7. In the carry-lookahead adder, as in many
circuits, we must clean our ancilla qubits, returning them to a
known, disentangled state, typically |0〉. In this case, we can
reduce our cost by measuring the ancilla on IGRT. Gidney’s
article [44] shows that using measurement reduces 2 T gates.
Using measurement is better because one accurate T gate
requires many measurements.
Thapliyal et al. proposed two constructions. The first con-

struction replaced Toffoli gates in Initialization and P-rounds
with GRT, and Toffoli gates in the inverse rounds with IGRT.
Other Toffoli gates are replaced with ST. Thapliyal et al. call
this construction qubit optimize. The number of qubits is 4n
and the number of T gates is 40n.

FIGURE 8. Replacing Toffoli gates in G-rounds and C-rounds in a
T -optimized carry-lookahead adder. We call this decomposition PGRT.
We replace the first Toffoli gate with GRT and the second Toffoli gate
with IGRT. The third qubit is an ancilla qubit. This qubit is measured as
part of executing IGRT and will be |0〉 after running PGRT.

FIGURE 9. General construction of a control modular adder. Add means
an adder, and Comp means a comparator. CTRL has a single qubit, which
is used to hold the value of the control. |b〉 has n qubits, which are used
to hold the result of a control modular addition. COMP has a single
qubit, which is used to hold the result of a comparison. a and N are
classical numbers.

The second construction replaced all Toffoli gates with
GRT or IGRT, increasing the required number of ancilla
qubits. Thapliyal et al. call this construction T -optimize.
Specifically, we replace Toffoli gates in Initialization, P-
rounds, and the inverse of these similarly as the first construc-
tion. We replace Toffoli gates in G-rounds and C-rounds by
the pair of GRT and IGRT as in Fig. 8. We call these gates
PGRT, where P is the abbreviation of “pair.” In this construc-
tion, Thapliyal et al. claim that the number of qubits is 6n and
the number of T gates is 20n. However, we recalculated these
results and our results differ from results in [47]. In our result,
the number of qubits is 4.5n and the number of T gates is
28n. The difference in the number of qubits occurs from our
method for preparing ancilla qubits. Thapliyal et al. prepare
new ancilla qubits for G-rounds and C-rounds, respectively,
while they recycle ancilla qubits for P-rounds. We apply this
to G-rounds and C-rounds similarly.

D. GENERAL CONSTRUCTION OF A CONTROL MODULAR
ADDER
In this subsection, we explain the calculation of

|x〉|b〉|0〉 → |x〉|b+ ax mod N〉|0〉. (12)

The general construction of a control modular adder is shown
in Fig. 9. The first register has a single qubit, which is used
to hold the value of the control. We call this the CTRL qubit.
The second register has n qubits, which are used to hold the
result of a control modular addition. The third register has a
single qubit, which is used to hold the result of a comparison
temporarily. We call this the COMP qubit. Specifically, we
determine whether we subtract N or not based on COMP.

VOLUME 3, 2022 3100518
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We conduct a comparator with one control qubit and an
adder with two control qubits, and we write these as a C-
comparator and a CC-adder, respectively.
To execute a control modular adder, we conduct operations

in the following order.

1) We compare the second register |b〉 and the classical
value N − a. If b ≥ N − a, namely a+ b ≥ N, we flip
COMP.

2) If both CTRL and COMP are 1, we subtract N − a
from the second register. If CTRL is 1 and COMP is
0, we add a. Otherwise, we add no value.

3) If the second register is strictly less than a, we flip
COMP.

III. FIRST-LEVEL OPTIMIZATION: OUR CONSTRUCTION
OF A CONTROL MODULAR ADDER
In this section, we explain first-level optimization on the
original construction [38]. In the general construction, a com-
parator has about half the depth of a carry-lookahead adder.
Thus, by constructing a carry-lookahead adder using the
same general construction, the depth is about the same as
two adders, because a carry-lookahead adder is composed of
two comparators and one adder. In the original construction,
we use three adders. Thus, we use only two-thirds of KQ of
the original construction when comparing two constructions
of a control modular adder. The original construction applies
two optimizations on repeating control modular adders. Our
construction will be more efficient by adopting the same
optimizations with some overhead, but the detail, such as the
amount of overhead, should be evaluated in future work.
Based on the aforementioned discussion, we need to give

the construction of the following on a carry-lookahead adder:

1) C-comparator (see Section III-A);
2) CC-adder (see Section III-B).

In this construction, we do not decompose Toffoli gates,
because the decomposition of Toffoli gates is different in
FTQ or NISQ, respectively. Thus, we leave Toffoli gates as
they are, and we consider the decomposition of Toffoli gates
in Section IV.
In our construction, we consider the classicality of a andN

as described by Markov and Saeedi [35] to realize higher ef-
ficiency. Moreover, we give a construction of C-comparator
that is not given in the original article. By doing these, we
propose a circuit construction of a control modular adder.
Based on Fig. 9, we construct our circuit as shown in

Fig. 10. We add the second n-qubit ancilla register for em-
bedding value with CTRL. In addition to these registers, we
use the carry register |c〉with n qubits and the p-function reg-
ister |p〉 with n qubits to realize the carry-lookahead adder,
not represented in Fig. 10. Thus, our control modular adder
requires 4n+ 2 qubits. The number of gates and the depth is
given in Table I, and the breakdown of this is given in Table V
in Appendix B. Now, we explain the C-comparator and the
CC-adder briefly.

FIGURE 10. Our construction of a control modular adder based on Fig. 9.
A CC-adder is constructed by embedding, an adder, and resetting. Then,
we add the second register |d〉 as an n-qubit ancilla for embedding the
value based on CTRL. The carry register |c〉 with n qubits and the
p-function register |p〉 with n qubits are not represented in this figure for
visibility. In a C-comparator, we do not use the second register. In total,
our control modular adder requires 4n + 2 qubits.

TABLE I Gate Count and Depth of Our Proposed Control Modular Adder

The breakdown of this is shown in Table V in Appendix B.

A. CONSTRUCTION OF A C-COMPARATOR
In a C-comparator, only COMP is changed and other qubits
do not change. Thus, to implement a C-comparator, it is
sufficient that we add control operations only on the gates
including COMP and remain other gates.
In our construction of a control modular adder, we use

two types of C-comparators. In the first C-comparator, we
flip COMP if CTRL is 1 and b ≥ N − a. In the final C-
comparator, we flip COMP if CTRL is 1 and b < a. In both
cases, we judgewhether b ≥ d or b < d with a classical value
of d.

We construct these operations taking advantage of the
classicality of d. The intuitive explanation of this operation
is that we calculate b+ (2n − d) and check whether there is
an overflow in the nth bit. Specifically

b+ (
2n − d

) = 2n + (b− d) (13)

and there is an overflow when b ≥ d. This construction is
similar to previous constructions byMarkov and Saeedi [35],
but slightly different from them because our construction
does not require X gates on |b〉. The number of gates and
the depth is given in Table I. The detailed construction is
given in Appendix B. The block-level construction of our
C-comparator is given in Fig. 11, and the example circuits
are shown in Figs. 22 and 24.

B. CONSTRUCTION OF A CC-ADDER
In a CC-adder, we embed values before and after an adder,
similar to a C-adder [39]. Based on this construction, we
apply optimization by considering the classicality of a and
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FIGURE 11. Block-level view of our construction of a C-comparator. In
this figure, we sort qubits from the low-order qubits to the high-order
qubits, top to bottom. This circuit is symmetric about the Toffoli gate
surrounded by a dotted box. |ci〉 is given as |0〉 at the beginning of this
circuit and these are cleared back to |0〉 after the computation. The
example circuits are shown in Figs. 22 and 24 in Appendix B.

FIGURE 12. Block-level diagram of the embedding circuit. We omit |b〉 in
Fig. 10. We embed 2n + a − N or a on |d〉 based on CTRL and COMP. The
example circuit of the embedding is shown in Fig. 23 in Appendix B.

N. From this point forward, we mainly focus on embedding
on |d〉. In a CC-adder, we conduct the following.

1) If CTRL is 1 and COMP is 1, we add a and subtract N.
This operation can be realized by adding 2n + a− N
and disregarding the calculation of a carry cn.

2) If CTRL is 1 and COMP is 0, we add a.
3) Otherwise, we add no value.

Thus, the embedding is conducted as in Fig. 12. The reset-
ting is conducted by inverting the embedding circuit.
After embedding, we apply a standard adder. Then, we

conduct two optimizations as follows.

1) Disregarding gates including |g[0, n]〉.
2) Eliminating gates in Initialization where we know the

control bit is 0.

The number of gates and the depth is given in Table I. The
detailed construction and example circuit of a CC-adder are
given in Appendix B.

IV. SECOND-LEVEL OPTIMIZATION: CONSTRUCTING A
CONTROL MODULAR ADDER FOR FTQ AND NISQ
DEVICES
In this section, we explain our second-level optimization. We
evaluate the computational cost for both FTQ on the logical
layer, and NISQ, focusing on the decomposition of Toffoli
gates. We define KQ more specifically for FTQ and NISQ
and minimize this value. For FTQ, we minimize the number

FIGURE 13. Running an S gate [21]. The second qubit is
|Y 〉 = (|0〉 + i|1〉)/

√
2. Assuming correct operation on top of error

correction, this ancilla passes through the gate execution unmodified,
allowing it to be reused.

FIGURE 14. Running a T gate [21]. The second qubit
|A〉 = (|0〉 + eiπ/4|1〉)/

√
2; the |A〉 state is consumed in the process, with

the consequence that creation of high-fidelity |A〉 states is one factor
limiting performance.

of T gates by using Gidney’s relative-phase Toffoli gates.
However, this construction does not take into consideration
the cost of distillation. We take into account the cost of distil-
lation by finding the maximal number of T gates that should
be run simultaneously, optimizing KQT . For NISQ, we apply
Maslov’s relative-phase Toffoli gates with a small number of
cnot gates [48] and minimize KQCX. By doing these, we
propose a control modular adder that is more efficient than
Van Meter and Itoh [38], called the original construction in
this section. In the following discussion, we disregard the
rounds with O(1) gates. In this section, we explain the op-
timization for FTQ in Section IV-A and the optimization for
NISQ in Section IV-B.

A. COMPUTATIONAL COST ON THE FTQ LOGICAL LAYER
Next, we consider the optimal circuit for FTQ on the Log-
ical layer, using Jones et al.’s [21] architecture as a model.
This architecture, in common with other error corrected-
architectures, provides a fundamental gate set consisting of
X , Y , Z, cnot, and H gates, and measurement; here, we
ignore qubit movement in the surface code. To run an S gate,
we prepare an ancilla qubit |Y 〉 = (|0〉 + i|1〉)/√2 and run
the circuit shown in Fig. 13. An S† gate can be realized by
the reverse circuit of Fig. 13.
To achieve universal computation, we also need a non-

Clifford gate; the choice of T is typical. To run a T gate,
we prepare an ancilla qubit |A〉 = (|0〉 + eiπ/4|1〉)/√2 and
run the circuit shown in Fig. 14. To run a T † gate, we
apply an S† gate instead of an S gate. To realize accurate
T gates, we must prepare accurate |A〉 state defined by (|0〉 +
eiπ/4|1〉)/√2. Preparing |A〉 is done by distillation, as shown
in Fig. 25 in Appendix E. This distillation circuit requires
15 qubits and six time steps, even assuming all of the cnot
gates can be implemented concurrently, but this is difficult
to realize. Distillation is an expensive operation, and its opti-
mization is an ongoing topic of research [24]. Thus, a T gate
is the greatest factor in the cost of an FTQ circuit, leading us
to focus on reducing the number of T gates.
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FIGURE 15. Our construction of G-rounds and inverse G-rounds in a
C-comparator. In Fig. 8, we apply IGRT after the first cnot gate
immediately in G-rounds and inverse G-rounds. In our construction, we
calculate the result of GRT in the third ancilla qubit and preserve this
qubit until the corresponding Toffoli gate in inverse G-rounds. Then, we
clear this ancilla qubit by IGRT.

TABLE II T -Count of Our Control Modular Adder and Prior Work

The latter four constructions are based on our construction proposed in Section III. The
breakdown of the latter four constructions is shown in Table VI in Appendix D.

We now minimize the number of T gates on our control
modular adder. We adopt the Thapliyal construction with
minor modifications, namely the replacement into relative-
phase Toffoli gates, except G-rounds in a C-comparator. We
employ GRT in G-rounds and IGRT in inverse G-rounds as
Fig. 15. Our construction calculates correctly because Toffoli
gates in G-rounds and inverse G-rounds are symmetric about
the Toffoli gate surrounded by a dotted box as the block-level
circuit of a C-comparator shown in Fig. 11.
Our construction requires an additional n qubits to pre-

serve in a C-comparator. Fortunately, we do not use n qubits
for |d〉 in Fig. 10. Thus, we realize this construction without
an overhead of qubits. We give example circuits as Figs. 22
and 24 in Appendix B.
The computational cost of our control modular adder is

shown in Table II, and the breakdown of constructions based
on our construction is given in Table VI in Appendix D.
From Table II, our construction requires 43n T gates. We
call this construction a T -optimal control modular adder. The
original construction requires 30n Toffoli gates, which when
implemented using ST (each requiring seven T gates) gives
210n T gates in total. Thus, our construction requires only
43/210 ≈ 20% T of the number of T gates of the original
construction.
Now, we focus on KQ of a T -optimal control modular

adder. In this circuit, we use O(n) qubits and O(log n) depth,
giving a KQ of O(n log n). However, we do not consider
the computational costs for distillation in this calculation.
We can trade space for time, with substantial flexibility, by
allocating more qubits to ancilla “factories,” corresponding
to increasing the number of T gates that are in concurrent
execution [20], [51].
To realize an efficient circuit, we should consider the trade-

off between the depth and the number of qubits allocated

for distillation. For example, Kim et al. [52] showed that
it is possible to run Shor’s algorithm with as little as 2%
of the qubits dedicated to distillation, but this construction
runs only a single T gate at a time. Since the circuit still
requires O(n) T gates, this construct is unable to run in
depth O(log n) and is instead still constrained to O(n) depth.
To realize smaller KQ, we must run many T gates parallel.
However, there is an upper bound on the number of T gates
that can be usefully run in parallel, with the depth limited
by the cascading reuse of the qubits. Paler and Basmadjian
also consider this problem [53], and they have concluded that
we must determine optimal scheduling methods for T gates.
To realize an accurate estimate of the cost and to enable fair
comparison with prior research, we must take into account
the T gate costs, including the space for distillation [21], [51],
[54], allowing a circuit to run at “the speed of data” [54].
However, it is difficult to calculate computational costs

for distillation precisely because the cost depends on many
architecture-specific parameters. Instead of KQ, we define
a new index KQT , defined as the product of the number of
logical qubits and T -depth. We define nT as the T -width, the
upper bound of the number of T gates running simultane-
ously. We assume that we require a constant cg logical qubits
for the distillation step. By calculating nT minimizing KQT ,
we reduce the computational cost of our control modular
adder.
In the aforementioned discussion, our control modular

adder uses 4n+ 2 qubits for calculation, as explained in Sec-
tion III. In addition, we require ancilla qubits for running nT
T gates. Specifically, to run one T gate, we require one qubit
|Y 〉 for running S gates and cg qubits for generating |A〉. Thus,
whenwe run nT T gates simultaneously, we use the following
qubits:

1) |y〉 (Contains |Y 〉 states) nT qubits;
2) |g〉 (Generates |A〉 states) cgnT qubits.

The number of qubits in |y〉 is given as nT because we
consume one S gate in each T gate. Then, the number of
qubits is

4n+ (cg + 1)nT + 2. (14)

Now, we calculate T -depth. To calculate T -depth, we as-
sume that we run GRT with the same timing, and each GRT
has 2 T -depth from Fig. 6. T -depth depends on nT as Fig. 16.
Then, T -depth is

86n

nT
+ 12 log nT − 12. (15)

The detailed calculation is given in Appendix C.
Now, we minimize KQT on nT . KQT is

(
4n+ (cg + 1)nT + 2

) (
86n

nT
+ 12 log nT − 12

)
. (16)

We minimize this on nT > 0.
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FIGURE 16. Calculating T -depth. Distill means distillation circuits. In the
naive construction, we run as many T gates as possible. In our
construction, we restrict the upper bound of the number of simultaneous
T gates to nT . When we reduce nT , the total number of qubits is smaller
and T -depth is larger.

FIGURE 17. Relative-phase Toffoli gate with three cnot (RT3). This
calculation changes the phase when we input |1〉|0〉|1〉, |1〉|1〉|0〉, and
|1〉|1〉|1〉. We call the inverse circuit of RT3, IRT3.

Letting the expression in (16) be f (nT ), we see that

d2 f (nT )

dn2T
> 0 (17)

in nT > 0. Thus, f (nT ) is a convex function and it is suffi-
cient to search for only one optimal value of nT . Then, the
optimal value

nT =
√

86

3(cg + 1)

n√
log n

. (18)

Thus, O(
n√
log n

) T -width minimizes KQT . Plugging this

value into (16)

4n+ (cg + 1)nT + 2 ∼ 4n (19)

86n

nT
+ 12 log nT − 12 ∼ 12 log n. (20)

Therefore, the dominant term of KQT is 48n log n.

B. OPTIMIZATION FOR NISQ
Now, we propose a form of the control modular adder reduc-
ing cnot gates. To reduce this number, we review the decom-
position of Toffoli gates into cnot gates. We use relative-
phase Toffoli gates with differences in phase as in Figs. 17
and 18, proposed byMaslov [48]. The corresponding unitary

FIGURE 18. Relative-phase Toffoli gate with four cnot (RT4). This
calculation change the phase when both control bits are 1. We call the
inverse circuit of RT4, IRT4.

matrix of Fig. 17 in the computational basis is⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 −1 0 0

0 0 0 0 0 0 0 −i
0 0 0 0 0 0 i 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (21)

This calculation changes the phase when we input |1〉|0〉|1〉,
|1〉|1〉|0〉, or |1〉|1〉|1〉. We call this relative-phase Toffoli gate
RT3, and we call its inverse IRT3. The corresponding unitary
matrix of Fig. 18 in the computational basis is⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 −i
0 0 0 0 0 0 −i 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (22)

This calculation changes the phase when both control bits are
1.We call this relative-phase Toffoli gate RT4, and its inverse
IRT4. By using these relative-phase Toffoli gates, we reduce
the number of cnot gates. Next, we address which Toffoli
gates can be replaced with relative-phase Toffoli gates.
First, we consider which Toffoli gates can be replaced in a

C-comparator. The structure of a C-comparator is shown in
Fig. 11, and we give an example circuit in Figs. 22 and 24 in
Appendix B. In these figures, all Toffoli gates are symmetric
about the Toffoli gate surrounded by a dotted box, in the
middle of the circuit. Thus, we can replace the Toffoli gates
to the left of the dotted box by RT3 and those to the right of
the box by IRT3. Therefore, we can replace all of the Toffoli
gates in a C-comparator except this middle one with RT3 or
IRT3.
Next, we address which Toffoli gates can be replaced in a

CC-adder, and find that those in P-rounds can be replaced by
RT3 and those in inverse P-rounds by IRT3. The other Toffoli
gates used calculate the value of carries, and these carries are
cleared after the calculation. In the calculation of carries, the
values of the control bits change between calculating a carry
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TABLE III CNOT Count of Our Control Modular Adder and Prior Work

The latter four constructions are based on our construction proposed in Section III. The breakdown of the latter four
constructions is Shown in Table VII in Appendix D.

TABLE IV KQCX of Our Control Modular Adder and Prior Work

The latter four constructions are based on our construction proposed in Section III. The breakdown of the latter four
constructions are shown in Table VIII in Appendix D.

and erasing it, which would seem to rule out using anything
but pure Toffoli gates. However, lookingmore closely, we see
that the value of a carry changes at most once, namely when
both control bits are |1〉. Thus, if we calculate correctly in the
other situations, we can calculate and clear carries correctly.
RT4 satisfies this. Therefore, we can replace Toffoli gates by
RT4 in the Initialization, G-rounds, and C-rounds, and we
can replace Toffoli gates by IRT4 in the inverse rounds.
As a result, the cost of our control modular adder is shown

in Tables III and IV. The breakdown of those based on
our construction are shown in Tables VII and VIII in Ap-
pendix D. From Tables III and IV, our construction is better
in terms of both the number of cnot gates and cnot-depth.
Now, we compare our circuit to the original construction.
First, we compare the cnot count. Our construction re-

quires 64.75n cnot gates. The original construction requires
30n Toffoli gates implemented by ST using six cnot gates,
andwe use an additional 4.5n cnot gates in embedding or re-
setting. Thus, the original construction requires 184.5n cnot
gates in total. Therefore, our construction reduces the number
of cnot gates to only 35% of the number in the original.
Next, we compare KQCX, defined as the product of the

number of qubits and cnot-depth. Our construction requires
120n log nKQCX. The original construction requires 12 log n
Toffoli depth implemented by ST requiring 6cnot-depth,
and we require 6 log n cnot-depth for the embedding step.
Thus, the original construction requires 78 log n cnot-depth
and 312n log n KQCX. Therefore, our construction requires
only 38% of the KQCX of the original construction.

V. CONCLUSION
In this article, we proposed a method of optimizing a control
modular adder based on a carry-lookahead adder [42] and
Van Meter and Itoh’s construction [38]. First, we show that
the general construction given as Fig. 9 is about two-third
of the KQ of the original construction. Then, we construct a
more efficient circuit. We evaluate the computational cost in

FTQ and we show that our circuit requires only 20% of the
T gates of the original. Moreover, we show that our circuit

achieves its minimumKQT when we run�(
n√
log n

) T gates

simultaneously. Finally, we propose an efficient circuit for
use in the NISQ era, and we show that our circuit requires
only 35% of the cnot gates and 38% KQCX of the original.
In this article, we have focused on optimizing Toffoli gates

by using relative-phase Toffoli gates. However, in previous
research [55], [56], other researchers have used gates such as
Fredkin and Peres gates. These gates also may be simplified
by replacing them with relative-phase gates. Thus, we expect
that those circuits would also show an improvement with
these techniques applied.
In this article, we have considered only the single control

modular addition. In additional future work, the circuits that
postpone and summarize multiple modular arithmetic oper-
ations, as proposed by Van Meter and Itoh [38], should be
addressed using similar optimization techniques. In addition,
it is important to minimize KQ by reordering gates [36], [57].
Our construction does not consider the architecture of

quantum computers as linear nearest neighbor architec-
ture [32], [49], [50]. Thus, in the next step, we will consider
the appropriate architecture and additional cost for our con-
struction.
Finally, we focused only on the Logical layer of FTQ in

this study. In future work, we must consider the mapping to
physical qubits, as well as distillation protocols.

APPENDIX
A. DETAILED EXPLANATION OF DRAPER ET AL.’S
CARRY-LOOKAHEAD ADDER
Draper et al.’s carry-lookahead adder is given as follows.

1) Initialization (n Toffoli gates and n cnot gates). We
calculate g[i, i+ 1] and p[i, i+ 1] (0 ≤ i ≤ n− 1), as
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FIGURE 19. Calculation circuit of g[i, i + 1] and p[i, i + 1] (0 ≤ i ≤ n − 1).
We use |ci+1〉 as the third qubit. We can run these gates simultaneously
for i = 0 to n − 1.

follows:

g [i, i+ 1] =
{
1, if ai = bi = 1

0, otherwise
(23)

p [i, i+ 1] =
{
1, if ai + bi = 1

0, otherwise.
(24)

The circuit calculating these is shown in Fig. 19.
2) P-rounds (n Toffoli gates and log n Toffoli depth). We

calculate the p-function by using (9).We use a parame-
ter tp representing the range of the propagation of carry.
We increase tp from 1 to �log n� − 1. In each tp, we cal-
culate p[2tp i, 2tp (i+ 1)] (1 ≤ i ≤ �n/2tp� − 1) by set-
ting |p[2tp i, 2tp (i+ 1/2)]〉 and |p[2tp (i+ 1/2), 2tp (i+
1)]〉 as the control qubits in Toffoli gate in Fig. 4(a).
These Toffoli gates are applied simultaneously in each
tp.

3) G-rounds (n Toffoli gates and log n Toffoli depth). We
calculate |c2k 〉 (k ∈ N ∪ {0}) by using (10). We use a
parameter tg similar to the way we used it in P-rounds.
We increase tg from 1 to �log n�. In each tg, we cal-
culate g[2tgi, 2tg(i+ 1)] (0 ≤ i ≤ �n/2tg� − 1) by set-
ting |c2tg i+2tg−1〉 and |p[2tg(i+ 1/2), 2tg(i+ 1)]〉 as the
control qubits and |c2tg (i+1)〉 as the target qubit in the
Toffoli gate in Fig. 4(b). These Toffoli gates are applied
simultaneously to each tg. Moreover, G-rounds with tg
can be run in parallel with former P-rounds with tg + 1.

4) C-rounds (n Toffoli gates and log n Toffoli depth). We
calculate all carries |c〉 by using (10). We use a param-
eter tc similar to the way we used it in P-rounds. We
decrease tc from �log(2n/3)� to 1. In each tc, we cal-
culate |c2tc i+2tc−1〉 (1 ≤ i ≤ �(n− 2tc−1)/2tc� − 1) by
setting |c2tc i〉 and |p[2tc i, 2tc i+ 2tc−1]〉 as the control
qubits and |c2tc i+2tc−1〉 as the target qubit in Toffoli gate
in Fig. 4(b). These Toffoli gates are applied simultane-
ously in each tc.

5) Inverse P-rounds (n Toffoli gates and log n Toffoli
depth). We apply the same gates as P-rounds in the
reverse order. Roundswith tp can be run in parallel with
former C-round with tp + 1.

6) Calculating |a+ b〉 (n cnot gates). We calculate (a+
b)i (0 ≤ i ≤ n− 2) on |bi〉. We apply cnot gates with
the control qubit of |ci+1〉 and the target qubit of |bi+1〉.
These cnot gates are applied simultaneously.

7) Erasing Carry (5n Toffoli gates, 2n cnot gates, and
2 log n Toffoli depth). We erase all carries by apply-
ing the inverse circuit of a+ (2n − 1 − a− b) on the

FIGURE 20. Erasing |c〉. We apply gates only on the lower n − 1 qubits of
|a〉, |b〉, and |c〉. We apply the same gates in omitted qubits |ai〉,
|(a + b)i〉, and |ci+1〉. The P-rounds and inverse C-rounds can be run in
parallel, as can the inverse G-rounds and inverse P-rounds. We define
PE-rounds as the gates before P-rounds, and inverse PE-rounds as the
gates after inverse Initialization.

lower n− 1 bits, as shown in Fig. 20. We apply gates
before P-rounds and after inverse Initialization to erase
carries. We call these gates PE-rounds and inverse PE-
rounds, respectively.

Now, we show the example circuit of Draper et al.’s carry-
lookahead adder as given in Fig. 21. In this example, we
define a and b as 6-bit values, and we calculate |a〉|b〉 →
|a〉|a+ b〉. In Fig. 21, in contrast to Fig. 9, qubits are sorted
from low order to high order.

B. DETAILED CONSTRUCTION OF OUR CONTROL
MODULAR ADDER
In this section, we explain detail of our control modular
adder. We show the example figures of our control modular
adder too.

1) C-COMPARATOR
Now, we explain the construction of a C-comparator in more
detail. In a C-comparator, we judge whether or not b ≥ d,
where b is a quantum value and d is a classical value. As
noted in Section III. A, we conduct this by calculating the
carry out of the entire circuit b+ (2n − d). Our construction
is given as follows.

1) Initialization: If we conduct Initialization naively, we
apply a Toffoli gate and a cnot gate for each bit. How-
ever, the compilation of a quantum algorithm often re-
quires compilation (selection of the sequence of gates)
to be adapted to the specific classical values that are
inputs to the overall algorithm. Because 2n − d is a
classical value, we can convert some Toffoli gates to
cnot gates and eliminate other gates. Then, we calcu-
late each (2n − d)i (0 ≤ i ≤ n− 1). If (2n − d)i = 1,
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FIGURE 21. Example of Draper et al.’s carry-lookahead adder. This
circuit adds two 6-bit numbers a and b, namely |a〉|b〉 → |a〉|a + b〉. In
this figure, we sort qubits from the lowest qubits to the highest qubits.
The labels at the top are the rounds including Toffoli gates. Init means
Initialization. IP, IC, IG, and IInit mean Inverse P-rounds, Inverse
C-rounds, Inverse G-rounds, and Inverse Initialization respectively.

a) we apply cnot gates with the control qubit |bi〉
and the target qubit |ci+1〉;

b) we apply X gates with on |bi〉.
These operations correspond to Toffoli gates or cnot
gates in the Initialization phase in Draper et al.’s con-
struction, respectively.

2) P-rounds and G-rounds:We conduct P-rounds and G-
rounds similar to Draper et al.’s construction.

3) Writing result on the COMP qubit (O(1) gates and
O(1) depth): If we want to flip COMP when b ≥ d, we
apply Toffoli gates with the control qubits of CTRL
and |g[0, n]〉, and with the target qubit of COMP. If we
want to flip COMPwhen b < d, we apply Toffoli gates
similarly to b ≥ d, but we apply NOT gates on |g[0, n]〉
before and after the Toffoli gate.

4) Resetting qubits: We conduct inverse G-rounds and
inverse P-rounds similar to Draper et al.’s construction.
Moreover, we conduct the inverse of our Initialization.
Then, we reset all qubits except COMP as the initial
values.

2) CC-ADDER
First, we explain the construction of embedding in more
detail. We want to embed as follows.

1) If CTRL is 1 and COMP is 1, we embed 2n + a− N.
2) If CTRL is 1 and COMP is 0, we embed a.

3) Otherwise, we embed no value.

Therefore, we embed on the second register on Fig. 10 as
follows.

1) If CTRL is 1 and (2n + a− N)i = ai = 1, the ith qubit
is |1〉.

2) If CTRL is 1, COMP is 1, (2n + a− N)i = 1, and ai =
0, the ith qubit is |1〉.

3) If CTRL is 1, COMP is 0, (2n + a− N)i = 0, and ai =
1, the ith qubit is |1〉.

4) Otherwise, we do nothing.

In the aforementioned condition, the values of (2n + a−
N)i and ai are classical information, and CTRL and COMP
are quantum information. Thus, embedding in the first con-
dition can be realized by cnot gates with the control qubit of
CTRL. Moreover, embedding in the second and third condi-
tion can be realized by Toffoli gates with the control qubits
of CTRL and COMP. However, the set of i in each classical
condition has no overlap. Therefore, once we embed one
of i, we can embed the remaining value as cnot gates. In
each set, we have average n/4 elements requiring n/4 cnot
gates, O(1) additional gates. Thus, these embedding can be
implemented by 3n/4 cnot gates. Moreover, because we
can run these simultaneously, embedding requires log n cnot
depth. The reset of embedding can be implemented similarly.
Next, we explain the optimization in an adder. In our cal-

culation, there is no carry for g[0, n] whether we subtract
N − a or add a. Thus, we can disregard calculation of carry
qubit g[0, n]. To realize this, we omit calculation of p[i, n]
and g[i, n] (i < n). Moreover, by using classicality of a and
N, we know that we embed no value in average n/4 qubits on
the second register of Fig. 10. In these qubits, we can omit
Initialization, inverse Initialization, and cnot gates with the
control qubit of |ai〉 and the target qubit of |bi〉 in erasing
carry. By considering these optimizations, we reduce n/2
Toffoli gates and 3n/4 cnot gates.

The gate count and depth is shown in Table V.

3) EXAMPLE OF OUR CONTROL MODULAR ADDER
We show an example of a 6-bit control modular adder when
N = 59 and a = 37. Circuits are given in Figs. 22–24.

In these example figures, registers are shown with low-
order qubits at the top, in contrast to Fig. 10. In this section,
the register |b〉 contains a quantum value.
The algorithm follows in the following order.

1) Conduct a C-comparator with the control qubit CTRL.
Compare |b〉 and N − a = 22. If b ≥ 22, flip COMP.
This is implemented by adding 26 − (N − a) = 42 and
using the carry out.

2) Conduct a CC-adder. If both CTRL and COMP are 1,
subtract N − a = 22. This is implemented by adding
26 − (N − a) = 42 without calculating carry c6. If
CTRL is 1 and COMP is 0, add a = 37, otherwise, add
no value.
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TABLE V Gate Count and Depth of Our Proposed Control Modular Adder

We omit the rounds whose gate count is O(1) and whose depth is O(1).

3) Conduct a C-comparator with the control qubit CTRL.
Compare |b〉 and a = 37. If b < 37, flip COMP. This is
implemented by calculating carry of adding 26 − a =
27.

These steps correspond to Figs. 22–24, respectively.

C. DETAILED CALCULATION OF T -DEPTH
In this section, we analyze the T -depth of our T -optimal
control modular adder. We assume that we run GRT with the
same timing, and each GRT has T -depth 2 from Fig. 6. We
focus on the parts that can be run concurrently. Except for
Initialization, we run the following:

1) P-rounds and G-rounds simultaneously;
2) C-rounds and inverse P-rounds simultaneously;
3) P-rounds and inverse C-rounds simultaneously;
4) inverse G-rounds and inverse P-rounds simultaneously.

In the first and third steps, we run many T gates simul-
taneously at the start and fewer T gates as the calculation
progresses. In the second and fourth steps, we run only a
few T gates simultaneously initially and more as the calcula-
tion progresses. Thus, there is a difference in the number of
T gates we can run simultaneously.
As noted in Section IV-A, we define nT as the upper bound

of the number of T gates running simultaneously, and we
calculate T -depth based on nT as in Fig. 16. In each round,
there are parts where we can run more than nT T gates.
However, by setting nT , we run these T gates separately.
Compared with this, in the parts having less than nT T gates,
we can run these T gates simultaneously.

FIGURE 22. Example circuit of the first C-comparator for flipping the
COMP qubit if b ≥ 22. To achieve this, We add 26 − 22 = 42 = 1010102
and use the COMP qubit as the carry out of the adder. The Init phase
consists of pairs of gates, a cnot, and an X , on the second, fourth, and
sixth groups of qubits including |di〉, |bi〉, and |ci+1〉 from the lowest bit.
This circuit is symmetric about the Toffoli gate surrounded by a dotted
box. Init, IP, IG, and IInit mean Initialization, Inverse P-rounds, Inverse
C-rounds, Inverse G-rounds, and Inverse Initialization, respectively.

First, we consider the parts having fewer than nT T gates,
which happens when we run P-rounds and G-rounds simul-
taneously, C-rounds and inverse P-rounds simultaneously, P-
rounds and inverse C-rounds simultaneously, and inverse G-
rounds and inverse P-rounds simultaneously. In these rounds,
if we have no restriction on running T gates, patterns are
given as follows.

1) In the first and the third cases, the number of T gates
we can run simultaneously decreases by one half as the
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FIGURE 23. Example of the CC-adder. If both CTRL and COMP are 1, we
subtract N − a = 22. This is implemented by adding
26 − (N − a) = 42 = 1010102 without calculating carry c6. If CTRL is 1 and
COMP is 0, we add a = 37 = 1001012. Based on these, we conduct
embedding and resetting. The remaining part is an adder, and we omit
the calculation of p[i, 6] and g[i, 6] (i < 6).

calculation progresses. Thus, in the latter part of the
calculation, we run fewer than nT T gates simultane-
ously. This part has T -depth 2 log nT and nT T gates in
total.

2) In the second and the fourth cases, the number of T
gates we can run simultaneously doubles as the calcu-
lation progresses. Thus, in the former part of the cal-
culation, we run less than nT T gates simultaneously.
This part has T -depth 2 log nT and nT T gates in total.

We have six parts each with a small number of T gates, as
follows:

1) P-rounds and G-rounds in the first C-comparator;
2) P-rounds and G-rounds in the CC-adder;

FIGURE 24. Example of the last C-comparator. We flip the COMP qubit if
b < 37. This is achieved by adding 26 − 37 = 27 = 0110112 and using the
carry out. First, we apply pairs of gates, a cnot and an X gate, on the first,
second, fourth, and fifth groups of qubits. In contrast to Fig. 22, we apply
X gates before and after the center Toffoli gate. This circuit is symmetric
about the Toffoli gate surrounded by a dotted box. Init, IP, IG, and IInit
means Initialization, Inverse P-rounds, Inverse C-rounds, Inverse
G-rounds, and Inverse Initialization, respectively.

3) C-rounds and inverse P-rounds in the CC-adder;
4) P-rounds and inverse C-rounds in the CC-adder;
5) inverse G-rounds and inverse P-rounds in the CC-

adder;
6) P-rounds and G-rounds in the final C-comparator.

Thus, we consume 12 log nT T -depth and 6nT T gates in
these.
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TABLE VI Breakdown of Toffoli Count and T -Count of Our Control Modular Adder

Tof means the number of Toffoli gates in each round. Gate means the type of using relative-phase Toffoli gates in each round. Cost means the number of T gates in
each relative-phase Toffoli Gate. Count means T -count in each round. We omit the rounds whose T -count is O(1). Inv means inverse, C-Comp means a C-comparator,
CC-Add means a CC-adder, and Init means Initialization.

TABLE VII Breakdown of Toffoli Count and CNOT Count of Our Control Modular Adder

Gate means the type of using relative-phase Toffoli gates in each round. Cost means the number of cnot gates in each relative-phase Toffoli gate. Count means
cnot count in each round. We do not show the rounds whose cnot count is O(1). Inv means Inverse, C-Comp means a C-Comparator, CC-Add means a
CC-Adder, Init means Initialization, Embed means Embedding, Calc means Calculating of |a+ b〉, and Reset means resetting.

Next, we consider the remaining parts. In these parts, we
run T gates nT each. The number of total T gates is 43n from
Table II, and we run 43n− 6nT T gates. Thus, T -depth of
this part is given by

2 (43n− 6nT )

nT
= 86n

nT
− 12. (25)

In conclusion, T -depth is given by

86n

nT
+ 12 log nT − 12. (26)

D. DETAILED GATE COUNT ON FTQ OR NISQ
In this section, we detail the T gate count on FTQ or
NISQ. The FTQ count is shown in Table VI. The detailed
cnot gate count on NISQ is shown in Table VII. The de-
tailed cnot depth count and KQCX on NISQ are shown in
Table VIII.

E. DISTILLATION CIRCUIT FOR A T GATE
A distillation circuit for a T gate is given as Fig. 25.
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TABLE VIII Breakdown of Toffoli Count and CNOT-Depth of Our Control Modular Adder

Gate means the type of using relative-phase Toffoli gates in each round. Cost means the number of cnot gates in each relative-phase Toffoli gate. Depth means cnot-depth in
each round. We omit the rounds whose cnot-depth is O(1). Inv means Inverse, C-Comp means a C-Comparator, CC-Add means a CC-Adder, Init means Initialization, Embed
means Embedding, and Reset means resetting.

FIGURE 25. Distillation circuit of |A〉 [23]. By this distillation circuit, we
reduce the error rate of |A〉 from p to 35p3.
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